WorldWideScience

Sample records for adsorption sugar production

  1. Pore-scale dynamics of enzyme adsorption, swelling and reactive dissolution determine sugar yield in hemicellulose hydrolysis for biofuel production

    Science.gov (United States)

    Dutta, Sajal Kanti; Chakraborty, Saikat

    2016-12-01

    Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale–the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80–90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5–6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.

  2. Cellulose hydrolysis by Trichoderma reesei cellulases: studies on adsorption, sugar production and synergism of cellobiohydrolase I,II and endoglucanase II

    Energy Technology Data Exchange (ETDEWEB)

    Medve, J.

    1997-02-01

    Three major cellulases have been purified by ion-exchange chromatography in an FPLC system. Microcrystalline cellulose (Avicel) was hydrolyzed by the single enzymes and by equimolar mixtures of CBH I-CBH II and CBH I-EG II. Enzyme adsorption was followed indirectly by selectively quantifying the enzymes in the supernatant by ion-exchange chromatography in an FPLC system. The (synergistic) production of small, soluble sugars (glucose, cellobiose and cellotriose) by the enzymes was followed by HPLC. 76 refs

  3. Industrial wastewater treatment plant of sugar production

    OpenAIRE

    Čad, Luka

    2016-01-01

    Sugar as product in our every day’s life’s been consumed in enormous quantities as one of main resources in food and drink industry. Production processes of sugar from sugar beet bring significant environmental impacts with it’s waste waters as the biggest pollutant. The thesis deals with sugar production waste water’s treatment process by presenting an example of waste water treatment plant of sugar factory, therefor presenting the production processes in sugar factories and their environmen...

  4. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...

  5. Modelling of moisture adsorption for sugar palm (Arenga pinnata) starch film

    Science.gov (United States)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Hernawan

    2017-03-01

    Sorption characteristic of food products is important for design, optimization, storage and modelling. Sugar palm starch film with two different plasticizers (sorbitol and glycerol) with varied concentration studied for its adsorption isotherm characteristic. The data of adsorption isotherm fitted with GAB, Oswin, Smith and Peleg models. All models describe the experiment data well, but Peleg model is better than the other models on both sugar palm starch film plasticized with sorbitol and glycerol. Moisture sorption of sugar palm starch increased linearly with plasticizer concentration. A new model by taking account of plasticizer concentration describes the experiment data well with an average of coefficients of determination (R2) 0.9913 and 0.9939 for film plasticized with glycerol and sorbitol respectively.

  6. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  7. Microbiological Spoilage of High-Sugar Products

    Science.gov (United States)

    Thompson, Sterling

    The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

  8. Improving the process of I carbonation in sugar production

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2016-01-01

    Full Text Available Of the total effect of the removal of non-sugars 30–36 % achieved in modern schemes extract purification, a large proportion removed by adsorption of calcium carbonate particles formed in the process of carbonation. To improve the efficiency of the purification steps juice we have proposed a two-stage carbonation I cleaned juice. Holding two stages I saturation at high pH juice is justified in view of the efficiency of adsorption treatment with calcium carbonate. To quantify the proposed option saturation performed laboratory research on plant juices derived from beet varying quality, with the definition of quality indicators to be cleansed juice at all stages of processing the raw juice in warm preliming, the combined main liming, I and II carbonation. Indicators were evaluated for juice in the sugar industry accepted methods. In comparison with the standard version of the proposed two-stage version of I carbonation with intermediate filtration improves filtration performance carbonated juice on 24–26 %, reduce the color of the purified juice to 17–23 %, the content of calcium in the 22–24 %, improve the overall treatment effect 16–19 % (relative. Improving the quality of the purified juice ensures the production of white sugar of standard quality, an increase in the cleaning effect of diffusion juice reduces the loss of sucrose in the molasses and increases the yield of the final commercial product. The proposed version of the separation processes of thermochemical conversion of non-sugars will create conditions for maximum removal by adsorption of their decay products, particularly dyes.

  9. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    Science.gov (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  10. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  11. Bioethanol production from fermentable sugar juice.

    Science.gov (United States)

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Boyce, Amru Nasrulhaq

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.

  12. Supply optimization for the production of raw sugar

    DEFF Research Database (Denmark)

    Grunow, Martin; Günther, H.O.; Westinner, R.

    2007-01-01

    Based on a case study from Venezuela, the production of raw sugar is investigated. Ideally, sugar mills operate at a constant production rate. However, safety stocks of the raw material cannot be maintained as sugar cane quality deteriorates very rapidly. Sugar cane is therefore continuously...

  13. PRODUCTION VALUES OF INVESTIGATED SUGAR BEET HYBRIDS

    Directory of Open Access Journals (Sweden)

    M. Pospišil

    2006-06-01

    Full Text Available Production values of 43 experimental and recognized sugar beet hybrids were conducted on the Zagreb location in the period 2003-2005. The trials included hybrids from six breeding institutions that sell sugar beet seed in the Republic of Croatia. Research results have revealed significant differences in yields and root quality among inve- stigated sugar beet hybrids. However, the results of a large number of hybrids were equal in value; namely, the dif- ference between them was within the statistically allowable deviation. The hybrids KW 0148 HR and Buda in 2003, Sofarizo and Takt were distinguished by high sugar yields in 2004, whereas Merak, Impact and Europa in 2005. The highest root yields were recorded for hybrids Dioneta, Buda and KW 0148 HR in 2003, Sofarizo, Takt, HI 0191 and Dorotea in 2004, Impact and SES 2371 in 2005. The highest root sugar contents were determined in hybrids Zita and Evelina in 2003, Cyntia, Diamant and Belinda in 2004, and Merak, Belinda and Cyntia in 2005.

  14. BREAK-EVEN POINT IN SUGAR-BEET PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ilija Nedić

    2015-05-01

    Full Text Available World sugar consumption has been recording a steady growth in the past 70 years and, according to all relevant estimates, it will continue to grow also in the next decade, which puts sugar in the category of the most significant foods and commodities in the world. Of the total world sugar production, around 77% is derived from sugar cane and 23% from sugar beet. Brazil has been the world leader in sugar production for a long period of time, producing white sugar from sugar cane only, whereas the leader in the production of sugar derived from sugar beet is the EU-28. When the Republic of Croatia joined the EU, the Croatian sugar industry became part of the single European sugar market, so the break-even point was used in the research to determine the competitiveness level of the Croatian sugar beet production. Based on the expected selling price of sugar beet amounting to EUR 34 per ton of standard quality sugar beet, and using the break-even method, it was determined that the quantity required to cover total costs in sugar beet production in the Republic of Croatia amounts to 55.26 tons per hectare of payable sugar beet, standard quality, i.e. 8.84 tons of polarized sugar per hectare. As the average sugar beet production in the Republic of Croatia, expressed in the equivalent of polarized sugar, amounts to 7.8 tons per hectare, it is obvious that an average Croatian producer of sugar beet, without income from subsidies, operates at a loss.

  15. RESEARCH OF LIMY AND CARBONATE SYSTEM OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2012-01-01

    Full Text Available Influence of рН and temperature on activity of suspension of lime and carbonate in sugar production is investigated. Possibility of decrease in a consumption of reagents on purification of production sugar solutions is established.

  16. Biofuel production from plant biomass derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, R.

    2007-03-15

    This report details the results of a project that aimed to develop a recombinant thermophilic microorganism able to produce ethanol in a commercial yield from mixed C5 (xylose and arabinose) and C6 (mainly glucose) sugar substrates typically found in biomass hydrolysates. The main focus of the project was on producing a stable recombinant which formed ethanol as its major product and did not produce significant quantities of by-products. The costs of bioethanol could be substantially reduced if cheap plant-based feedstocks could be utilised. This study focussed on a strain of Geobacillus thermoglucosidasius known to be a thermophilic ethanol producer and developed the genetic manipulation techniques necessary to engineer its metabolism such that unwanted products (mainly organic acids) were no longer formed and ethanol became the overwhelming product. An appropriate genetic took kit to allow the required metabolic engineering was acquired and used to inactivate the genes of the metabolic pathways involved in the formation of the organic acids (e.g. lactic acid) and to up-regulate genes concerned with the formation of ethanol. This allowed the flow of metabolites derived from the sugar substrates to be redirected to the desired product. Stable mutants lacking the ability to form lactic acid were created and shown to give enhanced levels of ethanol, with yields from glucose approaching those achieved in yeast fermentations and low by-product formation.

  17. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Science.gov (United States)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  18. Pollen dispersal in sugar beet production fields.

    Science.gov (United States)

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  19. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivati

  20. Ethanol production in fermentation of mixed sugars containing xylose

    Science.gov (United States)

    Viitanen, Paul V.; Mc Cutchen, Carol M.; Li; Xu; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen; Franden, Mary Ann

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  1. Production of clean pyrolytic sugars for fermentation.

    Science.gov (United States)

    Rover, Marjorie R; Johnston, Patrick A; Jin, Tao; Smith, Ryan G; Brown, Robert C; Jarboe, Laura

    2014-06-01

    This study explores the separate recovery of sugars and phenolic oligomers produced during fast pyrolysis with the effective removal of contaminants from the separated pyrolytic sugars to produce a substrate suitable for fermentation without hydrolysis. The first two stages from a unique recovery system capture "heavy ends", mostly water-soluble sugars and water-insoluble phenolic oligomers. The differences in water solubility can be exploited to recover a sugar-rich aqueous phase and a phenolic-rich raffinate. Over 93 wt % of the sugars is removed in two water washes. These sugars contain contaminants such as low-molecular-weight acids, furans, and phenols that could inhibit successful fermentation. Detoxification methods were used to remove these contaminants from pyrolytic sugars. The optimal candidate is NaOH overliming, which results in maximum growth measurements with the use of ethanol-producing Escherichia coli.

  2. Anaerobic co-digestion of by-products from sugar production with cow manure

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Sugar beet leaves (SBL), sugar beet top (SBT), sugar beet pulp (SBP) and desugared molasses (DM) are by-products from the sugar production. In the present study we investigated the potential of SBL, SBT and SBP as feedstock for biogas production. The maximum methane potential of SBL, SBT and SBP...

