WorldWideScience

Sample records for adsorption sugar production

  1. Cellulose hydrolysis by Trichoderma reesei cellulases: studies on adsorption, sugar production and synergism of cellobiohydrolase I,II and endoglucanase II

    Energy Technology Data Exchange (ETDEWEB)

    Medve, J.

    1997-02-01

    Three major cellulases have been purified by ion-exchange chromatography in an FPLC system. Microcrystalline cellulose (Avicel) was hydrolyzed by the single enzymes and by equimolar mixtures of CBH I-CBH II and CBH I-EG II. Enzyme adsorption was followed indirectly by selectively quantifying the enzymes in the supernatant by ion-exchange chromatography in an FPLC system. The (synergistic) production of small, soluble sugars (glucose, cellobiose and cellotriose) by the enzymes was followed by HPLC. 76 refs

  2. International Competitiveness of Sugar Production

    OpenAIRE

    Zimmermann, Beate; Zeddies, Jurgen

    2002-01-01

    Sugar market is one of the most protected markets for agricultural products world wide. In almost every sugar producing country the sugar market is regulated in some way. With an increasing liberalization of agricultural trade in the "Millennium Round" of the WTO trade negotiations, the question of international competitiveness is of increasing importance. Based on empirical studies, in this article the competitiveness of sugar production in the most important sugar producing countries is ana...

  3. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela;

    1999-01-01

    will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... a personal choice. What the danish consumer should be aware of is that no big difference has been found between sugar from sugar cane and sugar from sugar beet with regard to environmental impacts and resource consumption....

  4. ECONOMIC ANALYSIS OF SUGAR BEAT PRODUCTION

    OpenAIRE

    Jozo Kanisek; Jadranka Deže; Ljubica Ranogajec; Mirjana Miljević

    2008-01-01

    Croatian quota of 180.000 tones of sugar beet per year is approved for export to EU countries. For that amount of sugar it is necessary to produce about 30.000 ha of sugar beet. Sugar beet production requires deep and fertile soils, and crop rotation requirement is at least five year. Therefore, Slavonia and Baranya do t have enough areas under sugar beet. An additional problem is so called “sugar reform” applied by EUaiming to decrease price of sugar produced from sugar beet root and its eq...

  5. Pullulan production from sugar beat molasses

    OpenAIRE

    Kassim, Mohammad Bashir Ismail [محمد بشيراسماعيل قاسم; Sultan, Raad Hussani

    1997-01-01

    Sugar beet molasses was used as the substrate for the production of pullulan with Aureobasidum pullulans ATCC 42023. In addition biomass, residual sugar and final pH of the culture medium were investigated. In comparing sugar beet molasses and glucose media, it was found that production of pullulan from glucose medium highly exceeded that produced from molasses medium. Treatment of molasses with sodium sulphate slightly enhanced pullulan production. Highest pullulan production from molasses o...

  6. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    Science.gov (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  7. BREAK-EVEN POINT IN SUGAR-BEET PRODUCTION

    OpenAIRE

    Ilija Nedić

    2015-01-01

    World sugar consumption has been recording a steady growth in the past 70 years and, according to all relevant estimates, it will continue to grow also in the next decade, which puts sugar in the category of the most significant foods and commodities in the world. Of the total world sugar production, around 77% is derived from sugar cane and 23% from sugar beet. Brazil has been the world leader in sugar production for a long period of time, producing white sugar from sugar cane only, whereas ...

  8. Supply optimization for the production of raw sugar

    DEFF Research Database (Denmark)

    Grunow, Martin; Günther, H.O.; Westinner, R.

    2007-01-01

    Based on a case study from Venezuela, the production of raw sugar is investigated. Ideally, sugar mills operate at a constant production rate. However, safety stocks of the raw material cannot be maintained as sugar cane quality deteriorates very rapidly. Sugar cane is therefore continuously...

  9. 78 FR 146 - Determination of Trade Surplus in Certain Sugar and Syrup Goods and Sugar-Containing Products of...

    Science.gov (United States)

    2013-01-02

    ... STATES TRADE REPRESENTATIVE Determination of Trade Surplus in Certain Sugar and Syrup Goods and Sugar... certain sugar and syrup goods and sugar containing products of Determination of Trade Surplus in Certain Sugar and Syrup Goods and Sugar-Containing Products of Chile, Morocco, Costa Rica, the...

  10. BREAK-EVEN POINT IN SUGAR-BEET PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ilija Nedić

    2015-05-01

    Full Text Available World sugar consumption has been recording a steady growth in the past 70 years and, according to all relevant estimates, it will continue to grow also in the next decade, which puts sugar in the category of the most significant foods and commodities in the world. Of the total world sugar production, around 77% is derived from sugar cane and 23% from sugar beet. Brazil has been the world leader in sugar production for a long period of time, producing white sugar from sugar cane only, whereas the leader in the production of sugar derived from sugar beet is the EU-28. When the Republic of Croatia joined the EU, the Croatian sugar industry became part of the single European sugar market, so the break-even point was used in the research to determine the competitiveness level of the Croatian sugar beet production. Based on the expected selling price of sugar beet amounting to EUR 34 per ton of standard quality sugar beet, and using the break-even method, it was determined that the quantity required to cover total costs in sugar beet production in the Republic of Croatia amounts to 55.26 tons per hectare of payable sugar beet, standard quality, i.e. 8.84 tons of polarized sugar per hectare. As the average sugar beet production in the Republic of Croatia, expressed in the equivalent of polarized sugar, amounts to 7.8 tons per hectare, it is obvious that an average Croatian producer of sugar beet, without income from subsidies, operates at a loss.

  11. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    OpenAIRE

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  12. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Science.gov (United States)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  13. PROSPECTS OF SUGAR PRODUCTION AND IMPORTS: MEETING THE SUGAR DEMAND OF NIGERIA BY YEAR 2020

    OpenAIRE

    J.N. Nmadu; M.A. Ojo; F.D. Ibrahim

    2013-01-01

    The trend of sugar cane production and refined sugar imports for the period 1960-2010 were analysed and forecasted to year 2020. Results show that sugar cane output will rise to 2.8m tonnes from about 88 thousand hectares of land by year 2020. The total refined sugar that will be available from production and import is about 720 thousand tonnes but with Nigerian population growing at the rate of 2.27%, potential demand for refined sugar will rise to 1.6B tonnes by the year 2020 creating a def...

  14. Biofuel production from plant biomass derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, R.

    2007-03-15

    This report details the results of a project that aimed to develop a recombinant thermophilic microorganism able to produce ethanol in a commercial yield from mixed C5 (xylose and arabinose) and C6 (mainly glucose) sugar substrates typically found in biomass hydrolysates. The main focus of the project was on producing a stable recombinant which formed ethanol as its major product and did not produce significant quantities of by-products. The costs of bioethanol could be substantially reduced if cheap plant-based feedstocks could be utilised. This study focussed on a strain of Geobacillus thermoglucosidasius known to be a thermophilic ethanol producer and developed the genetic manipulation techniques necessary to engineer its metabolism such that unwanted products (mainly organic acids) were no longer formed and ethanol became the overwhelming product. An appropriate genetic took kit to allow the required metabolic engineering was acquired and used to inactivate the genes of the metabolic pathways involved in the formation of the organic acids (e.g. lactic acid) and to up-regulate genes concerned with the formation of ethanol. This allowed the flow of metabolites derived from the sugar substrates to be redirected to the desired product. Stable mutants lacking the ability to form lactic acid were created and shown to give enhanced levels of ethanol, with yields from glucose approaching those achieved in yeast fermentations and low by-product formation.

  15. Pollen dispersal in sugar beet production fields.

    Science.gov (United States)

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  16. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivati

  17. Ethanol production in fermentation of mixed sugars containing xylose

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Paul V. (West Chester, PA); Mc Cutchen, Carol M. (Wilmington, DE); Li; Xu (Newark, DE); Emptage, Mark (Wilmington, DE); Caimi, Perry G. (Kennett Square, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  18. Production of clean pyrolytic sugars for fermentation.

    Science.gov (United States)

    Rover, Marjorie R; Johnston, Patrick A; Jin, Tao; Smith, Ryan G; Brown, Robert C; Jarboe, Laura

    2014-06-01

    This study explores the separate recovery of sugars and phenolic oligomers produced during fast pyrolysis with the effective removal of contaminants from the separated pyrolytic sugars to produce a substrate suitable for fermentation without hydrolysis. The first two stages from a unique recovery system capture "heavy ends", mostly water-soluble sugars and water-insoluble phenolic oligomers. The differences in water solubility can be exploited to recover a sugar-rich aqueous phase and a phenolic-rich raffinate. Over 93 wt % of the sugars is removed in two water washes. These sugars contain contaminants such as low-molecular-weight acids, furans, and phenols that could inhibit successful fermentation. Detoxification methods were used to remove these contaminants from pyrolytic sugars. The optimal candidate is NaOH overliming, which results in maximum growth measurements with the use of ethanol-producing Escherichia coli.

  19. Anaerobic co-digestion of by-products from sugar production with cow manure

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Sugar beet leaves (SBL), sugar beet top (SBT), sugar beet pulp (SBP) and desugared molasses (DM) are by-products from the sugar production. In the present study we investigated the potential of SBL, SBT and SBP as feedstock for biogas production. The maximum methane potential of SBL, SBT and SBP...

  20. PROSPECTS OF SUGAR PRODUCTION AND IMPORTS: MEETING THE SUGAR DEMAND OF NIGERIA BY YEAR 2020

    Directory of Open Access Journals (Sweden)

    J.N. Nmadu

    2013-02-01

    Full Text Available The trend of sugar cane production and refined sugar imports for the period 1960-2010 were analysed and forecasted to year 2020. Results show that sugar cane output will rise to 2.8m tonnes from about 88 thousand hectares of land by year 2020. The total refined sugar that will be available from production and import is about 720 thousand tonnes but with Nigerian population growing at the rate of 2.27%, potential demand for refined sugar will rise to 1.6B tonnes by the year 2020 creating a deficit of over 1.5B tonnes. This require a drastic action which if not taken will lead to sugar crisis. Three major options are advocated in this paper i.e. hectarage expansion, massive funding of research to improve sugar cane production technology such that yield will rise to 150 tonnes per hectare and import expansion. Of the three options, only increase funding of research will encourage local technology and save Nigeria foreign exchange of more than $100B annually and will make Nigeria self-reliant in sugar production by the year 2020 and facilitate the emergence of Nigeria as a developed nation.

  1. Bioenergy productivity of sugar beet irrigated with reclaimed wastewaters

    OpenAIRE

    Pasquale Campi; Alejandra Navarro; A. Domenico Palumbo; Marcello Mastrangelo; Antonio Lonigro; Marcello Mastrorilli

    2015-01-01

    The use of treated wastewater to irrigate the sugar beet (Beta Vulgaris L. var. saccharifera) for bioethanol could play a strategic role to contrast the use of natural water resources and increase the productivity of the crop. The 2-year experiment (2013-2014) was performed on sugar beet irrigated with fresh water and wastewater at different steps of the reclamation process (secondary and tertiary treatments). The data obtained showed that the root sugar beet yield and ethanol production unde...

  2. Consumer understanding of sugars claims on food and drink products

    OpenAIRE

    Patterson, N J; Sadler, M J; Cooper, J. M.

    2012-01-01

    Consumer understanding of nutrition and health claims is a key aspect of current regulations in the European Union (EU). In view of this, qualitative and quantitative research techniques were used to investigate consumer awareness and understanding of product claims in the UK, focusing particularly on nutrition claims relating to sugars. Both research methods identified a good awareness of product claims. No added sugars claims were generally preferred to reduced sugars claims, and there was ...

  3. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols.

  4. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols. PMID:26723007

  5. Fuel bio ethanol production from experimental crops of sugar cane, sweet sorghum and sugar beet in Uruguay

    International Nuclear Information System (INIS)

    This article is about the fuel bio ethanol production. Its requires the use of raw materials, process, integration with food producing chains, and social inclusion. Agricultural and fermentability assays of three sugar crops were performed: sugar beet, sugar cane and sweet sorghum grown in fields of small producers .

  6. 75 FR 23631 - Sugar Re-Export Program, the Sugar-Containing Products Re-Export Program, and the Polyhydric...

    Science.gov (United States)

    2010-05-04

    ... withdrawing the proposed rule published at 70 FR 3150 on January 21, 2005, to implement Chapter 17 of the...; ] DEPARTMENT OF AGRICULTURE Foreign Agricultural Service 7 CFR Part 1530 Sugar Re-Export Program, the Sugar... cane sugar under subheading 1701.11.20 of the HTS for the production of polyhydric alcohols,...

  7. THE EFFECT OF NITROGEN INPUT ON POLARISED SUGAR PRODUCTION AND QUALITATIVE PARAMETERS OF SUGAR BEET

    Directory of Open Access Journals (Sweden)

    MILAN MACÁK

    2007-11-01

    Full Text Available During 1998-2002, the application of different forms and doses of nitrogen on quantitative (polarised sugar productionand qualitative parameters (digestion, molasses forming components - potassium, sodium and α-amino nitrogen content of sugar beet in vulnerable zones (Nitrate directive was studied. Calculated input of nitrogen ranged from 12 kg up to 240 kg N.ha-1. By increasing input of N from FYM application into the soil causes an increases of α- amino nitrogen content in root, which in consequence causes a decreases the sugar content (negative correlation r= -0.8659+. The application of straw instead FYM of analogues treatments caused significant decrease (straw versus FYM and highly significant decrease (straw plus N fertilizers versus FYM plus N fertilizers of α-amino nitrogen content in sugar beet root living the productive parameters unchanged. The content of α-amino nitrogen in root of sugar beet indicate an environmentally friendly management practices with causal relation to water protection from nitrate.

  8. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    in standard gels. Protein reduced the hardness, stiffness and chewiness of the gels whereas there were some variation in the effect of protein on the adhesiveness of the gels. Sugar beet pectin in black currant juice formed a gel and a gelation also took place in milk. In luncheon meat a cohesive gel......Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...

  9. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    was formed which bound the meat pieces together thereby making the product sliceable. However, in two of the food products some unwanted side effects were observed. The enzymes did not only catalyse the cross-linking, but also oxidised the anthocyanins in the black currant juice and short chained fatty acids......Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...

  10. Biobutanol Production from Hexose and Pentose Sugars

    NARCIS (Netherlands)

    Raganati, F.; Procentese, A.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    The Acetone-Butanol-Ethanol (ABE) fermentation is receiving renewed interest as a way to upgrade renewable resources for the production of products with high added value as chemicals and fuels. Main pre-requisites of fermentation feedstocks are abundance and un-competitiveness with food sources and

  11. The sugar model: catalysis by amines and amino acid products

    Science.gov (United States)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  12. Energy compensation following consumption of sugar-reduced products: a randomized controlled trial

    OpenAIRE

    Markey, Oonagh; Le Jeurne, J.; Lovegrove, Julie A.

    2015-01-01

    PURPOSE: Consumption of sugar-reformulated products (commercially available foods and beverages that have been reduced in sugar content through reformulation) is a potential strategy for lowering sugar intake at a population level. The impact of sugar-reformulated products on body weight, energy balance (EB) dynamics and cardiovascular disease risk indicators has yet to be established. The REFORMulated foods (REFORM) study examined the impact of an 8-week sugar-reformulated product exchang...

  13. Multifractal modeling of the production of concentrated sugar syrup crystal

    Science.gov (United States)

    Sheng, Bi; Jianbo, Gao

    2016-07-01

    High quality, concentrated sugar syrup crystal is produced in a critical step in cane sugar production: the clarification process. It is characterized by two variables: the color of the produced sugar and its clarity degree. We show that the temporal variations of these variables follow power-law distributions and can be well modeled by multiplicative cascade multifractal processes. These interesting properties suggest that the degradation in color and clarity degree has a system-wide cause. In particular, the cascade multifractal model suggests that the degradation in color and clarity degree can be equivalently accounted for by the initial “impurities” in the sugarcane. Hence, more effective cleaning of the sugarcane before the clarification stage may lead to substantial improvement in the effect of clarification.

  14. Multifractal modeling of the production of concentrated sugar syrup crystal

    Institute of Scientific and Technical Information of China (English)

    闭胜; 高剑波

    2016-01-01

    High quality, concentrated sugar syrup crystal is produced in a critical step in cane sugar production:the clarification process. It is characterized by two variables: the color of the produced sugar and its clarity degree. We show that the temporal variations of these variables follow power-law distributions and can be well modeled by multiplicative cascade multifractal processes. These interesting properties suggest that the degradation in color and clarity degree has a system-wide cause. In particular, the cascade multifractal model suggests that the degradation in color and clarity degree can be equivalently accounted for by the initial“impurities”in the sugarcane. Hence, more effective cleaning of the sugarcane before the clarification stage may lead to substantial improvement in the effect of clarification.

  15. Polysaccharides enriched in rare sugars: bacterial sources, production and applications

    Directory of Open Access Journals (Sweden)

    Christophe eRoca

    2015-04-01

    Full Text Available Microbial extracellular polysaccharides (EPS, produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers.This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals and biomedical applications, are discussed.

  16. Greenhouse gas emission associated with sugar production in southern Brazil

    OpenAIRE

    La Scala Newton; Romão Rangel; Panosso Alan; de Figueiredo Eduardo

    2010-01-01

    Abstract Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equiv...

  17. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars.

  18. Bioenergy productivity of sugar beet irrigated with reclaimed wastewaters

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2015-09-01

    Full Text Available The use of treated wastewater to irrigate the sugar beet (Beta Vulgaris L. var. saccharifera for bioethanol could play a strategic role to contrast the use of natural water resources and increase the productivity of the crop. The 2-year experiment (2013-2014 was performed on sugar beet irrigated with fresh water and wastewater at different steps of the reclamation process (secondary and tertiary treatments. The data obtained showed that the root sugar beet yield and ethanol production under fresh water treatment (52.2 Mg ha–1 and 5446 L ha–1 were lower respect to that obtained from the secondary and tertiary wastewater treatments (66.7 Mg ha–1 and 6785 L ha–1, and 58.7 Mg h–1 and 6164 L ha–1, respectively, with the same irrigation volumes. These results can depend on the higher quantity of nutrient uptake when wastewater is used for irrigation. In particular, the average N applied (as nitrate and ammonium with irrigation during the growing seasons (2013 and 2014 was corresponding to the supply of 4, 28 and 20 kg ha–1, for the fresh water, secondary, and tertiary wastewater treatments, respectively.

  19. An Ionic Liquid Reaction and Separation Process for Production of Hydroxymethylfurfural from Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Feng; Li, Joanne; Cooper, Alan R.

    2014-01-01

    There has been world-wide interest to making plastics out of renewable biomass feedstock for recent years. Hydroxymethylfurfural (HMF) is viewed as an attractive alternate to terephthalic acid (TPA) for production of polyesters (PET) and polyamides. Conversion of sugars into HMF has been studied in numerous publications. In this work, a complete ionic liquid reaction and separation process is presented for nearly stoichiometric conversion of fructose into HMF. Different adsorbent materials are evaluated and silicalite material is demonstrated effective for isolation of 99% pure HMF from actual ionic liquid reaction mixtures and for recovery of the un-converted sugars and reaction intermediate along with the ionic liquid. Membrane-coated silicalite particles are prepared and studied for a practical adsorption process operated at low pressure drops but with separation performances comparable or better than the powder material. Complete conversion of fresh fructose feed into HMF in the recycled ionic liquid is shown under suitable reaction conditions. Stability of HMF product is characterized. A simplified process flow diagram is proposed based on these research results, and the key equipment such as reactor and adsorbent bed is sized for a plant of 200,000 ton/year of fructose processing capacity. The proposed HMF production process is much simpler than the current paraxylene (PX) manufacturing process from petroleum oil, which suggests substantial reduction to the capital cost and energy consumption be possible. At the equivalent value to PX on the molar basis, there can be a large gross margin for HMF production from fructose and/or sugars.

  20. Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar

    International Nuclear Information System (INIS)

    Synthesis of boronic acid functionalized superparamagnetic iron oxide nanoparticles has been reported. Magnetite nanoparticles were prepared by simple co-precipitation from Fe2+ and Fe3+ solution. m-Aminophenyl boronic acid was attached to iron oxide particles through 3,4-dihydroxy benzaldehyde through C=N bond. X-ray diffraction and selected area electron diffraction have shown the formation of inverse spinel phase magnetite of both as prepared and functionalized magnetite particles. FTIR shows attachment of boronic acid-imine onto iron oxide surface through enediol group. Transmission electron microscopy shows well dispersion of boronic acid functionalized particles of size 8 ± 2 nm. Vibration sample magnetometry shows both the particles are superparamagnetic at room temperature having saturation magnetization (Ms) 52 emu/g. In this work the affinity of these boronic acid functionalized particles towards sugar binding was studied taking dextrose sugar as a model. The influence of pH and sugar concentration has been extensively investigated. The results show that such boronic acid modified superparamagnetic particles are efficient support for sugar separation having maximum sugar loading capacity (60 μg/50 μl) at pH 8.

  1. Investigation of the usability of activated carbon produced from sugar beet pulp for the adsorption of 2,4-D and Metribuzin pesticides in wastewaters

    OpenAIRE

    SEZER, Kazım; AKSU, Zümriye

    2013-01-01

    In this study the adsorption of 2,4-D and Metribuzin herbicides, present in wastewaters and used in Turkey intensively, on activated carbon produced from dried sugar beet pulp by heat activation and on commercial powdered activated carbon was comparatively investigated in a batch system. At studies, effect of initial herbicide concentration, temperature and pH parameters on adsorption rate and yield was investigated and optimum working conditions determined. Defining parameters of the system,...

  2. Life cycle analysis for bioethanol production from sugar beet crops in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Foteinis, Spyros; Kouloumpis, Victor [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece); Tsoutsos, Theocharis, E-mail: theocharis.tsoutsos@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece)

    2011-09-15

    The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO{sub 2}e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations). - Highlights: > Bioethanol production gives better results than sugar production from sugar beets. > In most cases, sugar beets, as an already industrialized plant has organizational virtues. > Bioethanol could be a sustainable independent way of energy production, alternative to biodiesel.

  3. MODERN STATE AND PROSPECTS OF DEVELOPMENT OF THE DOMESTIC RESOURCE BASE OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Lalayan G. G.

    2015-06-01

    Full Text Available The main indicators of production of factory sugar beet in the Russian Federation and in the Krasnodar region are considered in the article. The structure of sown areas and gross harvests of sugar beet on federal districts and the main producing regions of the country are visually presented. The tendency of change of yield capacity of sugar beet for 1990-2014 is revealed on the basis of analytical alignment. The assessment of stability of level and tendency of change of yield capacity and sown areas of sugar beet is given for the Krasnodar region and in general for the Russian Federation. The influence of the factors on the size of gross harvests of root crops of sugar beet is analyzed. Agro climatic conditions of cultivation of sugar beet are studied. The features of production of sugar beet in the natural and economic zones of the Krasnodar region are revealed. The dynamics of application of the mineral and organic fertilizers under harvest of sugar beet in the agricultural organizations of the Krasnodar region is considered. The current state of the national selection and seed farming is characterized. The growing dependence on import of the seed material is revealed. The attention is focused on the main problems creating threat of further development of a sugar beet subcomplex of the region and ensuring food security of the country on sugar in the conditions of action of the international sanctions. The prospects of increase in production of sugar from domestic raw materials are noted

  4. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Science.gov (United States)

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues. PMID:26966011

  5. Development of Beet Sugar Production in Ryazan Region in the Context of Ensuring Food Security

    Directory of Open Access Journals (Sweden)

    Mansurov Ruslan Evgenyevich

    2014-12-01

    Full Text Available The article presents the results of the research on the current state of the beet sugar subcomplex of Ryazan region in the context of the need of improving its efficiency. The study let the author determine that currently the beet sugar subcomplex of Ryazan region does not ensure domestic demand in sand sugar. However, there are reserves of providing more efficient use of soil and climate capacity as well as the productivity potential of the region. When applying the technology of field beet piling, the period of sugar production at sugar factories may be extended up to 200 days. At this, up to 51 thousand tons of sand sugar can be produced. This amount will completely cover the annual demand for sugar in Ryazan region. In order to further study the feasibility of this approach, zoning was carried out and let allocate the zones of beet seeding. As a result, it was determined that a number of areas are far removed from the place of treatment, and in terms of transportation costs minimization the sugar beet cultivation in these areas is not rational. As an alternative, the author proposes to consider the possibility of building a new sugar factory in Ryazhsky district with the processing capacity of 1,000 tons of sugar beet per day. Taking this into account, the recommended acreage of sugar beet by districts and zones of raw material supply were obtained through corresponding calculations.

  6. Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse

    NARCIS (Netherlands)

    Efe, C.; Straathof, A.J.J.; Van der Wielen, L.A.M.

    2005-01-01

    The primary aim of this study is to investigate and analyze the sugar-ethanol plants operating in Brazil to construct a raw model to gain better understanding and insight about the technical and economical aspects of the currently operating plants. And, the secondary aim is to combine the knowledge

  7. UK Sugar Beet Farm Productivity Under Different Reform Scenarios: A Farm Level Analysis

    OpenAIRE

    Renwick, Alan W.; Revoredo-Giha, Cesar; Reader, Mark A

    2005-01-01

    The purpose of this paper is to study the effect that the imminent reform in the European Union (EU) sugar regime may have on farm productivity in the United Kingdom (UK). We perform the analysis on a sample of sugar beet farms representative of all the UK sugar beet regions. To estimate the changes in productivity, we estimate a multi-output cost function representing the cropping part of the farm, which is the component that would be mostly affected by the sugar beet reform. We use this cos...

  8. Evaluation of some natural products on sugar beet contamined with coliform bacteria group

    Directory of Open Access Journals (Sweden)

    Rogéria Maria Alves de Almeida

    2006-08-01

    Full Text Available The sugar beet crop has great importance because its ability on sugar production that can be extracted and crystallized. The use of wastewater in the irrigation has increased because this water has some nutrients sources. However the use of wastewater may cause some health problems due to the presence of coliform bacteria group. In this trial, the objective was to contribute for the sugar beet decontamination. Some products as lemon juice, NaClO and ascetic acid were used by sugar beet immersion during a little time. In conclusion, the lemon juice showed best results by reducing coliform bacteria group.

  9. New findings on the biogas production from sugar beets; Neue Erkenntnisse zur Biogasproduktion aus Zuckerrueben

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Hinnerk; Schlaefer, Ottmar; Sievers, Michael [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Trommler, Marcus; Postel, Jan [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany); Felde, Andreas von; Harling, Hinrich; Rother, Beate [KWS Saat AG, Einbeck (Germany); Franke, Henning; Tkocz, Lisa [INPUT Ingenieure GmbH, Sehnde (Germany)

    2013-10-01

    Main purpose of the project is the process improvement to acquire the full potential of sugar beet based biomethane production. This covers the optimization of breeding and cultivation, as well as improvements of the overall logistic and production process. The project results show that breeding of regional adapted sugar beets can lead to higher yields in cultivation as well as technical enhancements within the biogas production chain can lower the production costs. Both approaches are part of an overall optimization of sugar beets for biomethane production. Project findings indicate a competitive position in comparison to biomethane based on different agricultural feedstock. (orig.)

  10. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities.

    Science.gov (United States)

    Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline

    2006-09-20

    Polyphenol content and free radical scavenging capacity of seven kinds of sugar manufacturing products (A sugars, clear juices, syrups, massecuite, and A, B, and C molasses) were studied. Seventy-two samples were collected at different stages of the process during two sugar harvests from a local sugar factory (Bois-Rouge, La Réunion). The total phenolic content of sugar products was determined according to the Folin-Ciocalteu assay. Polyphenols of sugar products were extracted with ethyl acetate and quantified by LC-UV-ESI-MS during all of the process. ABTS and DPPH assays were applied to aqueous solution of sugar products, which exhibited interesting free radical scavenging activity. Comparatively, ethyl acetate extracts exhibited higher antioxidant activity. Multivariate analyses (principal component analysis and canonical discriminant analysis) demonstrated a significant correlation between polyphenols and antioxidant activity. Moreover, it was observed that the sugar process results in an increase of the phenolic content and the free radical scavenging capacity of the different products. These products and especially molasses proved to be a rich source of natural antioxidants and may represent an interesting alternative to synthetic food antioxidants. PMID:16968093

  11. Sugar Maple Phenology: Anthocyanin Production During Leaf Senescence

    Science.gov (United States)

    Lindgren, E.; Rock, B.

    2007-12-01

    The Northeastern United States is known for its brilliant fall foliage colors. Foliage is responsible for a billion dollar tourism industry. Many comment that past years have not resulted in the amazing color displays seen historically. As sugar maple trees senesce they contribute bright red leaves to the mural of oranges, yellows, and greens. The pigment that produces the red color, anthocyanin, is synthesized in the fall as chlorophyll slowly degrades. Remote sensing data from LandSat during fall senescence can help investigate this event by quantifying color change and intensity. This data can then be compared to ground validation efforts in several study plots. The results will help answer the question, "Why do leaves turn red?" One hypothesis is that this pigment acts as a photoprotectant and screens leaves from UV light. It is possible that an increase in tropospheric ozone has negatively affected fall foliage due to the increased reflection of UV light before it reaches the trees; thereby reducing the leaves need to produce anthocyanin. Another hypothesis is that production of anthocyanin is linked to temperature, with maximum synthesis occurring during cold evenings and moderate days. Temperature changes caused by climate change could also be affecting anthocyanin. Through observing these changes by remote sensing and ground experiments, more can be learned about this phenological stage and why it happens.

  12. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    Science.gov (United States)

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.

  13. Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production.

    Science.gov (United States)

    Agudelo, Roberto A; García-Aparicio, María P; Görgens, Johann F

    2016-01-25

    Triticale, a non-food based, low-cost and well-adapted crop in marginal lands has been considered as a potential 1G and 2G feedstock for bio-ethanol production. In this work, triticale straw was evaluated as a source of fermentable sugars by combination of uncatalyzed steam explosion and enzymatic hydrolysis. Pretreatment conditions with severities from 3.05 to 4.12 were compared in order to identify conditions that favour the recovery of hemicellulose-derived sugars, cellulose digestibility or the combined sugars yield (CSY) from the pretreatment-enzymatic hydrolysis. Xylose oligosaccharide was the major sugar in hydrolysates from all pretreatment conditions. Maximum hemicellulose-sugars recovery (52% of the feedstock content) was obtained at 200 °C and 5 min. The highest cellulose digestibility (95%) was found at 200 °C - 15 min, although glucose recovery from hydrolysis was maximised at 200 °C - 10 min (digestibility >92%) due to higher mass yield of pretreated solids. The maximum CSY (nearly 77% of theoretical content) was obtained at 200 °C - 5 min. Sugar loss after pretreatment was observed to higher extent at harsher severities. However, the concentrations of sugar degradation products and acetic acid were at levels below tolerance limits of the downstream biological conversions. Steam explosion pretreatment without acid impregnation is a good technology for production of fermentable sugars from triticale straw. This work provides foundation for future autohydrolysis steam explosion optimization studies to enhanced sugars recovery and digestibility of triticale straw.

  14. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate.

    Science.gov (United States)

    Silva, Felipe Thales Moreira; Moreira, Luiza Rojas; de Souza Ferreira, Juliana; Batista, Fabiana Regina Xavier; Cardoso, Vicelma Luiz

    2016-01-01

    Hydrogen is a promising alternative for the increased global energy demand since it has high energy density and is a clean fuel. The aim of this work was to evaluate the photo-fermentation by Rhodobacter capsulatus, using the dark fermentation effluent as substrate. Different systems were tested by changing the type of sugar in the dark fermentation, investigating the influence of supplementing DFE with sugar and adding alternate and periodically lactose and glucose throughout the process. The supplementation of the DFE with sugar resulted in higher H2 productivity and the replacement of the sugars repeatedly during the photo-fermentation process was important to maintain the cell culture active. By controlling the residual amount of sugar, bacteria inhibition was avoided; lactic acid, that was toxic to the biomass, was consumed and the metabolic route of butyric acid production was predominant. Under optimum conditions, the H2 productivity reached 208.40mmolH2/Ld in 52h. PMID:26476167

  15. Sugar beet production in the European Union and their future trends

    Directory of Open Access Journals (Sweden)

    H. Řezbová

    2013-12-01

    Full Text Available The main aim of this paper is to analyze the yield (t/ha and the production costs of white (polarized sugar and sugar beet in the main European producer countries in order to identify main development trends. The partial objectives of this study are: to analyse the production costs (variable costs of sugar and sugar beet of the main European producers (France, Germany, Poland, United Kingdom, Czech Republic, to compare sugar beet yield of Tereos France and Tereos TTD a.s., to analyse sugar beet yield potential and their trends. The used methods are chain and basic indexes and regression analysis of time series/trend data - for predicting on next tree years. The main producers of sugar beet in the European Union (i.e. France, Germany, Poland, United Kingdom, and Czech Republic can not achieve goal of sugar yield 15t/ha while maintaining the amount of variable (direct costs at 15 EUR/tone of sugar beet in the business year 2015/2016. Pieces of knowledge introduced in this paper resulted from solution of an institutional research intention MSM 6046070906 „Economics of resources of Czech agriculture and their efficient use in frame of multifunctional agri-food systems“.

  16. Feasibility of converting a sugar beet plant to fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  17. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  18. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators

    Science.gov (United States)

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  19. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production

    OpenAIRE

    Miranda, J. R.; Passarinho, Paula C.; de Gouveia, L.

    2012-01-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the mi...

  20. Behavior of Fermentable Sugars in the Traditional Production Process of Cassava Bioethanol

    Directory of Open Access Journals (Sweden)

    P. Diakabana

    2014-10-01

    Full Text Available The aim of study is to evaluate the ferment ability of cassava must in the ethanol production process from cassava in Congo. Three traditional methods of ethyl fermentation were tested: spontaneous fermentation, fermentation with yeast inoculation and fermentation led with yeasting and sugaring. Consumption of fermentable sugars was further in the case of directed fermentation with yeast inoculation (3° Brix residual extract from 48 h compared to spontaneous fermentation without yeast inoculation (3.8° Brixresidual extract from 120 heures. Total sugars have been consumed only partially (66.7% of limit attenuation, while reducing sugars have been almost completely (about 91%. The addition of yeast in the cassava wort have led to a lower assessment of dextrins (2.7% glucose equivalent compared to spontaneous fermentation (3.6%. It have also assured a better overall ethanol productivity PTE= 0.83 g ethanol/L.h than sugaring proceeding (PTE = 0.61 g/L.h and without yeast additional (PTE = 0.32 g/L.h. Among the fermentable sugars developed in the cassava mash there are reducing sugars, such as glucose and maltose. Non-fermentable sugars represent a significant slice of stock of soluble carbohydrate (on average 3.24% dextrose equivalent of the must in the three cases of fermentation tested.

  1. Feasibility Assessment of Converting Sugar Mills to Bioenergy Production in Africa

    Directory of Open Access Journals (Sweden)

    Manoel Regis Lima Verde Leal

    2016-09-01

    Full Text Available World sugar production has consistently overrun demand in the past five years. Moreover, in 2017 the European Sugar Regime will expire, ending the quota system and preferential sugar prices, largely affecting small producers, particularly in Africa. Diversification emerges as an option for sugar-oriented mills. Two evident alternatives are ethanol and electricity production that allow better use of molasses and cane fibers, respectively. Molasses is the cheapest feedstock for ethanol production, while the cane fibers—in the form of bagasse—are readily available at the mill. The transition from sugar to sugar, ethanol and electricity may require substantial investment capital, yet our results show that significant progress can start at relatively small cost. In this work, we use simulations to explore the impact of ethanol and electricity production in an existing sugar mill in Mozambique. In spite of the large amounts of energy obtained from ambitious scenarios, such as Ethanol-2 and Ethanol/EE, molasses-based ethanol (Ethanol-1 scenario seems more attractive in economical and infrastructural terms. High opportunity costs for molasses, low oil prices and enabling institutional conditions, such as mandatory blending mandates, to promote bioenergy remain a challenge.

  2. Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata.

    Science.gov (United States)

    Tanimura, Kosuke; Matsumoto, Takuya; Nakayama, Hideki; Tanaka, Tsutomu; Kondo, Akihiko

    2016-07-01

    We successfully enhanced the productivity of ectoine with Halomonas elongata by improvement of the transport of sugar. First, we carried out screening for sugar transporters capable of improving glucose and xylose consumption. We found two transporters: b3657 from Escherichia coli, which is capable of improving glucose consumption, and HEO_0208 from H. elongata, which is capable of improving xylose consumption. Using transporter-overexpressing strains, the productivity of ectoine was improved. These results indicate that sugar consumption is important for efficient ectoine production. As result of phenotypic analysis of a HEO_0208 deletion strain, we discovered that HEO_0208 is the major xylose transporter in H. elongata. This is the first report demonstrating improvement of ectoine productivity by enhancing the transport of sugar. PMID:27233128

  3. Production of amino acids by mucor geophillus using sugar cane waste as a substrate

    International Nuclear Information System (INIS)

    In this study Mucor geophillus was used for amino acid production from acid/base hydrolysates of sugar cane bagasse. The Effects of substrate as well as influence of hydrolyzing agent on amino acid production by Mucor geophillus were investigated. Result reveals that higher amount of amino acids were accumulated when acid hydrolysates of sugar cane bagasse were used as substrate in comparison to NH/sub 4/OH and H/sub 2/O/sub 2/ hydrolysates. (author)

  4. SYSTEMIC ANALYSIS OF CONTROL PROBLEMS OF SUGAR PRODUCTION IN LOGISTICAL SYSTEMS

    OpenAIRE

    Прокопенко, Тетяна Олександрівна; Ладанюк, Анатолій Петрович

    2012-01-01

    Strategic management, the latest technologies, project-oriented approach for sugar industry enterprises are of great interest nowadays. The general trend of modern control systems of sugar production is the creation of logistical systems. They provide information collection and processing, control of deviations of actual values of the company operation from the planned, production scheduling and control, stock planning and control, logistical analysis, calculation and analysis of produc...

  5. Sensory profiles and consumer acceptability of a range of sugar-reduced products on the UK market

    OpenAIRE

    Markey, Oonagh; Julie A. Lovegrove; Methven, Lisa

    2015-01-01

    Current UK intake of non-milk extrinsic sugars (NMES) is above recommendations. Reducing the sugar content of processed high sugar foods through reformulation is one option for reducing consumption of NMES at a population level. However, reformulation can alter the sensory attributes of food products and influence consumer liking. This study evaluated consumer acceptance of a selection of products that are commercially-available in the UK; these included regular and sugar-reduced baked beans,...