  3. PROSPECTS OF SUGAR PRODUCTION AND IMPORTS: MEETING THE SUGAR DEMAND OF NIGERIA BY YEAR 2020

    Directory of Open Access Journals (Sweden)

    J.N. Nmadu

    2013-02-01

    Full Text Available The trend of sugar cane production and refined sugar imports for the period 1960-2010 were analysed and forecasted to year 2020. Results show that sugar cane output will rise to 2.8m tonnes from about 88 thousand hectares of land by year 2020. The total refined sugar that will be available from production and import is about 720 thousand tonnes but with Nigerian population growing at the rate of 2.27%, potential demand for refined sugar will rise to 1.6B tonnes by the year 2020 creating a deficit of over 1.5B tonnes. This require a drastic action which if not taken will lead to sugar crisis. Three major options are advocated in this paper i.e. hectarage expansion, massive funding of research to improve sugar cane production technology such that yield will rise to 150 tonnes per hectare and import expansion. Of the three options, only increase funding of research will encourage local technology and save Nigeria foreign exchange of more than $100B annually and will make Nigeria self-reliant in sugar production by the year 2020 and facilitate the emergence of Nigeria as a developed nation.

  4. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols.

  5. 75 FR 23631 - Sugar Re-Export Program, the Sugar-Containing Products Re-Export Program, and the Polyhydric...

    Science.gov (United States)

    2010-05-04

    ...; ] DEPARTMENT OF AGRICULTURE Foreign Agricultural Service 7 CFR Part 1530 Sugar Re-Export Program, the Sugar... cane sugar under subheading 1701.11.20 of the HTS for the production of polyhydric alcohols, except polyhydric alcohols for use as a substitute for sugar in human food consumption, or to be refined and...

  6. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...... and chopped heat-treated meat emulsion. The addition of salt resulted in softer, less stiff and chewy, and less adhesive gels. Generally speaking, sugar addition increased the hardness but at high concentration the gels were very brittle. However, Young's modulus was lower in gels containing sugar than...

  7. EVOLUTION OF SUGAR BEET AND SUGAR PRODUCTION IN ROMANIA AFTER ITS ACCESSION INTO THE E.U.

    Directory of Open Access Journals (Sweden)

    Aurel-Florentin BADIU

    2014-03-01

    Full Text Available The paper presents an analysis of the evolution for sugar beet production and sugar beet extraction after Romania accesion in European Union. The analysis is based on the evolutions of areas, total and average yields per unit of area. The last period (2007- 2013 is compared to the previous period (2001-2006, utilised at reference. Also, it is performed in the four sugar factories respectively (SC AGRANA Romania SA, Sugar Factory Bod, SC sugar Oradea SA, sugar Ludus SA and it was made for the 2007-2013 period, after the application of EU’s rules for sugar market. The study presents the evolution of the biological sugar content and white sugar content between the years 2007 and 2013 and it evaluates the variability of the way of achieving production quotas. The main conclusion imposed after the analysis is that the systems of sugar production from sugar beet are stabilized. Statistically multi-annual average deviation from the assigned quota is approx .2%. Annual variations of sugar production are set between (- 15 % - (+ 43%, compared with the Romanian quota (104.688 tons white sugar.

  8. MICROFLORA OF BEET SUGAR PRODUCTION: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2014-01-01

    Full Text Available Summary. Sugar beet is one of the strategic crops for food safety of Russia. The lack of specialized warehouse for harvest does not provide storage of roots for a long time. In the case of a thaw roots that have been defrosted unsuitable for processing. Beet and products of its processing is a good object for the development of microorganisms. Permanent microflora of sugar production are: Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and other kinds of microorganisms, leading to a problem processing of beet root and reduced quality of sugar. The most dangerous is the slimy bacteriosis is a bacterial disease beet caused by heterofermentative cocci of Leuconostoc (Leuconostoc mesenteroides, L. dextranicum. Product of the vital activity of microorganisms is dextran, which is synthesized from sucrose as a result of dextrany or mucous fermentation and leads to significant technological problems in processing of infected beet. Improving the efficiency of sugar production is connected with decrease in loss of quality of raw material preparation, storing and processing of sugar beet. At sugar plants use a variety of drugs that suppress the growth of pathogenic microflora, but there comes a rapid adaptation of microorganisms, therefore there is a need to implement new products to prevent damage to roots and improve the quality of produced sugar. To resolve this problem experimentally selected bactericidal drug, defined its rational concentration and conditions for the use in sugar beet production. The use of antibacterial drug in the process of extraction allows to increase the purity of diffusion juice 1.3 %, reduce the protein content in it (12.5 %; with the purity of the pure juice increases by 1.1 %, its color index is reduced by 44.7 %.

  9. THE EFFECT OF NITROGEN INPUT ON POLARISED SUGAR PRODUCTION AND QUALITATIVE PARAMETERS OF SUGAR BEET

    Directory of Open Access Journals (Sweden)

    MILAN MACÁK

    2007-11-01

    Full Text Available During 1998-2002, the application of different forms and doses of nitrogen on quantitative (polarised sugar productionand qualitative parameters (digestion, molasses forming components - potassium, sodium and α-amino nitrogen content of sugar beet in vulnerable zones (Nitrate directive was studied. Calculated input of nitrogen ranged from 12 kg up to 240 kg N.ha-1. By increasing input of N from FYM application into the soil causes an increases of α- amino nitrogen content in root, which in consequence causes a decreases the sugar content (negative correlation r= -0.8659+. The application of straw instead FYM of analogues treatments caused significant decrease (straw versus FYM and highly significant decrease (straw plus N fertilizers versus FYM plus N fertilizers of α-amino nitrogen content in sugar beet root living the productive parameters unchanged. The content of α-amino nitrogen in root of sugar beet indicate an environmentally friendly management practices with causal relation to water protection from nitrate.

  10. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    in standard gels. Protein reduced the hardness, stiffness and chewiness of the gels whereas there were some variation in the effect of protein on the adhesiveness of the gels. Sugar beet pectin in black currant juice formed a gel and a gelation also took place in milk. In luncheon meat a cohesive gel......Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...

  11. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Science.gov (United States)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  12. Biobutanol Production from Hexose and Pentose Sugars

    NARCIS (Netherlands)

    Raganati, F.; Procentese, A.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    The Acetone-Butanol-Ethanol (ABE) fermentation is receiving renewed interest as a way to upgrade renewable resources for the production of products with high added value as chemicals and fuels. Main pre-requisites of fermentation feedstocks are abundance and un-competitiveness with food sources and

  13. IMPROVING THE QUALITY OF SUGAR AT THE EXPENSE OF INTENSIFICATION SULPHITATION INTERMEDIATES OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. I. Zelepukin

    2014-01-01

    Full Text Available Summary. Applicable for sulfitation equipment should provide a high degree of utilization of sulfur dioxide, which should allow to reduce the cost of production of sugar by reducing fuel sulfur and improve the ecological situation in the placement of a sugar factory. Currently used as standard equipment the liquid-jet sulfitator type A2-PSK and A2-PSM have disadvantages, the main ones are: unsatisfactory performance when the flow solution to be treated and released into the atmosphere from the combustion products nutritionally sulfur. Modernized standard liquid spray sulfitator to improve performance without significant cost, even if the treated liquid flow. A positive result with this work sulfitator achieved due to the fact that the mixing chamber is provided with a device for controlling the flow cross section of holes disc formed as it moves in the ring attached thereto with tapered fingers. Sulfitator is a cylindrical body provided with a sulfited separator for separating liquid and flue gas. By using a separator attached flange connection mixing chamber sulfitation source liquid and a gas supply pipe provided with sulfur dioxide placed inside a disk having five openings for forming jets of high dynamic fluid flow control device and a disk hole section formed in a chamber in the movable ring attached to it, tapered fingers. The form allows the fingers to create a flow of fluid through the disc hole, flowing at high speed and maintain a constant positive pressure to drive the liquid in the mixing chamber. When changing the amount of fluid supplied to the sulfitation ring having tapered fingers moves the fingers and alter the orifice holes, maintaining the pressure of the sugar solution prior to manufacturing the disk constant. This improves the contact of the liquid with the gas. The designed device can improve the efficiency of physical and chemical treatment of liquid intermediates of sugar production.

  14. Multifractal modeling of the production of concentrated sugar syrup crystal

    Science.gov (United States)

    Sheng, Bi; Jianbo, Gao

    2016-07-01

    High quality, concentrated sugar syrup crystal is produced in a critical step in cane sugar production: the clarification process. It is characterized by two variables: the color of the produced sugar and its clarity degree. We show that the temporal variations of these variables follow power-law distributions and can be well modeled by multiplicative cascade multifractal processes. These interesting properties suggest that the degradation in color and clarity degree has a system-wide cause. In particular, the cascade multifractal model suggests that the degradation in color and clarity degree can be equivalently accounted for by the initial “impurities” in the sugarcane. Hence, more effective cleaning of the sugarcane before the clarification stage may lead to substantial improvement in the effect of clarification.

  15. Polysaccharides enriched in rare sugars: bacterial sources, production and applications

    Directory of Open Access Journals (Sweden)

    Christophe eRoca

    2015-04-01

    Full Text Available Microbial extracellular polysaccharides (EPS, produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers.This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals and biomedical applications, are discussed.

  16. Production of sugar and alcohol: financial and operational strategies

    Directory of Open Access Journals (Sweden)

    Celma de Oliveira Ribeiro

    2014-12-01

    Full Text Available This article proposes the construction of an optimization model to define the product portfolio of a sugarcane mill, taking into account operational and financial aspects. It is considered that the revenue earned by a producer comes from the sale of sugar and alcohol in the physical market and the results obtained through hedging in the derivatives market of sugar. Employing CVaR (Conditional Value-at-Risk, as the risk measure, the model allows the construction of an efficient frontier and, according to the producer's risk tolerance, defines the optimal strategy of production (production mix and activity in the derivatives market (hedge ratio. Through the model the article also seeks to analyze the advantage of using the options market in the construction of financial hedging strategies in agricultural commodities markets.

  17. Biodiesel production from microalgae: co-location with sugar mills.

    Science.gov (United States)

    Lohrey, Christian; Kochergin, Vadim

    2012-03-01

    Co-location of algae production facilities with cane sugar mills can be a technically advantageous path towards production of biodiesel. Algal biodiesel production was integrated with cane sugar production in the material and energy balance simulation program Sugars™. A model was developed that allowed comparison of production scenarios involving dewatering the algae to 20% ds (dry solids) or 30% ds prior to thermal drying. The net energy ratio, E(R) (energy produced/energy consumed) of the proposed process was found to be 1.5. A sensitivity analysis showed that this number ranged from 0.9 to 1.7 when the range of values for oil content, CO(2) utilization, oil conversion, and harvest density reported in the literature were evaluated. By utilizing available waste-resources from a 10,000 ton/d cane sugar mill, a 530 ha algae farm can produce 5.8 million L of biodiesel/yr and reduce CO(2) emissions of the mill by 15% without the need for fossil fuels.

  18. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.

  19. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars.

  20. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface.

    Science.gov (United States)

    Li, Xiangyang; Al-Assaf, Saphwan; Fang, Yapeng; Phillips, Glyn O

    2013-01-16

    The emulsification performance, stability and competitive adsorption of two natural food emulsifiers, sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) have been investigated. Both can reduce the surface tension and emulsify oil in water. However, due to their different structure and conformation they operate via different mechanisms. Using 15% middle chain triglycerides (MCTs) oil, the amounts of SBP and HPMC adsorbed in emulsions made with these individually and in mixtures were determined. The interfacial concentration (Γ) for SBP stabilized emulsion was ∼1.25mg/m(2) and for HPMC 3.5mg/m(2). The higher adsorption of HPMC was due to multilayer adsorption, whereas SBP adsorbed as a monolayer. Competitive adsorption between SBP and HPMC was also investigated. When the HPMC concentration approached that of adsorbed SBP, the effect of HPMC became dominant and at 1.5wt.% controlled the behavior of the mixed emulsions, which were then almost independent of SBP. The minor role of SBP was mainly to decrease the proportion of large droplets in the emulsion. A model to describe the competitive adsorption between SBP and HPMC is proposed.

  1. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars.

    Science.gov (United States)

    Su, Buli; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2013-11-01

    Xylitol is a five-carbon sugar alcohol with potential for use as a sweetener. Industrially, xylitol is currently produced by chemical hydrogenation of D-xylose using Raney nickel catalysts and this requires expensive separation and purification steps as well as high pressure and temperature that lead to environmental pollution. Highly efficient biotechnological production of xylitol using microorganisms is gaining more attention and has been proposed as an alternative process. Although the biotechnological method has not yet surpassed the advantages of chemical reduction in terms of yield and cost, various strategies offer promise for the biotechnological production of xylitol. In this review, the focus is on the most recent developments of the main metabolic engineering strategies for improving the production of xylitol.

  2. MANAGING PRODUCT SAFETY SYSTEM HACCP ON THE EXAMPLE OF BEET-SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2015-01-01

    Full Text Available The most effective safety management system of food production in all industrialized countries in the world recognized by the system based on the principles of HACCP. In Russia, the conformity assessment carried out by the HACCP system certification. The essence of the HACCP system is to identify and control the critical points. Critical Control Point – this is the stage of the process, which is subject to control for hazard identification and risk management in order to avoid the production of unsafe products. Implementation of HACCP system allows to tighten and coordinate the quality control system, which will improve the competitiveness of the products produced in the sugar market in Russia and abroad. In the early stages of food production HACCP system to prevent the occurrence of danger. It is based on the preventive approach to ensuring quality and safety in the production process, and can also be used in the development of new products. HACCP system is based on seven main principles to ensure the implementation and management of the system in production. 1. Creation of a working group of the coordinator and the technical secretary and various consultants. 2. Information on materials and products, in this case of sugar beet and sugar. 3. Information about the production. 4. Risk analysis of the available chemical, physical and microbiological factors. To determine the critical control points according to the results obtained for each factor is determined by a special chart the extent of its accounting. The need to consider the potential hazard is determined by the order in which area it has got. 5. The production program of mandatory preliminary activities in the production of sugar. 6. Determination of critical control points. 7. Making worksheets HACCP. It is shown that the use of HACCP in sugar beet production has several advantages.

  3. MODERN STATE AND PROSPECTS OF DEVELOPMENT OF THE DOMESTIC RESOURCE BASE OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Lalayan G. G.

    2015-06-01

    Full Text Available The main indicators of production of factory sugar beet in the Russian Federation and in the Krasnodar region are considered in the article. The structure of sown areas and gross harvests of sugar beet on federal districts and the main producing regions of the country are visually presented. The tendency of change of yield capacity of sugar beet for 1990-2014 is revealed on the basis of analytical alignment. The assessment of stability of level and tendency of change of yield capacity and sown areas of sugar beet is given for the Krasnodar region and in general for the Russian Federation. The influence of the factors on the size of gross harvests of root crops of sugar beet is analyzed. Agro climatic conditions of cultivation of sugar beet are studied. The features of production of sugar beet in the natural and economic zones of the Krasnodar region are revealed. The dynamics of application of the mineral and organic fertilizers under harvest of sugar beet in the agricultural organizations of the Krasnodar region is considered. The current state of the national selection and seed farming is characterized. The growing dependence on import of the seed material is revealed. The attention is focused on the main problems creating threat of further development of a sugar beet subcomplex of the region and ensuring food security of the country on sugar in the conditions of action of the international sanctions. The prospects of increase in production of sugar from domestic raw materials are noted

  4. Effect of sugar concentration in Jerusalem artichoke extract on Kluyveromyces marxianus growth and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.

    1983-02-01

    The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h/sup -1/ at 50 g of sugar per liter to 0.13 h/sup -1/ at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.

  5. COMPLEX PROCESSING OF CELLULOSE WASTE FROM POULTRY AND SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    E. V. Sklyadnev

    2015-01-01

    Full Text Available Summary.To solve the problem of disposing of huge volumes of cellulose waste from sugar production in the form of beet pulp and waste of poultry farms in the form of poultry manure is proposed to use the joint use of two methods of thermal processing of waste - pyrolysis and gasification. The possibility of using pyrolysis applied to the waste are confirmed by experimental results. Based on the results of laboratory studies of the properties of by-products resulting from the thermal processing of the feedstock, it is proposed complex processing to produce useful products, to be implemented in the form of marketable products, and the organization's own process energy utilization. Developed flow diagram of an integrated processing said waste comprises 3 sections, which successively carried out: pyrolytic decomposition of the feedstock to obtain a secondary product in the form of solid, liquid and gas fractions, the gasification of solids to obtain combustible gas and separating the liquid fraction by distillation to obtain valuable products. The main equipment in the first region is the pyrolysis reactor cascade condensers; the second section - gasifiers layers and stream type; the third - one or more distillation columns with the necessary strapping. Proper power supply installation is organized by the use of the heat produced during combustion of the synthesis gas for heating and gasification reactor. For the developed scheme presents calculations of the heat balance of the installation, supporting the energy efficiency of the proposed disposal process. Developments carried out in the framework of the project the winner of the Youth Prize Competition Government of Voronezh region to support youth programs in the 2014-2015.

  6. Development of Beet Sugar Production in Ryazan Region in the Context of Ensuring Food Security

    Directory of Open Access Journals (Sweden)

    Mansurov Ruslan Evgenyevich

    2014-12-01

    Full Text Available The article presents the results of the research on the current state of the beet sugar subcomplex of Ryazan region in the context of the need of improving its efficiency. The study let the author determine that currently the beet sugar subcomplex of Ryazan region does not ensure domestic demand in sand sugar. However, there are reserves of providing more efficient use of soil and climate capacity as well as the productivity potential of the region. When applying the technology of field beet piling, the period of sugar production at sugar factories may be extended up to 200 days. At this, up to 51 thousand tons of sand sugar can be produced. This amount will completely cover the annual demand for sugar in Ryazan region. In order to further study the feasibility of this approach, zoning was carried out and let allocate the zones of beet seeding. As a result, it was determined that a number of areas are far removed from the place of treatment, and in terms of transportation costs minimization the sugar beet cultivation in these areas is not rational. As an alternative, the author proposes to consider the possibility of building a new sugar factory in Ryazhsky district with the processing capacity of 1,000 tons of sugar beet per day. Taking this into account, the recommended acreage of sugar beet by districts and zones of raw material supply were obtained through corresponding calculations.

  7. Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse

    NARCIS (Netherlands)

    Efe, C.; Straathof, A.J.J.; Van der Wielen, L.A.M.

    2005-01-01

    The primary aim of this study is to investigate and analyze the sugar-ethanol plants operating in Brazil to construct a raw model to gain better understanding and insight about the technical and economical aspects of the currently operating plants. And, the secondary aim is to combine the knowledge

  8. System expansion for handling co-products in LCA of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2012-01-01

    This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system...

  9. Evaluation of some natural products on sugar beet contamined with coliform bacteria group

    Directory of Open Access Journals (Sweden)

    Rogéria Maria Alves de Almeida

    2006-08-01

    Full Text Available The sugar beet crop has great importance because its ability on sugar production that can be extracted and crystallized. The use of wastewater in the irrigation has increased because this water has some nutrients sources. However the use of wastewater may cause some health problems due to the presence of coliform bacteria group. In this trial, the objective was to contribute for the sugar beet decontamination. Some products as lemon juice, NaClO and ascetic acid were used by sugar beet immersion during a little time. In conclusion, the lemon juice showed best results by reducing coliform bacteria group.

  10. New findings on the biogas production from sugar beets; Neue Erkenntnisse zur Biogasproduktion aus Zuckerrueben

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Hinnerk; Schlaefer, Ottmar; Sievers, Michael [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Trommler, Marcus; Postel, Jan [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany); Felde, Andreas von; Harling, Hinrich; Rother, Beate [KWS Saat AG, Einbeck (Germany); Franke, Henning; Tkocz, Lisa [INPUT Ingenieure GmbH, Sehnde (Germany)

    2013-10-01

    Main purpose of the project is the process improvement to acquire the full potential of sugar beet based biomethane production. This covers the optimization of breeding and cultivation, as well as improvements of the overall logistic and production process. The project results show that breeding of regional adapted sugar beets can lead to higher yields in cultivation as well as technical enhancements within the biogas production chain can lower the production costs. Both approaches are part of an overall optimization of sugar beets for biomethane production. Project findings indicate a competitive position in comparison to biomethane based on different agricultural feedstock. (orig.)