  6. Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars.

    Science.gov (United States)

    Almqvist, Henrik; Pateraki, Chrysanthi; Alexandri, Maria; Koutinas, Apostolis; Lidén, Gunnar

    2016-08-01

    Succinic acid production from the monosaccharides xylose, arabinose, glucose, mannose and galactose was studied using the bacterium Actinobacillus succinogenes. In Duran bottle cultures, containing 10 g/L of each of sugar, succinic acid was produced from all sugars except for galactose. The highest succinate yield, 0.56 g/g, was obtained with glucose, whereas the succinate yield was 0.42, 0.38 and 0.44 g/g for xylose, mannose and arabinose, respectively. The specific succinate productivity was 0.7 g/g h for glucose, but below 0.2 g/g h for the other sugars. Batch bioreactor fermentations were carried out using a sugar mixture of the five sugars giving a total concentration of 50 g/L, mimicking the distribution of sugars in spent sulfite liquor (SSL) from Eucalyptus which is rich in xylose. In this mixture, an almost complete conversion of all sugars (except galactose) was achieved resulting in a final succinate concentration of 21.8-26.8 g/L and a total yield of 0.59-0.68 g/g. There was evidence of co-consumption of glucose and xylose, whereas mannose was consumed after glucose. The main by-products were acetate 0.14-0.20 g/g and formate 0.08-0.13 g/g. NADH balance calculations suggested that NADH required for succinate production was not met solely from formate and acetate production, but other means of NADH production was necessary. Results from mixed sugar fermentations were verified using SSL as substrate resulting in a succinate yield of 0.60 g/g. In addition, it was found that CO2 sparging could replace carbonate supply in the form of MgCO3 without affecting the succinate yield. PMID:27255975

  7. Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity.

    Science.gov (United States)

    Lian, Jieni; McKenna, Rebekah; Rover, Marjorie R; Nielsen, David R; Wen, Zhiyou; Jarboe, Laura R

    2016-05-01

    Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L(-1) styrene from pure levoglucosan, similar to the 251 ± 3 mg L(-1) produced from glucose. When provided at a concentration of 5 g L(-1), pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L(-1) of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge. PMID:26803503

  8. Application of multi-element clustering techniques of five Egyptian industrial sugar products

    International Nuclear Information System (INIS)

    The concentration of 18 elements in different cane sugar products, i.e., cane sugar plants, crude and syrup juices, molasses, and the end products of the consumer sugar, were analyzed and processed. The samples were collected from five cities, i.e., Kom Ombo, Edfu, Armant, Deshna and Naga Hammady in Upper Egypt where the main Egyptian sugar industry factories are located. INAA was applied for the determination of Al, Ca, Cl, Co, Cr, Fe, Mg, Mn, Na, and Sc, while Cu, Li, P, Sn, V and Zn were determined by ICP-AES and Pb and As were determined by AAS. These three analytical methods were applied to optimize the sensitivity and the accuracy of the measurements in order to provide a sound basis for the obtention of reliable clustering results. (author). 5 refs., 8 figs., 3 tabs

  9. Hydrogen production from sugar industry wastes using single-stage photofermentation.

    Science.gov (United States)

    Keskin, Tugba; Hallenbeck, Patrick C

    2012-05-01

    Beet molasses and black strap are two major waste streams of the sugar industry. They both contain high amounts of sucrose, making them suitable substrates for biological hydrogen production. Photofermentation, usually used to convert organic acids to hydrogen, has the potential capacity to effectively use a variety of feed stocks, including sugars. A comparative study on photofermentative biohydrogen production from beet molasses, black strap, and sucrose was conducted. With yields of 10.5 mol H(2)/mol sucrose for beet molasses (1g/l sugar); 8 mol H(2)/mol sucrose for black strap (1g/l sugar) and 14 mol H(2)/mol sucrose for pure sucrose, a one stage photofermentation system appears promising as an alternative to two-stage systems given the potential savings in energy input and operational costs.

  10. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  11. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications. PMID:27023248

  12. The optimal conditions for nata production from sugar palm syrup by Acetobacter xylinum TISTR 107

    Directory of Open Access Journals (Sweden)

    Laochareonsuk, T.

    2005-11-01

    Full Text Available The optimal conditions of nata production from the fermentation of sugar palm syrup by Acetobacter xylinum TISTR 107 was studied. The results showed that optimized production for a litre of sugar palm syrup medium should compose 15 ºBrix concentration, 7.0 g NH4H2PO4 and 0.7 g MgSO4. 7 H2O at pH 4.25 and incubation at room temperature. The thickness of nata production reached 1.15 cm in 9 days. Sensory evaluation showed that there were no significant difference in odor and acceptability between the nata from sugar palm syrup and the traditional nata production from coconut juice whereas there were significant differences in color and texture. However, the nata from sugar palm syrup gave a better texture. Chemical analysis of the nata produced under these optimal culture conditions revealed 0.13% protein, 0.012% fat, 2.74% fiber, 0.378% nitrogen-free extract, 0.11% ash and 96.63% moisture content. The results suggest that nata produced from sugar palm syrup can be used in food and confectionery.

  13. Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars

    International Nuclear Information System (INIS)

    Lignocellulose into fuel ethanol is the most feasible conversion route strategy in terms of sustainability. Oil palm empty fruit bunch (EFB) generated from palm oil production is a huge source of cellulosic material and represents a cheap renewable feedstock which awaits further commercial exploitation. The purpose of this study was to investigate the feasibility of using steam at 0.28 MPa and 140 °C generated from the palm oil mill boiler as a pretreatment to enhance the digestibility of EFB for sugars production. The effects of steam pretreatment or autohydrolysis on chemical composition changes, polysaccharide conversion, sugar production and morphology alterations of four different types of EFB namely fresh EFB (EFB1), sterilized EFB (EFB2), shredded EFB (EFB3) and ground EFB (EFB4) were evaluated. In this study, the effects of steam pretreatment showed major alterations in the morphology of EFB as observed under the scanning electron microscope. Steam pretreated EFB2 was found to have the highest total conversion of 30% to sugars with 209 g kg−1 EFB. This production was 10.5 fold higher than for EFB1 and 1.6 fold and 1.7 fold higher than EFB3 and EFB4, respectively. The results suggested that pretreatment of EFB by autohydrolysis using steam from the mill boiler could be considered as being a suitable pretreatment process for the production of sugars. These sugars can be utilized as potential substrates for the production of various products such as fuel ethanol. -- Highlights: ► We investigate the feasibility of steam pretreatment to enhance digestibility of EFB. ► Steam pretreatment increased sugars to 3.4 fold and caused major alteration in EFB morphology under SEM. ► Autohydrolysis which does not require the addition of chemicals is an attractive pretreatment approach to EFB.

  14. Nutrient compensation as management tool– Sugar kelp production in sustainable aquaculture

    DEFF Research Database (Denmark)

    Schmedes, Peter Søndergaard; Boderskov, Teis; Silva Marinho, Goncalo;

    , but do the principles of IMTA fully mitigate the nutrient impact from open net-pen fish production at realistic production scales? In this project, commercial scale cultivation of sugar kelp (Saccharina latissima) was investigated with regard to operation, yield, biofilter capacity and mapping......Integrated multi-trophic aquaculture (IMTA) is theoretically a sustainable production form, which minimizes waste products from e.g. fish farms, by the co-production of bivalves or/and seaweed. For the Danish fish farmers the extractive organisms could be the solution for increasing fish production....../meter dropper rope). During the project a number of improvements of the existing techniques for producing seaweed on suspended line systems were developed, however, further optimization of techniques for deployment, production as well as harvest is needed. This would also allow sugar kelp production as a viable...

  15. Reducing sugars production from corncobs: a comparative study of chemical and biotechnological methods.

    Science.gov (United States)

    Potumarthi, Ravichandra; Baadhe, Rama Raju; Pisipati, Aparna; Jetty, Annapurna

    2014-11-01

    Two commonly used chemical pretreatment processes, sulphuric acid, and sodium hydroxide, were tested to provide comparative performance data. A connection between solid to liquid ratio (S/L) and sugars released was observed with an increase in S/L ratio between 0.02 and 0.2. Enzymatic digestibility of 1 M of NaOH-pretreated corncobs were released 210.7 mg ml(-1) of sugars. Further, compared with different concentrations of acid pretreatments at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5 M concentrations, sodium hydroxide pretreatment of corncob substantially increased accessibility and digestibility of cellulose. Another additional observation made was whole-cell and crude enzymatic hydrolysis of different concentrations of acid and NaOH (0.05, 0.1, 0.25 M)-treated materials released lower amount of sugars compared with the sugars released (310.9 mg ml(-1)) with whole-cell hydrolysis of 1 M of NaOH-treated corncobs. NaOH-pretreated corncobs contained higher content of sugars and which is more suitable for production of reducing sugars.

  16. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    Science.gov (United States)

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  17. Study On Ethanol Production From Sugar Cane Molasses By Using Irradiated Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to- their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to their ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose; two easily assimilable hexoses. The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 KGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168 h). The data showed that the rate of ethanol production reached its maximum by using the irradiated S. cerevisiae cells at 0.1 kGy dose at fermentation conditions as 15% sugar concentration, ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml Erlenmeyer flasks.

  18. Study on Ethanol Production from Sugar Cane Molasses by Using Irradiated Saccharomyces cervisiae

    International Nuclear Information System (INIS)

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to its ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose, two easily assimilable hexoses.The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.10, 0.2, 0.4, 0.6, 0.8 and 1.0 kGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168) h. Data showed that rate of ethanol production was maximum by using the irradiated S. cerevisiae cells at 0.1 kGy. dose at fermentation conditions as 15% sugar concentration, initial ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml erlenmyer flasks.

  19. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    OpenAIRE

    J. N. de Vasconcelos; C.E. Lopes; F. P. de França

    2004-01-01

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 ± 1.51 g/L without any further ...

  20. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol.

    Science.gov (United States)

    Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera

    2014-11-01

    Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article.

  1. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    Science.gov (United States)

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches.

  2. Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production.

    Science.gov (United States)

    Cheng, Yu-Shen; Wu, Jang-Hong; Yeh, Li-Hsien

    2016-07-01

    This study is aimed at fully utilizing fruit biomass of Calophyllum inophyllum for reducing sugar production. The effects of pretreatment conditions and post reaction wash on the lignin removal and enzymatic hydrolysis of shell were investigated. The oil cake was also subjected to solvent extraction followed by enzymatic hydrolysis. The results showed that the sequential acid/alkaline pretreatment of C. inophyllum shell resulted in better delignification than alkaline or acid only pretreatment. The reducing sugar yields obtained from sequential acid/alkaline pretreated shell and solvent extracted oil cake were 0.24g/g and 0.66g/g, respectively. The results suggested that the shell and oil cake of C. inophyllum could also be feedstocks for reducing sugar production.

  3. Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production.

    Science.gov (United States)

    Cheng, Yu-Shen; Wu, Jang-Hong; Yeh, Li-Hsien

    2016-07-01

    This study is aimed at fully utilizing fruit biomass of Calophyllum inophyllum for reducing sugar production. The effects of pretreatment conditions and post reaction wash on the lignin removal and enzymatic hydrolysis of shell were investigated. The oil cake was also subjected to solvent extraction followed by enzymatic hydrolysis. The results showed that the sequential acid/alkaline pretreatment of C. inophyllum shell resulted in better delignification than alkaline or acid only pretreatment. The reducing sugar yields obtained from sequential acid/alkaline pretreated shell and solvent extracted oil cake were 0.24g/g and 0.66g/g, respectively. The results suggested that the shell and oil cake of C. inophyllum could also be feedstocks for reducing sugar production. PMID:27130225

  4. Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production.

    Science.gov (United States)

    Cazetta, M L; Celligoi, M A P C; Buzato, J B; Scarmino, I S

    2007-11-01

    Fermentations utilizing strains of Zymomonas mobilis, in place of the traditional yeasts, have been proposed due their ethanol yields being close to theoretical. Ethanol production from sugar cane molasses was analyzed under different culture conditions using Z. mobilis in batch fermentation. The total reducing sugars (TRS) concentrations in the molasses, temperature, agitation and culture time effects were studied simultaneously through factorial design. The best conditions for ethanol production were 200 g L(-1) of total reducing sugars in the molasses, temperature of 30 degrees C and static culture and time of fermentation of 48 h, achieving 55.8 g L(-1). The pH of the medium was kept constant during the experiments, showing that molasses presents a buffering effect. PMID:17420121

  5. Spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction

    Science.gov (United States)

    Siqueira, Glecio; Silva, Jucicléia; Bezerra, Joel; Silva, Enio; Montenegro, Abelardo

    2013-04-01

    The cultivation of sugar cane in Brazil occupies a prominent place in national production chain, because the country is the main world producer of sugar and ethanol. Accordingly, studies are needed that allow an integrated production and technified, and especially that estimates of crops are consistent with the actual production of each region. The objective of this study was to determine the spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction. The field experiment was conducted at an agricultural research site located in Goiana municipality, Pernambuco State, north-east of Brazil (Latitude 07 ° 34 '25 "S, Longitude 34 ° 55' 39" W). The surface of the studied field is 6.5 ha, and its mean height 8.5 m a.s.l. This site has been under sugarcane (Saccharum officinarum sp.) monoculture during the last 24 years and it was managed burning the straw each year after harvesting, renewal of plantation was performed every 7 years. Studied the field is located 10 km east from Atlantic Ocean and it is representative of the regional landscape lowlands, whose soils are affected by salinity seawater, sugarcane plantations with the main economical activity. Soil was classified an orthic the Podsol. The productivity of cane sugar and electrical conductivity were measured in 90 sampling points. The productivity of cane sugar was determined in each of the sampling points in plots of 9 m2. The Apparent soil electrical conductivity (ECa, mS m-1) was measured with an electromagnetic induction device EM38-DD (Geonics Limited). The equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide effective measurement distance of 1.5 m approximately and other one in vertical dipole (ECa-V) with an effective measurement depth of approximately 0.75 m. Data were analyzed using descriptive statistics and geostatistical tools. The results showed that productivity in the study area

  6. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation▿

    OpenAIRE

    Dumbrepatil, Arti; Adsul, Mukund; Chaudhari, Shivani; Khire, Jayant; Gokhale, Digambar

    2007-01-01

    Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity...

  7. Indirect measurements of Brachiaria brizantha cv. Marandu fermentable cell wall sugars for second generation biofuels production.

    Science.gov (United States)

    Results of a study conducted to evaluate the possibility of using IVDMD values of B. brizantha cv. Marandu to predict cell wall sugars that would be available in a biorefinery for ethanol production are reported. The study was conducted based on the similarity between rumen enzymes and those used i...

  8. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2005-05-01

    Full Text Available Abstract The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.

  9. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile a

  10. Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Topak, Ramazan; Sueheri, Sinan; Acar, Bilal [Department of Agricultural Structures and irrigation, Faculty of Agriculture, Selcuk University, 42075 Konya (Turkey)

    2010-12-15

    This study analyzed the effect of three levels of drip irrigation in sugar beet (Beta vulgaris L.) production in the Middle Anatolian region of Turkey. Two deficit irrigation treatments 75% and 50% of measured soil water depletion were compared with a full irrigation control treatment. In this paper, root yield, NEY (net energy yield), EEP (efficiency of energy production) and EWUE (energy water use efficiency) were investigated. Energy consumption of irrigation was found to be about 60% of total energy input in sugar beet production under full and deficit irrigation treatments. It was found that sugar beet had the highest EEP value (6.29) under the partial deficit irrigation (representing 75% of full irrigation). However, it was observed that full and severe deficit irrigation (representing 50% of full irrigation) treatments had a lower value. Results of this study indicated that the partial deficit drip irrigation technique can be applied in sugar beet production. In practice, deficit irrigation technique can reduce irrigation water use up to 25% compared to full irrigation technique. In addition, partial deficit drip irrigation technique may save 11.2% of total energy inputs, 16.1% of irrigation energy inputs, 21.2% of total fuel use and 25% of fuel use in irrigation. (author)

  11. Physical properties of gluten free sugar cookies containing teff and functional oat products

    Science.gov (United States)

    Teff-oat composites were developed using gluten free teff flour containing essential 15 amino acids with oat products containing ß-glucan, known for lowering blood cholesterol and improving texture. The teff-oat composites were used in sugar cookies for improving nutritional and physical properties....

  12. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    Directory of Open Access Journals (Sweden)

    L. Jørgensen

    2014-04-01

    Full Text Available Dissolved organic matter (DOM in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after long-term bacterial degradation. Results from bioassay incubations (32 days with natural and artificial seawater, indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol% and heterogeneous contributions from other neutral sugars (3–14 mol%. DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol%, followed by glucose (22 mol% and the remaining neutral sugars (7–11 mol%. The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural and artificial seawater samples, suggests that the microbial carbon pump also applies for neutral sugars and amino acids and that bacterially-produced biomolecules persist for long periods in the ocean.

  13. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties. PMID:26572518

  14. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.

    Science.gov (United States)

    Lee, Choon-Geun; Kang, Do-Hyung; Lee, Dong-Bog; Lee, Hyeon-Yong

    2013-11-01

    The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for

  15. Optimization of ethanol production by Zymomonas mobilis in sugar cane molasses fermentation

    OpenAIRE

    Marcos Roberto de Oliveira; Maria Antonia Pedrine Colabone Celligoi; João Batista Buzato; Doumit Camilios Neto

    2005-01-01

    The present study aimed at the optimization of the ethanol production by Zymomonas mobilis CP4, during the fermentation of sugar cane molasses. As for the optimization process, the response surface methodology was applied, using a 33 incomplete factorial design, being the independent variables: total reducing sugar (TRS) concentration in the molasses from 10, 55 and 100 g/L (x1); yeast extract concentration from 2, 11 and 20 g/L (x2), and fermentation time from 6, 15 and 24 hours (x3). The de...

  16. Biochemical conversion of sugar to novel renewable products and materials

    Science.gov (United States)

    Dextrans and related glucan polysaccharides are synthesized from sucrose by enzymes, called glucansucrases, which are produced by lactic acid bacteria. These water-soluble glucans have been studied for many years and are used in numerous commercial applications and products. A small number of Leucon...

  17. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.;

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological...... production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7–11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic...

  18. Old oil palm trunk: A promising source of sugars for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H.; Ohara, S. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Tanaka, R.; Yamamoto, K. [Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Sulaiman, O.; Hashim, R.; Hamid, Z.A.A.; Yahya, M.K.A. [School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang (Malaysia); Kosugi, A.; Arai, T.; Murata, Y.; Nirasawa, S. [Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan); Mohd Yusof, Mohd Nor; Ibrahim, Wan Asma [Forest Research Institute Malaysia (FRIM), Kepong, 52109 Selangor (Malaysia); Mori, Y. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan)

    2010-11-15

    Oil palm trees are replanted at an interval of approximately 25 years because of decreased oil productivity of old trees. Consequently the felled trunks are the enormous amount of biomass resources in the palm oil producing countries such as Malaysia and Indonesia. In this report, we found that the felled oil palm trunk contains large quantity of sap, which accounts for approximately 70% of the whole trunk weight, and that sugars existing in the sap increased remarkably during storage after logging. Total sugar in the sap increased from 83 mg ml{sup -1} to 153 mg ml{sup -1}, the concentration comparable to that of sugar cane juice, after 30 days of storage, followed by the gradual decrease. The sugars contained in the sap were glucose, sucrose, fructose and galactose, all of which are fermentable by ordinary industrial yeast strains. The results indicate that old oil palm trunk becomes a promising source of sugars by proper aging after logging and, thus, its sap can be a good feedstock for bioethanol. (author)

  19. 29 CFR 780.819 - Production must be of unrefined sugar or syrup.

    Science.gov (United States)

    2010-07-01

    ... apply to the manufacture of sugar that is produced by melting sugar, purifying the melted sugar solution through a carbon medium process and the recrystallization of the sugar from this solution. Nor does...

  20. Production of Dextran from Sugar Cane Molasses by Leuconostoc mesenteroides

    OpenAIRE

    M Faramarzi; Y Rahimi Kashkouli; HR RahimiKashkouli; D Gholamzadeh

    2013-01-01

    Abstract Background & aim: Dextran is a polysaccharide consisting of glucose monomers that are widely used in medicine as a blood volume extender. The aim of this study was to produce dextran from cane molasses using Leuconostoc mesenteroides bacteria. Methods: In this experimental study, for bacterial growth and dextran production, sugarcane molasses was added to the culture medium at different concentrations. Dextran sedimentation was obtained by shaking and centrifugation by addi...

  1. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  2. Production of Dextran from Sugar Cane Molasses by Leuconostoc mesenteroides

    Directory of Open Access Journals (Sweden)

    M Faramarzi

    2013-07-01

    Full Text Available Abstract Background & aim: Dextran is a polysaccharide consisting of glucose monomers that are widely used in medicine as a blood volume extender. The aim of this study was to produce dextran from cane molasses using Leuconostoc mesenteroides bacteria. Methods: In this experimental study, for bacterial growth and dextran production, sugarcane molasses was added to the culture medium at different concentrations. Dextran sedimentation was obtained by shaking and centrifugation by adding ethanol after 48 hours. Response surface design was used for qualitative identification of the polarization of dextran and statistical analysis methods. Results: After assessing the separation and interactive effects of the parameters on the optimum amount of dextran produced from sugarcane molasses as 50 g, 35 º C and 5/8 = pH , the Dextran produced was more than 82 g/l. The correlation of the computational model for the dextran produced was 99.5%, which indicated excellent agreement with the experimental and computational models of high accuracy. Conclusion: Dextran produced by Leuconostoc mesenteroides bacteria and sugarcane molasses as substrate, is a cheap and affordable compared to current methods of dextran production. In addition to producing a clinical product, the molasses pollution could be dramatically decreased. Key words: Dextran, Molasses, Leuconostoc Mesenteroides

  3. The economic feasibility of sugar beet biofuel production in central North Dakota

    International Nuclear Information System (INIS)

    This study examines the financial feasibility of producing ethanol biofuel from sugar beets in central North Dakota. Under the Energy Independence and Security Act (EISA) of 2007, biofuel from sugar beets uniquely qualifies as an 'advanced biofuel'. EISA mandates production of 21 billion gallons of advanced biofuels annually by 2022. A stochastic simulation financial model was calibrated with irrigated sugar beet data from central North Dakota to determine economic feasibility and risks of production for 0.038 hm3y-1 (or 10 MGY (Million Gallon per Year) and 0.076 hm3y-1 (or 20 MGY) ethanol plants. Study results indicate that feedstock costs, which include sugar beets and beet molasses, account for more than 70 percent of total production expenses. The estimated breakeven ethanol price for the 0.076 hm3y-1 plant is $400 m-3 ($1.52 per gallon) and $450 m-3 ($1.71 per gallon) for the 0.038 hm3y-1 plant. Breakeven prices for feedstocks are also estimated and show that the 0.076 hm3y-1 plant can tolerate greater ethanol and feedstock price risks than the 0.038 hm3y-1 plant. Our results also show that one of the most important factors that affect investment success is the price of ethanol. At an ethanol price of $484.21 m-3 ($1.84 per gallon), and assuming other factors remain unchanged, the estimated net present value (NPV) for the 0.076 hm3y-1 plant is $41.54 million. By comparison, the estimated NPV for the 0.038 hm3y-1 plant is only $8.30 million. Other factors such as changes in prices of co-products and utilities have a relatively minor effect on investment viability. -- Highlights: → Sugar beets and beet molasses costs account for more than 70 percent of total production expenses. → The estimated breakeven ethanol prices for the 0.076 hm3y-1 and 0.038 hm3y-1ethanol plants are $400 m-3 and $450 m-3 respectively. → The price of ethanol will be one of the most important factors for determining the future feasibility of a sugar-beet-based ethanol plant in North

  4. Nectar sugar production across floral phases in the gynodioecious protandrous plant Geranium sylvaticum

    OpenAIRE

    Sandra Varga; Carolin Nuortila; Minna-Maarit Kytöviita

    2013-01-01

    Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar prod...

  5. Comparison of five pretreatments for the production of fermentable sugars obtained from Pinus pseudostrobus L. wood

    OpenAIRE

    Farías-Sánchez, Juan Carlos; López-Miranda, Javier; Castro-Montoya, Agustín Jaime; Saucedo-Luna, Jaime; Carrillo-Parra, Artemio; López-Albarrán, Pablo; Pineda-Pimentel, María Guadalupe; Rutiaga-Quiñones, José Guadalupe

    2015-01-01

    To benefit from the use of a waste product such as pine sawdust from a sawmill in Michoacán, Mexico, five different pretreatments for the production of reducing sugars by enzymatic hydrolysis were evaluated (sodium hydroxide, sulfuric acid, steam explosion, organosolv and combined method nitric acid / sodium hydroxide). The main finding of the study was that the pretreatment with 6 % HNO3 and 1 % NaOH led to better yields than those obtained with sodium hydroxide, dilute sulfuric acid, steam ...

  6. Optimization of sugar and blood feeding regimen in Anopheles gambiae mass production system

    International Nuclear Information System (INIS)

    The sterile insect technique (SIT) is being developed for the control of malaria transmitting mosquitoes. Critical to the success of applying the SIT is the establishment of standardized mass production systems for the target species. As part of efforts to develop standardised mass production systems for malaria vectors, this project sought to optimize adult blood and sugar feeding in a mass production system. Different sugar types (glucose, sucrose and honey) were evaluated at 6% and 10% concentrations in water to determine the best sugar diet and concentration for feeding adult An. gambiae. Different blood feeding methods, restrained Guinea pig, anaesthetised Guinea pig and human arm feeding were evaluated. Adult survival, female insemination and egg production were used as criteria to determine optimum sugar and blood feeding. The effect of anaesthetics on blood feeding response and egg production of female An. gambiae was determined by comparing feeding response and egg production of females fed with anaesthetised Guinea pigs as against physically restrained Guinea pigs (Control). The specific effect of different anaesthetic agents on blood feeding response and egg production of female mosquitoes were was also determined by comparing the feeding response and egg production of females fed with either Ketamine/Xylazine anaesthetised Guinea pigs or Ketamine/Diazepam anaesthetised Guinea pigs. Effects due to sugar types and concentrations on percentage survival of male and female mosquitoes were observed to be significant at (p 0.05). However, human ann feeding (HAP) method and Ketamine/Xylazine (KX) anaesthetics fed for 25 minutes recorded higher percentage feeding (76.0% and 68.0% respectively) and egg production of 19.0% and 20.8% respectively. Anaesthetised Guinea pig feeding (AGF) of adults for 15 minutes followed closely with 60.0% and 15.1% blood feeding and egg production respectively whilst restrained Guinea pig feeding (RGF) method and Ketamine

  7. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    Science.gov (United States)

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  8. Substitution of beet sugar with plant Stevia rebaudiana and its effect on the sensory quality of selected products.

    OpenAIRE

    PEŠTA, Antonín

    2013-01-01

    The main objective of this thesis was to substitute beet sugar with Stevia Rebaudiana Bertoni plant extract, and to assess effect of this substitution on sensory quality of selected products. Ten different samples of cherry jam were produced, using different combination of sweeteners in each of them. As sweeteners, beet sugar and Stevia leaf extract was used. This stevia leaf extract is even 400 times sweeter than common sugar. All samples of jam underwent sensory analysis and results have be...

  9. Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production.

    Science.gov (United States)

    Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr

    2013-04-01

    The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. PMID:23425583

  10. Pretreatment of aqueous ammonia on oil palm empty fruit fiber (OPEFB) in production of sugar

    Science.gov (United States)

    Zulkiple, Nursyafiqah; Maskat, Mohamad Yusof; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an agricultural residue that has the potential to become a good source for renewable feedstock for production of sugar. This work evaluated the effectiveness of aqueous ammonia as pretreatment at low (soaking, SAA) and elevated temperature (pressurized chamber) to deconstruct the lignocellulosic feedstock, prior to enzymatic hydrolysis. The ammonia pretreatments were compared against the standard NaOH method. The best tested pressurized chamber method conditions were at 100°C with 3 hour retention time, 12.5% ammonium hydroxide and 1:30 solid loading. The digestibility of the feedstock is determined with enzymatic hydrolysis using Cellic Ctech2 and Cellic Htech2. The sugars produced by pressurized chamber method within 24 hour of enzyme hydrolysis are similar to that produced by NaOH method which is 439.90 mg/ml and 351.61 mg/ml, respectively. Compared with optimum SAA method (24 hour, 6.25% of ammonium hydroxide at room temperature), pressurized chamber method was capable of producing enhanced delignification and higher production of sugar upon hydrolysis. These findings were supported by the disappearance peak at 1732, 1512 and 1243 on Fourier Transform Infrared (FTIR spectrum) of treated OPEFB by pressurized chamber method. XRD determination showed reduced crystallinity of OPEFB (37.23%) after treatment by pressurized chamber, suggesting higher accessibility toward enzyme hydrolysis. The data obtained suggest that the pressurized chamber pre-treatment method are suitable for OPEFB deconstruction to produce high yield of sugar.

  11. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, J.N. de [Alagoas Univ., Maceio, AL (Brazil). Dept. de Engenharia Quimica]. E-mail: jnunes@ctec.ufal.br; Lopes, C.E. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos; Franca, F.P. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Bioquimica

    2004-09-01

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 {+-} 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars conversion was 74.61% at a dilution rate of 0.83 h{sup -1}. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h{sup -1} to 3.00 h{sup -1}. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h{sup -1}). (author)

  12. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Directory of Open Access Journals (Sweden)

    J. N. de Vasconcelos

    2004-09-01

    Full Text Available Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 ± 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm or with a mixture containing penicillin (10 ppm and tetracycline (10 ppm, was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars (TRS conversion was 74.61% at a dilution rate of 0.83 h-1. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h-1 to 3.00 h-1. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h-1.

  13. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.S.; Ribeiro, J.D.; Felipe, M.G.A. [Faculty of Chemical Enginering of Lorena (Brazil); Vitolo, M. [Univ. of Sao Paulo (Brazil)

    1997-12-31

    Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed by Candida guilliermondii FTI 20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L {center_dot} h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (K{sub L}a 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications. 20 refs., 2 figs.

  14. The Development of Sugar Beet Production and Processing Simulation Model – a System Dynamics Approach to Support Decision-Making Processes

    Directory of Open Access Journals (Sweden)

    Rozman Črtomir

    2014-05-01

    Full Text Available Background: The sugar beet is the main field crop used for sugar production in the temperate climatic zone. The abolishment of the quota system will open new investment opportunities in countries that were forced to abandon sugar industry as the result of the reform in 2006. Present paper describes the modeling of sugar beet production and its processing into sugar for purpose of decision support.

  15. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production.

    Science.gov (United States)

    Subhedar, Preeti B; Babu, Narmadha R; Gogate, Parag R

    2015-01-01

    An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model. PMID:25060116

  16. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production.

    Science.gov (United States)

    Subhedar, Preeti B; Babu, Narmadha R; Gogate, Parag R

    2015-01-01

    An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model.

  17. PIEteR: a field specific bio-economic production model for decision support in sugar beet growing.

    NARCIS (Netherlands)

    Smit, A.B.

    1996-01-01

    To support decisions in sugar beet growing, a model, PIEteR, was developed. It simulates growth and production of the crop in a field specific way, making a tailor-made approach in decision taking possible.PIEteR is based on causal regression analysis of Dutch data of mostly experimental sugar beet

  18. System expansion for handling co-products in LCA of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2012-01-01

    in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use......This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system...... expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage...

  19. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    Science.gov (United States)

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2011-03-01

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

  20. Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli

    OpenAIRE

    Parajuli, Prakash; Pandey, Ramesh Prasad; Trang, Nguyen Thi Huyen; Chaudhary, Amit Kumar; Sohng, Jae Kyung

    2015-01-01

    Background A multi-monocistronic synthetic vector was used to assemble multiple genes of a nucleotide diphosphate (NDP)-sugar biosynthetic pathway to construct robust genetic circuits for the production of valuable flavonoid glycosides in Escherichia coli. Characterized functional genes involved in the biosynthesis of uridine diphosphate (UDP)-glucose and thymidine diphosphate (TDP)-rhamnose from various microbial sources along with glucose facilitator diffusion protein (glf) and glucokinase ...

  1. Technology of budgeting as a tool of managing sugar beet production

    OpenAIRE

    Biryuk Olena G.; Korol Viktoriya V.

    2013-01-01

    The article considers main methodical principles of development of the system of budgets of sugar beet production. The article analyses, systemises and generalises theoretical developments of scientists and takes into account practice of agricultural enterprises to prove that the most prospective of the process oriented approach to budgeting. It considers main directions of budgeting as a control tool. It identifies topical problems of the budgeting process in integration agro-industrial form...

  2. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    OpenAIRE

    L. Jørgensen; Lechtenfeld, O.; Benner, R.; Middelboe, M.; Stedmon, C.A.

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by ...

  3. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.

    Science.gov (United States)

    Kim, Eun-Mi; Um, Youngsoon; Bott, Michael; Woo, Han Min

    2015-10-01

    Thermochemical processing provides continuous production of bio-oils from lignocellulosic biomass. Levoglucosan, a pyrolytic sugar substrate C6H10O5 in a bio-oil, has been used for ethanol production using engineered Escherichia coli. Here we provide the first example for succinate production from levoglucosan with Corynebacterium glutamicum, a well-known industrial amino acid producer. Heterologous expression of a gene encoding a sugar kinase from Lipomyces starkeyi, Gibberella zeae or Pseudomonas aeruginosa was employed for levoglucosan conversion in C. glutamicum because the wild type was unable to utilize levoglucosan as sole carbon source. As result, expression of a levoglucosan kinase (LGK) of L. starkeyi only enabled growth with levoglucosan as sole carbon source in CgXII minimal medium by catalyzing conversion of levoglucosan to glucose-6-phosphate. Subsequently, the lgk gene was expressed in an aerobic succinate producer of C. glutamicum, strain BL-1. The recombinant strain showed a higher succinate yield (0.25 g g(-1)) from 2% (w/v) levoglucosan than the reference strain BL-1 from 2% (w/v) glucose (0.19 g g(-1)), confirming that levoglucosan is an attractive carbon substrate for C. glutamicum producer strains. In summary, we demonstrated that a pyrolytic sugar could be a potential carbon source for microbial cell factories. PMID:26363018

  4. INAA and AAS of different products from sugar cane industry in Pakistan. Toxic trace elements for nutritional safety

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis (INAA) have been used to determine As, Br, Hg, Sb and Se in combination with atomic absorption spectrometry (AAS) as a complementary technique for the quantification of Cd and Pb in jaggery, brown sugar, white sugar and molasses. All sugar cane products were collected from the local sugar cane industry of Pakistan. The highest concentration of these potentially toxic elements was quantified in molasses; however, molasses together with jaggery, brown sugar and white sugar contains trace amounts of all of these elements. Due to very low concentration of Cd it could only be detected in molasses. To evaluate the percentage contribution of these elements in the sugar cane products to the weekly recommended values, intakes on weekly consumption of 100 g of each item have also been calculated which follow the pattern Br>Se>Pb>Hg>As>Sb. The elevated Br contents may be attributed to the use of Br-containing chemicals for fumigation; however, these contents are well within the tolerance levels. The estimated weekly intake of all toxic elements is very low indicating that sugar cane products can be safely ingested as part of the diets. (author)

  5. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

    Science.gov (United States)

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Yang, Zhonghua; Wang, Guanghui; Zuo, Zhenyu; Hou, Yali; Zhao, Zongbao K

    2016-05-01

    The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses. PMID:26874438

  6. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support.

    Science.gov (United States)

    Chen, Pengcheng; Tao, Shengtao; Zheng, Pu

    2016-07-01

    Here we reported an endeavor in making full use of sugarcane bagasse for biological production of succinic acid. Through NaOH pre-treatment and multi-enzyme hydrolysis, a reducing sugar solution mainly composed of glucose and xylose was obtained from the sugarcane bagasse. By optimizing portions of cellulase, xylanase, β-glucanase and pectinase in the multi-enzyme "cocktail", the hydrolysis percentage of the total cellulose in pre-treated sugarcane bagasse can be as high as 88.5%. A. succinogenes CCTCC M2012036 was used for converting reducing sugars into succinic acid in a 3-L bioreactor with a sugar-fed strategy to prevent cell growth limitation. Importantly, cells were found to be adaptive on the sugarcane bagasse residue, offering possibilities of repeated batch fermentation and replacement for MgCO3 with soluble NaHCO3 in pH modulation. Three cycles of fermentation without activity loss were realized with the average succinic acid yield and productivity to be 80.5% and 1.65g·L(-1)·h(-1). PMID:27035471

  7. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  8. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization.

    Science.gov (United States)

    Bhattacharyya, Saurav; Chakraborty, Sudip; Datta, Siddhartha; Drioli, Enrico; Bhattacharjee, Chiranjib

    2013-01-01

    Potato peel is a waste biomass which can be a source of raw material for biofuel production. This biomass contains a sufficient amount of total reducing sugar (TRS), which can be extracted and further treated with microbial pathways to produce bioethanol. The extraction of TRS from potato peels by hydrolysis in dilute sulphuric acid was investigated at different acid concentrations (0.50%, 0.75% and 1% w/v) and sonication was carried out to improve the extent of sugar extraction after hydrolysis. Response surface methodology based on central composite design was used to verify the experimental data and later applied for the optimization of the main important reaction variables including amplitude (60%, 80% and 100%), cycle (0.6, 0.8 and 1.0) and treatment time (5, 10 and 15 min) for the responses of TRS extraction by acid hydrolysis and later compared with the experimental data. PMID:24191439

  9. In-situ biodiesel and sugar production from rice bran under subcritical condition

    Science.gov (United States)

    Zullaikah, Siti; Rahkadima, Yulia Tri

    2015-12-01

    An integrated method of producing biodiesel and sugar using subcritical water and methanol has been employed as a potential way to reduce the high cost of single biofuel production from rice bran. The effects of temperature, methanol to water ratio and reaction time on the biodiesel yield and purity, and the concentration of sugar in hydrolysate were investigated systematically. Biodiesel with yield and purity of 65.21%and 73.53%, respectively, was obtained from rice bran with initial free fatty acid (FFA) content of 37.64% under the following conditions: T= 200 oC, P= 4.0 MPa (using CO2 as pressurizing gas), ratio of rice bran/water/methanol of 1/2/6 (g/mL/mL), and 3 h of reaction time. FFAs level was reduced to 10.00% with crude biodiesel recovery of 88.69%. However, the highest biodiesel yield (67.39%) and crude biodiesel recovery (100.00%) were obtained by decreasing the amount of methanol so that the ratio of rice bran/water/methanol became 1/4/4, g/mL/mL. In addition, the highest sugar concentration of 0.98 g/L was obtained at 180 oC and 4.0 MPa with ratio of rice bran/water/methanol of 1/4/4 (g/mL/mL) and reaction time of 3 h. Since no catalyst was employed and the biodiesel and reducing sugar were produced directly from rice bran with high water and FFA contents, the process was simple and environmentally friendly, which would make the production of biofuel more economical and sustainable.