  11. Sugar Maple Phenology: Anthocyanin Production During Leaf Senescence

    Science.gov (United States)

    Lindgren, E.; Rock, B.

    2007-12-01

    The Northeastern United States is known for its brilliant fall foliage colors. Foliage is responsible for a billion dollar tourism industry. Many comment that past years have not resulted in the amazing color displays seen historically. As sugar maple trees senesce they contribute bright red leaves to the mural of oranges, yellows, and greens. The pigment that produces the red color, anthocyanin, is synthesized in the fall as chlorophyll slowly degrades. Remote sensing data from LandSat during fall senescence can help investigate this event by quantifying color change and intensity. This data can then be compared to ground validation efforts in several study plots. The results will help answer the question, "Why do leaves turn red?" One hypothesis is that this pigment acts as a photoprotectant and screens leaves from UV light. It is possible that an increase in tropospheric ozone has negatively affected fall foliage due to the increased reflection of UV light before it reaches the trees; thereby reducing the leaves need to produce anthocyanin. Another hypothesis is that production of anthocyanin is linked to temperature, with maximum synthesis occurring during cold evenings and moderate days. Temperature changes caused by climate change could also be affecting anthocyanin. Through observing these changes by remote sensing and ground experiments, more can be learned about this phenological stage and why it happens.

  12. Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production.

    Science.gov (United States)

    Agudelo, Roberto A; García-Aparicio, María P; Görgens, Johann F

    2016-01-25

    Triticale, a non-food based, low-cost and well-adapted crop in marginal lands has been considered as a potential 1G and 2G feedstock for bio-ethanol production. In this work, triticale straw was evaluated as a source of fermentable sugars by combination of uncatalyzed steam explosion and enzymatic hydrolysis. Pretreatment conditions with severities from 3.05 to 4.12 were compared in order to identify conditions that favour the recovery of hemicellulose-derived sugars, cellulose digestibility or the combined sugars yield (CSY) from the pretreatment-enzymatic hydrolysis. Xylose oligosaccharide was the major sugar in hydrolysates from all pretreatment conditions. Maximum hemicellulose-sugars recovery (52% of the feedstock content) was obtained at 200 °C and 5 min. The highest cellulose digestibility (95%) was found at 200 °C - 15 min, although glucose recovery from hydrolysis was maximised at 200 °C - 10 min (digestibility >92%) due to higher mass yield of pretreated solids. The maximum CSY (nearly 77% of theoretical content) was obtained at 200 °C - 5 min. Sugar loss after pretreatment was observed to higher extent at harsher severities. However, the concentrations of sugar degradation products and acetic acid were at levels below tolerance limits of the downstream biological conversions. Steam explosion pretreatment without acid impregnation is a good technology for production of fermentable sugars from triticale straw. This work provides foundation for future autohydrolysis steam explosion optimization studies to enhanced sugars recovery and digestibility of triticale straw.

  13. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    Science.gov (United States)

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.

  14. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, J.A.; Koukios, E.G. [Bioresource Technology Unit, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, GR-15700 (Greece); Bakker, R.R.; De Vrije, T.; Claassen, P.A.M. [Wageningen UR Agrotechnology and Food Innovations, P.O. Box 17, 6700 AA Wageningen (Netherlands); Urbaniec, K. [CERED Centre of Excellence, Warsaw University of Technology, Jachowicza 2/4, 09-402 Plock (Poland)

    2010-12-15

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile and its potential availability in the area. In this work, various aspects of cultivating sugar beet in the EU for biohydrogen were highlighted, with special focus on The Netherlands and Greece. Moreover, fermentation of sugar beet juice with Caldicellulosiruptor saccharolyticus at sucrose concentration 10 g/l was performed, and was found comparable to the fermentation on pure sucrose except that the hydrogen production was 10% higher on sugar beet juice. A conservative estimate of the annual hydrogen potential in the EU was made (300x10{sup 6} kg hydrogen), considering the utilization of sugar beet pulp in hydrogen production.

  15. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Directory of Open Access Journals (Sweden)

    Mehmet Koç

    2016-06-01

    Full Text Available Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transition temperature of sugar-rich products. This review gives information about the difficulties in drying of sugar-rich products via spray dryer, actions need to be taken against these difficulties and drying of sugar-rich honey and fruit juices with spray drying method.

  16. Biological hydrogen production from sucrose and sugar beet by Caldicellulosiruptor saccharolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, John [National Technical Univ. of Athens (Greece); Wageningen UR Food and Biobased Research (Netherlands); Bakker, Robert; Vrieje, Truus de; Claassen, Pieternel [Wageningen UR Food and Biobased Research (Netherlands); Koukios, Emmanuel [National Technical Univ. of Athens (Greece)

    2010-07-01

    Hydrogen production needs to be based on renewable resources in order to be sustainable. Sugar beet is an ideal raw material for fermentative production of hydrogen in the EU and possibly in the USA due to its environmental profile and its potential availability in these areas. In this work, the fermentative production of hydrogen from sucrose of analytical grade and sugar beet extract by pure cultures of Caldicellulosiruptor saccharolyticus was investigated, under uncontrolled and controlled conditions. In the first case, growth of pure cultures of C. saccharolyticus on sucrose derived from sugar beet was compared to growth of the microorganism on sucrose of analytical grade. The production of hydrogen and organic acids (acetate and lactate) from sugar beet was largely equal to or slightly higher than the production of the control. In the second case, fermentation of sugar beet extract at sucrose concentration 10 g/l was comparable to the fermentation on pure sucrose except that the hydrogen yield was slightly higher on sugar beet extract. In particular, hydrogen yields of 2.9 and 3.0 mol/mol hexose were determined in fermentations of sucrose and sugar beet extract, respectively, corresponding to 73% and 75% of the theoretical value of 4 mol hydrogen/mol hexose. Acetic acid was the main product and very low production of lactic acid was observed. (orig.)

  17. Sugar beet production in the European Union and their future trends

    Directory of Open Access Journals (Sweden)

    H. Řezbová

    2013-12-01

    Full Text Available The main aim of this paper is to analyze the yield (t/ha and the production costs of white (polarized sugar and sugar beet in the main European producer countries in order to identify main development trends. The partial objectives of this study are: to analyse the production costs (variable costs of sugar and sugar beet of the main European producers (France, Germany, Poland, United Kingdom, Czech Republic, to compare sugar beet yield of Tereos France and Tereos TTD a.s., to analyse sugar beet yield potential and their trends. The used methods are chain and basic indexes and regression analysis of time series/trend data - for predicting on next tree years. The main producers of sugar beet in the European Union (i.e. France, Germany, Poland, United Kingdom, and Czech Republic can not achieve goal of sugar yield 15t/ha while maintaining the amount of variable (direct costs at 15 EUR/tone of sugar beet in the business year 2015/2016. Pieces of knowledge introduced in this paper resulted from solution of an institutional research intention MSM 6046070906 „Economics of resources of Czech agriculture and their efficient use in frame of multifunctional agri-food systems“.

  18. Feasibility of converting a sugar beet plant to fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  19. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  20. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    Science.gov (United States)

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  1. Oil Products Quality Improvement by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Kulash K. Syrmanova

    2017-02-01

    Full Text Available Petroleum takes the leading place in fuel and energy sector. It is a basis of fuel and energy balance of advanced countries economics. Light oil proven reserves reducing is a general trend of modern oil industry development. Almost the entire increase in reserves is due to viscous heavy sour oil [1-2]. Nowadays quality of the most important oil products is a crucial problem in refinery industry. The problem of oil products quality is connected with their using and operation in engines and machines. Requirements increasing to stability and effective technics maintenance leads to oil products running abilities significant hardening. In order to protect the environment, the task to obtain oil products with improved environmental properties was assigned. Properties of the oil determine the direction and condition of its processing and directly affect the quality of the oil products [3-4].

  2. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse.

    Science.gov (United States)

    Yoon, Li Wan; Ngoh, Gek Cheng; Chua, Adeline Seak May

    2013-09-10

    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.

  3. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Qi, Feng; Zhou, Junhu; Cen, Kefa

    2015-06-01

    The competitive reactions of reducing sugar production and degradation in the subcritical water hydrolysis of rice straw were investigated to optimise reducing sugar yield. The optimised conditions (280°C, 20 MPa, rice straw concentration of 5 wt.% and agitation speed of 200 rpm) resulted in a reducing sugar yield of 0.346 g/g rice straw because of the enhanced reducing sugar production and decreased sugar degradation. The sugar yield increased when the temperature increased from 250°C to 280°C, but it decreased when the temperature further increased to 300°C because of the degradation of monosaccharides (e.g. glucose and xylose) into by-products (e.g. 2-methyltetrahydrofuran and acetic acid). A first-order reaction model was developed to elucidate the competitive reaction kinetics of sugar production and degradation at various temperatures. The highest reducing sugar yield based on the model was achieved at 280°C with the highest production and lowest degradation rates.

  4. Behavior of Fermentable Sugars in the Traditional Production Process of Cassava Bioethanol

    Directory of Open Access Journals (Sweden)

    P. Diakabana

    2014-10-01

    Full Text Available The aim of study is to evaluate the ferment ability of cassava must in the ethanol production process from cassava in Congo. Three traditional methods of ethyl fermentation were tested: spontaneous fermentation, fermentation with yeast inoculation and fermentation led with yeasting and sugaring. Consumption of fermentable sugars was further in the case of directed fermentation with yeast inoculation (3° Brix residual extract from 48 h compared to spontaneous fermentation without yeast inoculation (3.8° Brixresidual extract from 120 heures. Total sugars have been consumed only partially (66.7% of limit attenuation, while reducing sugars have been almost completely (about 91%. The addition of yeast in the cassava wort have led to a lower assessment of dextrins (2.7% glucose equivalent compared to spontaneous fermentation (3.6%. It have also assured a better overall ethanol productivity PTE= 0.83 g ethanol/L.h than sugaring proceeding (PTE = 0.61 g/L.h and without yeast additional (PTE = 0.32 g/L.h. Among the fermentable sugars developed in the cassava mash there are reducing sugars, such as glucose and maltose. Non-fermentable sugars represent a significant slice of stock of soluble carbohydrate (on average 3.24% dextrose equivalent of the must in the three cases of fermentation tested.