  10. Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts.

    Science.gov (United States)

    Yoshikawa, Jun; Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kakugawa, Koji; Kitamoto, Dai

    2014-01-01

    Mannosylerythritol (ME) is the hydrophilic backbone of mannosylerythritol lipids as the most promising biosurfactants produced by different Pseudozyma yeasts, and has been receiving attention as a new sugar alcohol. Different Pseudozyma yeasts were examined for the sugar alcohol production using glucose as the sole carbon source. P. hubeiensis KM-59 highly produced a conventional type of ME, i.e., 4-O-β-D-mannopyranosyl-D-erythritol (4-ME). Interestingly, P. tsukubaensis KM-160 produced a diastereomer of 4-ME, i.e., 1-O-β-D-mannopyranosyl-D-erythritol (1-ME). In shake flask culture with 200 g/l of glucose, strain KM-59 produced 4-ME at a yield of 33.2 g/l (2.2 g/l/day of the productivity), while strain KM-160 produced 1-ME at 30.0 g/l (2.0 g/l/day). Moreover, the two strains were found to produce ME from glycerol; the maximum yields of 4-ME and 1-ME from 200 g/l of glycerol were 16.1 g/l (1.1 g/l/day) and 15.8 g/l (1.1 g/l/day), respectively. The production of 1-ME as the new diastereomer was further investigated in fed batch culture using a 5-l jar-fermenter. Compared to the flask culture, strain KM-160 gave three times higher productivity of 1-ME at 38.0 g/l (6.3 g/l/day) from glucose and at 31.1 g/l (3.5 g/l/day) from glycerol, respectively. This is the first report on the selective production of two diastereomers of ME, and should thus facilitate the functional development and application of the disaccharide sugar alcohol in the food and relative industries. PMID:24272368

  11. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production

    Directory of Open Access Journals (Sweden)

    M. Idrees

    2014-06-01

    Full Text Available To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from twenty four different pretreatment conditions. These included different concentrations of sulphuric acid (0.0, 1.0, 2.0 and 3.0%, at two different temperatures (108 and 121 ºC for different residence times (1.0, 2.0 and 3.0h.The highest reducing sugar yield (36.65 g/L from enzymatic hydrolysis was obtained when plant material was pretreated at 121 ºC for 1.0 h residence time using 3.0% (v/v sulphuric acid and at 1:10 (w/v solid to liquid ratio. The total reducing sugars obtained from the two-stage process (pretreatment + enzymatic hydrolysis was 69.6g/L. The resulting sugars were fermented into ethanol by using Saccharomyces cerevisiae. The ethanol yield from the enzymatic hydrolyzate was 95.2% of the theoretical yield (0.51g/g glucose, as determined by GS-MS, and nearly 100% since no reducing sugars were detected in the fermenting media by TLC and DNS analysis.

  12. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach.

    Science.gov (United States)

    Sudha, A; Sivakumar, V; Sangeetha, V; Devi, K S Priyenka

    2015-08-01

    Cassava pulp, a potential biological feedstock for ethanol production has been subjected to microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. Liquid to solid ratio for the pretreatment of cassava pulp was found to be 20:1. Cassava pulp was pretreated at various NaOH concentration, microwave temperature and gave maximum yield of reducing sugar with 1.5% NaOH at 90 °C in 30 min than conventional alkali pretreatment after enzymatic hydrolysis. The subsequent enzymatic saccharification of pretreated cassava pulp using α amylase dosage of 400 IU at microwave temperature of 90 °C resulted in highest reducing sugar yield of 723 mg/g pulp. Microwave-assisted alkali pretreatment improved the enzymatic saccharification of cassava pulp by increasing its accessibility to hydrolytic enzymes. Microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis are found to be efficient for improving the yield of reducing sugar. PMID:25832789

  13. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process

    International Nuclear Information System (INIS)

    Ethanol fermentation of fresh sugar beet mash (SBM) could give a benefit on reducing energy input for sugar diffusion, juice separation, and water evaporation as used in conventional practices, thus offering promise as a low energy process. Actions of cell-wall degrading enzymes provide a mash with low viscosity, which can be easily fermented to ethanol. However, a several-fold higher enzyme loading was required for viscosity reduction of SBM compared with that of potato mash. In this study, the use of dilute alkali treatment (0.025-0.15 N NaOH, 25 oC, 1 h) in enhancing enzymatic viscosity reduction of SBM was evaluated. The results showed that higher NaOH concentration enhanced demethylation and deacetylation of SBM, resulting in greater performances of the enzymes on reducing viscosity. Efficient enzymatic viscosity reduction of SBM was observed with the 0.1 N NaOH treatment. On the other hand, untreated SBM was highly resistant to viscosity reduction, even though a 20-fold more enzyme loading was used. The resulting mash containing 12-13% (w/v) sucrose yielded 7-8% (v/v) ethanol after 24 h of fermentation (90% efficiency). Accordingly, alkali treatment can be applied for facilitating the use of fresh sugar beet for ethanol production.

  14. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process

    Energy Technology Data Exchange (ETDEWEB)

    Srichuwong, Sathaporn; Arakane, Mitsuhiro; Fujiwara, Maki; Zhang, Zilian; Tokuyasu, Ken [National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 (Japan); Takahashi, Hiroyuki [National Agricultural Research Center for Hokkaido Region, NARO, Shinsei, Memuro, Hokkaido 082-0081 (Japan)

    2010-09-15

    Ethanol fermentation of fresh sugar beet mash (SBM) could give a benefit on reducing energy input for sugar diffusion, juice separation, and water evaporation as used in conventional practices, thus offering promise as a low energy process. Actions of cell-wall degrading enzymes provide a mash with low viscosity, which can be easily fermented to ethanol. However, a several-fold higher enzyme loading was required for viscosity reduction of SBM compared with that of potato mash. In this study, the use of dilute alkali treatment (0.025-0.15 N NaOH, 25 C, 1 h) in enhancing enzymatic viscosity reduction of SBM was evaluated. The results showed that higher NaOH concentration enhanced demethylation and deacetylation of SBM, resulting in greater performances of the enzymes on reducing viscosity. Efficient enzymatic viscosity reduction of SBM was observed with the 0.1 N NaOH treatment. On the other hand, untreated SBM was highly resistant to viscosity reduction, even though a 20-fold more enzyme loading was used. The resulting mash containing 12-13% (w/v) sucrose yielded 7-8% (v/v) ethanol after 24 h of fermentation (90% efficiency). Accordingly, alkali treatment can be applied for facilitating the use of fresh sugar beet for ethanol production. (author)

  15. Production of cell-free xanthan fermentation broth by cell adsorption on fibers

    Science.gov (United States)

    Yang; Lo; Chattopadhyay

    1998-03-01

    Xanthan gum is a microbial polysaccharide widely used in food and oil-drilling industries. Xanthan gum produced from the current commercial fermentation process usually contains cells and cell debris, which lower the filterability of the xanthan solution and limit its applications. The production of cell-free xanthan gum fermentation broth is thus desirable. The feasibility of removing cells from the xanthan fermentation broth by cell adsorption to various woven fibrous materials was studied. It was found that both cotton and polyester fibers could be used to adsorb Xanthomonas campestris cells present in the fermentation broth either during batch fermentation or after the fermentation. Almost all cells were removed from the fermentation broth by adsorption to fibers. Cotton terry cloth had rough surfaces and was the preferred material for cell adsorption. Cell adsorption to cotton was faster than to polyester fibers. The adsorption kinetics can be modeled by a first-order rate equation. The adsorption rate constants were 30-40% higher for cotton than for polyester. Cell adsorption was not efficient in the absence of xanthan gum, suggesting that the exopolysaccharide, xanthan gum, was important for efficient cell adsorption to fibers. PMID:9548777

  16. Optimization of ethanol production by Zymomonas mobilis in sugar cane molasses fermentation

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Oliveira

    2005-02-01

    Full Text Available The present study aimed at the optimization of the ethanol production by Zymomonas mobilis CP4, during the fermentation of sugar cane molasses. As for the optimization process, the response surface methodology was applied, using a 33 incomplete factorial design, being the independent variables: total reducing sugar (TRS concentration in the molasses from 10, 55 and 100 g/L (x1; yeast extract concentration from 2, 11 and 20 g/L (x2, and fermentation time from 6, 15 and 24 hours (x3. The dependant variables or answers were the production and productivity of ethanol. By the analysis of the results, a good adjustment of the model to the experimental data was obtained. In the levels studied, the best condition for the production of ethanol was with 100 g/L TRS in the syrup, 2.0 g/L of yeast extract and the fermentation time between 20 and 24 hours, producing 30 g/L of ethanol.

  17. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  18. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  19. Application of loofa sponge (Luffa cylindrica as carrier for invertase immobilization for invert sugar syrup production

    Directory of Open Access Journals (Sweden)

    Doumit Camilios Neto

    2004-01-01

    Full Text Available Invertase immobilization in loofa sponge (Luffa cylindrica for invert sugar syrup production has been carried out. Loofa sponge was treated with NaIO4 followed by the use of diamine compound, glutaraldehyde and enzyme immobilization. The best results obtained were: invertase immobilized activity: 4.510 (mmols/g matrix x min x mL; enzyme coupling efficiency: 0.428%, recovered activity: 1.5% and the extent of hydrolysis was of 2.6x10-3%.h-1.

  20. Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig; Kristiansen, Rikke M.; Madsen, Mikkel G.;

    2014-01-01

    Spoilage of chocolate pralines, due to growth of microorganisms tolerating low water activity, causes problems in the confectionary industry. Therefore, an increased knowledge on which organisms are present in the chocolate fillings and their tolerance towards low aw, pH, ethanol and other...... preservatives is needed. Using media containing 40-50% glucose (aw 0.872-0.925) bacteria, yeasts and moulds were isolated from chocolate pralines (aw 0.70-0.898) of nine manufactures and sugar syrups (aw 0.854) used as ingredient in chocolate praline production by one of the manufacturers. Isolates were...

  1. Using of Bangun-Bangun Leafs (Coleus Amboinicus, L on Red Sugar Block to Upgrading Milk Production of Frisian Holstein

    Directory of Open Access Journals (Sweden)

    Nelzi Fati

    2014-01-01

    Full Text Available Science and technology for the Community Activities Program (IBM granting wake leaf meal in urea red sugar  block has been implemented in a herd prosperous green valley village Kampung Manggis, Western District of Padang Panjang, Municipality of Leopold. This activity aims to increase the milk production of dairy cows through the application of technology utilization wake leaf meal in urea  red sugar block. The benefits of this activity is to assist farmers in improving milk production per day, so that milk production can increase the impact on increasing revenue. To achieve the goal of service to the community mentioned above, it has been conducted lectures, live demonstrations on the making lick candy made from leaf shapes. Six cows used as a demonstration, two dairy cows with urea red sugar block containing 2.5% leaf shapes, two dairy cows with urea red sugar block containing leaf shapes 5% and two cows with urea red sugar block containing leaves wake up 7.5%. Wake up dried leaves with the help of sunlight and then made ready for use in the flour mixture forming urea red sugar block which serves as a feed supplement in dairy cattle. Evaluation activities indicate that the application of urea  red sugar block starchy wake leaves 5% can increase the production of milk 2 liters / day / head (average increase 10%.Of this service activities can be concluded that the use of leaf meal wake up in 5% urea red sugar  block can increase milk production of dairy cows 2 liters / day / head compared with 2.5%, 7.5%.

  2. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  3. Engineering Synechocystis PCC6803 for hydrogen production: influence on the tolerance to oxidative and sugar stresses.

    Directory of Open Access Journals (Sweden)

    Marcia Ortega-Ramos

    Full Text Available In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature. We demonstrate that the hydrogenase-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H₂O₂ and sugar (glucose and glycerol stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of hydrogenase, combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active hydrogenase. These novel results and mutants have major implications for those interested in hydrogenase, hydrogen production and redox metabolism, and their connections with environmental conditions.

  4. Sugar Substitutes: Artificial Sweeteners and Sugar Alcohols

    OpenAIRE

    Washburn, Carolyn; Christensen, Nedra

    2012-01-01

    Most people enjoy the sweet taste of food. Artificial sweeteners and sugar alcohols can provide the sweet flavor and be beneficial for people with diabetes or those choosing to avoid sugars because they contain lower calories and carbohydrates than regular sugars. These products are also beneficial in that they do not cause tooth decay.

  5. ESST Proceedings Rotterdam 2009. Beet Quality. Sustainability of beet sugar production. Energy usage - future challenges. General process technology developments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the conference of the European Society for Sugar Technology (Berlin, Federal Republic of Germany) between 17th and 20th June, 2009 in Rotterdam (The Netherlands) the following lectures were held: (1) Sugar beet quality during long-term storage in clamp and field (A.W.M. Huijbregts); (2) Methods used in the Netherlands to limit frost damage and to process frost-deteriorated beets (J. Strujis, M. Jaspers, M. van Dijk); (3) Biotech in sugarbeet and sugarcane: Current status (T.K. Schwartz, C. Richard); (4) Separation of water through gas hydrate (T. Boech Andersen); (5) Optimised standard of sugar manufacturing - first calculations (F. Lorenz, T. Frankenfeld); (6) Reconsidering vapour compression for sugar crystallization (A. Dolls, M. Bruhns); (7) The development of sustainability standards in the sugar industry (P. Rein); (8) Bioethanol: sugar beet, sugar cane or second generation? (W.J. Corre, J.G. Conijin); (9) The sustainability of beet sugar production in comparison with other sugar crops (P. Christodoulou, V. Kazantzi, S. Bezergianni, K. Gounaris); (10) Alternative products from sugar beets (J. Iciek, S. Wawro); (11) Alternative products from sugar beets (M. Wojtczak); (12) Increase of sugar yield by electrodialysis (J.P. Jenen, P.B. Hansen, M.P. Carter); (13) Optimal dosing of alkalizing agents in the juice purification (G. Roesner, W. Hein, F. Emerstorfer); (14) Affinity based separation technologies and their role in the current and future sugar industry (V. Kochergin); (15) Four to three-stage sugarhouse with two white sugar products (J. Jeppesen, M. Carter); (16) Practical experience of juice decalcification using a weak acid cation exchange resin plant incorporating fractal fluid distribution (E. West, P. Burroughs, P. Seymour); (17) A new process for the production of 'seed crystals' - Process development and field report from the factories (M. Walter, B. Ekelhof, S. Heppner, D. Wullbrandt); (18) Application possibilities and Properties

  6. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials

    OpenAIRE

    María V. Borrachero; Jordi Payá; José Monzó; Lourdes Soriano; Mauro M. Tashima; José L.P. Melges; Jorge L. Akasaki; Vinícius N. Castaldelli

    2013-01-01

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part...

  7. Anhydrous ethanol production in sugar mills; Produccion de etanol anhidro en ingenios azucareros

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez Poy, Manuel. E-mail:poymanuel@prodigy.net.mx

    2007-04-15

    The anhydrous ethanol production is recent and limited, because the disadvantage of the renewable energies is the economic impossibility of the projects. Nevertheless, there are aspects to consider to achieve the anhydrous ethanol production, among which are: the cost of the raw material, the self-sufficiency of energy from the sugar cane bagasse without the need of oil burning, the larger size of the distilleries, incorporation of the Cogeneration with delivery of electricity to the public network in the sugar mill facilities, the introduction of the biotechnology to improve the processes of fermentation and subsidies to agriculture. [Spanish] La produccion de etanol anhidro es reciente y limitada, debido a que la desventaja de las energias renovables es la inviabilidad economica de los proyectos. Sin embargo hay aspectos a considerar para lograr la produccion de etanol anhidro, entre los cuales estan: el costo de la materia prima, la autosuficiencia energetica a partir del bagazo de la cana sin necesidad de petroleo, mayor tamano de las destilerias, incorporacion de la Cogeneracion con entrega de electricidad a la red publica en el ingenio, la introduccion de la biotecnologia para mejorar los procesos de fermentacion y subsidios a la agricultura.

  8. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  9. Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water.

    Science.gov (United States)

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.

  10. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.

    Science.gov (United States)

    Dhar, Kiran S; Wendisch, Volker F; Nampoothiri, Kesavan Madhavan

    2016-07-20

    Xylitol is a non-fermentable sugar alcohol used as sweetener. Corynebacterium glutamicum ATCC13032 was metabolically engineered for xylitol production from the lignocellulosic pentose sugars xylose and arabinose. Direct conversion of xylose to xylitol was achieved through the heterologous expression of NAD(P)H-dependent xylose reductase (xr) gene from Rhodotorula mucilaginosa. Xylitol synthesis from arabinose was attained through polycistronic expression of l-arabinose isomerase (araA), d-psicose 3 epimerase (dpe) and l-xylulose reductase (lxr) genes from Escherichia coli, Agrobacterium tumefaciens and Mycobacterium smegmatis, respectively. Expression of xr and the synthetic araA-dpe-lxr operon under the control of IPTG-inducible Ptac promoter enabled production of xylitol from both xylose and arabinose in the mineral (CGXII) medium with glucose as carbon source. Additional expression of a pentose transporter (araTF) gene enhanced xylitol production by about four-fold compared to the parent strain. The constructed strain Cg-ax3 produced 6.7±0.4g/L of xylitol in batch fermentations and 31±0.5g/L of xylitol in fed-batch fermentations with a specific productivity of 0.28±0.05g/g cdw/h. The strain Cg-ax3 was also validated for xylitol production from pentose rich, acid pre-treated liquor of sorghum stover (SAPL) and the results were comparable in both SAPL (27±0.3g/L) and mineral medium (31±0.5g/L). PMID:27184428

  11. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation.

    Science.gov (United States)

    Dumbrepatil, Arti; Adsul, Mukund; Chaudhari, Shivani; Khire, Jayant; Gokhale, Digambar

    2008-01-01

    Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale. PMID:17981933

  12. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.

    Science.gov (United States)

    Song, Kuo; Tan, Xiaoming; Liang, Yajing; Lu, Xuefeng

    2016-09-01

    It is important to obtain abundant sugar feedstocks economically and sustainably for bio-fermentation industry, especially for producing cheap biofuels and biochemicals. Besides plant biomass, photosynthetic cyanobacteria have also been considered to be potential microbe candidates for sustainable production of carbohydrate feedstocks. As the fastest growing cyanobacterium reported so far, Synechococcus elongatus UTEX 2973 (Syn2973) might have huge potential for bioproduction. In this study, we explored the potentials of this strain as photo-bioreactors for sucrose and glycogen production. Under nitrogen-replete condition, Syn2973 could accumulate glycogen with a rate of 0.75 g L(-1) day(-1) at the exponential phase and reach a glycogen content as high as 51 % of the dry cell weight (DCW) at the stationary phase. By introducing a sucrose transporter CscB, Syn2973 was endowed with an ability to secrete over 94 % sucrose out of cells under salt stress condition. The highest extracellular sucrose productivity reached 35.5 mg L(-1) h(-1) for the Syn2973 strain expressing cscB, which contained the similar amounts of intracellular glycogen with the wild type. Potassium chloride was firstly proved to induce sucrose accumulation as well as sodium chloride in Syn2973. By semi-continuous culturing, 8.7 g L(-1) sucrose was produced by the cscB-expressing strain of Syn2973 in 21 days. These results support that Syn2973 is a promising candidate with great potential for production of sugars. PMID:27079574

  13. Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar.

    Science.gov (United States)

    Germec, Mustafa; Tarhan, Kübra; Yatmaz, Ercan; Tetik, Nedim; Karhan, Mustafa; Demirci, Ali; Turhan, Irfan

    2016-03-01

    Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound-assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound-assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value-added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393-403, 2016. PMID:26749037

  14. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis.

  15. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. PMID:26826954

  16. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  17. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  18. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it

  19. Evaluation of the activated charcoals and adsorption conditions used in the treatments of sugarcane bagasse hydrolysate for xylitol production

    Energy Technology Data Exchange (ETDEWEB)

    Marton, J.M.; Felipe, M.G.A.; Almeida e Silva, J.B. [School of Chemical Engineering at Lorena (FAENQUIL), SP (Brazil). Dept. of Biotechnology], Email: jmarcelo@cetesb.sp.gov.br; Pessoa Junior, A. [University of Sao Paulo (USP), SP (Brazil)

    2006-01-15

    Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite), each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it to 5.5 with H

  20. Examination of zinc adsorption capacity of soils treated with different pyrolysis products

    Directory of Open Access Journals (Sweden)

    Rétháti Gabriella

    2014-11-01

    Full Text Available Organic matter input into soils is essential regarding agricultural, environmental and soil science aspects as well. However, the application of the pyrolysed forms of biochars and materials with different organic matter content gained more attention in order to decrease the emission of the green house gases (CO2, N2O from the soil. During pyrolysis, the materials containing high organic matter (biomass-originated organic matter are heated in oxygen-free (or limited amount of oxygen environment. As a result, the solid phase, which remains after eliminating the gases and liquid phase, is more stable compared to the original product, it cannot be mineralized easily in the soil and its utilization is more beneficial in terms of climatic aspects. Furthermore, it can improve soil structure and it can retain soil moisture and cations in the topsoil for long periods of time, which is very important for plants. In our experiment, the effects of biochar and bone char were examined on soils by zinc adsorption experiments. Based on our experiments, we concluded that the pyrolysis products can have significant Zn adsorption capacity compared to the soil. Bone ash can adsorb more Zn than the charcoal product. The Zn adsorption capacity of soils treated by pyrolysis products can be described by Langmuir adsorption isotherms. However, based on the amount of pyrolysis products, one or two term Langmuir isotherm fits well on the experiment data, which depends on the time the pyrolysis product has spent in the soil.

  1. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    OpenAIRE

    Jose A. Rodríguez-León; Domenech, F.; M. León; Méndez, T.; D. E. Rodríguez; Ashok Pandey

    1999-01-01

    Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH4)2SO4 , NH4H2PO4 and (NH4)2HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9)/gDM). The influence of temperature and initial moisture of the substra...

  2. Cogeneration/auto production influences form sugar cane bagasse for the electric power market in Northeast

    International Nuclear Information System (INIS)

    This work intends to evaluate to what extent the co-generation/auto production influences the electric power market. For that purpose, two sceneries have been developed considering sugar cane bagasse remains, taking as a basis the historic content (per Northeast state) and the energy policy for PROALCOOL. The installed potential in plants/distilleries for utilization of the bagasse industrial remains has also been considered. It has been determined the investments required for new facilities, enabling the use of all bagasse remains for electric energy, the benefits for the North/Northeast electric system resulting from such measures (as the decrease in deficit risks), and the value of energy sale by the system auto producers/co-generators. (author)

  3. Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems

    Directory of Open Access Journals (Sweden)

    Nanjing Zhong

    2015-08-01

    Full Text Available The present study aimed to evaluate the lipid peroxidation inhibitation activity of Maillard Reaction Products (MRPs derived from sugar (glucose, fructose, lactose and maltose and 18 amino acid model systems in soybean oil. MRPs were produced by heating at 130°C for 2 h. Of the 18 amino acids-fructose model systems studied, MRPs derived from fructose-leucine, fructose-methionine, fructose-phenylalanine and fructose-isoleucine model sytems showed high lipid peroxidation inhibitation activity and best performance was observed from fructose-phenylalanine MRPs. Interestingly, glucose-phenylalanine MRPs also exhibited high inhibitation activity and inhibitation activity of both glucose-phenylalanine and fructose-phenylalanine MRPs exceeded 87% even with concentration at 1.1 wt % after 8 days storage.

  4. Simultaneous production of cellulase and reducing sugar from alkali-pretreated sugarcane bagasse via solid state fermentation

    Directory of Open Access Journals (Sweden)

    Li Wan Yoon

    2012-11-01

    Full Text Available This study optimized alkali pretreatment of sugarcane bagasse (SCB and investigated the potential of alkali-pretreated SCB in producing cellulase and reducing sugar by a white-rot fungus, P. sanguineus, via solid state fermentation (SSF. The fermentability of the reducing sugar produced during SSF was examined by co-culturing yeast, Saccharomyces cerevisiae, with P. sanguineus. Central composite design (CCD was applied to optimize the pretreatment based on reducing sugar yield obtained from enzymatic hydrolysis of the pretreated SCB. The model developed from CCD fitted the data well, and the optimized conditions for alkali pretreatment were 128 °C, 0.62 M NaOH, and 30 min with a reducing sugar yield of 97.8%. The alkali-pretreated SCB after washing and drying was cultivated with P. sanguineus during SSF. It was found that cellulase and reducing sugar can be produced simultaneously from this SSF system. The maximum cellulase activities determined from filter paper assay (FPase, carboxylmethylcellulase (CMCase assay and β-glucosidase assay were 0.02 IU/mL, 0.11 IU/mL, and 0.13 IU/mL on day 8, day 3, and day 6 of cultivation, respectively. The maximum reducing sugar concentration of 19.9 mg/g pretreated SCB was obtained on day 4 of SSF. The reducing sugar produced was converted into ethanol upon the addition of yeast into the SSF system. Evidently, the reducing sugar acquired can be further utilized to produce other valuable products in subsequent processes.

  5. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  6. Metabolic Engineering of Zymomonas mobilis for 2,3-Butanediol Production from Lignocellulosic Biomass Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat-Chen; Chen, Xiaowen; Dowe, Nancy; Himmel, Michael E.; Zhang, Min

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.

  7. Managing Quantity, Quality and Timing in Cane Sugar Production: Ex Post Marketing Permits or Ex Ante Production Contracts?

    OpenAIRE

    Patlolla, Sandhyarani

    2010-01-01

    Sugarcane produced in India is utilized to manufacture three sweetening agents: sugar, gur, and khandsari. Sugar processors must comply with a floor price for cane, but gur and khandsari producers are exempt from the floor price. Thus, any effect of the sugar processor’s choice of procurement method on the incentives facing farmers will depend on the expected cane price in these competing unregulated markets. In Andhra Pradesh (AP), India, private sugar processors use an unusual form of verti...

  8. Methodology of factorial design deriving guidelines for simulation of growth curve and production of sugars by Spirulina (Arthrospira) maxima

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2f factorial design was brought up to derive guidelines to simulate growth curve and production of sugars by Spirulina (Arthrospira) maxima. The growth curve or accumulation process of sugars was idealized by sets of straight lines limited by phase transfers of growth or accumulation of sugars. Normal analyses of the critical values of the transfers were used to derive their linear relationships with the initial conditions of the experimental factors. These linear functions were called guidelines and were used to simulate the growth curve or accumulation of sugars. Generalization of the guideline technique was determined by the kinetic limitation of nutrient nitrogen or sulfur that was dependent upon their stoichiometric deficiency directly derived from their initial values in the medium. This method uses the initial conditions of culture and does not need measurements of concentrations of nitrate, sulfate and pigments during cultivation. It is a practical and useful alternative way to trace and predict approximately the growth curve and production of sugars by S. maxima.

  9. The Application of Membrane Separation Processes as Environmental Friendly Methods in the Beet Sugar Production

    OpenAIRE

    Seres, Zita; Gyura, Julianna; Djuric, Mirjana; Vatai, Gyula; Eszterle, Matild

    2008-01-01

    The data collected on the impact of the traditional sugar beet processing on the environment pollution have shown that the greatest disadvantage is related to very high amount of required energy (mostly for the evaporation). The second important disadvantage is associated with the high level of water consumption (mostly for the extraction). The third disadvantage is connected to the purification of sugar juice and removal of non-sucrose compounds, undesired from the point of view of sugar qua...

  10. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.

    Science.gov (United States)

    Ferrara, Maria Antonieta; Bon, Elba P S; Araujo Neto, Julio Silva

    2002-01-01

    The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.

  11. Adsorption of laminaribiose in an in-situ product recovery process

    Science.gov (United States)

    Waluga, Thomas; Scholl, Stephan

    2012-05-01

    With the decreasing availability of fossil carbon sources new synthesis routes for pharmaceuticals and finechemicals find growing interest. Higher oligosaccharide laminaribiose can be produced by enzymatic synthesis from inexpensive sucrose. For an economic process an in-situ product removal by adsorption is investigated. BEA 50 zeolite shows high potential for application due to its good adsorption properties. Isotherms show Langmuir behavior and adequate loadings of nearly 100 mg ṡ g-1 can be reached. Other intermediates formed during the process do not adsorb on this zeolite or show weaker adsorption. Further thermal desorption can be used to regain laminaribiose. However the use of BEA 50 zeolite needs a sophisticated desorption process because of the zeolites' high acidity which catalyzes the degradation of laminaribiose. Hence lower temperatures have to be used or combined with displacement desorption.

  12. Developing of new products of starch sugar%淀粉糖新产品的开发与研究

    Institute of Scientific and Technical Information of China (English)

    蒋世琼; 马丽

    2001-01-01

    The paper presents the status quo and prospects of developing new products of starch sugar,such as isomaltooligosaccharides,trehalose and erythritol by applying biological technology at home and abroad.%阐述了国内外应用生物技术开发淀粉糖新产品的现状与前景。

  13. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    OpenAIRE

    Moh Djaeni; Sasongko, S. B.; A.J.B. van Boxtel

    2013-01-01

    Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60%) and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified...

  14. Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides

    OpenAIRE

    Ghazi, Iraj; Fernández Arrojo, Lucía; Gómez de Segura, María Aránzazu; Alcalde Galeote, Miguel; Plou Gasca, Francisco José; Ballesteros Olmo, Antonio

    2009-01-01

    Sugar syrup and molasses from beet processing containing 620 and 570 mg/ml sucrose, respectively, were assayed as low-cost and available substrates for the enzymatic synthesis of fructo-oligosaccharides (FOS). A commercial pectinase (Pectinex Ultra SP-L, from Aspergillus aculeatus) characterised by the presence of a transfructosylating activity, was used as biocatalyst. The FOS production increased when lowering the initial pH value of syrup (7.5) and molasses (8.9) to 5.5. Sugar syrup and mo...

  15. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products

    OpenAIRE

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2015-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of biop...

  16. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  17. Sugar Beet (Beta vulgaris L. Yields and Potential for Bioethanol Production under Irrigation Regime

    Directory of Open Access Journals (Sweden)

    Simona C. BÂRSAN

    2015-12-01

    Full Text Available The current study was carried out to analyse three sugar beet genotypes regarding to the economic yield and the potential to produce bioethanol, under the influence of furrow irrigation regime in specific conditions of Transylvanian Plain, North-West Romania. The research factors, genotype (‘Leila’, ‘Clementina’ and ‘Libero’ and irrigation regime were studied within a polyfactorial experimental design. The results obtained indicated that in specific climatic conditions of Transylvanian Plain, ‘Libero’ genotype had a great performance and produced the highest yields. The average production of ‘Libero’ genotype was superior than ‘Clementina’ and ‘Leila’ varieties, both in irrigated and non-irrigated conditions, as it follows: 38.98 t ha–1, respectively, 52.72 t ha–1 in the first year of research; 47.63 t ha–1, respectively, 59.73 t ha–1 (in the second year; 2014-60.87 t ha–1, respectively, 74.43 t ha–1 (in the third year. Moreover, the production increased with 11.5% under irrigated conditions for all the studied genotypes. The results also revealed the positive influence of the irrigation regime on the qualitative parameters of the bioethanol (ethanol, higher saturated monoalcohols, methanol, water, inorganic chloride, cooper, phosphorous, sulphur etc. indicating that the obtained bioethanol might be a viable alternative for fossil fuels.

  18. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    Science.gov (United States)

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.

  19. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    Science.gov (United States)

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol. PMID:27372004

  20. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.

    Science.gov (United States)

    Rojas-Rejón, Óscar A; Poggi-Varaldo, Héctor M; Ramos-Valdivia, Ana C; Ponce-Noyola, Teresa; Cristiani-Urbina, Eliseo; Martínez, Alfredo; de la Torre, Mayra

    2016-03-01

    Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR-22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR-22 was run in the BCR using 1% alkali-pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed-batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321-326, 2016. PMID:26701152

  1. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse.

    Science.gov (United States)

    Moraes, B S; Triolo, J M; Lecona, V P; Zaiat, M; Sommer, S G

    2015-08-01

    Bioethanol production generates large amounts of vinasse, which is suitable for biogas production. In this study, the anaerobic digestion of sugar beet vinasse was optimised using continuous stirred-tank reactors (CSTR) supplemented either with lime fertiliser or with 3% cow manure. In both reactors, the C/N ratio was adjusted by adding straw. The biochemical methane potential (BMP) of vinasse was 267.4±4.5LCH4kgVS(-1). Due to the low content of macro- and micronutrients and low C/N ratio of vinasse, biogas production failed when vinasse alone was fed to the reactor. When co-substrate was added, biogas production achieved very close to the BMP of vinasse, being 235.7±32.2LCH4kgVS(-1) from the fertiliser supplied reactor and 265.2±26.8LCH4kgVS(-1) in manure supplied reactor at steady state. Anaerobic digestion was the most stable when cow manure was supplied to digestion of vinasse.

  2. An Intergrated Sustainability Assessment of the Swedish Sugar Production System from a Life-Cycle Perspective: 2003-2015

    Directory of Open Access Journals (Sweden)

    Barry Ness

    2011-06-01

    Full Text Available The article presents a sustainability assessment of the beet-to-sugar production system in Sweden from 2003 until 2015. It focuses on the life-cycle phases of beet growing, beet transport and sugar processing. Based on the Swedish sustainable development strategy, eight indicators in environmental and socio-economic domains based significantly on EU price and production quota changes are assessed. The study also appraises the autumn wheat-to-flour production system as an alternative scenario to provide a better understanding of the overall impacts on the region of the effects of the EU price and quota changes. The method used is a system analysis (simulation model developed with the software STELLA 9.1. The study is a part of a broader regional sustainability assessment that focuses on the sugar sector in Sweden. Model results of the combined sugar and flour systems show general declines in agricultural landscape diversity and revenues earned in the region with only slight decreases in the number of full-time jobs in the region. Results also reveal decreases in the amount of nutrient runoff, fossil fuel energy use, greenhouse gas releases and field chemical use, with more substantial decreases in biodiversity via the suspension of organic beet growing in the region.

  3. Sugar, ethics and legislation.

    Science.gov (United States)

    Azize, Joseph

    2010-05-01

    There are serious ethical and legal issues concerning the sale of sugar products, especially to children, yet one cannot address children's consumption without addressing consumption across society. The ethical principles are not even controversial. However, sugar has been insufficiently scrutinised, probably because sweetness is popular and plays a prominent, but dispensable, cultural role. Sugar is both addictive and toxic, although it is a very mild, very slow-working poison. Yet, over time, its effects can be quite serious. The social and health problems have proved grave and intractable. Given the nature of sugar, it should be regulated like alcohol and tobacco, if not more stringently, given its greater social and cultural penetration across all ages. That is, sales of sugar products at school canteens should be banned, advertising severely limited, full disclosure of sugar content made mandatory, warnings placed on certain products, and sugar itself should be taxed. PMID:20552941

  4. PRODUCTION OF FERMENTABLE SUGARS FROM OIL PALM EMPTY FRUIT BUNCH USING CRUDE CELLULASE COCKTAILS WITH TRICHODERMA ASPERELLUM UPM1 AND ASPERGILLUS FUMIGATUS UPM2 FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Nurul Kartini Abu Bakar,

    2012-06-01

    Full Text Available Utilization of oil palm empty fruit bunch (OPEFB for bioethanol production with crude cellulase cocktails from locally isolated fungi was studied. Enzymatic saccharification of alkaline pretreated OPEFB was done using different cellulase enzyme preparations. Crude cellulase cocktails from Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 produced 8.37 g/L reducing sugars with 0.17 g/g yield. Production of bioethanol from OPEFB hydrolysate using Baker’s yeast produced approximately 0.59 g/L ethanol, corresponding to 13.8% of the theoretical yield. High reducing sugars concentration in the final fermentation samples resulted from accumulation of non-fermentable sugars such as xylose and cellobiose that were not consumed by the yeast. The results obtained support the possible utilization of OPEFB biomass for bioethanol production in the future.

  5. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  6. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2.

    Science.gov (United States)

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924

  7. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2

    Directory of Open Access Journals (Sweden)

    Nighat Naheed

    2014-06-01

    Full Text Available Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01% was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810 is first time being reported for PHA production.

  8. Sugar and Other Sweeteners

    Science.gov (United States)

    Godshall, Mary An

    Sugar and starch are among the most abundant plant products available, and large industries exist worldwide to extract and process them from agricultural sources. The world production of sugar (sucrose from cane and beet) in 2004/2005 was 142 million metric tons, raw value, 1 with 24.8 percent of that being beet sugar and 75.1 percent being cane sugar.2 The proportion of beet sugar to cane sugar has fallen steadily since about 1971, when it constituted 42.8 percent of total sugar production. The decline in total beet sugar proportion over the last ten years represents not so much a decline in beet production, which has remained in a range of 33-39 million metric tons, but rather a continued increase in cane sugar production from around 70 million metric tons in 1991 to 112 million metric tons.2 The production of total world sugar has also risen dramatically since 1971/72, when it was 71.7 million tons.3

  9. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP.

  10. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  11. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. PMID:27259188

  12. A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar

    Science.gov (United States)

    Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan

    1998-10-01

    There is current interest in and concern for the development of environmentally friendly bioprocesses whereby biomass and the biodegradable content of municipal wastes can be converted to useful forms of energy. For example, cellulose, a glucose polymer that is the principal component of biomass and paper waste, can be enzymatically degraded to glucose, which can subsequently be converted by fermentation or further enzymatic reaction to fuels such as ethanol or hydrogen. These products represent alternative energy sources to fossil fuels such as oil. Demonstration of the relevant reactions in high-school and undergraduate college laboratories would have value not only in illustrating environmentally friendly biotechnology for the utilization of renewable energy sources, such as cellulosic wastes, but could also be used to teach the principles of enzyme-catalyzed reactions. In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter. Furthermore, it is shown that the renewable resource cellulose, in its soluble derivative from carboxymethylcellulose, as well as aspen-wood waste, is also a source of hydrogen if the enzyme cellulase is included in the reaction mixture.

  13. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. PMID:26398665

  14. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen.

  15. Production of nanoparticles under benign conditions using vitamins, sugars, glutathione and polyphenols from tea and winery

    Science.gov (United States)

    In continuation of our developmental program for sustainable pathways to nanomaterials, an account of greener preparation of nanoparticles utilizing naturally occurring reagents such as vitamins, sugars, tea extracts, and biodegradable polymers will be presented which reduces or ...

  16. Determining the Future for Louisiana Sugar Cane Products, Inc.: A Case Study Analyzing Vertical Coordination Options

    OpenAIRE

    Gunderson, Michael A.; Johnson, Aaron J.; Michael E. Salassi; Lonnie P. CHAMPAGNE; DeVuyst, Cheryl Sinn

    2009-01-01

    Deciding how to coordinate activities can be a challenge posed in any marketing chain. This case involves an agricultural cooperative that has focused entirely on marketing raw sugar cane for additional refinement. Recent dramatic shifts in the sector have caused the members of the cooperative to consider building a facility that will process the raw sugar cane. In so doing, the cooperative can consider using the spot market, using contracts, vertically coordinating, or vertically integrating...

  17. 甘蔗糖厂生产高品质优级白砂糖的实践探索%Production of High Quality White Granulated Sugar in Cane Sugar Mill

    Institute of Scientific and Technical Information of China (English)

    岑跃; 傅其军; 周日交

    2015-01-01

    介绍了甘蔗糖厂生产高品质糖的实践探索。利用伶俐糖厂碳法工艺糖厂中间制品质量好,糖头糖粉纯度高、色值低的优势,收集糖头糖粉回溶糖浆煮制高品质优级白砂糖,提升终端产品档次,实现效益最大化,提高伶俐糖厂白砂糖在市场上的竞争力和影响力。%Exploration and practice in the sugar cane sugar mill for the production of high quality sugar was introduced. Icing sugar were collected and melted in Lingli Sugar Mill to produce high quality granulated white sugar and therefore maximize the economic benefit and improve the market competitiveness and influence of Lingli Sugar Mill.

  18. Sweeteners - sugars

    Science.gov (United States)

    ... rise in blood sugar after meals or cause tooth decay. Unlike other sugar alcohols, it does not cause ... and other sweeteners with calories can lead to tooth decay . Large amounts of sugar-containing foods lead to ...

  19. Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse.

    Science.gov (United States)

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-08-01

    A L9(3)(4) orthogonal array (OA) experimental design was applied to study the four parameters considered most important in the ozonolysis pretreatment (moisture content, ozone concentration, ozone/oxygen flow and particle size) on ethanol production from sugarcane bagasse (SCB). Statistical analysis highlighted ozone concentration as the highest influence parameter on reaction time and sugars release after enzymatic hydrolysis. The increase on reaction time when decreasing the ozone/oxygen flow resulted in small differences of ozone consumptions. Design optimization for sugars release provided a parameters combination close to the best experimental run, where 77.55% and 56.95% of glucose and xylose yields were obtained, respectively. When optimizing the grams of sugar released by gram of ozone, the highest influence parameter was moisture content, with a maximum yield of 2.98gSUGARS/gO3. In experiments on hydrolysates fermentation, Saccharomyces cerevisiae provided ethanol yields around 80%, while Pichia stipitis was completely inhibited. PMID:27132222

  20. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products.

    Science.gov (United States)

    Zhao, Cheng-Bin; Zhou, Lin-Yi; Liu, Jin-Yang; Zhang, Yao; Chen, Yang; Wu, Fei

    2016-05-01

    Maillard reaction products (MRPs) of soybean protein isolate (SPI) and sugars (glucose and maltose) were prepared by heating in the aqueous dispersion at 95 °C for 15 min with ultrasonic pretreatment (ultrasonic power of 200 W) for 20 min. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of SPI/sugar MRPs was investigated. SPI/sugar MRPs prepared with ultrasonic pretreatment had higher degree of glycation (DG), lower browning and less compact tertiary conformation than that with non-ultrasonic pretreatment. Surface hydrophobicity (H0), particle size and rheological properties were measured by fluorescence spectrophotometry, laser particle size analysis and dynamic oscillatory rheometry, respectively. Glycation reduced H0 and particle size as well as weaken the gel network formed by the acidification of GDL. However, ultrasound increased H0 and decreased particle size. This is desirable for the formation of acid-induced gel structure. The ultrasonic pretreatments reduced/eliminate the weakening effect of glycation on the gel network of SPI/sugar MRPs, and even improved the gel properties. PMID:27407200

  1. Study of the production of ethanol from sugar beets for use as a motor fuel. Final report, February 1, 1980-April 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Baird, H W

    1981-04-27

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  2. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  3. Economic analyse of industrial production and electric energy consumption on a sugar-alcohol plant; Analise economica da producao industrial e do consumo de energia eletrica em uma usina sucro-alcooleira

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Aderson

    1993-10-01

    Economic aspects of industrial production of sugar cane and automotive alcohol fuel, the relation between its production and electric energy consumption, electric energy costs to self generated electric power and concessionary supply, involved in plant production on Ribeirao Preto, SP, Brazil, are presented. Studies to verify the relationships between sugar and alcohol production with milling ours as well as sugar cane processed with sugar and alcohol produced are also discussed 27 refs., 12 figs., 38 tabs.

  4. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.

    OpenAIRE

    Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J; Hols, Pascal

    2007-01-01

    Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two...

  5. KOH for enhanced sugarcane bagasse delignification and further production of sugar-rich hydrolyzates by enzymes application

    OpenAIRE

    Paixão, Susana M.; Ladeira, S. A.; Arez, B. F.; Martins, M. L. L.; Roseiro, J. Carlos; Alves, Luís Manuel

    2014-01-01

    Lignocellulosic biomass is envisaged as an important raw material for bioethanol production due to its low cost and high availability. Sugarcane bagasse (SCB), a fibrous residue of cane stalks left over after crushing and extraction of the juice from sugarcane; it is one of the largest cellulosic agro-industrial by-products. Tons of SCB are produced in Brazil as a waste of sugar and ethanol industries. This lignocellulosic by-product is a potential renewable source for 2G-bioethanol produ...

  6. Effect of Ripeness and Drying Process on Sugar and Ethanol Production from Giant Reed (Arundo donax L.

    Directory of Open Access Journals (Sweden)

    Egidio Viola

    2015-04-01

    Full Text Available The work highlighted the influence of the water content within the starting biomass, drying procedure and ripeness on the enzymatic digestibility of the giant reed, one of the most suitable nonfood crops for bioenergy and bio-compound production. Fresh green reed was treated as received, while oven-dried green and ripe reed were humidified before the steam explosion pretreatment that was carried out at 210 ℃ for 10 minutes. The exploded biomasses were extracted with water to remove the soluble hemicellulose and potential inhibitors; the insoluble residue was submitted to enzymatic hydrolysis and alcoholic fermentation. The process was evaluated in terms of sugars recovery and ethanol yield. After the sequence of pretreatment, enzymatic hydrolysis and fermentation by Saccharomyces cerevisiae 132 g; 103 g; 162 g of ethanol; and 77 g; 63 g; 92 g of pentosanes were respectively obtained from 1 kgDM of fresh green reed; dried green reed or ripe reed. The ripe reed contains more carbohydrates than the green reed and the resulting sugar and ethanol production was higher, in spite of lower saccharification yield. While drying the fresh biomass is good practice for biomass preservation, it negatively affects the recovery of free sugars and the ethanol production, because of fiber hornification which hinders enzyme access in the hydrolysis step.

  7. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period

    Directory of Open Access Journals (Sweden)

    L. M. Sorathiya

    2015-01-01

    Full Text Available Aim: The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. Materials and Methods: This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L. tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50% of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Results: Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. Conclusion: It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding.

  8. Biological nitrogen fixation in sugar cane: A key to energetically viable biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Boddey, R.M. [Centro Nacional de Pesquisa de Agrobiologia, Rio de Janeiro (Brazil)

    1995-05-01

    The advantages of producing biofuels to replace fossil energy sources are derived from the fact that the energy accumulated in the biomass in captured directly from photosynthesis and is thus renewable, and that the cycle of carbon dioxide fixation by the crop, followed by burning of the fuel makes no overall contribution to atmospheric CO{sub 2} or, consequently, to global warming. However, these advantages are negated if large quantities of fossil fuels need to be used to grow or process the biofuel crop. In this regard, the Brazilian bioethanol program, based on the fermentation/distillation of sugar cane juice, is particularly favorable, not only because the crop is principally hand harvested, but also because of the low nitrogen fertilizer use on sugar cane in Brazil. Recent {sup 15}N and N balance studies have shown that in some Brazilian cane varieties, high yields are possible without N fertilization because the plants are able to obtain large contributions of nitrogen from plant-associated biological N{sub 2} fixation (BNF). The N{sub 2}-fixing acid-tolerant bacterium Acetobacter diazotrophicus was first found to occur within roots, stems, and leaves of sugar cane. Subsequently, two species of Herbaspirillum also have been found to occur within the interior of all sugar cane tissues. The discovery of these, and other N{sub 2}-fixing bacteria that survive poorly in soil but thrive within plant tissue (endophytic bacteria), may account for the high BNF contributions observed in sugar cane. Further study of this system should allow the gradual elimination of N fertilizer use on sugar cane, at least in Brazil, and opens up the possibility of the extension of this efficient N{sub 2}-fixing system to cereal and other crops with consequent immense potential benefits to tropical agriculture. 44 refs., 9 figs., 4 tabs.

  9. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    Science.gov (United States)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  10. Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry.

    Science.gov (United States)

    Debowski, M; Krzemieniewski, M; Zieliński, M; Dudek, M; Grala, A

    2013-01-01

    The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.

  11. PRODUCTION OF FERMENTABLE SUGARS FROM OIL PALM EMPTY FRUIT BUNCH USING CRUDE CELLULASE COCKTAILS WITH TRICHODERMA ASPERELLUM UPM1 AND ASPERGILLUS FUMIGATUS UPM2 FOR BIOETHANOL PRODUCTION

    OpenAIRE

    Nurul Kartini Abu Bakar,; Zuraidah Zanirun; Suraini Abd-Aziz; Farinazleen Mohd Ghazali; Mohd Ali Hassan

    2012-01-01

    Utilization of oil palm empty fruit bunch (OPEFB) for bioethanol production with crude cellulase cocktails from locally isolated fungi was studied. Enzymatic saccharification of alkaline pretreated OPEFB was done using different cellulase enzyme preparations. Crude cellulase cocktails from Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 produced 8.37 g/L reducing sugars with 0.17 g/g yield. Production of bioethanol from OPEFB hydrolysate using Baker’s yeast produced approximately 0...

  12. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption.

    Science.gov (United States)

    Redondas, V; Gómez, X; García, S; Pevida, C; Rubiera, F; Morán, A; Pis, J J

    2012-01-01

    The production of H(2) by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H(2) streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO(2) from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H(2) yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H(2) producing microflora leading to a reduction in specific H(2) production. Adsorption of CO(2) from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H(2)S onto the activated carbon also took place, there being no evidence of H(2)S present in the bio-H(2) exiting the column. Nevertheless, the concentration of H(2)S was very low, and this co-adsorption did not affect the CO(2) capture capacity of the activated carbon.

  13. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    Science.gov (United States)

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars.

  14. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    Science.gov (United States)

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  15. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration

    International Nuclear Information System (INIS)

    Highlights: • A novel energy-saving H2 production process is exploited. • Heat integration technology is used to recover the wasted heat. • Heat coupling of heat exchangers is optimized in SMR and PSA sections. • Energy consumption is reduced to 39.5% that of the conventional process. - Abstract: Hydrogen has been widely researched as a promising alternative fuel. Steam methane reforming (SMR) coupled with pressure swing adsorption (PSA) is one of the most dominant processes for hydrogen production. In order to reduce the energy consumption, a novel energy saving SMR–PSA H2 production process by combining heat integration technology has been put forward. In SMR section, the waste heat of reformer and water–gas-shift (WGS) reactors is recovered to pre-heat feed gas and H2O. In the view of exergy, a compressor is used to achieve a well heat pairing of sensible and latent heat between hot and cold streams. In PSA section, the generated adsorption heat is recovered by heat pump and reused for regeneration of sorbent. In the total process, optimal heat coupling between hot and cold streams is realized. The simulation results indicated that the SMR and PSA sections in the optimized hydrogen production process can save 55.77 kJ/mol H2 and 6.01 kJ/mol H2, respectively. The total energy consumption of the novel SMR–PSA process can be reduced to 39.5% that of the conventional process

  16. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    Science.gov (United States)

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean. PMID:26923569

  17. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    Science.gov (United States)

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean.

  18. Sugar from Palms

    DEFF Research Database (Denmark)

    Barfod, Anders

    Throughout the tropics and subtropics a large number of products are derived from the sugar-rich sap tapped from palms. I will give an overview of the most important species being exploited, harvesting practices and yields. I will further provide insights in the biomechanmics of sugar...... transportation in palms, which remain an enigma. Finally, the prospects for developing palm sugar into a commodity of worlswide significance will be discussed....

  19. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period

    OpenAIRE

    L. M. Sorathiya; Patel, M. D.; K. K. Tyagi; A. B. Fulsoundar; A. P. Raval

    2015-01-01

    Aim: The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. Materials and Methods: This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L.) tubers on production ...

  20. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    Directory of Open Access Journals (Sweden)

    Milenna Nunes Moreira

    2014-09-01

    Full Text Available This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L. at four different levels of replacement (0, 30, 50, and 70% for cane sugar (Saccharum officinarum RB. in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of incubation. The byproducts of Moringa had the highest degradability, and castor presented the lowest values at all evaluated levels of replacement. Castor bean byproduct showed the highest total gas production, cotton showed the lowest production, and the byproduct of Moringa at the 70% level showed the best ruminal fermentation results. These results demonstrate that the use of oil seed press cake from biodiesel production (Helianthus annuus L. and Ricinus communis can replace cane sugar in ruminant feed.

  1. Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Scherer, P. [Lifetec Process Engineering, Faculty of Life Sciences, Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg (Germany)

    2008-03-15

    Single-stage continuous anaerobic conversion of sugar beet silage without manure to methane was investigated in this experimental work, using a laboratory-scale mesophilic anaerobic biogas digester. The sugar beet silage had an extreme low pH of 3.3. The reactor was operated in a hydraulic retention time (HRT) range of between 95 and 15 days, and an organic loading rate (OLR) range of between 0.937 and 6.33 g{sup -1} VS l{sup -1} d{sup -1}. The highest specific gas production rate (spec. GPR) of 0.72 l g VS{sup -1} d{sup -1} could be obtained at 25 days of HRT, with an average methane content of about 63%, at a pH of around 6.8. Since sugar beet silage without the leaves is a poor substrate, in terms of the availability of the nutrients and the buffering capacity, external supplementation of nitrogen and buffering agents has to be regularly performed, in order to achieve a stable and an efficient process. Sodium or potassium hydrogen carbonate addition seemed to function best in our case, among the other agents used, to provide adequate buffering capacity and to keep the digester pH stable during the operation. Use of a new harvest (a new charge of substrate) also affected the spec. GPR values significantly. (author)

  2. Adsorption Mechanisms of Emerging Micro-pollutants with a clay Mineral: Case of Tramadol and Doxepine Pharmaceutical Products

    OpenAIRE

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-01-01

    International audience A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40 °C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin–Radushkevich equation models explicitl...

  3. Utilization of distillery slop for sugar cane production and environmental pollution reduction

    Directory of Open Access Journals (Sweden)

    Tasanee Thitakamol

    2010-07-01

    Full Text Available The research aimed to study the effect of distillery slop and chemical fertilizer on soil fertility, growth and yield of sugar cane. The field experiment was conducted on Mahasarakam soil series, using the K 88-92 variety of sugar cane. The results showed that distillery slop significantly increased some nutrients in soil, particularly potassium, magnesium, sulfur and chloride. The results also showed that application of distillery slop did not affect most of the physical properties of soil. Only the saturated hydraulic conductivity was significantly decreased under non-application of fertilizer. Under the application of distillery slop, chemical fertilizer had no significant effect on the yield and the juice quality of sugar cane for both crop years. However, under non-application of distillery slop in the first crop year, application of 21-0-0 and 20-20-0 fertilizer had a significant effect on cane yield. With the application of chemical fertilizer, distillery slop had an influence on the yield of sugar cane in both crop years while different doses of slop did not make any significant difference on cane yield. The average yields of the first crop year were 126.7, 195.6, 203.0 and 187.2 ton/hectare and those of the second crop year were 85.0, 150.0, 150.8 and 142.4 ton/hectare after the application of 0, 187.5, 375 and 562.5 m3/hectare, respectively. The results also showed that application of distillery slop did not have any significant effect on juice quality for both crop years. Investigation of slop trace under the ground surface indicated that application of distillery slop did not affect the quality of underground water as the deepest level of trace was only 50 centimeters.

  4. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production.

    Science.gov (United States)

    Li, Qing; Zheng, Longyu; Qiu, Ning; Cai, Hao; Tomberlin, Jeffery K; Yu, Ziniu

    2011-06-01

    Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff. PMID:21367596

  5. Environmental regulation, productive efficiency and cost of pollution abatement: a case study of the sugar industry in India.

    Science.gov (United States)

    Murty, M N; Kumar, Surender; Paul, Mahua

    2006-04-01

    In this paper the input distance function is estimated for the Indian Sugar industry under alternative assumptions of weak and strong disposability of bad outputs. The estimated distance function is used to make the estimates of environmental efficiency, Malmquist productivity index and shadow prices of pollutants. The technical efficiency measure estimated under the assumption of weak disposability of bad outputs is utilized to test the Porter hypothesis. Marginal costs of pollution abatement functions are estimated for different pollutants of water. Pollutant specific taxes are computed using the tax-standards method.

  6. Sweeteners - sugars

    Science.gov (United States)

    ... at much higher risk for type 2 diabetes , metabolic syndrome , and high blood pressure . Sugar alcohols such as ... limiting the amount of added sugars in your diet. The recommendation extends to all types of added ...

  7. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  8. 75 FR 53013 - Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2010-08-30

    ... TRADE REPRESENTATIVE Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-containing Products; Revision AGENCY: Office of the United States Trade... allocations of raw cane sugar, refined and special sugar, and sugar-containing products. USTR is revising...

  9. Production of reducing sugar from oil palm empty fruit bunch (EFB cellulose fibres via acid hydrolysis

    Directory of Open Access Journals (Sweden)

    Siew Xian Chin

    2013-02-01

    Full Text Available Cellulosic fibre of oil palm empty fruit bunches (EFB were used as a raw material for acid hydrolysis using mineral acids (H2SO4 and HCl to produce reducing sugar at moderate temperature and atmospheric pressure. Experiments were carried out to investigate the effect of the hydrolysis parameters, including acid concentration, temperature, and reaction time, on the total reducing sugar (TRS yield with the aid of response surface methodology (RSM. The preliminary hydrolysis studies of the EFB fibres showed that the presence of lignin in the fibres significantly affected the TRS yield. The maximum predicted TRS yield using H2SO4 was 30.61% under optimal conditions: acid concentration of 5 N, temperature of 139.65 oC, and reaction time of 4.16 h. For the hydrolysis using HCl, the maximum predicted TRS yield is 39.81% under optimal conditions: acid concentration of 4.63 N, temperature of 133.7 oC, reaction time of 2.05 h.

  10. Effects of hydrothermal pretreatment of sugar beet pulp for methane production.

    Science.gov (United States)

    Ziemiński, K; Romanowska, I; Kowalska-Wentel, M; Cyran, M

    2014-08-01

    The effect of Liquid Hot Water treatment conditions on the degree of sugar beet pulp (SBP) degradation was studied. The SBP was subjected to hydrothermal processing at temperatures ranging from 120 to 200 °C. The relationship between processing temperature and parameters of liquid and solid fractions of resulting hydrolysates as well as the efficiency of their methane fermentation was determined. The highest concentration of free glucose (3.29 mg ml(-1)) was observed when the hydrolysis was conducted at 160 °C (it was 4-fold higher than that after processing at 120 °C). Total acids and aldehydes concentrations in the liquid fractions were increased from 0.005 mg ml(-1) for the untreated SBP to 1.61 mg ml(-1) after its processing at 200 °C. Parameters of the hydrolysates obtained by the LHW treatment decided of the efficiency of methane fermentation. The highest cumulative methane yield (502.50 L CH₄ kg(-1)VS) was obtained from the sugar beet pulp hydrolysate produced at 160 °C.

  11. Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process.

    Science.gov (United States)

    Liu, Qiyu; Li, Wenzhi; Ma, Qiaozhi; An, Shengxin; Li, Minghao; Jameel, Hasan; Chang, Hou-Min

    2016-07-01

    A two-stage process was evaluated to increase sugar recovery. Firstly, corn stover was treated with dilute hydrochloric acid to recover the xylose, and then the residue was subjected to a wet-milling pretreatment. Dilute hydrochloric acid showed a high xylose recovery during the first stage. The optimal condition was 120°C and 40min for 0.7wt% dilute hydrochloric acid pretreatment followed by wet-milling pretreatment for 15min. The xylose and glucose yield were 81.0% and 64.0%, respectively, with a cellulase dosage at 3FPU/g of substrate. This two-stage process was effective on account of the removal of hemicelluloses in the first stage and the delamination of cell wall in the second stage, increasing the possibility of adsorption of cellulose to enzymes, and resulting in a high sugar recovery with a very low enzyme loading. PMID:27035475

  12. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics.

  13. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    Directory of Open Access Journals (Sweden)

    Moh Djaeni

    2013-06-01

    Full Text Available Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60% and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite, and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.

  14. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    Science.gov (United States)

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions.

  15. Sugar Market Liberalization: Modeling the EU Supply of "C" Sugar

    OpenAIRE

    Gohin, Alexandre; Bureau, Jean-Christophe

    2005-01-01

    The various assessments of the effects of a liberalization of world sugar markets are largely inconsistent. One cause seems to be the modeling of the EU supply response. We investigate three possible linkages between production quota sugar and the out-of-quota or "C" sugar supply: i/ the existence of fixed costs covered by the in-quota sugar; ii /the "overshooting" behavior as prevention against poor yields; iii/ the production of C sugar as "reference building" in view of expected reforms. M...

  16. Radium removal from aqueous solutions by adsorption on non-treated and chemically modified biomass by-product

    International Nuclear Information System (INIS)

    The adsorption efficiency of a biomass by-product (olive cake) regarding the removal of radium (226Ra) from aqueous solutions has been investigated prior and after its chemical treatment. The chemical treatment of the biomass by-product included phosphorylation and MnO2-coating. The separation/removal efficiency has been studied as a function of pH, salinity (NaCl) and calcium ion concentration (Ca2+) in solution. Evaluation of the experimental data shows clearly that the phosphorylated biomass by-product presents the highest adsorption capacity and efficiency followed by the MnO2-coated material and the non-treated biomass by-product. However, regarding the effect of salinity and the presence of competitive cations (e.g. Ca2+) on the adsorption/removal efficiency, the MnO2-coated material shows the lowest decline in efficiency (only 2 % of the relative adsorption efficiency) followed by the non-treated and the phosphorylated biomass by-product. The results of the present study indicate that depending on the physicochemical characteristics of the radium-contaminated water, all three types of the biomass by-product could be effectively used for the treatment of radium-contaminated waters. Nevertheless, the MnO2-coated material is expected to be the most effective adsorbent and an alternative to MnO2 resins for the treatment of environmentally relevant waters. (author)

  17. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    Science.gov (United States)

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process.

  18. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    Science.gov (United States)

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process. PMID:27207010

  19. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase.

    Science.gov (United States)

    Mukhopadhyay, Arka; Dutta, Nalok; Chattopadhyay, Dhrubajyoti; Chakrabarti, Krishanu

    2013-06-01

    Banana, citrus and potato peels were subjected to treatment with hydroxyapatite nanoparticle (NP) supplemented purified pectate lyase (NP-PL), isolated from Bacillus megaterium AK2 to produce reducing sugar (RS). At both 50 and 90°C production of RS by NP-PL was almost twofold greater than that by untreated pectate lyase (PL) from each of the three peels. The optimal production of RS from banana and citrus peels were after 24 and 6h of incubation while it was 24 and 4h for potato peels at 50 and 90°C, respectively, on NP-PL treatment. NP-PL could degum raw, decorticated ramie fibers as well as enhance fiber tenacity and fineness. The weight loss of the fibers were 24% and 31% better (compared to PL treatment) after 24 and 48 h of processing. These findings have potential implications for the bio-ethanol, bio-fuel and textile industries. PMID:23587821

  20. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  1. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.

    Science.gov (United States)

    Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization.

  2. Productivity of sugar beet as affected by salinity and radiation treatments

    International Nuclear Information System (INIS)

    Three sets of experiments were carried out in the two successive seasons,1983 and 1984 at the agricultural department for soils and water researches, A.E.A., to investigate the response of two sugar beet varieties; namely maribomaroc - poly and monopour to saline conditions and irradiation treatments signly or in combination. Saline conditions were performed by using different salt types, viz. sodium chloride 'Nacl; sodium bicarbonate 'NaHCO3' and potassium chloride 'KC1'. Each at 25,50,100 and 200 mel-1, beside the control treatment 'zero level 0.0'. In addition, irradiation doses that had been applied to seeds before sowing were 50, 100 and 200 gray, beside the unirradiated ones

  3. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2

    OpenAIRE

    Nighat Naheed; Nazia Jamil

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 7...

  4. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.

    Science.gov (United States)

    Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J; Hols, Pascal

    2007-03-01

    Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.

  5. Development of base populations from root and tuber crops for the production of sugar and starch as raw material for the industry

    Energy Technology Data Exchange (ETDEWEB)

    Frese, L.; Schittenhelm, S.; Dambroth, M.

    1987-01-01

    Based on results of evaluation and breeding programmes with beets, potato, Jerusalem artichoke and chicory the following conclusions can be drawn: For breeding beets with a high sugar yield it seems favourable to produce hybrids between sugar and fodder beet. Compared to the average of their parents the sugar beet x fodder beet and fodder beet x sugar beet hybrids produced 3,8 and 12,9% resp., higher sugar yields. It is, however, from this experiment not fully clear if heterosis allone is the explanation for this increase. Several preselected populations of the primitive potato species S. tuberosum subsp. andigena and S. phureja from the United States, Scotland and the Netherlands have been tested in a field trial. Compared to Phureja the Andigena material has reached a high level of adaptation. An immediate use in commercial breeding programmes for the production of high yielding Tuberosum-Andigena hybrids is possible. In Jerusalem artichoke the production of new genetic variability by crossing is complicated by the bad fertility of this species. Because of the very limited breeding activities in the past a large advance is possible. Even though the species C. intybus is of many shapes, only the root chicory is suitable for use as an industrial crop. Leaf chicory produces only low to medium sugar yields and is badly adapted to mechanical harvest. (orig.)

  6. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  7. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  8. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Claudia Conesa

    2015-09-01

    Full Text Available Electrochemical Impedance Spectroscopy (EIS has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%. These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  9. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  10. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams, als

  11. Sustainability aspects of biobased applications : comparison of different crops and products from the sugar platform BO-12.05-002-008

    NARCIS (Netherlands)

    Bos, H.L.; Meesters, K.P.H.; Conijn, J.G.; Corre, W.J.; Patel, M.

    2011-01-01

    In this study different uses of biomass are compared. In order to allow for a systematic comparison the study focuses on three different chemicals that can be produced from sugar. In this way it is also, in principle, possible to compare different crops for the production of the same product. The st

  12. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  13. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability. PMID:21971607

  14. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases.

    Science.gov (United States)

    Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias

    2016-02-01

    Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible.

  15. Production of Nanocrystalline Magnetite for Adsorption of Cr(VI) Ions

    Science.gov (United States)

    Javadi, N.; Raygan, Sh.; Seyyed Ebrahimi, S. A.

    Higher environmental standards have made the removal of toxic metals such as hexavalent chromium from wastewater; an important problem for environmental protection. Iron oxide is a particularly interesting adsorbent to be considered for this application. In this study, a new method combining adsorption and magnetic separation was developed to remove Cr(VI) from wastewater. The nanocrystalline magnetite as adsorbent was produced via thermo- mechanical reduction of hematite. Various parameters which affect the adsorption of Cr(VI) such as time, pH, temperature and initial concentration were investigated using thermo-gravimeters (TG), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and atomic adsorption spectroscopy (AAS) techniques. The maximum adsorption was occurred at pH 2. The adsorption data were fitted well to Langmuir isotherm model. The adsorption of Cr(VI) increased significantly with increasing of temperature and time.

  16. Correlation between production and milk composition and feeding behavior of lactating cows fed diets containing sugar cane silage

    Directory of Open Access Journals (Sweden)

    Susi Cristina dos Santos Guimarães Martins

    2015-07-01

    Full Text Available This work aimed to evaluate the correlations between production and milk composition and feeding behavior of lactating cows. The cows had an average of 100 days of lactation and a production were arranged in two 4 x 4 Latin squares conpound of the four periods, four diets and four animals. The diets were formulated to be isonitrogenous with roughage: concentrate ratio of approximately 55:45. As forage, were evaluate four silages sugar cane: without additive (control, with 1% urea, with 0.5% urea + 0.5% CaO and with 1% CaO. The experimental period lasted 60 days divided into four periods of 15 days. Feeding behavior was assessed on the 13 day of each experimental period, for 24 hours, every five minutes. From the data 24 behavioral variables were determined, which were correlated with the data of production and milk composition. The behavioral variable eating and ruminating, DM intake in grams/day, rumination efficiencies in grams of DM and neutral detergent fiber were positively correlated (P<0.05 with milk production in kg/day and the production corrected for 4% fat. However, there was a negative correlation between feeding time and the milk fat percentage. Despite the low values of the correlations can be inferred from the results, the data can be used to develop models to predictyield and composition of milk from the feeding behavior variables.

  17. Optimization of the pretreatment of Prosopis nigra sawdust for the production of fermentable sugars

    Directory of Open Access Journals (Sweden)

    Eliana P. Dagnino

    2013-02-01

    Full Text Available The black carob tree (Prosopis nigra is a particularly valued species in Chaco, Argentina on account of its hard wood. Finding a use for the sawdust, the main industrial residue of wood, could be useful within the furniture industry of any country in the tropics seeking to apply the biorefinery concept. For the conversion of wood carbohydrates to bioethanol, a pretreatment stage is necessary. The objective of this work was to find the acid pretreatment conditions that maximize the extraction of xylose with minimum degradation, while maximizing the concentration of glucans in the pretreated solid to obtain better enzymatic accessibility, using black carob tree sawdust as the raw material. The optimization was carried out by use of a central composite design (CCD with two independent variables: the concentration of the sulfuric acid solution and the heating time. Optimal enzymatic hydrolysis occurred at the mean values of the tested acid solution concentration (1.2% and after shorter heating times (10.2 min. The concentration of sugars after the enzymatic hydrolysis of the pretreated solid over a time period of 72 h was three times higher than the untreated solid.

  18. IMPACT OF FURFURAL ON THE SUGAR ANALYSIS OF PRE-HYDROLYSIS LIQUOR OF KRAFT-BASED DISSOLVING PULP PRODUCTION PROCESS USING THE HPAEC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Abrar Saeed

    2011-03-01

    Full Text Available High performance anion-exchange chromatography with pulse ampero-metric detector (HPAEC-PAD is a reliable method to systematically determine the sugar contents in pulp and paper waste streams, including bleaching and extraction liquors. We used the same method to determine the sugar content of industrially produced pre-hydrolysis liquor (PHL from a kraft-based dissolving pulp production process. The analysis showed that the traditional method cannot be applied for sugar analysis, and an improvement on the method was required. In fact, the presence of furfural in the PHL sample was the reason for the required modification. It was noted that the removal of furfural via evaporation could improve the reliability of the HPAEC technique for sugar assessments. If the concentration of furfural was higher than 0.045% (wt. in the PHL, the error introduced in the sugar analysis was profound. Also, the industrially produced PHL contained more furfural than the laboratory produced PHL under the same hydrolysis conditions. Consequently, the concentration of furfural in the PHL should be taken into account for sugar analysis using the HPAEC technique.

  19. Direct Ethanol Production from Lignocellulosic Sugars and Sugarcane Bagasse by a Recombinant Trichoderma reesei Strain HJ48

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2014-01-01

    Full Text Available Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.

  20. Use of sugar cane molasses and vinasse for proteic and lipidic biomass production by yeast and bacteria

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2005-02-01

    Full Text Available This work evaluated the lipid and protein growth and synthesis capacity by Saccharomyces cerevisiae, Rhodotoruda mucilaginosa, Candida lipolytica, a yeast isolated from vinasse lakes and Corynebacterium glutamicum in 10% molasses and sugar cane crude vinasse. All microorganisms grew both in molasses and vinasse. The highest growth in crude vinasse was performed by R. mucilaginosa (7.05 g/L, and in 10% molasses, by C. lipolytica, yielding 6,09 g/L. In vinasse, the highest protein content in the biomass was produced by S. cerevisiae (50.35% and in 10% molasses, by C. glutamicum (46,16%. C. lipolytica and R. mucilaginosa showed the best lipid production, above 20% and 18%, respectively, both in vinasse and in molasses.

  1. Influence of the initial ph of sugar cane juice on the production of levan by Zymomonas mobilis ATCC 31821

    Directory of Open Access Journals (Sweden)

    Marcia Sadae Tano

    2002-01-01

    Full Text Available The influence of initial pH of sugar cane juice in high concentration was investigated for levan production by Zymomonas mobilis. In the initial pH of medium of 5.4; 5.9 and 6..3 the levan concentration achieved 1.66; 2.54 and 3.83 g/L, respectively, in 48 hours of fermentation. The final levan concentration in the initial pH of 6.3 and 5.9 increased 130 and 53% when compared to concentration at initial pH 5.4 in the medium. The levan yield at pH 5.9 was 87.5% and at pH 6.3 was 162.5% superior in relation to that obtained at initial pH 5.4.

  2. Influence of the initial ph of sugar cane juice on the production of levan by Zymomonas mobilis ATCC 31821

    OpenAIRE

    Marcia Sadae Tano; João Batista Buzato

    2002-01-01

    The influence of initial pH of sugar cane juice in high concentration was investigated for levan production by Zymomonas mobilis. In the initial pH of medium of 5.4; 5.9 and 6..3 the levan concentration achieved 1.66; 2.54 and 3.83 g/L, respectively, in 48 hours of fermentation. The final levan concentration in the initial pH of 6.3 and 5.9 increased 130 and 53% when compared to concentration at initial pH 5.4 in the medium. The levan yield at pH 5.9 was 87.5% and at pH 6.3 was 162.5% superio...

  3. ETHANOL PRODUCTION FROM A MEMBRANE PURIFIED HEMICELLULOSIC HYDROLYSATE DERIVED FROM SUGAR MAPLE BY PICHIA STIPITIS NRRL Y-7124

    Directory of Open Access Journals (Sweden)

    Rosanna M. Stoutenburg

    2008-11-01

    Full Text Available In an effort to devise inexpensive and sustainable production of ethanol fuel, experiments were conducted to establish conditions for Pichia stipitis NRRL Y-7124 to ferment a membrane treated wood hydrolysate derived from sugar maple to produce ethanol. The degree of aeration required to effectively utilize xylose, produce ethanol, and minimize xylitol formation as well as the optimal hydrolysate concentration were the conditions examined. P. stipitis produced the highest concentrations of ethanol in shake flasks at 150 rpm (14.3 g/L in 71 h, and 50% hydrolysate maximized ethanol yield (12.4 g/L in 51.5 h. In the 50% hydrolysate cultures, P. stipitis produced ethanol at a rate of 0.24 g/Lh with a yield of 0.41 g ethanol/g wood-derived carbohydrate.

  4. A detailed analysis of entropy production and improvement of the thermodynamic cycle of an adsorption refrigerating plant

    Science.gov (United States)

    Okunev, B. N.; Safonov, M. S.

    2006-07-01

    A thermodynamic analysis of an adsorption refrigerating plant with closed loops for a working substance and auxiliary liquid heat carrier has been carried out in application to the adsorption pair “water-CaCl2 impregnated into the pores of a silica gel.” Using the obtained periodic solutions of the system of energy-balance equations for the heat carrier and the sorbent layer, the most thermodynamically effective modes of operation of the refrigerating plant have been determined as functions of governing parameters. The entropy production in various modules of the plant is calculated, and the main sources of entropy generation are revealed. This made it possible to suggest an improved scheme of an adsorption refrigerating cycle with regenerative heat exchangers connected at the inlet and outlet from the adsorbers. The possibility of a considerable increase in the coefficient of thermodynamic efficiency in such a system has been justified.

  5. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  6. Photosynthesis, growth and hydrocarbon production of Botryococcus braunii immobilized by entrapment and adsorption in polyurethane foams

    Energy Technology Data Exchange (ETDEWEB)

    Bailliez, C.; Largeau, C.; Casadevall, E.; Yang Lianwan; Berkaloff, C.

    1988-09-01

    Direct entrapment of the hydrocarbon-rich alga Botryococcus braunii was examined using eleven polyurethane prepolymers. A high toxicity was observed in several foams. With five of the tested prepolymers, nevertheless, a large part of the algal population can survive entrapment and substantial photosynthetic capacity, ca. 40-60% relative to free controls, was retained one day after immobilization. However, prolonged batches under standard conditions revealed a long-term toxicity; as a result the photosynthetic capacity and hydrocarbon production of the entrapped cultures were strongly reduced relative to free controls. Immobilization of B. braunii was also achieved, with a loading yield of ca. 70%, via adsorption of FHP 4000 and FHP 5000 foams. Subsequent batch cultures under shaken and airlift conditions revealed a substantial release, ca. 30% of free cells, at the end of the cultures. However, the release from these adsorbed cultures was no higher than from directly entrapped B. braunii. Furthermore, no toxic effects were noted in the adsorbed cultures; they showed active growth, hihg photosynthetic capacity and produced quite large amounts of hydrocarbons, the chemical structure and the relative abundance of which were not altered by immobilization. Taking into account cell leakage, it appears that adsorbed cultures exhibit a similar, and sometimes even higher metabolic activity than free controls; thus, under air-lift conditions, high biomass and hydrocarbon productivities can be achieved.