  5. Feasibility Assessment of Converting Sugar Mills to Bioenergy Production in Africa

    Directory of Open Access Journals (Sweden)

    Manoel Regis Lima Verde Leal

    2016-09-01

    Full Text Available World sugar production has consistently overrun demand in the past five years. Moreover, in 2017 the European Sugar Regime will expire, ending the quota system and preferential sugar prices, largely affecting small producers, particularly in Africa. Diversification emerges as an option for sugar-oriented mills. Two evident alternatives are ethanol and electricity production that allow better use of molasses and cane fibers, respectively. Molasses is the cheapest feedstock for ethanol production, while the cane fibers—in the form of bagasse—are readily available at the mill. The transition from sugar to sugar, ethanol and electricity may require substantial investment capital, yet our results show that significant progress can start at relatively small cost. In this work, we use simulations to explore the impact of ethanol and electricity production in an existing sugar mill in Mozambique. In spite of the large amounts of energy obtained from ambitious scenarios, such as Ethanol-2 and Ethanol/EE, molasses-based ethanol (Ethanol-1 scenario seems more attractive in economical and infrastructural terms. High opportunity costs for molasses, low oil prices and enabling institutional conditions, such as mandatory blending mandates, to promote bioenergy remain a challenge.

  6. Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata.

    Science.gov (United States)

    Tanimura, Kosuke; Matsumoto, Takuya; Nakayama, Hideki; Tanaka, Tsutomu; Kondo, Akihiko

    2016-07-01

    We successfully enhanced the productivity of ectoine with Halomonas elongata by improvement of the transport of sugar. First, we carried out screening for sugar transporters capable of improving glucose and xylose consumption. We found two transporters: b3657 from Escherichia coli, which is capable of improving glucose consumption, and HEO_0208 from H. elongata, which is capable of improving xylose consumption. Using transporter-overexpressing strains, the productivity of ectoine was improved. These results indicate that sugar consumption is important for efficient ectoine production. As result of phenotypic analysis of a HEO_0208 deletion strain, we discovered that HEO_0208 is the major xylose transporter in H. elongata. This is the first report demonstrating improvement of ectoine productivity by enhancing the transport of sugar.

  7. EFFECT OF YEAR AND ATONIK APPLICATION ON THE SELECTED SUGAR BEET PRODUCTION AND QUALITY PARAMETERS

    OpenAIRE

    I ČERNÝ; V PAČUTA; J FECKOVÁ; J. GOLIAN

    2002-01-01

    In a field trial, realised in a warm, slightly dry, maize growing region, an influence of different rates of Atonik (A: 0,6 + 0,6 l.ha-1; B: 0,4 + 0,6 + 0,6 l.ha-1; C: 0,25 + 1,0 + 0,6 l.ha-1) was observed on some technological and qualitative parameters of sugar beet (root yield, digestion, refined sugar yield). We have found a statistically high significant effect of both the yearly weather conditions and Atonik application on the development of production parameters of sugar beet in 1998 -...

  8. Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion.

    Science.gov (United States)

    Duque, A; Manzanares, P; Ballesteros, I; Negro, M J; Oliva, J M; González, A; Ballesteros, M

    2014-04-01

    A pretreatment that combines a thermo-mechanical process (extrusion) with chemical and biological catalysts to produce fermentable sugars from barley straw (BS) biomass was investigated. BS was firstly extruded with alkali and then, the pretreated material (extrudate) was submitted to extrusion with hydrolytic enzymes (bioextrusion). The bioextrudate was found to have 35% (w/w dwb) of total solids in soluble form, partly coming from carbohydrate hydrolysis during bioextrusion. About 48% of soluble solids dry weight is comprised by sugars, mostly glucose and xylose. Further enzymatic hydrolysis of bioextrudate could be successfully carried out at high solid loading level of 30% (w/v), with sugar production yield of 32 g glucose and 18 g xylose/100g bioextrudate at 72 h incubation (equivalent to 96 and 52 g/l concentration, respectively). These results, together with the high level of integration of the process, indicate a great potential of this pretreatment technology for sugar production from lignocellulosic substrates.

  9. Hydrogen production from sugar industry wastes using single-stage photofermentation.

    Science.gov (United States)

    Keskin, Tugba; Hallenbeck, Patrick C

    2012-05-01

    Beet molasses and black strap are two major waste streams of the sugar industry. They both contain high amounts of sucrose, making them suitable substrates for biological hydrogen production. Photofermentation, usually used to convert organic acids to hydrogen, has the potential capacity to effectively use a variety of feed stocks, including sugars. A comparative study on photofermentative biohydrogen production from beet molasses, black strap, and sucrose was conducted. With yields of 10.5 mol H(2)/mol sucrose for beet molasses (1g/l sugar); 8 mol H(2)/mol sucrose for black strap (1g/l sugar) and 14 mol H(2)/mol sucrose for pure sucrose, a one stage photofermentation system appears promising as an alternative to two-stage systems given the potential savings in energy input and operational costs.

  10. Studies of Nondestructive Quality Evaluation of Agricultural Products : Surface Color and Sugar Component

    OpenAIRE

    岩尾, 俊男; 竹山, 光一

    1989-01-01

    Many reports which studied on optical methods of nondestructive quality evaluation of agricultural products were reported recently. and in these reports, optical evaluation of maturity, external damage and quality attributes was dealt with.13; By the way, the method to detect inner sugar components in a fruit by the optical methods was not yet experimentally estabilshed. Accordingly, this study was concerned with the relationship between indexes of color and the sugar com ponents of mini toma...

  11. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    OpenAIRE

    Mehmet Koç; Figen Kaymak-Ertekin

    2016-01-01

    Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity) and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transiti...

  12. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  13. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications.

  14. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. [Biotechnology Institute, Engineering Faculty, National University of San Juan, Av. San Martin 1109 (Oeste), 5400 San Juan (Argentina)

    2010-06-15

    A suitable alternative to replace fossil fuels is the production of bioethanol from agroindustrial waste. Grape pomace is the most abundant residue in San Juan and sugar beet pomace could be important in the region. Solid-State Fermentation (SSF) is a technology that allows transforming agroindustrial waste into many valuable bioproducts, like ethanol. This work reports a laboratory scale SSF to obtain alcohol from grape and sugar beet pomace by means of Saccharomyces cerevisiae yeasts. The initial conditions of the culture medium were: sugars 16.5% (p/p); pH 4.5; humidity 68% (p/p). Cultures were inoculated with 10{sup 8} cells/g of pomace, and incubated in anaerobic environment, at 28 C, during 96 h. SSF showed ethanol maximum concentrations at 48 h and ethanol yield on sugars consumed was more than 82%. Yield attained creates expectation about the use of SSF to obtain fuel alcohol. (author)

  15. USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    N. G. Kul’neva

    2015-01-01

    Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is

  16. Adsorption

    Directory of Open Access Journals (Sweden)

    Denis J.L. Guerra

    2016-09-01

    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  17. The optimal conditions for nata production from sugar palm syrup by Acetobacter xylinum TISTR 107

    Directory of Open Access Journals (Sweden)

    Laochareonsuk, T.

    2005-11-01

    Full Text Available The optimal conditions of nata production from the fermentation of sugar palm syrup by Acetobacter xylinum TISTR 107 was studied. The results showed that optimized production for a litre of sugar palm syrup medium should compose 15 ºBrix concentration, 7.0 g NH4H2PO4 and 0.7 g MgSO4. 7 H2O at pH 4.25 and incubation at room temperature. The thickness of nata production reached 1.15 cm in 9 days. Sensory evaluation showed that there were no significant difference in odor and acceptability between the nata from sugar palm syrup and the traditional nata production from coconut juice whereas there were significant differences in color and texture. However, the nata from sugar palm syrup gave a better texture. Chemical analysis of the nata produced under these optimal culture conditions revealed 0.13% protein, 0.012% fat, 2.74% fiber, 0.378% nitrogen-free extract, 0.11% ash and 96.63% moisture content. The results suggest that nata produced from sugar palm syrup can be used in food and confectionery.

  18. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  19. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    Science.gov (United States)

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  20. Reducing sugars production from corncobs: a comparative study of chemical and biotechnological methods.

    Science.gov (United States)

    Potumarthi, Ravichandra; Baadhe, Rama Raju; Pisipati, Aparna; Jetty, Annapurna

    2014-11-01

    Two commonly used chemical pretreatment processes, sulphuric acid, and sodium hydroxide, were tested to provide comparative performance data. A connection between solid to liquid ratio (S/L) and sugars released was observed with an increase in S/L ratio between 0.02 and 0.2. Enzymatic digestibility of 1 M of NaOH-pretreated corncobs were released 210.7 mg ml(-1) of sugars. Further, compared with different concentrations of acid pretreatments at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5 M concentrations, sodium hydroxide pretreatment of corncob substantially increased accessibility and digestibility of cellulose. Another additional observation made was whole-cell and crude enzymatic hydrolysis of different concentrations of acid and NaOH (0.05, 0.1, 0.25 M)-treated materials released lower amount of sugars compared with the sugars released (310.9 mg ml(-1)) with whole-cell hydrolysis of 1 M of NaOH-treated corncobs. NaOH-pretreated corncobs contained higher content of sugars and which is more suitable for production of reducing sugars.

  1. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol.

    Science.gov (United States)

    Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera

    2014-11-01

    Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article.

  2. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    Science.gov (United States)

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches.

  3. Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production.

    Science.gov (United States)

    Cheng, Yu-Shen; Wu, Jang-Hong; Yeh, Li-Hsien

    2016-07-01

    This study is aimed at fully utilizing fruit biomass of Calophyllum inophyllum for reducing sugar production. The effects of pretreatment conditions and post reaction wash on the lignin removal and enzymatic hydrolysis of shell were investigated. The oil cake was also subjected to solvent extraction followed by enzymatic hydrolysis. The results showed that the sequential acid/alkaline pretreatment of C. inophyllum shell resulted in better delignification than alkaline or acid only pretreatment. The reducing sugar yields obtained from sequential acid/alkaline pretreated shell and solvent extracted oil cake were 0.24g/g and 0.66g/g, respectively. The results suggested that the shell and oil cake of C. inophyllum could also be feedstocks for reducing sugar production.

  4. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

    Science.gov (United States)

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity....

  5. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2005-05-01

    Full Text Available Abstract The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.

  6. Physical properties of gluten free sugar cookies containing teff and functional oat products

    Science.gov (United States)

    Teff-oat composites were developed using gluten free teff flour containing essential 15 amino acids with oat products containing ß-glucan, known for lowering blood cholesterol and improving texture. The teff-oat composites were used in sugar cookies for improving nutritional and physical properties....

  7. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  8. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    Science.gov (United States)

    Jørgensen, L.; Lechtenfeld, O.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-04-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after long-term bacterial degradation. Results from bioassay incubations (32 days) with natural and artificial seawater, indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol%) and heterogeneous contributions from other neutral sugars (3-14 mol%). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol%), followed by glucose (22 mol%) and the remaining neutral sugars (7-11 mol%). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural and artificial seawater samples, suggests that the microbial carbon pump also applies for neutral sugars and amino acids and that bacterially-produced biomolecules persist for long periods in the ocean.

  9. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    Directory of Open Access Journals (Sweden)

    L. Jørgensen

    2014-04-01

    Full Text Available Dissolved organic matter (DOM in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after long-term bacterial degradation. Results from bioassay incubations (32 days with natural and artificial seawater, indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol% and heterogeneous contributions from other neutral sugars (3–14 mol%. DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol%, followed by glucose (22 mol% and the remaining neutral sugars (7–11 mol%. The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural and artificial seawater samples, suggests that the microbial carbon pump also applies for neutral sugars and amino acids and that bacterially-produced biomolecules persist for long periods in the ocean.

  10. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.

    Science.gov (United States)

    Lee, Choon-Geun; Kang, Do-Hyung; Lee, Dong-Bog; Lee, Hyeon-Yong

    2013-11-01

    The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for

  11. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological...... production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7–11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic...

  12. Old oil palm trunk: A promising source of sugars for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H.; Ohara, S. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Tanaka, R.; Yamamoto, K. [Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Sulaiman, O.; Hashim, R.; Hamid, Z.A.A.; Yahya, M.K.A. [School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang (Malaysia); Kosugi, A.; Arai, T.; Murata, Y.; Nirasawa, S. [Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan); Mohd Yusof, Mohd Nor; Ibrahim, Wan Asma [Forest Research Institute Malaysia (FRIM), Kepong, 52109 Selangor (Malaysia); Mori, Y. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan)

    2010-11-15

    Oil palm trees are replanted at an interval of approximately 25 years because of decreased oil productivity of old trees. Consequently the felled trunks are the enormous amount of biomass resources in the palm oil producing countries such as Malaysia and Indonesia. In this report, we found that the felled oil palm trunk contains large quantity of sap, which accounts for approximately 70% of the whole trunk weight, and that sugars existing in the sap increased remarkably during storage after logging. Total sugar in the sap increased from 83 mg ml{sup -1} to 153 mg ml{sup -1}, the concentration comparable to that of sugar cane juice, after 30 days of storage, followed by the gradual decrease. The sugars contained in the sap were glucose, sucrose, fructose and galactose, all of which are fermentable by ordinary industrial yeast strains. The results indicate that old oil palm trunk becomes a promising source of sugars by proper aging after logging and, thus, its sap can be a good feedstock for bioethanol. (author)

  13. EFFECT OF YEAR AND ATONIK APPLICATION ON THE SELECTED SUGAR BEET PRODUCTION AND QUALITY PARAMETERS

    Directory of Open Access Journals (Sweden)

    I ČERNÝ

    2002-07-01

    Full Text Available In a field trial, realised in a warm, slightly dry, maize growing region, an influence of different rates of Atonik (A: 0,6 + 0,6 l.ha-1; B: 0,4 + 0,6 + 0,6 l.ha-1; C: 0,25 + 1,0 + 0,6 l.ha-1 was observed on some technological and qualitative parameters of sugar beet (root yield, digestion, refined sugar yield. We have found a statistically high significant effect of both the yearly weather conditions and Atonik application on the development of production parameters of sugar beet in 1998 - 2000. In average, the highest values of observed parameters such as yield of sugar beet roots (54,04 t.ha-1, digestion (17,13 °S, refined sugar (14,30 % were obtained for Atonik-treated variant C (0,25 + 1,0 + 0,6 l.ha-1 in 1999.

  14. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  15. 29 CFR 780.819 - Production must be of unrefined sugar or syrup.

    Science.gov (United States)

    2010-07-01

    ... apply to the manufacture of sugar that is produced by melting sugar, purifying the melted sugar solution through a carbon medium process and the recrystallization of the sugar from this solution. Nor does...

  16. Bacterial Sugar 3,4-Ketoisomerases: Structural Insight into Product Stereochemistry.

    Science.gov (United States)

    Thoden, James B; Vinogradov, Evgeny; Gilbert, Michel; Salinger, Ari J; Holden, Hazel M

    2015-07-28

    3-Acetamido-3,6-dideoxy-d-galactose (Fuc3NAc) and 3-acetamido-3,6-dideoxy-d-glucose (Qui3NAc) are unusual sugars found on the lipopolysaccharides of Gram-negative bacteria and on the S-layers of Gram-positive bacteria. The 3,4-ketoisomerases, referred to as FdtA and QdtA, catalyze the third steps in the respective biosynthetic pathways for these sugars. Whereas both enzymes utilize the same substrate, the stereochemistries of their products are different. Specifically, the hydroxyl groups at the hexose C-4' positions assume the "galactose" and "glucose" configurations in the FdtA and QdtA products, respectively. In 2007 we reported the structure of the apoform of FdtA from Aneurinibacillus thermoaerophilus, which was followed in 2014 by the X-ray analysis of QdtA from Thermoanaerobacterium thermosaccharolyticum as a binary complex. Both of these enzymes belong to the cupin superfamily. Here we report a combined structural and enzymological study to explore the manner in which these enzymes control the stereochemistry of their products. Various site-directed mutant proteins of each enzyme were constructed, and their dTDP-sugar products were analyzed by NMR spectroscopy. In addition, the kinetic parameters for these protein variants were measured, and the structure of one, namely, the QdtA Y17R/R97H double mutant form, was determined to 2.3-Å resolution. Finally, in an attempt to obtain a model of FdtA with a bound dTDP-linked sugar, the 3,4-ketoisomerase domain of a bifunctional enzyme from Shewanella denitrificans was cloned, purified, and crystallized in the presence of a dTDP-linked sugar analogue. Taken together, the results from this investigation demonstrate that it is possible to convert a "galacto" enzyme into a "gluco" enzyme and vice versa.

  17. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Tang, I-Ching; Zhao, Jingbo; Bai, Fengwu; Yang, Shang-Tian

    2016-11-01

    Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production.

  18. Pretreatment of aqueous ammonia on oil palm empty fruit fiber (OPEFB) in production of sugar

    Science.gov (United States)

    Zulkiple, Nursyafiqah; Maskat, Mohamad Yusof; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an agricultural residue that has the potential to become a good source for renewable feedstock for production of sugar. This work evaluated the effectiveness of aqueous ammonia as pretreatment at low (soaking, SAA) and elevated temperature (pressurized chamber) to deconstruct the lignocellulosic feedstock, prior to enzymatic hydrolysis. The ammonia pretreatments were compared against the standard NaOH method. The best tested pressurized chamber method conditions were at 100°C with 3 hour retention time, 12.5% ammonium hydroxide and 1:30 solid loading. The digestibility of the feedstock is determined with enzymatic hydrolysis using Cellic Ctech2 and Cellic Htech2. The sugars produced by pressurized chamber method within 24 hour of enzyme hydrolysis are similar to that produced by NaOH method which is 439.90 mg/ml and 351.61 mg/ml, respectively. Compared with optimum SAA method (24 hour, 6.25% of ammonium hydroxide at room temperature), pressurized chamber method was capable of producing enhanced delignification and higher production of sugar upon hydrolysis. These findings were supported by the disappearance peak at 1732, 1512 and 1243 on Fourier Transform Infrared (FTIR spectrum) of treated OPEFB by pressurized chamber method. XRD determination showed reduced crystallinity of OPEFB (37.23%) after treatment by pressurized chamber, suggesting higher accessibility toward enzyme hydrolysis. The data obtained suggest that the pressurized chamber pre-treatment method are suitable for OPEFB deconstruction to produce high yield of sugar.

  19. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, J.N. de [Alagoas Univ., Maceio, AL (Brazil). Dept. de Engenharia Quimica]. E-mail: jnunes@ctec.ufal.br; Lopes, C.E. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos; Franca, F.P. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Bioquimica

    2004-09-01

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 {+-} 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars conversion was 74.61% at a dilution rate of 0.83 h{sup -1}. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h{sup -1} to 3.00 h{sup -1}. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h{sup -1}). (author)

  20. Scalable production of mechanically tunable block polymers from sugar.

    Science.gov (United States)

    Xiong, Mingyong; Schneiderman, Deborah K; Bates, Frank S; Hillmyer, Marc A; Zhang, Kechun

    2014-06-10

    Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA-PβMδVL-PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications.

  1. The Development of Sugar Beet Production and Processing Simulation Model – a System Dynamics Approach to Support Decision-Making Processes

    Directory of Open Access Journals (Sweden)

    Rozman Črtomir

    2014-05-01

    Full Text Available Background: The sugar beet is the main field crop used for sugar production in the temperate climatic zone. The abolishment of the quota system will open new investment opportunities in countries that were forced to abandon sugar industry as the result of the reform in 2006. Present paper describes the modeling of sugar beet production and its processing into sugar for purpose of decision support.