  7. Mercury from chlor-alkali plants: measured concentrations in food product sugar

    OpenAIRE

    Hightower Jane; Wallinga David; Schweitzer Laura; Cornett Charles; Schnoll Roseanne; LeBlanc Blaise; Dufault Renee; Patrick Lyn; Lukiw Walter J

    2009-01-01

    Abstract Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed ...

  8. Investigation of the effect of glucose syrup and brown sugar as low-cost substrate for lipid production by Mortierella alpine CBS 754.68

    Directory of Open Access Journals (Sweden)

    saed Montazeri

    2016-06-01

    Full Text Available Introduction: Arachidonic acid is an important essential fatty acid in human nutrition. The filamentous fungus Mortierella alpina has been identified as a promising producer of arachidonic acid. Mortierella alpine can accumulate up to 40% (w/w lipid, of which up to 40% can be arachidonic acid. Materials and methods: Mortierella alpina CBS 754.68 was cultivated in low cost substrate such as glucose syrup, brown sugar and starch for lipid and arachidonic acid production. The reduced sugar, total lipids and content of ARA were determined by dinitrosalicylic acid method, soxhlet and Gas chromatography–mass spectrometry (GC-MS respectively. Results: The carbon sources were applied at 70 g/l and nitrogen source (soybean powder at 10 g/lit. The results showed that lipid in dry biomass in glucose syrup, starch and brown sugar media were obtained 32, 25 and 13 % w/w respectively. The arachidonic acid contents of lipid in the glucose syrup, starch and brown sugar media were 41, 33 and 31 % w/w respectively. Discussion and conclusion: Lipid fatty acid compositions are affected by the growth of microorganism. Cell membrane fatty acids such as stearic acid and oleic acid increased substantially concomitant with increases in the amount of biomass. Biomass and oil production efficiency fell due to inappropriate brown sugar medium.

  9. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    OpenAIRE

    F. Veana; J.L. Martínez-Hernández; Aguilar, C. N.; Rodríguez-Herrera, R.; G. Michelena

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemi...

  10. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses.

    Science.gov (United States)

    Albuquerque, M G E; Eiroa, M; Torres, C; Nunes, B R; Reis, M A M

    2007-07-15

    A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5-7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1Nmmol/l) in the fermented molasses stimulated PHA storage (0.62Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture. PMID:17602776

  11. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    Science.gov (United States)

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  12. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.; Zeeland, van A.N.T.; Sanchez Garcia, D.; Punt, A.M.; Eggink, G.

    2015-01-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretre

  13. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (saa) pretreatment and fermentation to succinic acid by Escherichia coli afp184

    Science.gov (United States)

    Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...

  14. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Directory of Open Access Journals (Sweden)

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  15. MOF-5-Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; McDonald, Kyle A; Matzger, Adam J

    2016-09-19

    An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF-5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF-5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.

  16. Efficacy of Zeolite Adsorption on the Green Tea Production by Fluidized Bed Dryer

    Directory of Open Access Journals (Sweden)

    Sri Utami Handayani

    2015-04-01

    Full Text Available Green tea (classified as unfermented tea gained more attention due to their health benefit. Since green tea included to the heat sensitive product, it required the application of low drying temperature during moisture content removal. In order to avoid the unwanted of metabolic process due to longer drying period, the application of zeolite adsorption for air dehumidication in the fluidized bed drier was investigated. This study focuses on the effect of air flow rate, temperature and zeolite-tea leave ratio on the moisture content and drying time. The longer the drying time, the moisture content of green tea leaves decreases significantly. The fastest decreasing time obtained when applying 0,46 m/sec of air flow rate with 70C of drying temperature and 25:75 of zeolite-tea leave ratio. Decreasing the drying temperature at 50C, longer the drying time than drying at 70C while slower air flow rate (0, 44 m/sec applied. Modifying the zeolite-tea leave ratio from 25:75 into 75:25, fasten the drying time.

  17. MOF-5-Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; McDonald, Kyle A; Matzger, Adam J

    2016-09-19

    An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF-5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF-5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications. PMID:27555362

  18. Added Sugars

    Science.gov (United States)

    ... Restaurant Deciphering the Menu Ordering Your Meal Eating Fast Food Dining Out Tips by Cuisine Physical Activity Fitness ... Learn more about reading food labels . Limit your consumption of foods with high amounts of added sugars, ...

  19. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    Science.gov (United States)

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2010-09-28

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

  20. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose.

    Science.gov (United States)

    Keshk, Sherif; Sameshima, Kazuhiko

    2006-09-01

    Production of bacterial cellulose (BC) using sugar cane molasses (MO) with/without the presence of lignosulfonate (MOL) as a sole carbon source in a Hestrin-Schramm medium (HS) was investigated. Six strains of Acetobacter xylinum [American Type Culture Collection 10245 and Institute of Fermentation in Osaka (IFO) 13693, 13772, 13773, 14815, and 15237] were screened for their BC production. The yield of the BC among all the strains from both the MO and MOL media was much higher than that from the HS medium. Acetobacter xylinum IFO 13772 was the best BC producer for all media. Furthermore, physical properties of these BC from the HS, MO, and MOL media were studied using Fourier-transform infrared spectroscopy, X-ray diffractometer, and cross polarization/magic angle spinning 13C nuclear magnetic resonance. There are no significant differences in the crystallinity and the recorded Ialpha fraction among the BC produced from the different media. A remarkable difference was only recorded in terms of viscosity. These results indicate that MO is a better carbon source than glucose for most of the strains investigated. PMID:16450110

  1. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept.

    Science.gov (United States)

    Yuan, Yuan; Macquarrie, Duncan J

    2015-12-01

    The biorefinery is an important concept for the development of alternative routes to a range of interesting and important materials from renewable resources. It ensures that the resources are used fully and that all parts of them are valorized. This paper develops this concept, using brown macroalgae Ascophyllum nodosum as an example, by assistance of microwave technology. A step-by-step process was designed to obtain fucoidan, alginates, sugars and biochar (alga residue) consecutively. The yields of fucoidan, alginates, sugars and biochar were 14.09%, 18.24%, 10.87% and 21.44%, respectively. To make an evaluation of the biorefinery process, seaweed sample was also treated for fucoidan extraction only, alginate extraction only and hydrothermal treatment for sugars and biochar only. The chemical composition and properties of each product were also analyzed. The results indicated that A. nodosum could be potentially used as feedstock for a biorefinery process to produce valuable chemicals and fuels. PMID:26454369

  2. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.

    Science.gov (United States)

    Bengtsson, Simon; Pisco, Ana R; Reis, Maria A M; Lemos, Paulo C

    2010-02-01

    Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.47-0.66 C-mol PHA per C-mol of total carbon substrate and with rates up to 0.65 C-mol/C-molX h. In order to investigate the role of glycogen during aerobic PHA accumulation in GAOs, synthetic single volatile fatty acids (VFAs) were used as substrates and it was found that the fate of glycogen was dependent on the type of VFA being consumed. Aerobic PHA accumulation occurred under concurrent glycogen consumption with acetate as substrate and under minor concurrent glycogen production with propionate as substrate. With butyrate and valerate as substrates, PHA accumulation occurred with the glycogen pool unaffected. The composition of the PHA was dependent on the VFA composition of the fermented molasses and was 56-70 mol-% 3HB, 13-43 mol-% 3HV, 1-23 mol-% 3HHx and 0-2 mol-% 3H2MB and 3H2MV. The high polymer yields and production rates suggest that enrichment of GAOs can be a fruitful strategy for mixed culture production of PHA from waste substrates. PMID:19958801

  3. Sugar substitutes: Health controversy over perceived benefits

    OpenAIRE

    Tandel, Kirtida R.

    2011-01-01

    Sugar is an inseparable part of the food we consume. But too much sugar is not ideal for our teeth and waistline. There have been some controversial suggestions that excessive sugar may play an important role in certain degenerative diseases. So artificial sweeteners or artificially sweetened products continue to attract consumers. A sugar substitute (artificial sweetener) is a food additive that duplicates the effect of sugar in taste, but usually has less food energy. Besides its benefits, ...

  4. Process for recovering carboxylic acids from sugar cane industry by-products

    OpenAIRE

    Albet, Joël; Pislor, Emilie; Pontalier, Pierre-Yves

    2009-01-01

    Food industry by-products such as molasses and vinasses may provide an important source of organic acids. The aim of this study is to compare three processes, precipitation, chromatography and liquid-liquid extraction, for the recovery of carboxylic acids from sugarcane molasses from Réunion Island. Precipitation was performed with different temperatures by addition of calcium chloride. The results revealed that precipitation can recover aconitic acid efficiently from molasses. Liquid-liquid ...

  5. Inhibitory effect of sorbitol on sugar metabolism of Streptococcus mutans in vitro and on acid production in dental plaque in vivo.

    Science.gov (United States)

    Takahashi-Abbe, S; Abbe, K; Takahashi, N; Tamazawa, Y; Yamada, T

    2001-04-01

    This study was conducted to find out whether sorbitol inhibits the sugar metabolism of Streptococcus mutans in vitro and the acid production in dental plaque in vivo. S. mutans NCIB 11723 was anaerobically grown in sorbitol-containing medium. The rate of acid production from sugars was estimated with a pH stat. The rate of acid production from glucose or sucrose was not changed at various concentrations of oxygen. By the addition of sorbitol to sugar, however, the acid production was decreased with increasing levels of oxygen. Intracellular NADH/NAD+ ratio and (dihydroxyacetone-phosphate+glyceraldehyde-phosphate)/3-phosphoglycerate ratio were high whenever the acid production was inhibited by sorbitol. Sorbitol also inhibited the acid production in dental plaque in vivo. These results suggest that the increased NADH/NAD+ ratio during sorbitol metabolism through the inactivation of pyruvate formate-lyase by oxygen inhibited glyceraldehyde-phosphate dehydrogenase and then the acid production of S. mutans and the one in dental plaque.

  6. Production and Characterization of Activated Carbon from Oil-Palm Shell for Carboxylic Acid Adsorption

    Directory of Open Access Journals (Sweden)

    Hector Ruiz

    2015-06-01

    Full Text Available In this study, the recovery of volatile carboxylic acids (VCA by adsorption onto activated carbon adsorbent (CA was explored. The CA was synthesized from palm-oil kernel shells using H3PO4 at 10 and 60% w/w as activating agent. The samples produced in this manner were labeled as CA10A, CA60A respectively. Also KOH was used as activating agent at 10 and 60% w/w. In this case, the produced samples were labeled as CA10B, CA60B respectively. After activation, the surface of all four CA samples was extensively characterized both physically and chemically. The obtained CA adsorption behavior for VCA was assessed by submerging samples of CA in solutions at a fixed initial VCA concentration. Because some of the acids were adsorbed on the CA surface, the VCA concentration in solution was reduced. Carbon CA60B exhibited the greatest adsorption capacity, reaching 1300 mg of adsorbed acids/g carbon. Five adsorption isotherms models were fitted to experimental data. The Langmuir-Freundlich model described best the adsorption phenomena. Desorption behavior was assessed by placing CA after adsorption in water and was not high, which forces to reconsider either de desorption mechanism proposed in this study and/or the use CA as synthesized here for VCA recovery.

  7. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    Directory of Open Access Journals (Sweden)

    Y. S. Mohammad

    2014-01-01

    Full Text Available Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.

  8. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production

    International Nuclear Information System (INIS)

    Highlights: → A challenging issue in LCA is how to account for co-products' environmental burdens. → The two most commonly used procedures are system expansion and allocation. → System expansion appears to be more appropriate than allocation. → Indirect land use change is a consequence of diverting molasses from feed to fuel. → The inclusion of land use change worsens the GHG balance of molasses ethanol. -- Abstract: This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use change (ILUC) is a consequence of diverting molasses from feed to fuel, system expansion is the most adequate method when the purpose of the LCA is to support decision makers in weighing the options and consequences. As shown in the sensitivity analysis, an addition of carbon emissions from ILUC worsens the GHG balance of ethanol, with deforestation being a worst-case scenario where the fuel is no longer a net carbon saver but carbon emitter.

  9. Hydrolysis of Oil Palm Empty Fruit Bunch Fibers to Produce Sugar Hydrolyzate as Raw Material for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Fitriani Kasim

    2013-01-01

    Full Text Available A study conducted to see the effect of the regulation and control of temperature on the length of the hydrolysis of oil palm empty fruit bunches fiber and the resulting hydrolyzate sugar levels, which will be planned to be used as raw material for bioethanol. Therefore do oil palm empty fruit bunches fiber hydrolysis with sulfuric acid (H2SO4 at low concentrations (1% using an autoclave with a temperature of 120 ° C and 130 ° C, and the time for 30, 60, 90, 120 minutes. After that the observed reducing sugar levels by using a method Luff Schoorl. The results showed that setting temperature and time influence on sugar levels resulting hydrolyzate where the optimum temperature and time to produce the highest sugar content reducing at 130 ° C with a long 60 minutes, with the resulting reducing in sugar content was 3.51%. The results obtained are much higher than previous studies conducted by researchers who carried out the straw fibers under the same conditions by using a solution of 1% H2SO4 and hydrolysis time 1 hour, but no temperature control and heating is only done on a gas stove, which acquired sugar 0.22%. As for the gain of 0.78% sugar, hydrolysis takes 4 hours, with a concentration of 10% sulfuric acid.

  10. Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Dixit, Pooja; Gupta, Ravi P; Kagdiyal, V; Kumar, Ravindra; Tuli, Deepak K

    2016-09-20

    In this study, five ionic liquids (ILs) have been explored for biomass pretreatment for the production of fermentable sugar. We also investigated the driving factors responsible for improved enzymatic digestibility of various ILs treated biomass along with postulating the plausible mechanism thereof. Post pretreatment, mainly two factors impacted the enzymatic digestibility (i) structural deformation (cellulose I to II) along with xylan/lignin removal and (ii) properties of ILs; wherein, K-T parameters, viscosity and surface tension had a direct influence on pretreatment. A systematic investigation of these parameters and their impact on enzymatic digestibility is drawn. [C2mim][OAc] with β-value 1.32 resulted 97.7% of glucose yield using 10 FPU/g of biomass. A closer insight into the cellulose structural transformation has prompted a plausible mechanism explaining the better digestibility. The impact of these parameters on the digestibility can pave the way to customize the process to make biomass vulnerable to enzymatic attack.

  11. Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Dixit, Pooja; Gupta, Ravi P; Kagdiyal, V; Kumar, Ravindra; Tuli, Deepak K

    2016-09-20

    In this study, five ionic liquids (ILs) have been explored for biomass pretreatment for the production of fermentable sugar. We also investigated the driving factors responsible for improved enzymatic digestibility of various ILs treated biomass along with postulating the plausible mechanism thereof. Post pretreatment, mainly two factors impacted the enzymatic digestibility (i) structural deformation (cellulose I to II) along with xylan/lignin removal and (ii) properties of ILs; wherein, K-T parameters, viscosity and surface tension had a direct influence on pretreatment. A systematic investigation of these parameters and their impact on enzymatic digestibility is drawn. [C2mim][OAc] with β-value 1.32 resulted 97.7% of glucose yield using 10 FPU/g of biomass. A closer insight into the cellulose structural transformation has prompted a plausible mechanism explaining the better digestibility. The impact of these parameters on the digestibility can pave the way to customize the process to make biomass vulnerable to enzymatic attack. PMID:27261761

  12. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in production of sugar

    Science.gov (United States)

    Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.

  13. Weather Conditions of Sugar Cane Production in Wuming County%影响武鸣县甘蔗生产的气象条件分析

    Institute of Scientific and Technical Information of China (English)

    冯振家

    2011-01-01

    通过对武鸣县蔗区的气候环境分析,以及甘蔗生长的特点,找出影响甘蔗产量及含糖量的关健气象因子,指出典型丰欠年与6月上旬至7月上句的总雨量及7月份的日照时数有明显的正相关关系;9月至10月的降水量和11月份的甘蔗含糖量呈负相关关系,同时,含糖量还与光照时数及昼夜温差有关,甘蔗在成熟期间光照时数多,天气干凉则含糖量比较高。%Basing the analysis of climate and sugar cane growth characteristics in Wuming County, the meteorological factors of impacting sugar cane production and sugar content were discussed. The results show that there is a positive (negative) correlation between the total rainfall during early June to early July and sunshine hours in July (the total rainfall during Sep. to Oct. and sugar content in Nov.) in typical bad years. And there is relationship between sugar content and light hours and the temperature difference between day and night that more sunlight and more cool and dry weather, more sugar content.

  14. Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars.

    Science.gov (United States)

    Gandolfi, Stefano; Ottolina, Gianluca; Consonni, Roberto; Riva, Sergio; Patel, Ilabahen

    2014-07-01

    Fractionation of hemp hurds into its three main components, cellulose, hemicellulose, and lignin, was carried out using organosolv pretreatment. The effect of processing parameters, such as temperature, catalyst concentration, reaction time, and methanol (MeOH) concentration, on the dissolution and recovery of hemicellulose and lignin was determined. More than 75% of total hemicellulose and 75% of total lignin was removed in a single step with low amounts of degradation products under the following conditions: 165 °C, 3% H2 SO4 , 20 min reaction time, and 45% MeOH. Enzymatic hydrolysis of the residual pretreated biomass yielded up to 60% of cellulose-to-glucose conversion. The maximum recovery of the main components was obtained at a combined severity factor value of around one. Characterization of pretreated biomass and isolated lignin was carried out with FTIR and 2D (13) C-(1) H correlation HSQC NMR spectroscopy, the latter technique providing detailed structural information about the obtained methanol organosolv lignin (MOSL). Results suggested that xylopyranoside is the major carbohydrate associated with hemp lignin. The chemical properties of MOSL samples in terms of their phenolic group content and antioxidant capacity were also investigated. The results showed that MOSL samples have a high phenolic group content and antioxidant capacity relative to Klason lignin.

  15. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse).

  16. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    F. Veana

    2014-06-01

    Full Text Available Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents; the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid. Results indicated that, the enzymatic yield (5231 U/L is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse.

  17. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  18. Influence of surfactants on resin adsorption and elution of uranium from production solutions for in situ leaching

    International Nuclear Information System (INIS)

    Background: The In situ leaching (ISL) of uranium mining is an important method to nuclear reactors for sustainable utilization of nuclear energy. Surfactants have their potential role in the increasing permeability of ore bed and the leaching rate of uranium in ISL. Purpose: The aim is to study the application of surfactants in ISL and identify whether the addition of surfactants have any effect on the resin property. Method: The influence of several surfactants such as OP-10, FSO, LVA, LF221 and their complexes on resin adsorption and elution of uranium from production solutions for ISL were researched by column experiments. Results: The results show that adding 50-100 mg·L-1 different surfactants and their complexes into the production solutions for ISL has no significant influence on the resin adsorption and elution of uranium, in which the adsorption curve, sorption capacity of resin and recycling of resin are the same with the experimental results without surfactants. The adding of surfactants can increase the peak concentration of uranium in eluents and reduce the residual uranium content in resin, which promotes the elution efficiency. It also showed that the complexes of OP-10 and FSO are the best among various surfactants. Conclusion: As mentioned above, the surfactants can be used in ISL of uranium mining very well. (authors)

  19. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.

    Science.gov (United States)

    Rahikainen, Jenni L; Martin-Sampedro, Raquel; Heikkinen, Harri; Rovio, Stella; Marjamaa, Kaisa; Tamminen, Tarja; Rojas, Orlando J; Kruus, Kristiina

    2013-04-01

    The effect of lignin as an inhibitory biopolymer for the enzymatic hydrolysis of lignocellulosic biomass was studied; specially addressing the role of lignin in non-productive enzyme adsorption. Botanical origin and biomass pre-treatment give rise to differences in lignin structure and the effect of these differences on enzyme binding and inhibition were elucidated. Lignin was isolated from steam explosion (SE) pre-treated and non-treated spruce and wheat straw and used for the preparation of ultrathin films for enzyme binding studies. Binding of Trichoderma reesei Cel7A (CBHI) and the corresponding Cel7A-core, lacking the linker and the cellulose-binding domain, to the lignin films was monitored using a quartz crystal microbalance (QCM). SE pre-treatment altered the lignin structure, leading to increased enzyme adsorption. Thus, the positive effect of SE pre-treatment, opening the cell wall matrix to make polysaccharides more accessible, may be compromised by the structural changes of lignin that increase non-productive enzyme adsorption. PMID:23428824

  20. Fermentation of various sugars and sugar substitutes by oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Boonyanit Thaweboon; Sroisiri Thaweboon; Doan Minh Tri

    2011-01-01

    Objective: To examine acid production of caries-associated strains of oral microorganisms and salivary microorganisms from sugar and sugar substitutes. Methods:Standard and clinical strains of Streptococcus mutans (S. mutans), Lactobacillus casei (L. casei) and Candida albicans were incubated in peptone-yeast-extract media containing 1% test sugar (sucrose, glucose, fructose) or sugar substitutes (xylitol, sorbitol, trehalulose and palatinose) at 37 ℃in 5% CO2 for 24-48 h. The pH of each culture was measured and microbial growth was determined as optical density at 660 nm. Paraffin-stimulated saliva collected from high caries-risk persons were added to media containing 10%test sugar or sugar substitutes. The pH of medium was measured at each time interval from 0-90 minutes. Results:All types of sugar and trehalulose could be fermented by all test microorganisms in pH lower than 5.5 except sucrose by standard strain of L. casei. All sugar and sugar substitutes supported growth of all organisms except xylitol for S. mutans. In the fermentation assay by salivary microorganisms, all sugar could be utilized and produced pH< 5.5 within 10 minutes of incubation and the pH drop was prolonged to until 90 minutes. Conversely, xylitol and palatinose were not fermented by microorganisms in saliva. Conclusions:All test microorganisms could ferment sucrose, glucose, fructose and trehalulose to pH lower than 5.5. Sugar alcohols and palatinose were not utilized well by organisms and may be used as sugar substitutes to reduce dental caries incidence. However, further studies particularly clinical investigations are required to evaluate the cariogenicity of these sugar substitutes.

  1. Reforming the EU Sugar Policy

    OpenAIRE

    Frandsen, Soren E.; Jensen, Hans Grinsted

    2002-01-01

    This article presents and analyses the impacts of the EU sugar policy. Particular attention is given to the modelling of the quite complex policy and the calibration of the global general equilibrium model at the member state level. Two scenarios are analysed, namely a reduction in the intervention price of sugar and the sugar quota. It is found that the economic impacts of the two scenarios are quite different in terms of the effects on European production and trade in sugar as well in terms...

  2. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and increasing faecal bulk pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    based on newly developed scientific evidence related to sugar beet fibre and “increasing faecal bulk”. The food constituent that is the subject of the health claim is sugar beet fibre. The Panel considers that sugar beet fibre is sufficiently characterised in relation to the claimed effect. The claimed......Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... that a cause and effect relationship has been established between the consumption of sugar beet fibre and increasing faecal bulk. The following wording reflects the scientific evidence: “Sugar beet fibre increases faecal bulk”. In order to bear the claim a food should be at least “high in fibre” as per...

  3. A case study of a sugar and alcohol plant: prospects for the production of alcohol and exceeding energy; Um estudo de caso de uma usina de acucar e alcool: perspectivas para a producao de alcool e energia excedente

    Energy Technology Data Exchange (ETDEWEB)

    Halmeman, Maria Cristina Rodrigues; Oliveira, Franciene Gois; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)], E-mail: cristhalmeman@gmail.com; Halmenan, Radames Juliano [Universidade Tecnologica Federal do Parana (UTFPR), Campo Mourao, PR (Brazil); Michels, Roger Nabeyama [Instituto Federal de Santa Catarina (IFSC), Luzerna, SC (Brazil)

    2010-07-01

    Brazil stands out in the world scene as the largest producer and exporter of sugar and the main producer of ethanol derived from sugar cane, which generates the bagasse used to produce electrical energy for the plant as well as for electricity companies. Energy products from sugar cane, such as ethanol and bagasse have contributed significantly to reduce the gases that contribute to the greenhouse effect by replacing fossil fuels, that is, gasoline and diesel. The research is defined as exploratory and descriptive, the data were obtained in June, 2009 in a sugar cane and alcohol plant located in the state of Sao Paulo, Brazil. It was sought through direct interviews, to check what the prospects for the processing of sugar cane, alcohol production and generation of exceeding energy are. Therefore, the purpose of this study is to contextualize the current production of alcohol and electrical energy, with projections up to 2016. (author)

  4. Managing your blood sugar

    Science.gov (United States)

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... Know how to: Recognize and treat low blood sugar (hypoglycemia) Recognize and treat high blood sugar (hyperglycemia) ...

  5. 27 CFR 24.181 - Use of sugar.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of sugar. 24.181... OF THE TREASURY LIQUORS WINE Production of Wine § 24.181 Use of sugar. Only sugar, as defined in § 24.10, may be used in the production of standard wine. The quantity of sugar used will be...

  6. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-León

    1999-01-01

    Full Text Available Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH42SO4 , NH4H2PO4 and (NH42HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9/gDM. The influence of temperature and initial moisture of the substrate was studied through a 2² experimental plan design. No statistical differences were found within the range of 30-35ºC and 60-70% for temperature and moisture respectively. The biotechnological parameters of the process were derived from the Oxygen Uptake Rate (OUR pattern, which corresponded to the order of 10(9spores/g moist material. The specific growth rate, maintenance coefficient and the yield based on O2 consumption were 0.108 h-1, 0.001 g.O2/g.biomass.h and 2.7 g biomass/g O2 consumed, respectively.Esporos de Tricoderma harzianum Nº 53 foram produzidos por fermentação no estado sólido (FES utilizando bagaço de cana como suporte e melaço de cana como fonte de carbono. Diferentes fontes de nitrogênio foram testadas (uréia, (NH42 SO4 , NH4H2PO4 e (NH42HPO4 na produção de esporos. As mais elevadas concentrações de esporos (10(9 esporos/g de suporte úmido foram obtidas utilizando a uréia como fonte de nitrogênio. O efeito da temperatura e umidade inicial foram estudadas através da utilização da planificação experimental utilizando um modelo 2². Não foi encontrada diferença estatística na produção de esporos na faixa de temperatura compreendida entre 30-35 ° C e umidade inicial de 60-70%. Os parâmetros biotecnológicos foram determinados através da taxa de oxigênio consumido (OUR correspondente a uma produção de 10(9 esporos/g de suporte úmido. A taxa de crescimento especifico, coeficiente de manutenção e rendimento foram

  7. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo.

    OpenAIRE

    Takeuchi, M; Makita, Z; Bucala, R; Suzuki, T.; Koike, T.; Kameda, Y

    2000-01-01

    BACKGROUND: The Maillard reaction that leads to the formation of advanced glycation end-products (AGE) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it was proposed that AGE were not only created by glucose, but also by dicarbonyl compounds derived from the Maillard reaction, autoxidation of sugars and other metabolic pathways of glucose. In this study, we developed four types of non-carboxymethyllysine (CML) anti-AGE antibo...

  8. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis

    OpenAIRE

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; AN, JIN; Cheng, Hairong; Deng, Zixin

    2016-01-01

    Background The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose...

  9. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Maiti, Bodhisatta; Rathore, Ankita; Srivastava, Saurav; Shekhawat, Mitali; Srivastava, Pradeep

    2011-04-01

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 °C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value.

  10. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology

    2011-04-15

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)

  11. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Maiti, Bodhisatta; Rathore, Ankita; Srivastava, Saurav; Shekhawat, Mitali; Srivastava, Pradeep

    2011-04-01

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 °C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. PMID:21336926

  12. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    Behzad Satari

    2016-02-01

    Full Text Available The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  13. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro; Taherzadeh, Mohammad J; Zamani, Akram

    2016-01-01

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process. PMID:26927089

  14. Price Transmission in the German Sugar Market

    OpenAIRE

    Nolte, Stephan; Natanelov, Valeri; Buysse, Jeroen; Huylenbroeck, Guido Van

    2012-01-01

    The German sugar market is governed by the European Union’s common market organization (CMO). In 2006, the CMO was subject to its first major reform. Among others, the administered price for sugar was reduced by 36%. We use a data set with monthly prices for sugar and sugar containing products to perform a cointegration analysis. Results show that the reduction of the institutional price has led to a reduction of wholesale prices and of retail prices for table sugar. Prices for sugar containi...

  15. 微生物发酵法生产糖醇的研究进展%Research Progress on Production of Sugar Alcohols by Microbial Fermentation

    Institute of Scientific and Technical Information of China (English)

    樊洁; 韩烨; 周志江; 赵鑫

    2013-01-01

    Sugar alcohol has attracted great interest for its low sweetness, low calorie, well-taste, stability and good-solution etc. Sugar alcohol production by microbial fermentation has gradually become a hot research area, owing to its moderate process and low energy consumption. This review summarized the research progress in the production by microbial fermentation of the common sugar alcohols sorbitol, mannitol, xylitol and erythritol.%糖醇具有甜度低、热值低、口感好、稳定性强、水溶性高、适宜人群广等特点,越来越受到消费者的欢迎。微生物发酵法过程温和,能耗低,因此利用微生物发酵法生产糖醇逐步成为研究热点。本文就用微生物发酵法生产常见糖醇-山梨醇、甘露醇、木糖醇、赤藓糖醇的研究进展进行了综述。

  16. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios.

    Science.gov (United States)

    Luers, Lars; Rysiewski, Karolina; Dumpitak, Christian; Birkmann, Eva

    2012-04-01

    Reducing sugars and reactive dicarbonyl compounds play a major role in glycation of proteins in vivo. Glycation of proteins is the first step in of a nonenzymatic reaction, resulting in advanced glycation end products (AGEs). AGEs can inactivate proteins or modify their biological activities. Therefore, it is important to understand the mechanism of AGE formation. Here, we systematically analyzed the kinetics of AGE formation in vitro by fluorescence and absorption measurements utilizing a microplate reader system and bovine serum albumin (BSA) as a model protein. Comparing different concentrations of BSA, we applied various reducing sugars and reactive dicarbonyl compounds as AGE-inducing agents at different concentrations. In summary, this experimental setup enabled us to measure the kinetics of AGE formation in an efficient and defined way.

  17. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios.

    Science.gov (United States)

    Luers, Lars; Rysiewski, Karolina; Dumpitak, Christian; Birkmann, Eva

    2012-04-01

    Reducing sugars and reactive dicarbonyl compounds play a major role in glycation of proteins in vivo. Glycation of proteins is the first step in of a nonenzymatic reaction, resulting in advanced glycation end products (AGEs). AGEs can inactivate proteins or modify their biological activities. Therefore, it is important to understand the mechanism of AGE formation. Here, we systematically analyzed the kinetics of AGE formation in vitro by fluorescence and absorption measurements utilizing a microplate reader system and bovine serum albumin (BSA) as a model protein. Comparing different concentrations of BSA, we applied various reducing sugars and reactive dicarbonyl compounds as AGE-inducing agents at different concentrations. In summary, this experimental setup enabled us to measure the kinetics of AGE formation in an efficient and defined way. PMID:22533432

  18. High production of plant type levan in sugar beet transformed with timothy (Phleum pratense) 6-SFT genes.

    Science.gov (United States)

    Matsuhira, Hiroaki; Tamura, Ken-ichi; Tamagake, Hideto; Sato, Yutaka; Anzai, Hiroyuki; Yoshida, Midori

    2014-12-20

    Levan, a type of fructan, is an oligomer or polymer with mainly a β(2,6)-linked fructose chain attached to sucrose. We introduced two timothy genes, PpFT1 and PpFT2, coding for two homologous sucrose:fructan 6-fructosyltransferases into sugar beet. Sugar beet produces a high concentration of sucrose, a starting substrate in fructan synthesis, in the root. Among transgenic T1 lines, we obtained sugar beet transformants that accumulated large amounts of β(2,6)-linked levans (about 20 to 75mgg(-1) FW) in the roots. The transformed sugar beet plants possessing PpFT1 or PpFT2 produced linear levans with different degrees of polymerization (DP). Namely, the PpFT1 transformants accumulated mainly high DP levans including those with DP>40, while the PpFT2 transformants accumulated levans with DP between 3 and 40. Chromatograms showed that PpFT2 produces pure β(2,6)-linked linear levans compared with fructans synthesized by PpFT1. These levans belong to the high DP class of plant fructans, but have much shorter DP than that of levans generally produced by microorganisms. PMID:25305472

  19. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément;

    2015-01-01

    are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during...

  20. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    Directory of Open Access Journals (Sweden)

    T.S. El-Tayeb

    2012-12-01

    Full Text Available This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v to 5 % (v/v decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v followed by sulphuric acid (1.0 % v/v resulted in the highest conversion percentage (41.3 % w/w on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v. Formation of furfural and hydroxymethylfurfural (HMF were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v ethanol and 8.2 % (v/w conversion coefficient were obtained.

  1. 7 CFR 58.934 - Sugars.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sugars. 58.934 Section 58.934 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....934 Sugars. Any sugar used in the manufacture of sweetened condensed or sterilized milk products...

  2. 27 CFR 24.317 - Sugar record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sugar record. 24.317... OF THE TREASURY LIQUORS WINE Records and Reports § 24.317 Sugar record. A proprietor who receives, stores, or uses sugar shall maintain a record of receipt and use. The record will show the date...

  3. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    Science.gov (United States)

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-01-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water. PMID:27695005

  4. Facile isothermal solid acid catalyzed ionic liquid pretreatments to enhance the combined sugars production from Arundo donax Linn.

    OpenAIRE

    You, Tingting; Shao, Lupeng; Wang, Ruizhen; Zhang, Liming; Feng XU

    2016-01-01

    Background Solid acid catalyzed inexpensive ionic liquid (IL) pretreatment is promising because of its effectiveness at decreasing biomass recalcitrance to subsequent enzymatic hydrolysis or in situ hydrolysis of carbohydrate oligomers. However, the conventional strategy was limited by the complex non-isothermal process and considering only one aspect of sugar recovery. In this study, facile isothermal pretreatments using Amberlyst 35DRY catalyzed 1-n-butyl-3-methylimidazolium chloride ([C4mi...

  5. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012)

    OpenAIRE

    Nathália Luíza Ferreira; Rafael Moreira Claro; Aline Cristine Souza Lopes

    2015-01-01

    Abstract This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via mul...

  6. Use of sugar cane molasses and vinasse for proteic and lipidic biomass production by yeast and bacteria

    OpenAIRE

    Marcia Luciana Cazetta; Maria Antonia Pedrine Colabone Celligoi

    2005-01-01

    This work evaluated the lipid and protein growth and synthesis capacity by Saccharomyces cerevisiae, Rhodotoruda mucilaginosa, Candida lipolytica, a yeast isolated from vinasse lakes and Corynebacterium glutamicum in 10% molasses and sugar cane crude vinasse. All microorganisms grew both in molasses and vinasse. The highest growth in crude vinasse was performed by R. mucilaginosa (7.05 g/L), and in 10% molasses, by C. lipolytica, yielding 6,09 g/L. In vinasse, the highest protein content in t...

  7. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design

    International Nuclear Information System (INIS)

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H2SO4 or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 23 full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and β-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work.

  8. Mapping Economic Development: The South Seas Government and Sugar Production in Japan’s South Pacific Mandate, 1919–1941

    Directory of Open Access Journals (Sweden)

    Ti Ngo

    2012-03-01

    Full Text Available Japan acquired the Mariana, Caroline, and Marshall Island chains as a League of Nations mandate following World War I. Why did the local administration (the South Seas Government or Nanyōchō heavily subsidize the establishment of a sugar industry? While the South Seas Government did not explicitly state why it chose to support the sugar industry despite the wealth of oceanic resources surrounding the islands, imperial maps of the South Pacific produced by the Japanese navy and the South Seas Government provide a window into how both parties envisioned and planned for the economic future of the mandate. These maps included information regarding the available natural resources, land, and culture level of the Micronesian population. The author argues that in depicting the islands as spaces where a “primitive” nonagricultural population failed to take advantage of the islands’ resources, mapmakers and officials planned for the mass migration of Japanese labor to the mandate in order to support a newly established sugar industry.

  9. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry- SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Hytoenen, E.; Haekkinen, M. (VTT Technical Research Centre of Finland, Espoo (Finland)), email: anne.kallioinen@vtt.fi (and others)

    2011-11-15

    In the SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as raw materials for production of sugars to be processed further to ethanol or other chemicals. These raw materials, containing high proportion of carbohydrates have been analysed and pretreated for enzymatic hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Small carboxylic acids were an interesting side product from oxidation pretreatment. For feasibility study, 8 process cases have been selected and will be compared. Optimal enzyme mixtures have been determined for hydrolysis of pretreated materials. Results show that optimal enzyme composition depends clearly on the raw material and the pretreatment method. Pretreated raw materials were also hydrolysed efficiently in high dry matter conditions with commercial enzymes. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could only be detected with catalytically oxidised spruce. In addition, the induction of hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  10. OMICS Technologies and Applications in Sugar Beet.

    Science.gov (United States)

    Zhang, Yongxue; Nan, Jingdong; Yu, Bing

    2016-01-01

    Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production. PMID:27446130

  11. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams

    Science.gov (United States)

    Cui, Xiaojun; Bustin, R. Marc; Chikatamarla, Laxmi

    2007-10-01

    Sequestration of CO2 and H2S into deep unminable coal seams is an attractive option to reduce their emission into atmosphere and at the same time displace preadsorbed CH4 which is a clean energy resource. High coal seam permeability is required for efficient and practical sequestration of CO2 and H2S and recovery of CH4. However, adsorption of CO2 and H2S into coals induces strong swelling of the coal matrix (volumetric strain) and thus reduces significantly coal permeability by narrowing and even closing fracture apertures. Our experimental data on three western Canadian coals show that the adsorption-induced volumetric strain is approximately linearly proportional to the volume of adsorbed gas, and for the same gas, different coals have very similar volumetric strain coefficient. Impacts of adsorption-induced swelling on stress and permeability around wellbores were analytically investigated using our developed stress and permeability models. Our model results indicate that adsorption-induced volumetric strain has significant controls on stress and permeability of producing and sequestrating coal seams and consequently the potential of acid gas sequestration. Coal seams may undergo >10 times enhancement of permeability around CH4-producing wellbores due to a reduction in effective stress as a result of coal shrinking caused by methane desorption accompanying a reduction in reservoir pressure. Injection of H2S and CO2 on the other hand results in strong sorption-induced swelling and a marked increase in effective stress which in turn leads to a reduction of coal seam permeability of up to several orders of magnitude. Injection of mixtures of N2 and CO2 such as found in flue gas results in weaker swelling, the amount of which varies with gas composition, and provides the greatest opportunity of sequestering CO2 and secondary recovery of CH4 for most coals. Because of the marked swelling of coal in the presence of H2S, even minor amounts of H2S result in a marked

  12. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products.

    Science.gov (United States)

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-09-01

    A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na(+) cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs.

  13. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source.

    Science.gov (United States)

    Flores-Albino, Belem; Arias, Ladislao; Gómez, Jorge; Castillo, Alberto; Gimeno, Miquel; Shirai, Keiko

    2012-09-01

    Crab wastes are employed for simultaneous production of chitin and L(+)-lactic acid by submerged fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Response surface methodology was applied to design the culture media considering demineralization. Fermentations in stirred tank reactor (2L) using selected conditions produced 88% demineralization and 56% deproteinization with 34% yield of chitin and 19.5 gL(-1) of lactic acid (77% yield). The chitin purified from fermentation displayed 95% degree of acetylation and 0.81 and 1 ± 0.125% of residual ash and protein contents, respectively. PMID:22367529

  14. Dissipation and adsorption of isoproturon, tebuconazole, chlorpyrifos and their main transformation products under laboratory and field conditions.

    Science.gov (United States)

    Papadopoulou, Evangelia S; Karas, Panagiotis A; Nikolaki, Sofia; Storck, Veronika; Ferrari, Federico; Trevisan, Marco; Tsiamis, George; Martin-Laurent, Fabrice; Karpouzas, Dimitrios G

    2016-11-01

    Assessment of dissipation constitutes an integral part of pesticides risk assessment since it provides an estimate of the level and the duration of exposure of the terrestrial ecosystem to pesticides. Within the frame of an overall assessment of the soil microbial toxicity of pesticides, we investigated the dissipation of a range of dose rates of three model pesticides, isoproturon (IPU), tebuconazole (TCZ), and chlorpyrifos (CHL), and the formation and dissipation of their main transformation products following a tiered lab-to-field approach. The adsorption of pesticides and their transformation products was also determined. IPU was the least persistent pesticide showing a dose-dependent increase in its persistence in both laboratory and field studies. CHL dissipation showed a dose-dependent increase under laboratory conditions and an exact opposite trend in the field. TCZ was the most persistent pesticide under lab conditions showing a dose-dependent decrease in its dissipation, whereas in the field TCZ exhibited a biphasic dissipation pattern with extrapolated DT90s ranging from 198 to 603.4days in the ×1 and ×2 dose rates, respectively. IPU was demethylated to mono- (MD-IPU) and di-desmethyl-isoproturon (DD-IPU) which dissipated following a similar pattern with the parent compound. CHL was hydrolyzed to 3,5,6-trichloro-2-pyridinol (TCP) which dissipated showing a reverse dose-dependent pattern compared to CHL. Pesticides adsorption affinity increased in the order IPUpesticides and their transformation products will be used as exposure inputs for assessment of their soil microbial toxicity. PMID:27341109

  15. Research Advance on Application of Sugar Beet Pulp in Dairy Production%甜菜渣在奶牛生产应用中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王超; 齐智利; 董淑慧; 卜登攀

    2013-01-01

    Sugar beet pulp contains various available nutrients for animals as main by-product of sugar manufacturing.But its dosage needs to be limited in dairy production because of the antinutritional factors.In this article,the authors have reviewed the nutritive value,antinutritional factors,suitable volume of addition,and applying notes in order to give some advices in dairy production.%甜菜渣作为制糖工业的主要副产品,含有多种可被家畜吸收利用的营养素.同时由于含有一些不利于奶牛生长的抗营养因子,因此在奶牛生产中需要限制用量 本文主要从甜菜渣的营养价值及抗营养因子、在奶牛日粮中的适宜添加量及应用注意事项等几个方面进行综述,以期为甜菜渣在奶牛日粮中的应用提供建议.

  16. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes.

  17. Hydrogen production by Hup{sup -} mutant and wild type strains of Rhodobacter capsulatus on dark fermenter effluent of sugar beet thick juice in batch and continuous photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Oezguer, Ebru [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Uyar, Basar [Kocaeli Univ. (Turkey). Dept. of Chemical Engineering; Guergan, Muazzez; Yuecel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    The HYVOLUTION project (EU 6th frame) is aimed to develop an integrated process in which biomass is fermented to acetate, lactate, CO{sub 2} and hydrogen followed by photofermentation of acetate and lactate to hydrogen and CO{sub 2} with photosynthetic purple nonsulfur bacteria (PNS bacteria). Growth and hydrogen production of Rhodobacter capsulatus was investigated on the dark fermenter effluent of thick juice (processed raw sugar beet juice) which contained acetate and NH{sub 4}Cl. In this effluent media, the hydrogen production of wild type bacterium and an uptake-hydrogenase deficient mutant (hup-) were compared in small scale (55 ml) batch and large scale (4 L) continuous photobioreactors in indoor conditions under constant illumination of 2000 lux. In continuous operation mode, the overall hydrogen production yields were 1.84 and 1.92 mol H{sub 2}/mol acetate, the maximum hydrogen productivities were 1.29 and 0.89 mmol H{sub 2}/L.h, for the wild type and mutant strains, respectively. On the other hand, in batch operation mode, the overall hydrogen production yields were 1.25 and 1.44 mol H{sub 2}/mol acetate, the maximum hydrogen productivities were 0.28 and 0.52 mmol H{sub 2}/L.h, for the wild type and mutant strains, respectively. The results show that Rhodobacter capsulatus is capable of using sugar beet thick juice effluent as substrate for hydrogen production; which makes it a suitable bacterium to be employed in integrated termophilic fermentation-photofermentation process. (orig.)

  18. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  19. INCREASING ADSORPTION OF ACTIVATED CARBON FROM PALM OIL SHELL FOR ADSORB H2S FROM BIOGAS PRODUCTION BY IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Wasan Phooratsamee

    2014-01-01

    Full Text Available Biogas is the combustible gas produced through a biological process, known as anaerobic digestion which is the process operated at low-temperature and without air. Biogas consists of 55-80% CH4, 20-45% CO2 with trace amount of H2S and other impurities. Common H2S removal technologies from biogas fall into one of adsorption on a solid such as iron oxide based materials, activated carbon or impregnated activated carbon. Conventionally, activated carbon is produced from biomass residues and agricultural residues such as palm oil shell which promising approach for the production of cheap. It is so due to the palm oil shell carries a large amount of carbon content which it is the main composition of activated carbon. Therefore, it is usable as raw material for producing impregnated activated carbon and used as adsorbents. The aim of this study is a produce the activated carbon from palm oil shells by chemical activation using ZnCl2 and optimal conditions after impregnated them with NaOH, KI and K2CO3 for H2S absorption from biogas product. In this research, production of activated carbon involved three stages; (i carbonization of raw material in an inert atmosphere which was carbonized in a muffle furnace at 600°C for 1 h; (ii secondly activation of char product from the first stages at fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length which was studied to observe the effect of char product: Chemical agent ratio (ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h; and (iii finally alkali impregnated activated carbon which were immersed 1:3 ratio in 500 mL of 1 N NaOH, KI and K2CO3 solutions and stirred for 30 min. The result showed that the surface area and the pore volume increased progressively with increasing the char product: Chemical agent ratio. The maximum

  20. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    OpenAIRE

    Timung, Robinson; Naik Deshavath, Narendra; Goud, Vaibhav V.; Dasu, Venkata V.

    2016-01-01

    This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively....

  1. Hydrolysis of Oil Palm Empty Fruit Bunch Fibers to Produce Sugar Hydrolyzate as Raw Material for Bioethanol Production

    OpenAIRE

    Fitriani Kasim; Anwar Kasim

    2013-01-01

    A study conducted to see the effect of the regulation and control of temperature on the length of the hydrolysis of oil palm empty fruit bunches fiber and the resulting hydrolyzate sugar levels, which will be planned to be used as raw material for bioethanol. Therefore do oil palm empty fruit bunches fiber hydrolysis with sulfuric acid (H2SO4) at low concentrations (1%) using an autoclave with a temperature of 120 ° C and 130 ° C, and the time for 30, 60, 90, 120 minutes. After that the obser...

  2. Sugar supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction by the cyanobiont Anabaena azollae

    Energy Technology Data Exchange (ETDEWEB)

    Rozen, A.; Tel-Or, E.

    1986-01-01

    Sugar supported activities of H/sub 2/ production and C/sub 2/H/sub 2/ reduction were characterized in axenic cell cultures of the cyanobiont Anabaena azollae isolated from the water fern Azolla filiculoides. Fructose was found to be the favoured substrate, enhancing activities in both the light and the dark even at relatively low concentrations of 0.5-1.0 mM. Higher concentrations of sucrose, (10-20mM) also supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction, while glucose was less effective. Levels of H/sub 2/ production were always lower than those of C/sub 2/H/sub 2/ reduction. 13 references.

  3. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.

    Science.gov (United States)

    Huang, Yi; Han, Minfang

    2011-10-15

    Fly ash-based geopolymer with α-Al(2)O(3) addition were synthesized and used to remove formaldehyde from indoor air. The microstructure, mechanical and formaldehyde adsorption properties of the geopolymer products obtained were investigated. The results showed that α-Al(2)O(3) addition with appropriate amount (such as 5 wt%) increased the geopolymerization extent, resulting in the increase of surface area and compressive strength. In addition, the improvement of structural ordering level for geopolymer sample with 5 wt% α-Al(2)O(3) addition was found through FTIR analysis. By contrast, excessive addition (such as 10 wt%) had the opposite effect. The test of formaldehyde adsorption capacity confirmed that fly ash-based geopolymer product exhibited much better property of adsorbing indoor formaldehyde physically and chemically than fly ash itself. The surface area was an important but not unique factor influencing the adsorption capacity of geopolymers.

  4. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Haekkinen, M.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anne.kallioinen@vtt.fi

    2010-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic and alkaline oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could be detected only with catalytically oxidised spruce. In addition, the hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  5. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  6. Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

    Science.gov (United States)

    Atanda, Luqman; Shrotri, Abhijit; Mukundan, Swathi; Ma, Qing; Konarova, Muxina; Beltramini, Jorge

    2015-09-01

    A water-THF biphasic system containing N-methyl-2-pyrrolidone (NMP) was found to enable the efficient synthesis of 5-hydroxymethylfurfural (HMF) from a variety of sugars (simple to complex) using phosphated TiO2 as a catalyst. Fructose and glucose were selectively converted to HMF resulting in 98 % and 90 % yield, respectively, at 175 °C. Cellobiose and sucrose also gave rise to high HMF yields of 94 % and 98 %, respectively, at 180 °C. Other sugar variants such as starch (potato and rice) and cellulose were also investigated. The yields of HMF from starch (80-85 %) were high, whereas cellulose resulted in a modest yield of 33 %. Direct transformation of cellulose to HMF in significant yield (86 %) was assisted by mechanocatalytic depolymerization-ball milling of acid-impregnated cellulose. This effectively reduced cellulose crystallinity and particle size, forming soluble cello-oligomers; this is responsible for the enhanced substrate-catalytic sites contact and subsequent rate of HMF formation. During catalyst recyclability, P-TiO2 was observed to be reusable for four cycles without any loss in activity. We also investigated the conversion of the cello-oligomers to HMF in a continuous flow reactor. Good HMF yield (53 %) was achieved using a water-methyl isobutyl ketone+NMP biphasic system.

  7. 产木糖醇酵母——耐糖菌株的筛选%Screening Sugar Tolerant Yeast Strain for Xylitol Production

    Institute of Scientific and Technical Information of China (English)

    曾健智; 方宏; 何成新; 张厚瑞

    2001-01-01

    14 different yeast strains belonging to 4 different genera (Candida, Debaryomyces, Hansenuasl, Trichosporen ) were evaluated for the ability of xylitol production and sugar tolerance under two concentrations of xylose. The result shows the priority of C. tropicalis than other yeast species for xylitol production and sugar tolerance. The best performance was by C.tropicalis As 2. 567, which accumulated 138.7g xylitol/L.%用分属于4个属( Candida 、 Debaryomyces 、 Hansenula 、 Trichosporon )的14个酵母菌株,在两个不同的木糖浓度条件下评价其耐糖性及生成木糖醇的能力。结果表明,C.tropicalis的耐糖性及木糖醇转化率普遍优于其它酵母。其中C.tropicalis As 2.567生成的木糖醇浓度达138.7g/L。

  8. Investigation of Adsorption Behavior of Ba and Other Fission Products on the Sr·spc Chromatographic Column by Static Method

    Institute of Scientific and Technical Information of China (English)

    YANG; Lei; MA; Peng; YANG; Su-liang; LIANG; Xiao-hu

    2012-01-01

    <正>Adsorption behavior of Ba, Cs and some other fission products on the Sr·spc resin has been investigated for the purpose of extracting 141Ba from the fission product. Sr·spc resin with the main functional group of 18-crown-6 ether was purchased from US. Eichrom Company. Tracers of Ba, Cs and some other fission products were acquired from an irradiated U target.

  9. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  11. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-ji; LIU Ya-nan; LI Xing; YAO Juan-juan

    2007-01-01

    In recent years, membrane ultrafiltration (UF) of surface water for drinking water treatment has become a more attractive technology worldwide as a possible alternative treatment to conventional clarification. To evaluate the performance of ultrafiltration membranes for treatment of surface water in North China, a 48-m2 low pressure hollow fiber membrane ultrafiltration pilot plant was constructed. Ultrafiltration was operated in cross-flow and with powdered activated carbon (PAC) adsorption. Turbidity was almost completely removed to less than 0.2 NTU (below Chinese standard 1 NTU). It was found that PAC addition enhanced organic matter removal. The combined process of PAC/UF allowed to 41% removal of CODMn, 46% removal of DOC and 57% decrease in UV254 absorbance. The elimination of particles, from average 12000/ml in the raw water to approximately 15/ml in the permeated, was observed. When PAC concentration was below 30 mg/L, backwashing could recovery the membrane flux with backwash interval/backwashing duration of 1/30.

  12. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls.

    Science.gov (United States)

    Razmkhab, Sahar; Lopez-Toledano, Azahara; Ortega, José M; Mayen, Manuel; Merida, Julieta; Medina, Manuel

    2002-12-01

    Dehydrated yeast cells at variable concentrations were used as fining agents to decrease the color of white wines with two different degrees of browning (0.153 and 0.177 au, measured at 420 nm). Both wines showed a linear decrease of browning with increasing yeast concentration. However, in terms of efficiency, the yeasts exhibited a higher color lightening at greater concentrations acting on the darker wine. This suggests a preferential retention of some types of yellow-brown compounds that could increase their concentrations at the higher degree of browning. To confirm the role of yeast cell walls in the retention of browning compounds and to evaluate their potential use as fining agents, they were applied at variable concentrations to a browned wine (0.175 au). The cell walls were found to be the active support for the adsorption of browning compounds, but their efficiency was much lower than that of an equivalent amount of the yeast cells from which they were obtained. Finally, HPLC determinations of low-molecular-weight phenolic compounds showed flavan-3-ol derivatives to be significantly retained by both yeasts and their cell walls. PMID:12452671

  13. Effect of extrusion conditions and hydrolysis with fiber-degrading enzymes on the production of C5 and C6 sugars from brewers’ spent grain for bioethanol production

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-03-01

    Full Text Available The bioconversion of brewers’ spent grain into bioethanol was investigated in the present study using thermoplastic extrusion and the use of fiber degrading enzymes. The extrusion conditions i.e. tempering moisture, screws speed, and temperature of last zone of the barrel were taken into account in order to optimize the yield of C5 and C6 sugars during the subsequent enzymatic hydrolysis step of the fibers. The most important variable that affected the sugar yield was the extrusion temperature, followed by the screws speed. The best extrusion conditions were 20% tempering moisture, 200 rpm and 50 °C. No enzymatic and yeast inhibitors were detected in any of the enzymatically-treated fiber hydrolyzates. The fermentation resulted in 5.43 mL bioethanol per 100g of extruded brewers’ spent grain (dry weight basis. The only sugar consumed was glucose. The free amino nitrogen amount quantified in the hydrolyzates was as low as >20 mg L-1, negatively affecting sugars consumption during the fermentation and consequently the ethanol yield.

  14. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    Directory of Open Access Journals (Sweden)

    Dominik Schmitt

    2015-04-01

    Full Text Available The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1 was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  15. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption.

    Science.gov (United States)

    Schmitt, Dominik; Regenbrecht, Carolin; Hartmer, Marius; Stecker, Florian; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions. PMID:25977721

  16. Synthesis and granulation of a titanosilicate with adsorption capacity for Cs to be used for treating de ILLW of the Ezeiza Radioisotope Production Plant

    International Nuclear Information System (INIS)

    The sitinakite structured titanosilicate is widely used for treating ILLW thanks to its capacity for adsorbing both Cs-137 and Sr-90. Its effectiveness lies in its incredibly high selectivity for such radioisotopes, which makes it useful in complex isotope solutions and even in strong acid and alkaline conditions. In Argentina, an off-the-shelve titanosilicate was used in Ezeiza's radioisotope production plant. Because of commercial restrictions, it is no longer available so an inhouse production is being developed. The aim of this project consists of the following: 1. Synthesis of titanosilicate and structural characterization 2. Adsorption kinetics of Cs+ 3. Upscale of the synthesis process 4. Assessment of the influence of synthesis temperature and time on product crystallinity 5. Measurement of adsorption capacity of commercial titanosilicates IE910, IE911 and novel RC15H 6. Separative performance column essay and breakthrough plot 7. Chemical and radiolysis resistance of the adsorbent powder binder Polyacrylonitrile (PAN) in contact with the actual waste Throughout this work we have studied the optimum synthesis conditions capable of rendering a sitinakite structured titanosilicate, assessed its Cs+ adsorption kinetics, adsorption capacity, crystal phase and purity via DRX, particle size with Laser Light Scattering technique. We have also conducted column breakthrough experiments and tried the chemical and radiolysis resistance of the final product (author)

  17. Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and decreasing intestinal transit time pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    based on newly developed scientific evidence related to sugar beet fibre and “decreasing intestinal transit time”. The food constituent that is the subject of the health claim is sugar beet fibre. This opinion applies to sugar beet fibre naturally present in foods and to those forms added to foods......Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... that decreasing intestinal (orofaecal) transit time may be a beneficial physiological effect. The applicant provided four human studies as pertinent to the health claim. The Panel considers that no conclusion can be drawn from three studies for the scientific substantiation of the claim owing to methodological...

  18. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar

    Directory of Open Access Journals (Sweden)

    Gao Johnway

    2013-01-01

    Full Text Available Abstract Background Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Results Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy’s Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood, and 94.0% for debarked maple chips (hardwood. Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate

  19. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses

    OpenAIRE

    Abe Tatsuya; Horiuchi Kenichi; Kikuchi Hiroto; Aritsuka Tsutomu; Takata Yusuke; Fukushi Eri; Fukushi Yukiharu; Kawabata Jun; Ueno Keiji; Onodera Shuichi; Shiomi Norio

    2012-01-01

    Abstract Background Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet...

  20. Enhanced production of the polysaccharide arabinogalactan using immobilized cultures of Tinospora cordifolia by elicitation and in situ adsorption.

    Science.gov (United States)

    Roja, G; Bhangale, A S; Juvekar, A R; Eapen, S; D'Souza, S F

    2005-01-01

    Immobilized callus cultures of Tinospora cordifolia (Willd) Miers ex Hooks and Thoms were investigated to find out the combined effect of elicitation, cell permeabilization with chitosan and in situ product recovery by polymeric neutral resin-like Diaion HP 20. In this study, callus cultures of T. cordifolia were immobilized using sodium alginate and calcium chloride and the beads were cultured in Murashige and Skoog's basal medium along with benzyl adenine (BA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3% sucrose. The immobilized cultures, when subjected to elicitation and cell permeabilization with chitosan and in situ removal of the secondary metabolites by addition of resin, showed a 10-fold increase in production of arabinogalactan (0.490% dry weight) as compared to respective controls devoid of resin and chitosan. This indicates that in situ adsorption may have reduced the feedback inhibition caused by accumulation of secondary metabolites in the media, while the dual effect of elicitation and cell permeabilization by chitosan may have released the intracellular (secreted) berberine and the polysaccharide arabinogalactan, respectively. PMID:16321052

  1. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012).

    Science.gov (United States)

    Ferreira, Nathália Luíza; Claro, Rafael Moreira; Lopes, Aline Cristine Souza

    2015-12-01

    This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption. PMID:26872226

  2. Stable isotope model for assessing production of short chain fatty acids from colon-derived sugar: application in pigs.

    Science.gov (United States)

    Kien, C L; Murray, R D; Ailabouni, A; Powers, P; Kepner, J; Powers, L; Brunengraber, H

    1996-12-01

    Sugar reaching the colon because of intestinal maldigestion or malabsorption may be fermented to acetate and other short-chain fatty acids, resulting in stimulation of colonic water absorption and cell proliferation. To explore this phenomenon in more detail, we have developed a stable isotope model for estimating the fraction of colon-derived glucose or lactose that is fermented to acetate, propionate and butyrate. In an initial application of the model, [d3]-acetate and either [1-(13)C]-glucose or [D-1-(13)C]-lactose were infused into the cecum or colon of piglets, and plateau plasma acetate enrichment was monitored in the carotid artery. In acutely anesthetized piglets, the fractions of glucose and lactose fermented to acetate were 17.0 and 20.0%, respectively. In a chronically catheterized piglet, fermentation was higher (34.2%). When conducted in chronically catheterized animals or via a colostomy or ileostomy in infants, this model may be used to determine how age, previous surgery or antibiotic therapy affects the efficiency of colonic assimilation of carbohydrate. PMID:9001376

  3. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012).

    Science.gov (United States)

    Ferreira, Nathália Luíza; Claro, Rafael Moreira; Lopes, Aline Cristine Souza

    2015-12-01

    This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.

  4. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012

    Directory of Open Access Journals (Sweden)

    Nathália Luíza Ferreira

    2015-12-01

    Full Text Available Abstract This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012. Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.

  5. Highly efficient solid-phase derivatization of sugar phosphates with titanium-immobilized hydrophilic polydopamine-coated silica.

    Science.gov (United States)

    Qin, Qian; Wang, Bohong; Chang, Mengmeng; Zhou, Zhihui; Shi, Xianzhe; Xu, Guowang

    2016-07-29

    Sugar phosphates are a type of key metabolic intermediates of glycolysis, gluconeogenesis and pentose phosphate pathway, which can regulate tumor energetic metabolism. Due to their low endogenous concentrations, poor chromatographic retention properties as well as ionization suppression from complex matrix interference, the determination of sugar phosphates in biological samples is very difficult. In this study, titanium-immobilized hydrophilic polydopamine-coated silica microspheres (SiO2@PD-Ti(4+)) were synthesized for highly efficient solid-phase derivatization of sugar phosphates. Sugar phosphates were selectively captured onto the surface of the SiO2@PD-Ti(4+) microspheres by chelating with phosphate groups, and then reacted with 3-amino-9-ethylcarbazole via reductive amination based on solid-phase derivatization, which could not only increase the retention and resolution of sugar phosphates on reversed-phase liquid chromatography (RPLC), but also improve the mass spectrometry (MS) sensitivity of sugar phosphates. The adsorption capacity of SiO2@PD-Ti(4+) microspheres towards glucose-6-phosphate is 0.76mg/g, which is much larger than that of commercial TiO2. Compared with the traditional liquid-phase derivatization, the solid-phase derivatization based on the SiO2@PD-Ti(4+) microspheres displayed several superiorities including shorter derivatization time (within 10min), higher product purity and much lower limit of detection (up to 38pmol/L). In addition, good linearity (R(2)≥0.99), excellent recovery (80.6-118%) and high precision (RSDs with 2.8-7.8%) were obtained when the developed method was used for quantitative analysis of sugar phosphates. Finally, the SiO2@PD-Ti(4+) microspheres combined with RPLC-MS were successfully applied to the determination of sugar phosphates from hepatocarcinoma cell lines and could even detect the trace sugar phosphates in thousands of cells. PMID:27371021

  6. Application of organic discarded goods in cane sugar production%蔗糖生产中的有机废弃物资源化利用研究

    Institute of Scientific and Technical Information of China (English)

    谭宏伟; 周柳强; 谢如林; 黄美福; 谢刚; 黄春荣; 覃懿

    2016-01-01

    蔗糖业是广西主要支柱产业,广西的甘蔗种植面积、蔗糖产量连续多年稳居全国第一,蔗糖总产量占全国总产量的60%以上。在制糖生产过程中,甘蔗压榨中除压榨出糖汁外,在糖汁精炼过程中还产生数量巨大的糖厂废弃污染物,主要是滤泥和废糖蜜生产酒精的酒精废液。近年广西年入榨甘蔗8000~5800万t,产生滤泥约250万t,废糖蜜约250万t。在广西应用蔗糖厂的滤泥和酒精废液对甘蔗产量的影响的13个试验点的统计结果表明,施用酒精废液和滤泥的分别比复合肥处理增产甘蔗15.0t/hm²和13.5t/hm²,增产率分别18.8%和17.2%。蔗糖生产中的有机废弃物滤泥和酒精废液含有丰富的有机质、氮、磷和钾,以公顷施用75t酒精废液计,它能提供当季甘蔗生产所需的N 484.5kg,P2O512.9kg,K2O 816.0kg,并带来6294.0kg有机质;公顷施用7500kg滤泥计,它能提供当季甘蔗生产所需的N 129.0kg,P2O590.0kg,K2O 13.2kg,并带来4320.0kg有机质。蔗糖生产中的有机废弃物滤泥和酒精废液含有甘蔗吸收的矿质养分,其中:N 59300t,P2O525300t,K2O 31700t,有机质1650250t;应用这些矿质营养对甘蔗种植区的矿质营养平衡循环、培肥甘蔗种植区土壤肥力、保护甘蔗种植区生态环境和实现甘蔗生产的可持续稳定地增长,将有重要的作用。%The cane sugar industry is a main industry of Guangxi. The sugarcane cultivated area of Guangxi , output of cane sugar occupy first in the whole country steadily for years, the total output of cane sugar accounts for over 60% of national total output.In refining sugar the production process, the sugarcane also produced the sugar refinery enormous in quantity and discarded goods the pollutant while the syrup refines besides pressing out the syrup when pressed , it is mainly the vinasse straining the mud and abolishing the molasses to produce the alcohol

  7. How a change in Brazil's sugar policies would affect the world sugar market

    OpenAIRE

    Borrell, Brent

    1991-01-01

    Although Brazil is the world's largest sugarcane producer, only one-third of the cane it grows is used to produce sugar; the rest is used to produce ethanol as fuel for automobiles. Still, Brazil is the world's fourth largest sugar producer. This paper asks what it would mean for Brazil and for the world sugar market if Brazil were to shift largely away from ethanol to sugar production. This question is of keen interest for the world sugar market because such a shift -- although politically d...

  8. 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption.

    Science.gov (United States)

    McEwen, Jordan T; Kanno, Masahiro; Atsumi, Shota

    2016-07-01

    Cyanobacteria are under investigation as a means to utilize light energy to directly recycle CO2 into chemical compounds currently derived from petroleum. Any large-scale photosynthetic production scheme must rely on natural sunlight for energy, thereby limiting production time to only lighted hours during the day. Here, an obligate photoautotrophic cyanobacterium was engineered for enhanced production of 2,3-butanediol (23BD) in continuous light, 12h:12h light-dark diurnal, and continuous dark conditions via supplementation with glucose or xylose. This study achieved 23BD production under diurnal conditions comparable to production under continuous light conditions. The maximum 23BD titer was 3.0gL(-1) in 10d. Also achieving chemical production under dark conditions, this work enhances the feasibility of using cyanobacteria as industrial chemical-producing microbes. PMID:26979472

  9. Metoder for Modellering, Simulering og Regulering af Større Termiske Processer anvendt i Sukkerproduktion. Methods for Modelling, Simulation and Control of Large Scale Thermal Systems Applied in Sugar Production

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    The subject of this Ph.D. thesis is to investigate and develop methods for modelling, simulation and control applicable in large scale termal industrial plants. An ambition has been to evaluate the results in a physical process. Sugar production is well suited for the purpose. In collaboration...... with The Danish Sugar Corporation two subsystems in the production have been chosen for application - the evaporation process and the crystallization process. In order to obtain information about the static and dynamic behaviour of the subsystems, field measurements have been performed. A realtime evaporator...... simulator has been developed. The simulator handles the normal working conditions relevant to control engineers. A non-linear dynamic model based on mass and energy balances has been developed. The model parameters have been adjusted to data measured on a Danish sugar plant. The simulator consists...

  10. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  11. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.

    Science.gov (United States)

    Uyar, Basar; Gürgan, Muazzez; Özgür, Ebru; Gündüz, Ufuk; Yücel, Meral; Eroglu, Inci

    2015-10-01

    Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains.

  12. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.

    Science.gov (United States)

    Uyar, Basar; Gürgan, Muazzez; Özgür, Ebru; Gündüz, Ufuk; Yücel, Meral; Eroglu, Inci

    2015-10-01

    Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains. PMID:26164274

  13. Acceptance of sugar reduction in flavored yogurt.

    Science.gov (United States)

    Chollet, M; Gille, D; Schmid, A; Walther, B; Piccinali, P

    2013-09-01

    To investigate what level of sugar reduction is accepted in flavored yogurt, we conducted a hedonic test focusing on the degree of liking of the products and on optimal sweetness and aroma levels. For both flavorings (strawberry and coffee), consumers preferred yogurt containing 10% added sugar. However, yogurt containing 7% added sugar was also acceptable. On the just-about-right scale, yogurt containing 10% sugar was more often described as too sweet compared with yogurt containing 7% sugar. On the other hand, the sweetness and aroma intensity for yogurt containing 5% sugar was judged as too low. A second test was conducted to determine the effect of flavoring concentration on the acceptance of yogurt containing 7% sugar. Yogurts containing the highest concentrations of flavoring (11% strawberry, 0.75% coffee) were less appreciated. Additionally, the largest percentage of consumers perceived these yogurts as "not sweet enough." These results indicate that consumers would accept flavored yogurts with 7% added sugar instead of 10%, but 5% sugar would be too low. Additionally, an increase in flavor concentration is undesirable for yogurt containing 7% added sugar.

  14. LONG TERM 32-YEAR-OLD APPLICATION OF FERTILIZERS FOR THE FERTILITY OF THE ORDINARY BLACK SOIL AND PRODUCTIVITY OF SUGAR BEET

    Directory of Open Access Journals (Sweden)

    Neshchadim N. N.

    2016-03-01

    Full Text Available The article deals with the effectiveness of mineral and organic fertilizers in long-term application (for more than thirty years according to the influence on the fertility of ordinary black soil of the Western Ciscaucasia and productivity of sugar beet. The investigations were carried out in the long-term stationary experiment laid on the experimental stationary section "Severokubanskaya agricultural experimental station" of P.P. Lukyanenko Krasnodar Agricultural Research Institute. The experiment was laid simultaneously in time and space in two ten-course crop rotations and combined grain-grass tilled. In the structure of sown areas sugar beet occupied 10% of crop rotation area and was placed after the winter wheat. During three rotations it was studied: 1- control without fertilizer with natural forming level of mineral nutrition; 2- minimal dose N21P26K16 3- medium dose N43P52K33 ; 4 - N43P52K33, 5- high dose N96P104K68; 6- organo-mineral system¹ N43P52K34 + 12 t/ha of manure; 7- organo-mineral system² N20P24K34 + II-III rotations tillage of straw crop + 6 t/ha of manure; 8- medium dose P52K33; 9- medium dose N43K33; 10- medium dose N43K52. The soil which is used by organo-mineral system with increased and high standards of mineral fertilizers had higher concentration of mineral nitrogen. Long systematic application of fertilizer had more noticeable effect on soil phosphorus regime. The provision of soil by exchange potassium tended to decline from rotation to rotation. If at the completion of the first rotation the content of this battery was at the level 362,0-433,0 mg / kg of soil, in 2010, these values were 356,0-405,0 mg / kg of soil, remaining at the level of increased and high provision characterized to ordinary black-soil. Fertilizers for crop rotation provided almost equal yield increase: in the first rotation - 4,9-16,0 t / ha in the second 5,3- 17,1, the third 6,1-15,5 t / ha. In the moderate favorable for moisture and

  15. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    For a couple a decades, in the frame of bio-based chemicals and materials, there has been focus on biological butyric acid production due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Major challenges for biological production are strain selection...... and development, and process improvement for higher yield, productivity and selectivity. Compared with other microbial strains Clostridium tyrobutyricum has been well characterised, exhibits higher yield and selectivity and can utilize glucose and xylose simultaneously. However, a prerequisite for cost effective...... production of butyric acid is the use of cheap feedstocks as carbon source as well as a process allowing for increased productivity. The present work focuses on butyric acid fermentation of pre-treated and hydrolysed wheat straw (PHWS), consisted of around 72 and 55 g/L glucose and xylose, respectively...

  16. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor

    OpenAIRE

    Behzad Satari; Keikhosro Karimi; Taherzadeh, Mohammad J.; Akram Zamani

    2016-01-01

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction ...

  17. Nuclear analytical techniques in Cuban Sugar Industry

    International Nuclear Information System (INIS)

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  18. Alkaline degradation of invert sugar from molasses.

    Science.gov (United States)

    Yang, Byung Y; Montgomery, Rex

    2007-11-01

    Sugar beet and sugar cane molasses have been shown to be suitable starting materials for producing de-icer preparations. The sucrose in the molasses is hydrolyzed to glucose and fructose by invertase. The reducing sugars are then degraded by NaOH, the alkali being neutralized by the sugar acids produced, resulting in an increase of the ionic strength and consequently depression of the freezing point of the resulting solution. For the preparation of de-icers, the desired freezing point depression to a temperature of less than about -20 degrees C can be achieved by adjusting the amount and concentration of the alkali metal hydroxide used. The resulting products are biodegradable and eliminate the corrosive effects associated with the use of conventional chloride salts. Degradation of invert sugar by NaOH has been achieved without an external heat source. The reaction products showed the same freezing point depression as seen in the degradation products from pure glucose. PMID:17222551

  19. Thermal treatment of Lloydminster heavy oil: yield and product separation by adsorption chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, P.K.; Sastre, H.; Chornet, E.; Kotlyar, L.S.; Ripmeester, J.A.; Overend, R.P. (University of Sherbrooke, Quebec (Canada). Dept. of Chemical Engineering)

    1989-09-01

    The effect of thermal treatment on Lloydminster heavy oil has been studied under pyrolytic, catalytic and non-catalytic hydropyrolysis and hydrogen donor solvent (tetralin) regimes using a batch autoclave. Product yields are reported for each type of reaction regime in terms of gases, maltenes, asphaltenes and toluene insoluble organic matter (coke). The maltene fraction was further separated by column chromatography into four chemical compound types namely: saturates, mono- and di-aromatics, polyaromatics and polars. The asphaltene fraction was also separated in four fractions by column chromatography by elution with solvents of increasing polarity. These fractions were characterized by FTIR and {sup 1}{sup 3}C NMR. The evolution of these fractions was studied as a function of the treatment. Tetralin was found to be effective in eliminating coke and increasing the maltene content relative to other treatments. It has been observed that the decrease of polyaromatic and polar species in the maltenes results in a corresponding increase of saturates. The asphaltene yield also decreases with thermal treatment. In all treatments the asphaltene fractions rich in polar and highly functional groups decrease drastically. 34 refs., 7 figs., 2 tabs.

  20. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  1. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process.

    Science.gov (United States)

    Grassi, Mariangela; Rizzo, Luigi; Farina, Anna

    2013-06-01

    In the last years, a lot of emerging contaminants, such as, endocrine disruptors compounds (EDCs), pharmaceuticals, and personal care products (PPCPs) have been detected in wastewater. Because of their toxicity and possible adverse effects on the environment and humans, their release from urban wastewater treatment plants (UWWTPs) effluents should be minimized, particularly when a wastewater reuse for crops irrigation is expected. Many processes have been investigated for advanced treatment of UWWTP effluents as well as for emerging contaminant degradation; among these, adsorption process was successfully used to remove EDCs and PPCPs from wastewater. This article shortly reviews EDCs and PPCPs removal from UWWTP effluents by adsorption process using conventional and non-conventional adsorbents. The fate of EDCs and PPCPs in UWWTPs and the implications for agricultural wastewater reuse has been addressed too. In spite of the adsorption process looking to be a valuable alternative to other advanced technologies for the removal of emerging contaminants from wastewater, some gaps still remain to evaluate the actual feasibility at full scale. However, according to a few studies available in scientific literature on the use of both powdered activated carbon and granular activated carbon at full scale, adsorption process by activated carbon is a promising, potentially effective, and economically feasible solution for producing safe wastewater for agricultural reuse. PMID:23532534

  2. Just a Spoonful of Sugar Will Land You Six Feet Underground: Should the Food and Drug Administration Revoke Added Sugar's GRAS Status?

    Science.gov (United States)

    Card, Melissa Marie; Abela, John Francis

    2015-01-01

    This article assesses whether added sugar meets FDA's standard to be generally recognized as safe ("GRAS"). If added sugar is not GRAS, then manufacturers are subject to premarket approval prior to using added sugar in their products. This article advocates that FDA should issue a Federal Register notice determining that added sugar is not GRAS, allowing FDA to regulate the amount of added sugar used in processed foods, decreasing the health adversities that stem from added sugar consumption. PMID:26630822

  3. Methods for dehydration of sugars and sugar alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-08-10

    The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H.sub.2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H.sub.2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co-catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.

  4. Production and productivity of sugar cane bagasse during 2008/2009 crop season for electrical energy conservation; Producao e produtividade de bagaco de cana-de-acucar ao longo da safra 2008/2009, visando a cogeracao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz Carlos; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify sources of energy generation, Brazil has encouraged cogeneration of energy from biomass. Among the various biomasses sources, sugar cane bagasse is one that combines the best economic attributes to be due mainly to industrial production in large quantities. This study aimed to evaluate the bagasse productive potential of two varieties of sugarcane during the harvest period. The experiment was conducted at UNESP, Jaboticabal County. The experimental design was completely randomized split plot, having the two sugarcane cultivars as plots, and the split times of the 11 tests during the season and 3 replications. Were estimated production (kg tc{sup -1}) and productivity (t ha{sup -1}) residue for each cultivar in their own times. The cultivars showed differences from the average production of mulch. However, obtained similar behavior throughout the season, characterized by progressive cuts. For bagasse Productivity, the cultivars showed differences in average values and behavior throughout the season. The cultivar IACSP95-5000 had the best performance in relation to production and productivity of bagasse, can be used for cogeneration for most of the season. The cultivar RB855536 presented a lower performance, achieving low production and productivity of bagasse, indicating its lower potential in relation to energy generation. (author)

  5. Monitoring Blood Sugar: The Importance of Checking Blood Sugar Levels

    Science.gov (United States)

    ... 5 Things to Know About Zika & Pregnancy Monitoring Blood Sugar KidsHealth > For Parents > Monitoring Blood Sugar Print ... Other Tests Record Keeping The Importance of Checking Blood Sugar Levels Besides helping to keep blood sugar ...