  2. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    Science.gov (United States)

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2011-03-01

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

  3. Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar.

    Science.gov (United States)

    Alkotaini, Bassam; Han, Nam Soo; Kim, Beom Soo

    2017-02-01

    In enzymatic saccharification of agar, endo- and exo-agarases together with neoagarobiose hydrolase (NABH) are important key enzymes for the sequential hydrolysis reactions. In this study, a bifunctional endo/exo-agarase was fused with NABH for production of mono-sugars (D-galactose and 3,6-anhydro-L-galactose) from agar using only one fusion enzyme. Two fusion enzymes with either bifunctional agarase (Sco3476) or NABH (Zg4663) at the N-terminus, Sco3476-Zg4663 (SZ) and Zg4663-Sco3476 (ZS), were constructed. Both fusion enzymes exhibited their optimal agarase and NABH activities at 40 and 35 °C, respectively. Fusions SZ and ZS enhanced the thermostability of the NABH activity, while only fusion SZ showed a slight enhancement in the NABH catalytic efficiency (K cat/K M) from 14.8 (mg/mL)(-1) s(-1) to 15.8 (mg/mL)(-1) s(-1). Saccharification of agar using fusion SZ resulted in 2-fold higher mono-sugar production and 3-fold lower neoagarobiose accumulation when compared to the physical mixture of Sco3476 and Zg4663. Therefore, this fusion has the potential to reduce enzyme production cost, decrease intermediate accumulation, and increase mono-sugar yield in agar saccharification.

  4. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    Science.gov (United States)

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  5. Nutrient compensation as management tool– Sugar kelp production in sustainable aquaculture

    DEFF Research Database (Denmark)

    Schmedes, Peter Søndergaard; Boderskov, Teis; Silva Marinho, Goncalo

    Integrated multi-trophic aquaculture (IMTA) is theoretically a sustainable production form, which minimizes waste products from e.g. fish farms, by the co-production of bivalves or/and seaweed. For the Danish fish farmers the extractive organisms could be the solution for increasing fish production....../meter dropper rope). During the project a number of improvements of the existing techniques for producing seaweed on suspended line systems were developed, however, further optimization of techniques for deployment, production as well as harvest is needed. This would also allow sugar kelp production as a viable...... and robust mitigation tool for nitrogen removal and hopefully allow for future expansion of sustainable marine fish production in Denmark....

  6. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

    Science.gov (United States)

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Yang, Zhonghua; Wang, Guanghui; Zuo, Zhenyu; Hou, Yali; Zhao, Zongbao K

    2016-05-01

    The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses.

  7. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.;

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological...... production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial...

  8. Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata.

    Science.gov (United States)

    Tanimura, Kosuke; Nakayama, Hideki; Tanaka, Tsutomu; Kondo, Akihiko

    2013-08-01

    In this study, the water-retaining cyclic amino acid ectoine was produced from a variety of sugars, including glucose, xylose, cellobiose, and glucose/xylose mixture using engineered Halomonas elongata. When grown on xylose as the sole carbon source, H. elongata produced 333 mmol/kg fresh cell weight (FW) of ectoine, which was 1.4-fold higher than that produced from glucose. To improve ectoine production, an ectD deficient H. elongata mutant was constructed. The engineered H. elongata produced 377 mmol/kg FW of ectoine from a glucose/xylose mixture. Ectoine was also produced from rice straw hydrolysate. These results show that H. elongata can produce ectoine from a variety of sugars derived from lignocellulosic biomass and thus has tremendous potential as a host for producing useful compounds from biomass resources.

  9. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production

    Science.gov (United States)

    2013-01-01

    Background Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. Results The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield. The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. Conclusions Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the

  10. In-situ biodiesel and sugar production from rice bran under subcritical condition

    Science.gov (United States)

    Zullaikah, Siti; Rahkadima, Yulia Tri

    2015-12-01

    An integrated method of producing biodiesel and sugar using subcritical water and methanol has been employed as a potential way to reduce the high cost of single biofuel production from rice bran. The effects of temperature, methanol to water ratio and reaction time on the biodiesel yield and purity, and the concentration of sugar in hydrolysate were investigated systematically. Biodiesel with yield and purity of 65.21%and 73.53%, respectively, was obtained from rice bran with initial free fatty acid (FFA) content of 37.64% under the following conditions: T= 200 oC, P= 4.0 MPa (using CO2 as pressurizing gas), ratio of rice bran/water/methanol of 1/2/6 (g/mL/mL), and 3 h of reaction time. FFAs level was reduced to 10.00% with crude biodiesel recovery of 88.69%. However, the highest biodiesel yield (67.39%) and crude biodiesel recovery (100.00%) were obtained by decreasing the amount of methanol so that the ratio of rice bran/water/methanol became 1/4/4, g/mL/mL. In addition, the highest sugar concentration of 0.98 g/L was obtained at 180 oC and 4.0 MPa with ratio of rice bran/water/methanol of 1/4/4 (g/mL/mL) and reaction time of 3 h. Since no catalyst was employed and the biodiesel and reducing sugar were produced directly from rice bran with high water and FFA contents, the process was simple and environmentally friendly, which would make the production of biofuel more economical and sustainable.

  11. A Multiscale Approach for Modeling Oxygen Production by Adsorption

    Directory of Open Access Journals (Sweden)

    Pavone D.

    2013-10-01

    Full Text Available Oxygen production processes using adsorbents for application to CCS technologies (Carbon Capture and Storage offer potential cost benefits over classical cryogenics. In order to model adsorption processes an approach using three size scales has been developed. This work is being conducted in the framework of the DECARBit European research project. The first scale is at the size of the oxygen adsorption bed to be modelled as a vertical cylinder filled with pellets. Its length is 0.2 m (scale 10-1 m. The bed is homogeneous in the transversal direction so that the problem is 1D (independent variables t, x. The physics in the process include gas species (Cbk (t, x convection and dispersion, thermal convection and conduction (T(t, x and hydrodynamics (v(t, x. The gas constituents involved are N2, 02, CO2 and H2O. The second scale is at the size of the pellets that fill the adsorber and which are assumed to be of spherical shape with a typical radius of 5 mm (scale 10-3 m. The independent variable for the pellets is the radius “rp”. At a certain height (x down in the adsorber all the pellets are the same and are surrounded by the same gas composition but inside the pellets the concentrations may vary. The state variables for the inner part of the pellets are the gas concentrations Cpk(t, x, rp. The pellets are so small that they are assumed to have a uniform temperature. This leads to a 2D transient model for the pellets linked to the 1D transient model for the bulk. The third scale looks into the detailed structure of the pellets that are made of perovskite crystallites. The latter are assumed to be spherical. Oxygen adsorption occurs in the crystallites which have a radius of about 0.5 pm (scale 10-7 m. All the crystallites at the same radius in a pellet are supposed to behave the same and because they are spherical, the only independent variable for a crystallite located at (x, rp is its radius “rc”. The state variables for the crystallites

  12. Sugar 101

    Science.gov (United States)

    ... Recognition & Awards Healthy Workplace Food and Beverage Toolkit Sugar 101 Updated:Oct 11,2016 Naturally occurring sugars ... sugars Discretionary calories and added sugars Naturally occurring sugars and added sugars There are two types of ...

  13. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production

    Directory of Open Access Journals (Sweden)

    M. Idrees

    2014-06-01

    Full Text Available To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from twenty four different pretreatment conditions. These included different concentrations of sulphuric acid (0.0, 1.0, 2.0 and 3.0%, at two different temperatures (108 and 121 ºC for different residence times (1.0, 2.0 and 3.0h.The highest reducing sugar yield (36.65 g/L from enzymatic hydrolysis was obtained when plant material was pretreated at 121 ºC for 1.0 h residence time using 3.0% (v/v sulphuric acid and at 1:10 (w/v solid to liquid ratio. The total reducing sugars obtained from the two-stage process (pretreatment + enzymatic hydrolysis was 69.6g/L. The resulting sugars were fermented into ethanol by using Saccharomyces cerevisiae. The ethanol yield from the enzymatic hydrolyzate was 95.2% of the theoretical yield (0.51g/g glucose, as determined by GS-MS, and nearly 100% since no reducing sugars were detected in the fermenting media by TLC and DNS analysis.

  14. PRODUCTIVITY OF SUGAR BEET LINES AND THEIR CROSSES DEPENDING ON PLOIDITY

    Directory of Open Access Journals (Sweden)

    Andrija Kristek

    2003-12-01

    Full Text Available Five diploid (2n=2x=18 cms lines, 2 tetraploid (2n=4x=36 and 2 diploid pollinators, as well as 10 diploid and 10 triploid (2n=3x=27 sugar beet hybrids, given by the crossing of investigated cms lines and pollinators were investigated in the field trials. Two triploid hybrids, widespread in sugarbeet production, were sown as standards – Os Sana and Iva. The trials were conducted on two localities (Osijek and Đakovo during the two years (2002 and 2003. There was a difference between years in weather conditions and between localities in terms of type and features of soil. First year of the investigation was humid and warm and the second was dry and hot. Osijek locality was characterized by chernozem-meadow type soil and Đakovo by loessial pseudoglei. The best average root yield was achieved between the investigated genotypes by the triploid hybrid 15 (58.09 t/ha and the hybrids 11, 13 and standard 31. As for the content and utilization of sugar, the standard 31 achieved best results (15.15% followed by the standard hybrids 15, 18, 17 and 11. The best sugar yield was achieved by hybrid 15 (7.08 t/ha, followed by hybrids 13, 11, 10 and 18.

  15. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    Science.gov (United States)

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples.