  6. Hydrophobic sugar holograms

    Science.gov (United States)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  7. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Baral, Khagendra Raj; Fitamo, Temesgen Mathewos;

    2016-01-01

    , utilising SB negatively affects the profitability of biogas production, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium-to large-sized biogas plants, using low shares of SB...

  8. Bagasse production potential from late sugar cane cultivars; Potencial produtivo de bagaco por cultivares tardios de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz C.; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify energy sources, the residue of sugarcane gathers attributes that qualify its use. Therefore, this study was to evaluate the potential of bagasse production in late cultivars of sugarcane. The experimental design was a randomized block design with 6 treatments (cultivars) and 3 replications. The experiment was carried out at FCAV/UNESP Jaboticabal. To calculate the productivity, it was counted the number of stems in a row linear meter, it was obtained the weight of stems. The percentage of fiber for each cultivar was determined by a calculation of estimated production and productivity of mulch. Using these values to estimate the number of people who would benefit from the energy generated from the combustion of bagasse in a process of cogeneration power. The results were submitted to analysis of variance by F test and averages compared by Tukey test at 5% probability. Cultivars RB867515, RB72454 and CTC6 showed the best performance, indicating its greater potential for power cogeneration. Cultivars CTC IAC94-2 and 2101 were lower when considering the results obtained. (author)

  9. Inorganic elements in sugar samples

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  10. Study of adsorption isotherms of green coconut pulp

    Directory of Open Access Journals (Sweden)

    Fábia Carolina Gonçalves Lavoyer

    2013-03-01

    Full Text Available Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L. stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.

  11. The energetic analysis of ethanol systems production from the manioc, the sugar cane and the corn crops; Analise energetica de sistemas de producao de etanol de mandioca, cana-de-acucar e milho

    Energy Technology Data Exchange (ETDEWEB)

    Salla, Diones Assis [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Pos-graduacao em Agronomia], E-mail: diones.salla@gmail.com; Cabello, Claudio [Universidade Estadual Paulista (CERAT/UNESP), Botucatu, SP (Brazil). Centro de Raizes e Amidos Tropicais], E-mail: dircerat@fca.unesp.br

    2010-07-01

    The objective of this work was the analysis of the energetic ethanol production systems using as source of carbohydrates, manioc, sugar cane and maize crops. The searches were carried from the field in the Paranapanema River Valley, state of Sao Paulo in the operations of cultivation and industrial processing of raw materials for analysis. The expenditure of energy concerning the agricultural part was made by the energy consumption of stage production of one hectare of sugar cane, cassava and corn, tillage and planting procedure, inputs, driving the crop, harvest, transport industry and energy draining. The expenditure of energy referring to the part was made by the industry energy consumption of stage processing of one tonne of sugar cane, cassava and corn, in the operations of disintegration / milling, hydrolysis / treatment of the broth, fermentation, distillation and maintenance of equipment. Under the system of agronomic production of raw materials, manioc presented an energy expenditure below that of sugar cane and maize (9,528.33 MJ ha{sup -1}; 14,370.90 MJ ha{sup -1} and 15,633.83 MJ ha{sup -1}, respectively). For the ethanol produced, the operations of cultivation has consumed 1.54 MJ l{sup -1} with manioc; MJ 1.99 l{sup -1} with sugar cane, and 7.9 MJ l{sup -1} with the corn. In the industrial processing of a ton of raw material, sugar cane presented an energy cost less than the cassava and maize (1,641.56 MJ t{sup -1}; 2,208.28 MJ t{sup -1} and MJ 3,882.39 t{sup -1}, respectively), however, showed a higher cost than when they related to ethanol produced (19.38 MJ l{sup -1}; 11.76 MJ l{sup -1} and 11.76 MJ l{sup -1}, respectively). In the final energy balance for each mega joules of energy invested in sugar cane were required 1.09 MJ (9%), for each mega joules of energy invested in manioc were required 1.76 MJ (76%) and for each mega joules energy invested in maize were required 1.19 MJ (19%). Overall, it appears that the manioc consumes less energy than

  12. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    OpenAIRE

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S; Zhang, Y.-H. Percival

    2015-01-01

    Hydrogen (H2) has great potential to be used to power passenger vehicles. One solution to these problems is to distribute and store renewable carbohydrate instead, converting it to hydrogen as required. In this work more than 10 purified enzymes were combined into artificial enzymatic pathways and a high yield from both glucose and xylose to hydrogen was achieved. Also, gaseous hydrogen can be separated from aqueous substrates easily, greatly decreasing product separation costs, and avoid rec...

  13. Sugar exported: sugar packed in containers

    Directory of Open Access Journals (Sweden)

    José Alberto Yemal

    2010-04-01

    Full Text Available This paper presents a study in the port sector specialized in handling of bagged sugar. Sugar has always been exported in bags of 50 kg, placed directly in the holds of ships for general cargo. It appears that this form of transport has become obsolete now, the market for the direct form of transport of sugar packed in containers. Companies involved in this type of port handling need understand the reasons that are influencing this new mode of transportation as a way to fit and remain active and competitive in the industry.

  14. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar.

    Science.gov (United States)

    Valli, Veronica; Gómez-Caravaca, Ana María; Di Nunzio, Mattia; Danesi, Francesca; Caboni, Maria Fiorenza; Bordoni, Alessandra

    2012-12-26

    Molasses, the main byproduct of sugar production, is a well-known source of antioxidants. In this study sugar cane molasses (SCM) and sugar beet molasses (SBM) were investigated for their phenolic profile and in vitro antioxidant capacity and for their protective effect in human HepG2 cells submitted to oxidative stress. According to its higher phenolic concentration and antioxidant capacity in vitro, SCM exhibited an effective protection in cells, comparable to or even greater than that of α-tocopherol. Data herein reported emphasize the potential health effects of molasses and the possibility of using byproducts for their antioxidant activity. This is particularly important for consumers in developing countries, as it highlights the importance of consuming a low-price, yet very nutritious, commodity. PMID:23190112

  15. Possibilities for recycling cellulases after use in cotton processing: part I: Effects of end-product inhibition, thermal and mechanical deactivation, and cellulase depletion by adsorption.

    Science.gov (United States)

    Azevedo, Helena; Bishop, David; Cavaco-Paul, Artur

    2002-04-01

    Preliminary recycling experiments with cellulase enzymes after cotton treatments at 50 degrees C showed that activity remaining in the treatment liquors was reduced by about 80% after five recycling steps. The potential problems of end-product inhibition, thermal and mechanical deactivation, and the loss of some components of the cellulase complex by preferential and or irreversible adsorption to cotton substrates were studied. End-product inhibition studies showed that the build-up of cellobiose and glucose would be expected to cause no more than 40% activity loss after five textile treatment cycles. Thermal and mechanical treatments of cellulases suggested that the enzymes start to be deactivated at 60 degrees C and agitation levels similar to those used in textile processing did not cause significant enzyme deactivation. Analysis of cellulase solutions, by fast protein liquid chromatography, before and after adsorption on cotton fabrics, suggested that the cellobiohydrolase II (Cel6A) content of the cellulase complex was reduced, relative to the other components, by preferential adsorption. This would lead to a marked reduction in activity after several treatment cycles and top-up with pure cellobiohydrolase II would be necessary unless this component is easily recoverable from the treated fabric.

  16. Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries

    Directory of Open Access Journals (Sweden)

    Gillian Eggleston

    2015-09-01

    Full Text Available Like many other industries, the sugar and sugar-bioproduct industries are facing important sustainability issues and opportunities. The relatively low and fluctuating profit for sugar, surpluses of sugar, world-wide trend to produce alternative, renewable bio-based fuels and chemicals to those derived from petroleum and reduce greenhouse gases, water- and energy-intensive factories and refineries, and increased consumer demands for sustainably manufactured products are putting pressure on the industries to diversify for sustainability. Sugar crops, including sugar and energy cane (Saccharum officinarum, sugar and energy beets (Beta vulgaris, and sweet sorghum (Sorghum bicolor L. Moench, are excellent, renewable biomass feedstocks because of their availability, their being amongst the plants that give the highest yields of carbohydrates per hectare, and high sugar contents. While much research has been focused on conversion technologies for advanced biofuels and bioproducts, attention is now focused on developing sustainable supply chains of sugar feedstocks for the new, flexible biorefineries, with customers wanting maximum feedstock reliability and quality, while minimizing cost. All biomass from sugar crops are potential feedstocks. The cogeneration of bioelectricity from bagasse and leaf residues is being increasingly manufactured in more countries and, due to the high carbon content of bagasse and leaves, can also be converted into value-added products such as biochar. Sugar crops are superior feedstocks for the production of platform chemicals for the manufacture of a range of end-products, e.g., bioplastics, chemicals, and biomaterials. In several countries and regions, green sustainability criteria are now in place and have to be met to count against national biofuel targets. Processes to convert high-fiber sugar crop biomass into biofuel have been developed but there has only been limited commercialization at the large-scale.

  17. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Bhattacharya, Sourish; Bachani, Pooja; Mishra, Sandhya

    2016-03-01

    For the commercialization of microalgal based biofuels, utilization of de-oiled carbohydrate rich biomass is important. In the present study, chemo-enzymatic hydrolysis of mixotrophically grown Scenedesmus sp. CCNM 1077 de-oiled biomass is evaluated. Among the chemical hydrolysis, use of 0.5M HCl for 45 min at 121°C resulted in highest saccharification yield of 37.87% w/w of de-oiled biomass. However, enzymatic hydrolysis using Viscozyme L at loading rate of 20 FBGU/g of de-oiled biomass, pH 5.5 and temperature 45°C for 72 h resulted in saccharification yield of 43.44% w/w of de-oiled biomass. Further, 78% ethanol production efficiency was achieved with enzymatically hydrolyzed de-oiled biomass using yeast Saccharomyces cerevisiae ATCC 6793. These findings of the present study show application of mixotrophically grown de-oiled biomass of Scenedesmus sp. CCNM 1077 as promising feedstock for bioethanol production. PMID:26771924

  18. Advances in the production of lower polydric alcohols by catalytic hydrogenolysis of sugar and sugar alcohols%糖醇催化氢解制低级多元醇研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋成君; 朱银邦; 吴元峰; 许茂乾; 毛建卫

    2012-01-01

    利用糖醇生产低级多元醇可以减少对石油资源的依赖,是可再生资源利用的一个重要研究方向。本文综述了利用糖醇为原料催化氢解制备低级多元醇的研究成果,氢解糖醇可以高选择性得到乙二醇、丙三醇和1,2-丙二醇的混合物。重点介绍了糖醇催化氢解的Retro-aldol、Retro-Michael反应机理和铜系、镍系、贵金属催化剂,并对糖醇催化氢解的发展前景做了展望,提出开发更为高效稳定的催化体系、降低催化剂制备成本和优化工艺条件将是未来研究工作的重点。%With the diminishing resources of fossil fuels,searching for sustainable,alternative energy is critically important.In this paper,the recent advances in catalytic hydrogenolysis of sugar alcohols to lower polydric alcohols are reviewed.Ethylene glycol,glycerol,1,3-propylene glycol could be obtained with high selectivity by hydrogenolysis of sugar alcohols.Emphases are laid on the Retro-aldol,Retro-Michael reaction mechanisms and copper,nickel,noble metal based catalysts for the hydrogenolysis of sugar alcohols.The review shows that the future research should be focused on the development of more effective and stable catalysts,the cost reduction for catalysts preparation and the optimization of processing condition.

  19. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  20. Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids

    Directory of Open Access Journals (Sweden)

    Ali Heidarzadeh Vazifehkhoran

    2016-05-01

    Full Text Available The biochemical methane potential and composition of sugar beet pulp silage were investigated using samples taken from six different depths in both open and closed silos (height 3.6 m. The biochemical methane potential (BMP of pulp silage in open silos ranged from 337 to 420 normal litre (NL CH4/kg volatile solids (VS, while the BMP of pulp silage in closed silos varied between 411 and 451 NL CH4/kg VS. The biochemical methane potential peaked at a depth of 1.45 m with 420 NL CH4/kg VS for open silos and 451 NL CH4/kg VS for closed silos. The ethanol concentration and biochemical methane potential showed the same trend with depth throughout the silos. The energy loss correlated to the loss of volatile solids, and the depths described a linear relationship between them for both the open and closed silos (R2 = 0.997 for the open silo and R2 = 0.991 for the closed silo. The energy potentials and composition of beet pulp silage were highly stratified and there was a risk that the silage samples were not representative in investigations of biomass quality for energy production.

  1. Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

    Science.gov (United States)

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2016-05-01

    The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane. PMID:26711843

  2. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  3. Design and Application of CASS Activated Sludge Process for Treating Cane Sugar Production Wastewater%CASS活性污泥工艺对甘蔗制糖生产废水处理的设计和应用

    Institute of Scientific and Technical Information of China (English)

    陆明凯

    2012-01-01

      甘蔗制糖生产是广西重要的工业经济支柱之一,但制糖生产过程产生的有机废水也严重污染水体环境。本文通过介绍甘蔗制糖过程废水产生情况,阐述CASS活性污泥工艺,结合实际工程设计情况,说明CASS活性污泥工艺对甘蔗制糖废水处理应用的可行性及优越性。%  Cane sugar production is one of the importance industrial economy pillars in Guangxi. However, the organic waste water generated during sugar production process also contaminates water environment seriously. In this paper, wastewater generated during the cane sugar manufacture process and the CASS activated sludge process are introduced. The feasibility and superiority of using CASS activated sludge process to treat sugar wastewater are discussed basing on actual engineering design situation.

  4. 无水葡萄糖生产中煮糖结晶研究%Research of boiled sugar crystallization in production of anhydrous glucose

    Institute of Scientific and Technical Information of China (English)

    吉小兵; 刘剑侠; 郭玉波

    2014-01-01

    ObjectiveTo improve the degree of uniformity and liquidity of anhydrous glucose crystal products and to satisfy high-end customer's demand for product feeding and granularity.Methods Take the anhydrous glucose liquidity as an index and selects 100 mesh sieve anhydrous glucose as the seed crystal. The influencing factors of finished product’s liquidity are determined by the single factor experiment, and the four-factor and three-level orthogonal experiment design.Results Add anhydrous glucose and anhydrous ethanol under the volume ratio of 1:1 in stainless steel ball mill, grinding for 4 h and take the suspension liquid as the boiling sugar crystallization seed. Under the condition of glucose content is 98.5%. When the concentration of glucose in the liquid reaches 78%, add 75 mL seed, then continue to boil sugar crystallization for about 14 h, centrifugal separation and fluidized bed drying. The liquidity of the anhydrous glucose product is the best.Conclusion It not only solves the granularity differences between batches and poor liquidity problems, but also improves the separation efficiency of products, thus ensures the drying process smoothly and the homogeneity and stability between batches. At the same time, liquidity detection method for the product is more convenient for staff control and operation, it is good for adjusting and controlling during manufacturing.%目的:为了提高无水葡萄糖产品晶体的均匀程度,改善产品的流动性,以最大限度满足高端食品客户对产品投料及颗粒度的需求。方法以所得无水葡萄糖产品的流动性为指标,选取100目筛上物的无水葡萄糖作为制备晶种母体,通过单因素试验确定了与成品流动性有关的因素,选取四因素三水平进行正交试验设计。结果以无水葡萄糖、无水乙醇的体积比为1:1比例下,连续研磨4 h,并将研磨所得混悬液作为煮糖结晶用晶种,在葡萄糖含量为98.5%条件下,当煮

  5. Consumers’ Attitudes towards Country of Origin Labeling for Sugar

    OpenAIRE

    Lewis, Karen E.; Grebitus, Carola

    2013-01-01

    Given the ongoing debate regarding country of origin labeling (COOL) for certain agricultural products, it is very important to understand why certain consumers prefer COOL. Utilizing a consumer survey, 566 participants’ preferences for COOL for sugar and for sugar in soft drinks was analyzed. Using a bivariate ordered probit model, it was discovered that high levels of consumer ethnocentrism and consumer patriotism positively impacted consumers’ preference that sugar and sugar in soft drinks...

  6. 75 FR 50796 - Fiscal Year 2011 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2010-08-17

    ... United States Trade Representative under Presidential Proclamation 6763 (60 FR 1007). On July 30, 2010... TRADE REPRESENTATIVE Fiscal Year 2011 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States Trade...

  7. 77 FR 57180 - Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2012-09-17

    ... Trade Representative in Presidential Proclamation 6763 (60 FR 1007). On September 10, 2012, the... REPRESENTATIVE Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States Trade Representative. ACTION:...

  8. 76 FR 50285 - Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2011-08-12

    ... under Presidential Proclamation 6763 (60 FR 1007). On August 1, 2011, the Secretary of Agriculture... TRADE REPRESENTATIVE Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar and Sugar-Containing Products AGENCY: Office of the United States Trade...

  9. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production.

    Science.gov (United States)

    Bruce, Thiago; Leite, Fernanda Gomes; Miranda, Milene; Thompson, Cristiane C; Pereira, Nei; Faber, Mariana; Thompson, Fabiano L

    2016-03-01

    Clostridium butyricum is widely used to produce organic solvents such as ethanol, butanol and acetone. We sequenced the entire genome of C. butyricum INCQS635 by using Ion Torrent technology. We found a high contribution of sequences assigned for carbohydrate subsystems (15-20 % of known sequences). Annotation based on protein-conserved domains revealed a higher diversity of glycoside hydrolases than previously found in C. acetobutylicum ATCC824 strain. More than 30 glycoside hydrolases (GH) families were found; families of GH involved in degradation of galactan, cellulose, starch and chitin were identified as most abundant (close to 50 % of all sequences assigned as GH) in C. butyricum INCQS635. KEGG metabolic pathways reconstruction allowed us to verify possible routes in the C. butyricum INCQS635 and C. acetobutylicum ATCC824 genomes. Metabolic pathways for ethanol synthesis are similar for both species, but alcohol dehydrogenase of C. butyricum INCQS635 and C. acetobutylicum ATCC824 was different. The genomic repertoire of C. butyricum is an important resource to underpin future studies towards improved solvents production.

  10. Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection.

    Science.gov (United States)

    Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M

    2010-09-01

    Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters.

  11. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Directory of Open Access Journals (Sweden)

    Jodi T. Bernstein

    2016-09-01

    Full Text Available A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a the first systematic calculation of free sugar contents; (b a comprehensive assessment of total sugar and free sugar levels; and (c sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP database 2013 (n = 15,342. Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL: desserts (94%, 15 g, and 12 g, sugars and sweets (91%, 50 g, and 50 g, and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively. Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption.

  12. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    Science.gov (United States)

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. PMID:26065622

  13. Sugar - a harmless indulgence?

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Andersen, Niels Lyhne; Ovesen, L.

    1998-01-01

    and mineral deficiency, especially in low energy consumers. The sugar intake and the fat intake, expressed as percentage of energy, usually show an inverse association. This has lead to the statement that a diet with both a low sugar content and a low fat content is incompatible, but we will argue...... that this is not the fact. The significance of sugar for the development of obesity is not clarified. A high fat content in the diet seems to promote the development of obesity, while a high carbohydrate content tends to reduce obesity. It is not known if sugar in this connection is comparable to the other carbohydrates......The consumption of sugar is relatively high in Denmark - and other industrial countries - and many persons have a consumption which exceeds the recommended level of maximally 10% of energy intake. A high sugar consumption may reduce the nutrient density of the diet and increase the risk of vitamin...

  14. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    OpenAIRE

    J. M. Marton; M. G. A. Felipe; J. B. Almeida e Silva; A. Pessoa Júnior

    2006-01-01

    Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting...

  15. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability

    NARCIS (Netherlands)

    Li, X.; Luque-Moreno, L.C.; Oudenhoven, S.R.G; Rehmann, L.; Kersten, S.R.A.; Schuur, B.

    2016-01-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid–liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created fro

  16. Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens.

    Science.gov (United States)

    Morra, Simone; Valetti, Francesca; Sarasso, Veronica; Castrignanò, Silvia; Sadeghi, Sheila J; Gilardi, Gianfranco

    2015-12-01

    The [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2 mA cm(-1). The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%. The high turnover frequency of H2 production and the tight coupling of electron transfer, resulting in a Faradaic efficiency close to 100%, support the exploitation of the novel TiO2/CpHydA stationary electrode as a powerful device for H2 production.

  17. Transport of sugars.

    Science.gov (United States)

    Chen, Li-Qing; Cheung, Lily S; Feng, Liang; Tanner, Widmar; Frommer, Wolf B

    2015-01-01

    Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.

  18. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    Science.gov (United States)

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  19. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO{sub 2}: Adsorption, kinetics, product analysis and toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Niyaz A.; Khan, A. [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Muneer, M., E-mail: readermuneer@gmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Vijayalakhsmi, S. [SAIF, CRNTS, IIT Bombay, Powai, 400076, Mumbai (India)

    2013-08-01

    This paper deals with the study of photocatalyzed degradation of an insecticide, Thiamethoxam in aqueous suspension of TiO{sub 2}. The adsorption of Thiamethoxam on TiO{sub 2} surface under dark conditions was also investigated in order to find out equilibrium adsorption constant. The degradation kinetics was studied using spectrophotometric method under various conditions such as substrate concentration, type of catalyst, catalyst dosage, pH, and in the presence of electron acceptors such as hydrogen peroxide, potassium bromate, and ammonium persulphate under continuous purging of atmospheric oxygen, and the degradation rates were found to be strongly influenced by these parameters. The results manifested that the photocatalysis of Thiamethoxam follows pseudo-first-order kinetics. The toxicity assessments of the irradiated samples were carried out using human erythrocytes as a model system under in vitro conditions. GC–MS study showed the formation of several intermediate products which were characterised based on their molecular mass and mass fragmentation pattern. A probable mechanism for the formation of various products formed during the photocatalytic process of Thiamethoxam was also proposed. Highlights: • TiO{sub 2} P25 is a more efficient photocatalyst than UV100 and PC500 for degradation of Thiamethoxam. • Low H{sub 2}O{sub 2} dosages enhance degradation whereas overdose retards it. • Toxicity of Thiamethoxam decreases with the increase in irradiation time. • Eight intermediate products have been identified using GC–MS analysis technique.

  20. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation

    DEFF Research Database (Denmark)

    Holck, Jesper; Hjernø, K.; Lorentzen, A.;

    2011-01-01

    of monocomponent enzymes that were selected to target specific substructures in the sugar beet pectin. Notably pectin lyase and rhamnogalacturonan I lyase were used, which allowed detection of the resulting cleavage products by UV spectroscopy. Seven different homogalacturonides (HG) with degrees of polymerization....... This indicates that pectic oligosaccharides with only slightly different structures have significantly different biological effects. This is the first report of pectic oligosaccharide activity on gut bacterial populations related to the metabolic syndrome associated with obesity....

  1. Exopolysaccharide production is influenced by sugars, N-acylhomoserine lactone, and transcriptional regulators RcsA and RcsB, but does not affect pathogenicity in the plant pathogen Pantoea ananatis.

    Science.gov (United States)

    Morohoshi, Tomohiro; Oseki, Kiemi; Ikeda, Tsukasa

    2011-01-01

    Pantoea ananatis SK-1 produced EPS by AHL-mediated quorum sensing on an LB agar plate containing glucose, fructose, and sucrose. rcsA and rcsB mutants did not produce EPS with or without AHLs and with or without sugars, but they induced necrotic symptoms in onion leaves. These results indicate that EPS production does not relate to the pathogenicity of SK-1.

  2. Development and Study on Instant Sugar Substitute Product%速溶餐桌代糖产品的开发及特性研究

    Institute of Scientific and Technical Information of China (English)

    孙平; 赵丰; 张丽彤; 夏爽; 朱奕橦

    2014-01-01

    sucralose 0.7g/100g,raising agent 13g/100g (the mass ratio citric acid∶sodium bicarbonate = 1∶1.4), maltdextrin 86g/100 g,right amount of edible alcohol.The produc-t processed by swing granulation mechanism had porous morphology,which result in good instant.This m-ethod easy to control and low cost,has great industrial production value. With high sweetness sweetener sucralose as raw material, solid sugar substitute product was produced through fluid-bed spray drying granulator or swing granulator. Morphological structure and some properties of the products were tested, and instant of the product produced by 2 different processing methods were compared. The results showed that the optimal formula is: sucralose 0.7g/100g, raising agent 13g/100g (the mass ratio of citric acid tosodium bicarbonate is 1 to 1.4), maltdextrin 86g/100g, defined amount of 95% edible alcohol. The product produced through swing granulator has bulking structure and increased instant. SEM showed that the this product has honeycomb structure holes to accelerate dissolving speed. Method of swing granulator is simple with low cost and industrial production value.%以高甜度甜味剂三氯蔗糖为原料,分别采用流化床喷雾干燥制粒和摇摆造粒机制粒加工制得固态速溶餐桌代糖产品。对制得的产品进行形态结构和部分性质测定,并对两种加工方式制得的产品进行速溶性对比。结果显示,配方为0.7%三氯蔗糖,13%膨松剂(柠檬酸/碳酸氢钠为1∶1.4),86%麦芽糊精,适量的95%食用酒精,经过摇摆造粒机制粒得到的餐桌代糖产品具有膨松结构,速溶性有很大提高。扫描电子显微镜(SEM)显示,摇摆造粒机制粒的产品具有类似蜂窝状的孔洞,可以有效加快溶解速度。摇摆造粒机制粒,方法简单易行,设备造价低,具有工业生产价值。

  3. The anaerobic digestion of sugar beet pulp

    OpenAIRE

    Suhartini, Sri

    2014-01-01

    World-wide there are substantial quantities of sugar beet pulp, which arises as a residue after the processing of whole beet to extract sugar for refining as a foodstuff or for use in fermentation, in particular for the production of ethanol for the biofuel market. In both cases the resulting pulp residue is still rich in pentose sugars and fibre, and the research considered anaerobic digestion (AD) as a potential technology for the conversion of this material into renewable energy in the for...

  4. The production and consumption of energetic biomass in the State of Rio de Janeiro: a case study of the sugar alcohol sector; A producao e consumo da biomassa energetica no Estado do Rio de Janeiro: o caso do setor sucro-alcooleiro

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Marcos A.V. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Caetano, Marcelo M.; Cecchi, Jose C. [Secretaria de Tecnologia do Estado, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper analysis the energetic biomass production in the State of Rio de Janeiro, studying the case of the sugar alcohol sector. In order to do so, special attention is given to study of the evolution of the planted area of the sugar cane and derived products production, such as sugar, ethyl alcohol and vegetable residues; and the socio and environmental impacts of these activities in the State of Rio de Janeiro and in the north region of the above named State. Finally, some proposals of strategies for the revitalization and efficiency improvement of the sector are presented 16 refs., 2 figs., 3 tabs.

  5. Sugar (sucrose) holograms

    Science.gov (United States)

    Ponce-Lee, E. L.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2004-06-01

    Computer holograms made with sugar crystals are reported. This material is well known as a good sweetener; the sugar from sugar cane or sugar beet (sucrose). These sweetener can be applied as honey "water and diluted sugar" easily on any substrate such as plastics or glasses without critical conditions for developed process. This step corresponds only to the cured sucrose as a photopolymer process. The maximum absorption spectra is localized at UV region λ=240 nm. We record with lithographic techniques some gratings, showing a good diffraction efficiency around 45%. This material has good resolution to make diffraction gratings. These properties are attractive because they open the possibility to make phase holograms on candies. Mainly the phase modulation is by refraction index.

  6. World Sugar Market – Basic Development Trends and Tendencies

    Directory of Open Access Journals (Sweden)

    M. Svatoš

    2013-06-01

    Full Text Available This article is devoted to the issues of the world‘s sugar production and cultivation of sugar crops (sugar beet and sugar cane. It also analyzes the development of the global sugar trade. The main aim of this paper is to define the basic developmental trends and tendencies that affect the current situation on the market for sugar and sugar crops and then outline a process of gradual profiling of the world markets for these commodities. The article identifies the most important players operating in the global market, both in terms of production and in terms of trade. It also identifies not only the most important subjects of the global market from the viewpoint of the realized volume of production and trade, but also in terms of available comparative advantages and growth dynamics of the realized volume of production and trade. Finally, the paper highlights the significant differences existing in unit prices of the realized export and import flows in individual countries and regions. The results of this study show clearly that the world sugar market is extremely concentrated. A narrow group of entities localized mainly in Latin America, Southeast Asia, Europe and North America controls most of the world production of sugar beet and sugar cane. Furthermore, the results of the analysis show that the production and export of sugar are logically closely linked with the regions cultivating sugar crops, which again suggests that a limited number of entities controls most of the global sugar market. Currently, this market is dominated mainly by Latin American countries and Southeast Asia together with Europe.

  7. Water requirements of sugar cane grown in tropical environment

    OpenAIRE

    Vicente de Paulo Rodrigues da Silva; Cícera Josefa Rozangela Borges; Walker Gomes de Albuquerque

    2014-01-01

    An accurate estimation of water consumption of cane sugar crop is important for maximum productivity with less investment. The objective of this study was to determine the water requirements of sugar cane grown in tropical environments. The field experiment was carried out in Paraiba state, during the productive cycle of sugar cane crop variety RB 92 579 irrigated by central pivot irrigation (sprinkler) from October 2009 to September 2011. The crop evapotranspiration was obtained based on soi...

  8. Multilateral Trade and Agricultural Policy Reforms in Sugar Markets

    OpenAIRE

    Amani Elobeid; John C. Beghin

    2004-01-01

    We analyze the removal of current market interventions in world sugar markets using a partial-equilibrium international sugar model calibrated on 2002 market data and current policies. We analyze the impact of trade liberalization and the removal of production subsidies and consumption distortions. The removal of trade distortions alone induces a 27 percent price increase by the end of the decade relative to the baseline level for sugar. The removal of all trade and production distortions ind...

  9. Situation, Problems and Countermeasure of Cane Sugar Production in Zhanjiang State Farm%湛江农垦蔗糖生产的现状、问题与对策

    Institute of Scientific and Technical Information of China (English)

    傅明其; 李均立; 邱月洪

    2012-01-01

    Taking a sugar enterprise as a example, the situation of cane sugar summarized briefly, and the existing problems were analyzed in this paper proposed in response to the problems. production in Zhanjiang state farm was In addition, the countermeasures were%以某糖业企业蔗糖生产为例,简要总结了湛江农垦蔗糖生产状况,分析了湛江农垦蔗糖生产中存在的主要问题,并针对问题提出对策思考。关键字:湛江农垦;蔗糖生产;现状;问题;对策

  10. Sugars in Antarctic aerosol

    Science.gov (United States)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  11. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2011-06-01

    Full Text Available Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% antifoam concentration. The fermentation process lasted 7 days and the citric acid concentration was analyzed by High Pressure Liquid Cromatography (HPLC method. Statistica 6 software was used for the data treatment. The mathematical model for the optimization citric acid fermentation in bubble column reactor is Y = 54.507 + 2.9851X - 8.987X12 - 2.581X2 - 15.446X22 - 7.989X1X2 The parameter of Y is citric acid yield, X1 is a coding initial pH and X2 is a coding total sugar concentration. The results has given an initial pH optimum 3.61 and total sugar concentration 19,285% w/v with optimum an yield of 55.03 % . Keywords: Bubble column bioreactor, Citric acid fermentation, Initial pH, Total sugar concentration, Response surface methodology

  12. Biomass production and biological depuration of sugar cane vinasse by mixed culture of filamentous fungi and yeasts; Producao de biomassa e depuracao biologica da vinhaca de cana-de-acucar por cultura mista de fungos filamentosos e leveduras

    Energy Technology Data Exchange (ETDEWEB)

    Ceccato, Sandra Regina

    1988-12-01

    Sugar and alcohol technology has originated wastes such as vinasse with organic load that causes pollution in Brazil. Many alternatives have been proposed to convert it into useful products such as microbial protein. The aim of this work was to select mixed cultures of filamentous fungi and yeasts with high biomass production in vinasse and to study the cultural condition optimization of the selected combination based on the protein content and the waste depuration. The growth of pure cultures along the time was also evaluated as well as the amino acid composition of the biomass obtained. (author)

  13. 甘蔗糖蜜部分替代大米生产米香型白酒的研究%The Use of Sugar Cane Molasses Partly Instead of Rice for the Production of Mixiang Baijiu(Liquor)

    Institute of Scientific and Technical Information of China (English)

    耿鹏飞; 蒋世云; 傅凤鸣; 徐杰; 刘云慧

    2015-01-01

    优化甘蔗糖蜜部分替代大米生产米香型白酒的工艺条件。选择发酵时间、酒曲添加量、发酵温度、糖蜜替代量4个因素,在单因素试验的基础上进行正交试验,优化工艺条件。结果表明,优化后的最佳工艺条件为糖蜜替代量为30%、发酵时间为132 h、发酵温度为30℃、酒曲添加量为1%。用甘蔗糖蜜替代部分大米生产米香型白酒,不仅能节约粮食,而且能使米香型白酒的香气成分更加丰富。%The production techniques of Mixiang Baijiu(liquor) with the use of sugar cane molasses partly instead of rice were optimized. Based on single factor test, orthogonal tests were carried out with four factors including fermenting time, the adding level of wine yeast, ferment-ing temperature and the substituting amount of sugar cane molasses. The optimized technical conditions were summed up as follows:the substi-tuting amount of sugar cane molasses was 30%, fermenting time was 132 h, fermenting temperature was at 30℃, and the adding level of wine yeast was 1%. Using sugar cane molasses partly instead of rice for the production of Mixiang Baijiu(liquor) could not only save food but also enrich flavoring components of Mixiang Baijiu(liquor).

  14. The Use of Sugar Cane Molasses Partly Instead of Rice for the Production of Mixiang Baijiu(Liquor)%甘蔗糖蜜部分替代大米生产米香型白酒的研究

    Institute of Scientific and Technical Information of China (English)

    耿鹏飞; 蒋世云; 傅凤鸣; 徐杰; 刘云慧

    2015-01-01

    优化甘蔗糖蜜部分替代大米生产米香型白酒的工艺条件。选择发酵时间、酒曲添加量、发酵温度、糖蜜替代量4个因素,在单因素试验的基础上进行正交试验,优化工艺条件。结果表明,优化后的最佳工艺条件为糖蜜替代量为30%、发酵时间为132 h、发酵温度为30℃、酒曲添加量为1%。用甘蔗糖蜜替代部分大米生产米香型白酒,不仅能节约粮食,而且能使米香型白酒的香气成分更加丰富。%The production techniques of Mixiang Baijiu(liquor) with the use of sugar cane molasses partly instead of rice were optimized. Based on single factor test, orthogonal tests were carried out with four factors including fermenting time, the adding level of wine yeast, ferment-ing temperature and the substituting amount of sugar cane molasses. The optimized technical conditions were summed up as follows:the substi-tuting amount of sugar cane molasses was 30%, fermenting time was 132 h, fermenting temperature was at 30℃, and the adding level of wine yeast was 1%. Using sugar cane molasses partly instead of rice for the production of Mixiang Baijiu(liquor) could not only save food but also enrich flavoring components of Mixiang Baijiu(liquor).

  15. Sugar Coated Taro

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Taro is smooth and sticky in texture and rich in fat,protein and sugar.According to Chinese traditional medicine, taro nourishes the spine and stomach and helps energy. Ingredients:500 grams taro (peeled and chopped into diamond-shaped cubes), 15 grams sugar. 250 grams vegetable oil. Method: 1. Heat oil in a wok and add taro cubes. Fry unti they turn golden brown. 2. Take out the taro with a sieve and pour the oil into a container for later use. Add sugar and one tablespoon oil.Stir continuously to prevent burning. When the

  16. What Price Sugar? Land, Labor, and Revolution

    Directory of Open Access Journals (Sweden)

    Daniel C. Littlefield

    2008-12-01

    Full Text Available [First paragraph] Sugar, Slavery, and Society: Perspectives on the Caribbean, India, the Mascarenes, and the United States. Bernard Moitt (ed.. Gainesville: University Press of Florida, 2004. vii + 203 pp. (Cloth US $ 65.00 Tropical Babylons: Sugar and the Making of the Atlantic World, 1450-1680. Stuart B. Schwartz (ed.. Chapel Hill: University of North Carolina Press, 2004. xiii + 347 pp. (Paper US $ 22.50 These two books illustrate the fascination that sugar, slavery, and the plantation still exercise over the minds of scholars. One of them also reflects an interest in the influence these have had on the modern world. For students of the history of these things the Schwartz collection is in many ways the more useful. It seeks to fill a lacuna left by the concentration of monographs on the eighteenth and nineteenth centuries, suggesting that we know less about the history of sugar than we thought we did. Perhaps in no other single place is such a range of information on so wide an area presented in such detail for so early a period. Ranging from Iberia to the Caribbean and including consumption as well as production of sugar, with a nod to the slave trade and a very useful note on weights and currencies, this volume is a gold mine of information. It considers (briefly the theoretical meaning as well as the growing of this important crop, contrasting its production in Iberia with that on the Atlantic islands of Madeira and the Canaries, colonized by Iberian powers, and continuing the contrast with São Tomé, off the coast of Africa, and on to Brazil and the Spanish American empire before ending with the British in Barbados. In the transit, it of necessity considers and complicates the meaning of “sugar revolution” and shows how scholars using that term do not always mean the same thing. John McCusker and Russell Menard, for example, tackling a cornerstone of the traditional interpretation of the development of sugar, argue that there

  17. Nuclear analytical techniques in Cuban sugar industry

    International Nuclear Information System (INIS)

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  18. Root rot diseases of sugar beet

    Directory of Open Access Journals (Sweden)

    Jacobsen Barry J.

    2006-01-01

    Full Text Available Root rot diseases of sugar beet caused by Rhizoctonia solani (AG 2-2 IIIB and AG 2-2 IV, R. crocorum, Aphanomyces cochlioides, Phoma betae, Macrophomina phaeseolina, Fusarium oxysporum f.sp. radicis-betae, Pythium aphanidermatum Phytophthora drechsleri, Rhizopus stolonifer, R. arrhizus and Sclerotium rolfsii cause significant losses wherever sugar beets are grown. However, not all these soil-borne pathogens have been reported in all sugar beet production areas. Losses include reduced harvestable tonnage and reduced white sugar recovery. Many of these pathogens also cause post harvest losses in storage piles. Control for diseases caused by these pathogens include disease resistant cultivars, avoidance of stresses, cultural practices such as water management and the use of fungicides.

  19. Blood Sugar and Fats

    Science.gov (United States)

    ... hyperglycemia) can be a sign of the disease diabetes mellitus. High blood sugar levels can eventually damage ... treated with the same medications used to treat diabetes. There is no simple blood test for insulin ...

  20. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  1. REMOVAL OF INHIBITORS FROM BIOMASS SUGARS USING A BIOLOGICAL PROCESS

    Science.gov (United States)

    A major constraint to fermentation of sugars in biomass hydrolysates is the presence of side-products of hydrolysis that are toxic to microorganisms. These chemicals include products of sugar degradation (furfural, 5-hydroxymethylfurfural (HMF), and levulinic acid), organic acids released from hemi...

  2. Impacts of Greenhouse Gas Emission Regulations on the U.S. Sugar Industry

    OpenAIRE

    Taylor, Richard D.; Koo, Won W.

    2010-01-01

    The objective of this study is to evaluate the changes in U.S. sugar production and Greenhouse Gas (GHG) emissions from the sugar industry if the United States regulates GHG emissions from domestic sugar processing facilities. A spatial equilibrium model is developed to optimize sugar production in the United States under a base scenario and three different levels of CO2e taxes or prices of carbon offsets. This research focuses on U.S. sugar production, both beet and cane sugar. In the model ...

  3. The Mexican Sweeteners Market and Sugar Exports to the United States

    OpenAIRE

    Andino, Jose; Taylor, Richard D.; Koo, Won W.

    2006-01-01

    This study analyzes the effect of a potential increase in sugar imports from Mexico on the U.S. sugar price, and its consequences for producers and consumers. Additional sugar imports would cause a substantial reduction of sugar prices in the United States and consequently an increase in consumption. Due to low commodity prices, acreage and total production of beet and cane sugar in the United States are expected to fall. Under these circumstances, social welfare in the United States may incr...

  4. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the condit

  5. Coping with the Fallout for Preference-receiving Countries from EU Sugar Reform

    OpenAIRE

    Chaplin, Hannah; Matthews, Alan

    2006-01-01

    Developing countries can produce sugar at much lower cost than in the EU, yet reform of the EU sugar policy will result in both winners and losers among them. This is because the EU is both an exporter and importer of sugar. Sugar policy reform will mean a reduction in EU sugar production, benefiting competitive sugar exporters such as Brazil. But sugar policy reform will adversely affect those developing countries which currently benefit from preferential import access to the EU’s high-price...

  6. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)

    2010-01-15

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  7. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production

    Directory of Open Access Journals (Sweden)

    Franke Ana

    2010-04-01

    Full Text Available Abstract Background The conditions for steam pretreatment of sugar cane bagasse and leaves were studied using CO2 as an impregnating agent. The following conditions were investigated: time (5 to 15 min and temperature (190 to 220°C. The pretreatment was assessed in terms of glucose and xylose yields after enzymatic hydrolysis and inhibitor formation (furfural and hydroxymethylfurfural in the pretreatment. Results from pretreatment using SO2 as impregnating agent was used as reference. Results For sugar cane bagasse, the highest glucose yield (86.6% of theoretical was obtained after pretreatment at 205°C for 15 min. For sugar cane leaves the highest glucose yield (97.2% of theoretical was obtained after pretreatment at 220°C for 5 min. The reference pretreatment, using impregnation with SO2 and performed at 190°C for 5 min, resulted in an overall glucose yield of 79.7% and 91.9% for bagasse and leaves, respectively. Conclusions Comparable pretreatment performance was obtained with CO2 as compared to when SO2 is used, although higher temperature and pressure were needed. The results are encouraging as some characteristics of CO2 are very attractive, such as high availability, low cost, low toxicity, low corrosivity and low occupational risk.

  8. 精制糖生产中树脂选型及影响脱色因素%The Resin Selection in the Refined Sugar Production and the Factors Affecting Discoloration

    Institute of Scientific and Technical Information of China (English)

    杨华

    2013-01-01

    The article expounds the resin selection with ion exchange in the refined sugar production from the perspective of the enterprise production of refined sugar. Combined with practical production experience, the paper finds out and analyzes the factors of affecting resin decolorizing efficiency with ion exchange, and finds the optimization production process indicators that adapt to resin decolorizing with ion exchange, which can offer some beneficial references in the field.%  文章从企业生产精制糖的角度阐述在精制糖生产中对离子交换树脂的选型,结合实际生产经验查找分析影响离子交换树脂脱色效能的因素,找出最优化适应离子交换树脂脱色的生产工艺指标,对其他使用离子交换树脂脱色的制糖企业有一定的参考作用。

  9. Sugar industry dilemma in NWFP

    International Nuclear Information System (INIS)

    Sugarcane is an important cash-crop in Pakistan, ranking fourth in average cultivation after wheat, rice and cotton. It contributed 6.3 percent to the national agricultural value addition and 1.3 percent of the GDP during 2002-2003. It provides direct employment to more than 10,000 persons in NWFP. Sugarcane is grown over an area of more or less one million hectares in Pakistan, the Punjab shares 66.8%, Sindh 23.5% and NWFP shares 9.5% of the total area and 63.7, 26.5 and 9.7% of the production, respectively (Agriculture statistics of Pakistan FRS 2003). The national average cane-yield (47 tonnes per hectare) is far below the existing potential, Sindh with 53 tonnes per hectare is the leading province, followed by NWFP (48 tonnes) and Punjab (45 tonnes per hectare), respectively. In Pakistan, 73 mills are in operation. On the average, these Sugar Mills produce 3.52 million tons Sugar and employed labour force of 1.06 million persons, involving about nine million people of rural population in the production of sugarcane in 2002. In the year 2002-03, cane production was over 52 million tonnes; the Mills utilized (80.28%) of the total cane production with a yield of 3.66 million tonnes of sugar. Part 1 of this paper discusses the importance of sugarcane crop and sugarcane industry towards national economy. In part 2, problems of varied horizon have been covered, in detail, with sound viable recommendations. Finally, conclusions have been drawn in part 3 for consideration by all relevant stakeholders of the sector. To avert problems like low cane-yield, minimum return to farmers, negative attitude and delaying tactics in payments, policy makers and decision-support unit of the province should ensure the following: no further expansion of sugar-mills on political grounds and without viable feasibility; immediate improvement in water-courses, improvement of irrigation efficiency, develop cane-varieties with high sucrose-recovery percentage, reduce cost of production of

  10. EVALUATION OF APPROPRIATENESS OF SUGAR CANE PURCHASE RATE GIVEN BY SUGAR FACTORIES TO SUGAR CANE GROWERS IN KOLHAPUR DISTRICT, MAHARASHTRA (A Case Study of Shri. Chhatrapati Shahu Sahakari Sakhar Karkhana Ltd., Kagal, Tehsil-Kagal)

    OpenAIRE

    Patil, P. T.

    2015-01-01

    Sugarcane occupies an area of 20.42 million ha with a total production of 1333 million metric tons worldwide. Now, in India sugar industries are categorized as a co-operative, private and public sectors. Now few crises were come up in case of cooperative sugar factories in Kolhapur district particularly associated with sugar cane purchase rate given to the sugar cane growers by sugar cane factory. For in-depth analysis out of 14 efficiently working co-operative sugar factories in Kolhapur ...

  11. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  12. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  13. Sugar substitutes: Health controversy over perceived benefits

    Directory of Open Access Journals (Sweden)

    Kirtida R Tandel

    2011-01-01

    Full Text Available Sugar is an inseparable part of the food we consume. But too much sugar is not ideal for our teeth and waistline. There have been some controversial suggestions that excessive sugar may play an important role in certain degenerative diseases. So artificial sweeteners or artificially sweetened products continue to attract consumers. A sugar substitute (artificial sweetener is a food additive that duplicates the effect of sugar in taste, but usually has less food energy. Besides its benefits, animal studies have convincingly proven that artificial sweeteners cause weight gain, brain tumors, bladder cancer and many other health hazards. Some kind of health related side effects including carcinogenicity are also noted in humans. A large number of studies have been carried out on these substances with conclusions ranging from "safe under all conditions" to "unsafe at any dose". Scientists are divided in their views on the issue of artificial sweetener safety. In scientific as well as in lay publications, supporting studies are often widely referenced while the opposing results are de-emphasized or dismissed. So this review aims to explore the health controversy over perceived benefits of sugar substitutes.

  14. PRICE VARIABILITY AND FINANCIAL RISK FOR SUGAR BEET GROWERS

    OpenAIRE

    Nganje, William E.; Stoltman, Gwen

    2000-01-01

    This paper develops a portfolio framework to characterize and analyze the impact of price risk faced by sugar beet growers in the Red River Valley and derives implications for capital markets. Other sources of risk incorporated in the analysis are yields and production cost. Results from stochastic simulation analysis reveal that sugar beet growers incur significant price and financial risk. The hypothesis that the loan rate for sugar truncates the distribution of net returns and protects gro...

  15. The EU Sugar Policy Regime and Implications of Reform

    OpenAIRE

    Elbehri, Aziz; Umstaetter, Johannes; Kelch, David R.

    2008-01-01

    The European Union’s sugar policy, in place since 1968, underwent its first major reform in 2005 in response to mounting and unsustainable imbalances in supply and demand. The reform, however, targeted only a few policy instruments (intervention price cut, voluntary production quota buyout, and restrictions on nonquota sugar exports), while leaving other key policies unchanged (interstate quota trading, sugar-substitute competition, and import barriers). Consequently, the extent of the reform...

  16. Sugar transporters for intercellular exchange and nutrition of pathogens

    OpenAIRE

    Chen, Li-Qing; Hou, Bi-Huei; Lalonde, Sylvie; Takanaga, Hitomi; Hartung, Mara L; Qu, Xiao-Qing; Guo, Woei-Jiun; Kim, Jung-Gun; Underwood, William; Chaudhuri, Bhavna; Chermak, Diane; Antony, Ginny; White, Frank F; Somerville, Shauna C.; Mudgett, Mary Beth

    2010-01-01

    Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, an...

  17. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    International Nuclear Information System (INIS)

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l-1 initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g-1 at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l-1) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature

  18. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  19. Prognosis of organic sugar cane spirit production in the Araras region / Prognose da produção de cachaça orgânica na região de Araras

    Directory of Open Access Journals (Sweden)

    Davi Guilherme Gaspar Ruas

    2009-03-01

    Full Text Available In spite of social and economic value of the Brazilian sugar cane spirit or cachaça, there are few studies about the parameters of agroindustrial of sugar cane and the profile of the producers, along with concern for quality. This agro-industry has significant number of small producers with it’s activity one way to obtain an income, bringing employments and foreign exchange to the country. However, these producers manufacture empirical and rudimental way, based on common sense or information by father or son. The aim of the study was to characterize the profile of the producers of sugar cane spirit or cachaça of the region of Araras, linked them to the viability of obtaining a products of high quality using organic methods. As result of this study was evidenced that the region of Araras shows the same characteristic profile of this sector, where a large majority work in informal conditions, without certificate on Agriculture Ministry and sell its production in local markets. The conditions of manufacturing juice of sugar cane are very rudimentary, where a large majority of producers with simple distillations apparatus. Relatively to the possibility of production of organic sugar cane spirit or cachaça, the main difficulty is located on the rural area, caused by the strong dependence on soluble chemical fertilizers. The production of organic sugar cane spirit or organic cachaça would be one alternative sufficient practicable and attractiveApesar da importância econômica e social da aguardente de cana-de-açúcar ou cachaça, são escassos os trabalhos encontrados na literatura que estabelecem comparações entre as características agroindustriais da cultura e o perfil do produtor, aliado à preocupação com a qualidade. Esta agroindústria se caracteriza por apresentar significativa quantidade de pequenos produtores que possuem nesta atividade uma forma de geração de renda, trazendo para o País divisas e empregos. Entretanto

  20. Intestinal sugar transport

    Institute of Scientific and Technical Information of China (English)

    Laurie A Drozdowski; Alan BR Thomson

    2006-01-01

    Carbohydrates are an important component of the diet.The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucraseisomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.

  1. Comparitive study of copper reduction, chromatographic and enymatic methods to determine reducing sugars in molasses

    Science.gov (United States)

    With more processing of sugarcane or sugarbeet for fuel alcohol production, there is an increasing emphasis on the minimizing of losses from fermentable reducing sugars to improve alcohol yields. Consequently, methods to measure reducing sugars in molasses and other sugar products have become more ...

  2. Determination of reducing sugar content in sugary health care products by titration method%滴定法测定含糖保健品中还原糖含量

    Institute of Scientific and Technical Information of China (English)

    高俊婕; 卿太辉; 蔡伟江

    2015-01-01

    Objective To establish a method for the quantitative analysis of reducing sugar content in sugary health care products. Methods The samples were directly detected by titration method. Hydrochloric acid was added after removal of the protein in the samples, and the copper sulphate solution added with the sample solution after treatment and the blank copper sulphate solution were titrated with glucose standard solution, then the content of reducing sugar in health care products was calculated based on the different consumption of glucose standard solution in the two kinds of solutions. Results The relative standard deviation (RSD) of titration was 0.4%, and the RSD of the hydrolyzate within 2 h was 0.7%, the recovery of reducing sugar by titration was in the range of 100.2%~102.1%, the average recovery was 101.4%, and the relative standard deviation was 0.8%at 3 different adding levels. Conclusion This method is simple, fast, and suitable for the determination of reducing sugar in sugary health care products.%目的:建立含糖保健品中还原糖的定量分析方法。方法采用滴定法直接进行检测。样品除去蛋白质后,加入盐酸,再用葡萄糖标准溶液来滴定加有处理后样品溶液的酒石酸铜溶液和酒石酸铜空白溶液,根据二者的葡萄糖标准溶液消耗量不同,计算测得保健品中还原糖的含量。结果方法的精密度实验相对标准偏RSD为0.4%,水解液在2 h内的RSD为0.7%,3个不同添加水平下,滴定还原糖的回收率范围为100.2%~102.1%,平均回收率101.4%,相对偏差为0.8%。结论本方法样品前处理简单,操作比较快速,适用于添加糖类保健品中还原糖的含量测定。

  3. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    OpenAIRE

    Widayat Widayat; Abdullah Abdullah; H. Satriadi; M Hadi

    2011-01-01

    Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% anti...

  4. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution. PMID:25185390

  5. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  6. DETERMINATION OF THERMODYNAMIC AND KINETIC PARAMETERS OF LARGE SCALE CHROMATOGRAPHIC SEPARATION OF SUGAR AND REDUCING SUGAR

    Institute of Scientific and Technical Information of China (English)

    LiZhong; ShuWenli; 等

    1996-01-01

    The parameter identification model of large scale chromatography separation process is proposed.The phase equilibrium constants and lumped mass transfer coefficients of sugar and reducing sugar adsorption on D1,D2 and D3 resins as well as the axial dispersion coefficients of the fluid through packed columns are determined by means of the pulse-response experiment technique with an inert substance as a tracer and the chromatography measuring technique.The elution curve calculated from these parameters is good agreement with the experimental elution curve.The sensitivity analysis of these parameters is carried out ,and the result shows that the elution curves of chromatography separation are more sensitive to the variations of the phase equilibrium relationship than to the variation of the axial dispersion as well as the lumped mass transfer coefficients.

  7. Engineering of carbon distribution between glycolysis and sugar nucleobiosynthesis in Lactococcus lactis

    NARCIS (Netherlands)

    Boels, I.C.; Kleerebezem, M.; Vos, de W.M.

    2003-01-01

    We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was rea

  8. Are restrictive guidelines for added sugars science based?

    Science.gov (United States)

    Erickson, Jennifer; Slavin, Joanne

    2015-01-01

    Added sugar regulations and recommendations have been proposed by policy makers around the world. With no universal definition, limited access to added sugar values in food products and no analytical difference from intrinsic sugars, added sugar recommendations present a unique challenge. Average added sugar intake by American adults is approximately 13% of total energy intake, and recommendations have been made as low 5% of total energy intake. In addition to public health recommendations, the Food and Drug Administration has proposed the inclusion of added sugar data to the Nutrition and Supplemental Facts Panel. The adoption of such regulations would have implications for both consumers as well as the food industry. There are certainly advantages to including added sugar data to the Nutrition Facts Panel; however, consumer research does not consistently show the addition of this information to improve consumer knowledge. With excess calorie consumption resulting in weight gain and increased risk of obesity and obesity related co-morbidities, added sugar consumption should be minimized. However, there is currently no evidence stating that added sugar is more harmful than excess calories from any other food source. The addition of restrictive added sugar recommendations may not be the most effective intervention in the treatment and prevention of obesity and other health concerns. PMID:26652250

  9. An Update on the Consequences of EU Sugar Reform

    Directory of Open Access Journals (Sweden)

    Sibusiso Moyo

    2011-10-01

    Full Text Available Since its formation the European Union (EU has employed a rather complicated policy to ensure high prices to domestic sugar growers and trade preferences to certain sugar exporting countries, e.g. the African Caribbean and Pacific (ACP group. One result of this policy is that the EU has been both the second largest importer and second largest exporter in the world market. Under pressure from the World Trade Organization (WTO, the EU agreed to reform its policies toward sugar in 2001, with the full effect of the reforms being fully implemented in 2006. In this paper, the impact of the sugar reform on EU production, consumption, imports, and exports is examined especially with regard to how it all affects the ACP countries who receive preferential treatment regarding access to EU sugar markets. Preliminary analysis indicates that lowering domestic EU prices, while quotas requirements for ACP countries remain intact might have negative revenue implications for poor sugar producers.

  10. Design of Evaporation Systems and Heaters Networks in Sugar Cane Factories Using a Thermoeconomic Optimization Procedure

    OpenAIRE

    Adriano V. Ensinas; Nebra, Silvia Azucena; Miguel A. Lozano; Serra, Luis M.

    2007-01-01

    Sugar cane production in Brazil is one of the most competitive segments of the national economy, producing sugar and ethanol for internal and external markets. Sugar production is done basically in several steps: juice extraction, juice clarification and evaporation, syrup treatment and sugar boiling, crystallization, centrifugation and drying. Much heat exchange equipment is used in this process.. An optimized design of the evaporation system with the correct distribution of the vapor bleed ...

  11. Design of Evaporation Systems and Heaters Networks in Sugar Cane Factories Using a Thermoeconomic Optimization Procedure

    OpenAIRE

    Serra, Luis M.; Miguel A. Lozano; Silvia Azucena Nebra; Adriano V. Ensinas

    2007-01-01

    Sugar cane production in Brazil is one of the most competitive segments of the national economy, producing sugar and ethanol for internal and external markets. Sugar production is done basically in several steps: juice extraction, juice clarification and evaporation, syrup treatment and sugar boiling, crystallization, centrifugation and drying. Much heat exchange equipment is used in this process.. An optimized design of the evaporation system with the correct distribution of the vap...

  12. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    OpenAIRE

    Dominik Schmitt; Carolin Regenbrecht; Marius Hartmer; Florian Stecker; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of ...

  13. Monitoring Domoic Acid production by Solid Phase Adsorption Toxin Tracking off the Santa Cruz Municipal Warf, Santa Cruz, California

    Science.gov (United States)

    Nolan, M.; Ziccarelli, L.; Kudela, R. M.

    2013-12-01

    Certain species of the diatom genus Pseudo-nitzschia are producers of the neurotoxin, domoic acid (DA). DA is known to cause amnesic shellfish poisoning also known as domoic acid poisoning, which can lead to permanent brain damage in humans and marine mammals. DA accumulates at higher trophic levels, generally due to consumption of toxic cells or through trophic transfer, and can potentially cause death of both humans and marine wildlife. The Santa Cruz Municipal Warf experiences periodic rises in DA concentrations, which can reach toxic levels in shellfish, fish, and other marine organisms. While these increases in toxicity often occur during Pseudo-nitzschia blooms, several periods of elevated DA have occurred when diatom abundance is restricted and/or dominated by non-toxic species, and there is increasing evidence that DA dissolved in seawater may be prevalent. One theory suggests that senescent or dead Pseudo-nitzschia cells sink to the benthos while retaining their toxin and are buried in sediment following the death of a bloom. Therefore, DA may accumulate in the benthos, where it is eventually released during storms or wave and tide conditions that disturb the sediment. We sampled DA in situ using Solid Phase Adsorption Toxin Tracking (SPATT) bags SPATT uses a synthetic resin to capture dissolved DA, allowing for the determination of integrated DA concentrations at known time intervals. The alternative method is mussel biotoxin monitoring, but it is less accurate due to uncertainties in the time of DA accumulation within the mussel, and the lack of uptake of dissolved DA by the mussel. We deployed and collected SPATT off the Santa Cruz Municipal Wharf at multiple depths beginning in February 2013. We expect to see increasing DA following the death of a harmful algal bloom. Under pre-bloom conditions, little to no DA has been detected in mussels or surface SPATT, but DA from SPATT is frequently observed at depth, suggesting that the sediment is exposed to

  14. Root rot in sugar beet piles at harvest

    Science.gov (United States)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  15. Sugar Cane Magic.

    Science.gov (United States)

    Mower, Nancy Alpert

    The booklet contains a story for middle-grade students which shows how the roles of men and women change through the years. The main characters are three sixth graders in Hawaii: one girl has Hawaiian ancestors, one girl has Japanese ancestors, and one boy has New England missionary ancestors. The children discover a magic stalk of sugar cane…

  16. SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    OpenAIRE

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-01-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex trait...

  17. Future sustainability of the sugar and sugar-ethanol industries

    Science.gov (United States)

    Like many other food and chemical industries, the sugar and sugar-ethanol industries are facing important sustainability issues. The relatively low and fluctuating profit for sugar, the world-wide impetus to produce alternatives to petroleum-based fuels and reduce green house gases, and water- and ...

  18. Forecasting Sales in a Sugar Factory

    Directory of Open Access Journals (Sweden)

    Vassilios ASSIMAKOPOULOS

    2011-12-01

    Full Text Available Beets’ cultivation and sugar production represent one of the most important parts of Greek agricultural economy. A careful and well-organized planning of the production as well as the determination of an accurate safety stock is important for sugar industry, as for many other companies and organizations, in order to define the production quantity which leads to maximum revenues and profits. Forecasting, and especially widely used statistical forecasting techniques, is the best way for policymakers to organize their activities and company’s production and make the appropriate adjustments. Apparently, management information systems and forecasting support packages play a leading role in this area, since the amount of data under process is usually quite large and demands an automated procedure to effectively produce and evaluate forecasts. In this case study, “Pythia”, an expert forecasting platform developed by the Forecasting and Strategy Unit of the National Technical University of Athens, was implemented on a monthly data series regarding sugar sales of a Greek sugar factory for the years 2000-2005, bringing theory and practice together. Additionally, the methods or combinations of methods which are well suited for this time series are highlighted based on three error indices. Finally, the results of the study and conclusions are considered and perspectives of progress and development in the field of forecasting are contemplated.

  19. Frequently Asked Questions about Sugar

    Science.gov (United States)

    ... in Americans' diets? Sugar-sweetened beverages including regular soft drinks, sports drinks and fruit drinks (fruitades and fruit ... milk). Does this mean I should avoid all soft drinks and other sugar-sweetened beverages? You can choose ...

  20. Low blood sugar symptoms (image)

    Science.gov (United States)

    ... nervousness and irritability are signs that a person's blood sugar is getting dangerously low. A person showing any of these symptoms should check their blood sugar. If the level is low (70 mg/dl), ...

  1. Know Your Blood Sugar Numbers

    Science.gov (United States)

    ... Your Heart Alternate Language URL Español Know Your Blood Sugar Numbers: Use Them to Manage Your Diabetes Page Content Checking your blood sugar, also called blood glucose, is an important part ...

  2. Manage your blood sugar (image)

    Science.gov (United States)

    Checking your blood sugar levels often and writing down the results will tell you how well you are managing your diabetes so you ... possible. The best times to check your blood sugar are before meals and at bedtime. Your blood ...

  3. Know Your Blood Sugar Numbers

    Science.gov (United States)

    ... with your health care team. What are target blood sugar levels for people with diabetes? A target is something ... gly- see -mee-uh). It means that your blood sugar level is higher than your target level or over ...

  4. Carbohydrates, Sugar, and Your Child

    Science.gov (United States)

    ... are: simple carbohydrates (or simple sugars): these include fructose, glucose, and lactose, which also are found in nutritious ... look at the ingredient list for sugar, corn syrup or sweetener, dextrose, fructose, honey, or molasses, to name just a few. ...

  5. Sugar-water hemolysis test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003673.htm Sugar-water hemolysis test To use the sharing features on this page, please enable JavaScript. The sugar-water hemolysis test is a blood test to detect ...

  6. Produção de carvão ativado a partir de bagaço e melaço de canade- açúcar = Production of granular activated carbons from sugar cane bagasse and molasses

    Directory of Open Access Journals (Sweden)

    Gilberto da Cunha Gonçalves

    2006-01-01

    Full Text Available Carvões ativados foram preparados a partir de diferentes misturas de bagaço e melaço de cana-de-açúcar. A relação mássica bagaço:melaço variou de 1:0 a 1:2. Cada mistura foi prensada, formando pellets, os quais foram submetidos a uma pirólise sob fluxo de 150 mL·min-1 de N2, a 850°C, por 1 hora. Os carvões pirolisados foram ativados comCO2, sob fluxo de 75 mL·min-1, a 850°C, durante 30 min. A caracterização dos carvões ativados foi realizada pela análise de isotermas de adsorção física de N2 (77 K, pH e descoloração de soluções de melaço de cana (1% p/v. O rendimento médio dos carvõesativados foi de 23% em relação aos pellets iniciais. A área superficial específica dos carvões variou de 272 a 455 m2·g-1 com predominância de micro e mesoporos. Os carvões ativados preparados com pequena adição de melaço apresentaram-se tão eficientes na descoloração quanto um carvão ativado comercial, utilizado como referência.Activated carbons were prepared from mixtures of sugar cane bagasse and molasses in bagasse:molasses mass ratios from 1:0 to 1:2. The mixture was pressed to form pellets, and pyrolyzed under N2 flow of 150 mL·min-1, at 850°C, for 1 hour. The pyrolyzed carbons were activated with CO2, under the flow of 75 mL·min-1 at 850°C for 30 min. The activated carbons were characterized by an analysis of nitrogen adsorption isotherms (77 K, pH, and solutions decolorization of sugar cane molasses (1% w/v. Results showed that the activated carbons presented yield of 23% in relation to the initial pellets, surface areas from 272 to 455 m2·g-1, and that micro and mesopores were predominant in the pore size distribution. Activated carbons made with a smaller amount of molasses in the mixture were as efficient in the decolorization as a commercial reference carbon.

  7. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis Efeito da presença de etanol inicial na produção de etanol em caldo de cana-de-açúcar fermentado por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Marcia Sadae Tano

    2003-07-01

    Full Text Available Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g sugar consumed.Foi avaliada a produção de etanol em caldo de cana-de-açúcar com alta concentração de açúcar inicial, fermentado por Z. mobilis, na presença e na ausência de etanol inicial. A produção de etanol nos dois meios foi baixa. A presença de etanol inicial no caldo de cana-de-açúcar causou uma redução de 48,8% na produção de etanol, de 25% na produção de biomassa e de 28,3% no consumo de açúcar total. A presença de etanol inicial ao meio não teve efeito significante para a produção de levana e no coeficiente de produtividade em biomassa (g biomassa/g açúcar consumido.

  8. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  9. 苦瓜枸杞低糖酸奶的研制%Production and research on low-sugar yoghurt with balsam pear and Lycium barbarum

    Institute of Scientific and Technical Information of China (English)

    宋立; 李雨露; 马勇; 吕长鑫; 励建荣

    2011-01-01

    The optimum formula and technique of yoghurt were studied by using aspartame and acesulfame potassium as substitutes of sucrose with milk,balsam pear,Lycium barbarum and de-fatted milk powder as material. The results showed that 3% of mixed bacteria with lactobacillus l. d. Bulgaricus and Str. Thermophilus as proportion 1∶ 1 was inoculated after milk,the sweetener 0. 010%(aspartame:acesulfame potassium=1∶ 1),balsam pear juice 1. 5%,Lycium barbarum juice 3% and 2% de-fatted milk powder were mixed,homogenized and sterilized. The low- sugar yoghurt with balsam pear and Lycium barbarum was produced through fermentation under 42℃ for 4h. The low-sugar yoghurt was uniform in color,fine in texture and smooth organizing,delicious taste in sour and sweet with coordinated flavour.%研究了以牛奶、苦瓜、枸杞、脱脂奶粉为主要原料,并以阿斯巴甜和安赛蜜替代蔗糖来生产酸奶的最佳配方及工艺。结果表明,牛奶与0.010%的甜味剂(阿斯巴甜∶安赛蜜=1∶1)、1.5%的苦瓜汁、3%的枸杞汁、2%的脱脂奶粉混合、均质、杀菌后,接入保加利亚乳杆菌与嗜热链球菌比例为1∶1的混合菌种3%,在42℃条件下发酵4h,制得颜色均一、组织细腻、酸甜爽口、香味协调的苦瓜枸杞低糖酸奶。

  10. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  11. Adsorption of octylamine on titanium dioxide

    International Nuclear Information System (INIS)

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO2 in the production of pharmaceuticals.

  12. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    Science.gov (United States)

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    The main goal of the current investigation was to use sugar cane bagasse ash (SCBA) and to compare its adsorption efficiency with Magnesol XL as synthetic adsorbents to regenerate the quality of used frying sunflower oil. In addition, to evaluate the effect of water washing process on the quality of used frying oil and the treated oil. The metal patterns of sugar cane bagasse ash and Magnesol XL were determined. Some physical and chemical properties of unused, used frying and used-treated sunflower oil were determined. Sunflower oil sample was heated at 180 °C + 5 °C, then frozen French fries potato were fried every 30 min. during a continuous period of 20 h. Oil samples were taken every 4 h. The filter aids were added individually to the used frying oil at levels 1, 2 and 3 % (w / v), then mechanically stirred for 60 min at 105 °C. The results indicate that all the filter aids under study were characterized by high levels of Si and variable levels of other minerals. The highest level of Si was recorded for sugar cane bagasse ash (SCBA) was 76.79 wt. %. Frying process caused significant (P ≤ 0.05) increases in physico-chemical properties of sunflower oil. The treatments of used frying sunflower oil with different levels of sugar cane bagasse ash and Magnesol XL caused significant (P ≤ 0.05) increase in the quality of treated oil, however the soap content of treated oil was increased, therefore, the effect of water washing process on the quality of used frying and used-treated sunflower oil was evaluated. The values of soap and Total polar compounds after water treatment were about 4.62 and 7.27 times as low as that for sunflower oil treated with 3 % sugar cane bagasse ash (SCBA). The results of the present study indicate that filtration treatment with different levels of sugar cane bagasse ash( SCBA) regenerated the quality of used sunflower oil and possess higher adsorbing effects than the synthetic filter aid ( Magnesol XL ) in

  13. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    Science.gov (United States)

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    The main goal of the current investigation was to use sugar cane bagasse ash (SCBA) and to compare its adsorption efficiency with Magnesol XL as synthetic adsorbents to regenerate the quality of used frying sunflower oil. In addition, to evaluate the effect of water washing process on the quality of used frying oil and the treated oil. The metal patterns of sugar cane bagasse ash and Magnesol XL were determined. Some physical and chemical properties of unused, used frying and used-treated sunflower oil were determined. Sunflower oil sample was heated at 180 °C + 5 °C, then frozen French fries potato were fried every 30 min. during a continuous period of 20 h. Oil samples were taken every 4 h. The filter aids were added individually to the used frying oil at levels 1, 2 and 3 % (w / v), then mechanically stirred for 60 min at 105 °C. The results indicate that all the filter aids under study were characterized by high levels of Si and variable levels of other minerals. The highest level of Si was recorded for sugar cane bagasse ash (SCBA) was 76.79 wt. %. Frying process caused significant (P ≤ 0.05) increases in physico-chemical properties of sunflower oil. The treatments of used frying sunflower oil with different levels of sugar cane bagasse ash and Magnesol XL caused significant (P ≤ 0.05) increase in the quality of treated oil, however the soap content of treated oil was increased, therefore, the effect of water washing process on the quality of used frying and used-treated sunflower oil was evaluated. The values of soap and Total polar compounds after water treatment were about 4.62 and 7.27 times as low as that for sunflower oil treated with 3 % sugar cane bagasse ash (SCBA). The results of the present study indicate that filtration treatment with different levels of sugar cane bagasse ash( SCBA) regenerated the quality of used sunflower oil and possess higher adsorbing effects than the synthetic filter aid ( Magnesol XL ) in

  14. A methodological approach to sugar mill diversification and conversion

    Directory of Open Access Journals (Sweden)

    Noé Aguilar Rivera

    2012-03-01

    Full Text Available Sugar industry diversification is complex, being constrained by biophysical and socioeconomic conditions. Ongoing work has shown the sugarcane industry’s potential as biorefinery or its sustainable use by offering products as raw material. However, few studies have studied how such potential could be achieved by promoting a conventional sugar mill through integrating its indicators for developing an efficient diversified processing plant which would contribute towards fossil energy saving and competitiveness. This paper presents a conceptual framework for analysis based on existing knowledge regarding sugar industry state-of-the-art for evaluating diversification, using analytical hierarchy process (AHP as a tool for analysing complex systems, identifying alternatives to the current situation and discussing them to facilitate collective decision-making. Sugar mill AHP scores enabled discussion about the variables most affecting sugar mill diversification (0.332 factory yield, 0.327 sugar mill products and 0.121 sugarcane quality. The results serve as a useful guidance for formulating strategies for the optimum use of by-products in a sugar mill while maximising benefits to modify/convert a traditional sugar mill to a so-called bio-refinery.

  15. Adsorption and wetting.

    OpenAIRE

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption and wetting are derived. The surface pressure of a film, formed by vapour adsorption on a solid surface, is calculated by integrating the vapour adsorption isotherm. The surface pressure at the sat...

  16. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  17. Domestication of the high-sugar-tolerant Mortierella alpina on arachidonic acid (ARA) production%花生四烯酸产生菌高山被孢霉的高糖驯化研究

    Institute of Scientific and Technical Information of China (English)

    曾思钰; 凌雪萍; 张长杰; 卢英华

    2012-01-01

    [目的]提高花生四烯酸(Arachidonic acid,ARA)产量,克服ARA产生菌高山被孢霉(Mortierella alpina)在长期的保存及使用过程中易受到外界条件影响发生退化,从而导致菌种耗糖量降低、影响菌种摄入营养的能力和不利于工业化生产的缺点.[方法]首先采用固体培养基驯化,将菌种逐级涂布于梯度高糖PDA平板(含糖量分别为2%、5%、7%、10%和15%)培养,挑选经固体驯化后能耐受10%高糖浓度平板的菌种,转接到两种含不同氮源的梯度高糖(含糖量分别为3%、4%、5%和6%)液体培养基中进行驯化,最后对驯化后的菌种进行2L发酵罐放大实验.[结果]当培养基中以酵母粉为氮源时,驯化后菌体的最高耗糖量由3 g/(L·d)提高到12 g/(L·d);当培养基中以玉米浆为氮源时,驯化后菌体的最高耗糖量由7 g/(L·d)提高到12 g/(L·d).摇瓶驯化实验结果表明以玉米浆为氮源驯化的菌种发酵效果较好,发酵罐实验结果显示菌体生物量为50 g/L,总油脂为18 g/L,目的产物ARA产量为8g/L.相比未驯化之前的发酵结果,生物量和总油脂含量提高了近3倍,ARA产量提高了近4倍.[结论]经过高糖驯化,菌种的耗糖能力得到提高,生物量、总油脂及ARA的产量也都有所增加,从而可以使菌种在保存和使用过程中不易退化,保持稳定.%[Objective] In order to improve arachidonia acid (ARA) production, and prevent the degeneration of ARA-producing strain Mortierella alpina in long-term culture preservation and cultivation, which could lead to low consumption rate of substrates like carbon source. [Methods] Mortierella alpina strain was first domesticated in high-sugar PDA plate with gradient sugar content (2%, 5%, 7%, 10% and 15%). The strain which grew better in the solid medium containing 10% sugar was then selected and transferred to two liquid high-sugar media with different nitrogen sources to domesticate. The gradient sugar

  18. 75 FR 60715 - Domestic Sugar Program-FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing Allotments and...

    Science.gov (United States)

    2010-10-01

    ... Commodity Credit Corporation Domestic Sugar Program--FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing... 2010 (FY 2010) State sugar marketing allotments and company allocations to sugarcane and sugar beet processors. This applies to all domestic sugar marketed for human consumption in the United States...

  19. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  20. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings.

    Science.gov (United States)

    Yao, Ying; Gao, Bin; Inyang, Mandu; Zimmerman, Andrew R; Cao, Xinde; Pullammanappallil, Pratap; Yang, Liuyan

    2011-06-15

    Biochar converted from agricultural residues or other carbon-rich wastes may provide new methods and materials for environmental management, particularly with respect to carbon sequestration and contaminant remediation. In this study, laboratory experiments were conducted to investigate the removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings (DSTC). Batch adsorption kinetic and equilibrium isotherm experiments and post-adsorption characterizations using SEM-EDS, XRD, and FTIR suggested that colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous phosphate. Batch adsorption experiments also showed that both initial solution pH and coexisting anions could affect the adsorption of phosphate onto the DSTC biochar. Of the mathematical models used to describe the adsorption kinetics of phosphate removal by the biochar, the Ritchie N_th-order (N=1.14) model showed the best fit. Two heterogeneous isotherm models (Freundlich and Langmuir-Freundlich) fitted the experimental isotherm of phosphate adsorption onto the biochar better than the Langmuir adsorption model. Our results suggest that biochar converted from anaerobically digested sugar beet tailings is a promising alternative adsorbent, which can be used to reclaim phosphate from water or reduce phosphate leaching from fertilized soils. In addition, there is no need to regenerate the exhausted biochar because the phosphate-laden biochar contains abundance of valuable nutrients, which may be used as a slow-release fertilizer to enhance soil fertility and to sequester carbon. PMID:21497441