  16. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process

    Energy Technology Data Exchange (ETDEWEB)

    Srichuwong, Sathaporn; Arakane, Mitsuhiro; Fujiwara, Maki; Zhang, Zilian; Tokuyasu, Ken [National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 (Japan); Takahashi, Hiroyuki [National Agricultural Research Center for Hokkaido Region, NARO, Shinsei, Memuro, Hokkaido 082-0081 (Japan)

    2010-09-15

    Ethanol fermentation of fresh sugar beet mash (SBM) could give a benefit on reducing energy input for sugar diffusion, juice separation, and water evaporation as used in conventional practices, thus offering promise as a low energy process. Actions of cell-wall degrading enzymes provide a mash with low viscosity, which can be easily fermented to ethanol. However, a several-fold higher enzyme loading was required for viscosity reduction of SBM compared with that of potato mash. In this study, the use of dilute alkali treatment (0.025-0.15 N NaOH, 25 C, 1 h) in enhancing enzymatic viscosity reduction of SBM was evaluated. The results showed that higher NaOH concentration enhanced demethylation and deacetylation of SBM, resulting in greater performances of the enzymes on reducing viscosity. Efficient enzymatic viscosity reduction of SBM was observed with the 0.1 N NaOH treatment. On the other hand, untreated SBM was highly resistant to viscosity reduction, even though a 20-fold more enzyme loading was used. The resulting mash containing 12-13% (w/v) sucrose yielded 7-8% (v/v) ethanol after 24 h of fermentation (90% efficiency). Accordingly, alkali treatment can be applied for facilitating the use of fresh sugar beet for ethanol production. (author)

  17. THE PRODUCTIVITY OF SUGAR BEET MONOGERM LINES DEPENDING ON CERCOSPORA (Cercospora beticola Sacc. SUSCEPTIBILITY

    Directory of Open Access Journals (Sweden)

    Andrija Kristek

    2003-06-01

    Full Text Available The producing values of monogerm CMS lines of sugar beet and their tolerance on cercospora leaf spot are investigated in Osijek during two years (2001, 2002 under the following conditions: natural infection and full protection with fungicides. The parameters for evaluation were root quality and yield, just as visual review of leaf damages. Twenty eight genetically divergent CMS lines and two standards were confirmed by the examinations. The test results indicate achieved progress in breeding and monogerm CMS lines value which can be used for obtaining new hybrids and further improvements. Three investigated lines achieved high root yield on the level of standards and even ten lines had the same or higher digestion than better standard. It was found out that in the case of fungicide apply, root yield increased on the average by 7.09 t/ha (16%, sugar content by 0.81% (rel. 5% and sugar yield by 1.38 t/ha (22.8%. Protection measures with fungicides had higher influence on production results of line being susceptible to cercospora and compared to cercospora tolerant lines.

  18. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  19. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    OpenAIRE

    Rodiansono Rodiansono; Shimazu Shogo

    2013-01-01

    Effective production of hexitols (sorbitol and mannitol) was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH) catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite). The presence of aluminium hydroxide caused a high dis...

  20. Using of Bangun-Bangun Leafs (Coleus Amboinicus, L on Red Sugar Block to Upgrading Milk Production of Frisian Holstein

    Directory of Open Access Journals (Sweden)

    Nelzi Fati

    2014-01-01

    Full Text Available Science and technology for the Community Activities Program (IBM granting wake leaf meal in urea red sugar  block has been implemented in a herd prosperous green valley village Kampung Manggis, Western District of Padang Panjang, Municipality of Leopold. This activity aims to increase the milk production of dairy cows through the application of technology utilization wake leaf meal in urea  red sugar block. The benefits of this activity is to assist farmers in improving milk production per day, so that milk production can increase the impact on increasing revenue. To achieve the goal of service to the community mentioned above, it has been conducted lectures, live demonstrations on the making lick candy made from leaf shapes. Six cows used as a demonstration, two dairy cows with urea red sugar block containing 2.5% leaf shapes, two dairy cows with urea red sugar block containing leaf shapes 5% and two cows with urea red sugar block containing leaves wake up 7.5%. Wake up dried leaves with the help of sunlight and then made ready for use in the flour mixture forming urea red sugar block which serves as a feed supplement in dairy cattle. Evaluation activities indicate that the application of urea  red sugar block starchy wake leaves 5% can increase the production of milk 2 liters / day / head (average increase 10%.Of this service activities can be concluded that the use of leaf meal wake up in 5% urea red sugar  block can increase milk production of dairy cows 2 liters / day / head compared with 2.5%, 7.5%.

  1. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  2. Engineering Synechocystis PCC6803 for hydrogen production: influence on the tolerance to oxidative and sugar stresses.

    Directory of Open Access Journals (Sweden)

    Marcia Ortega-Ramos

    Full Text Available In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature. We demonstrate that the hydrogenase-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H₂O₂ and sugar (glucose and glycerol stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of hydrogenase, combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active hydrogenase. These novel results and mutants have major implications for those interested in hydrogenase, hydrogen production and redox metabolism, and their connections with environmental conditions.

  3. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials

    OpenAIRE

    María V. Borrachero; Jordi Payá; José Monzó; Lourdes Soriano; Mauro M. Tashima; José L.P. Melges; Jorge L. Akasaki; Vinícius N. Castaldelli

    2013-01-01

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part...

  4. ESST Proceedings Rotterdam 2009. Beet Quality. Sustainability of beet sugar production. Energy usage - future challenges. General process technology developments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the conference of the European Society for Sugar Technology (Berlin, Federal Republic of Germany) between 17th and 20th June, 2009 in Rotterdam (The Netherlands) the following lectures were held: (1) Sugar beet quality during long-term storage in clamp and field (A.W.M. Huijbregts); (2) Methods used in the Netherlands to limit frost damage and to process frost-deteriorated beets (J. Strujis, M. Jaspers, M. van Dijk); (3) Biotech in sugarbeet and sugarcane: Current status (T.K. Schwartz, C. Richard); (4) Separation of water through gas hydrate (T. Boech Andersen); (5) Optimised standard of sugar manufacturing - first calculations (F. Lorenz, T. Frankenfeld); (6) Reconsidering vapour compression for sugar crystallization (A. Dolls, M. Bruhns); (7) The development of sustainability standards in the sugar industry (P. Rein); (8) Bioethanol: sugar beet, sugar cane or second generation? (W.J. Corre, J.G. Conijin); (9) The sustainability of beet sugar production in comparison with other sugar crops (P. Christodoulou, V. Kazantzi, S. Bezergianni, K. Gounaris); (10) Alternative products from sugar beets (J. Iciek, S. Wawro); (11) Alternative products from sugar beets (M. Wojtczak); (12) Increase of sugar yield by electrodialysis (J.P. Jenen, P.B. Hansen, M.P. Carter); (13) Optimal dosing of alkalizing agents in the juice purification (G. Roesner, W. Hein, F. Emerstorfer); (14) Affinity based separation technologies and their role in the current and future sugar industry (V. Kochergin); (15) Four to three-stage sugarhouse with two white sugar products (J. Jeppesen, M. Carter); (16) Practical experience of juice decalcification using a weak acid cation exchange resin plant incorporating fractal fluid distribution (E. West, P. Burroughs, P. Seymour); (17) A new process for the production of 'seed crystals' - Process development and field report from the factories (M. Walter, B. Ekelhof, S. Heppner, D. Wullbrandt); (18) Application possibilities and Properties

  5. Sugar Substitutes: Artificial Sweeteners and Sugar Alcohols

    OpenAIRE

    Washburn, Carolyn; Christensen, Nedra

    2012-01-01

    Most people enjoy the sweet taste of food. Artificial sweeteners and sugar alcohols can provide the sweet flavor and be beneficial for people with diabetes or those choosing to avoid sugars because they contain lower calories and carbohydrates than regular sugars. These products are also beneficial in that they do not cause tooth decay.

  6. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.

    Science.gov (United States)

    Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2017-01-01

    In this work different biorefinery scenarios were investigated, concerning the co-production of bioethanol and electricity from available lignocellulose at a typical sugar mill, as possible extensions to the current combustion of bagasse for steam and electricity production and burning trash on-filed. In scenario 1, the whole bagasse and brown leaves is utilized in a biorefinery and coal is burnt in the existing inefficient sugar mill boiler. Scenario 2 & 3 are assumed with a new centralized CHP unit without/with coal co-combustion, respectively. Also, through scenarios 4 & 5, the effect of water insoluble loading were studied. All scenarios provided energy for the sugarmill and the ethanol plant, with the export of surplus electricity. Economic analysis determined that scenario 1 was the most viable scenario due to less capital cost and economies-of scale. Based on Life Cycle Assessment (LCA) results, scenario 2 outperformed the other scenarios, while three scenarios showed lower contribution to environmental burdens than the current situation.

  7. Anhydrous ethanol production in sugar mills; Produccion de etanol anhidro en ingenios azucareros

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez Poy, Manuel. E-mail:poymanuel@prodigy.net.mx

    2007-04-15

    The anhydrous ethanol production is recent and limited, because the disadvantage of the renewable energies is the economic impossibility of the projects. Nevertheless, there are aspects to consider to achieve the anhydrous ethanol production, among which are: the cost of the raw material, the self-sufficiency of energy from the sugar cane bagasse without the need of oil burning, the larger size of the distilleries, incorporation of the Cogeneration with delivery of electricity to the public network in the sugar mill facilities, the introduction of the biotechnology to improve the processes of fermentation and subsidies to agriculture. [Spanish] La produccion de etanol anhidro es reciente y limitada, debido a que la desventaja de las energias renovables es la inviabilidad economica de los proyectos. Sin embargo hay aspectos a considerar para lograr la produccion de etanol anhidro, entre los cuales estan: el costo de la materia prima, la autosuficiencia energetica a partir del bagazo de la cana sin necesidad de petroleo, mayor tamano de las destilerias, incorporacion de la Cogeneracion con entrega de electricidad a la red publica en el ingenio, la introduccion de la biotecnologia para mejorar los procesos de fermentacion y subsidios a la agricultura.

  8. Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water.

    Science.gov (United States)

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.

  9. Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Abdi Hanra Sebayang

    2017-01-01

    Full Text Available Bioethanol is known as a viable alternative fuel to solve both energy and environmental crises. This study used response surface methodology based on the Box-Behnken experimental design to obtain the optimum conditions for and quality of bioethanol production. Enzymatic hydrolysis optimization was performed with selected hydrolysis parameters, including substrate loading, stroke speed, α-amylase concentration and amyloglucosidase concentration. From the experiment, the resulting optimum conditions are 23.88% (w/v substrate loading, 109.43 U/g α-amylase concentration, 65.44 U/mL amyloglucosidase concentration and 74.87 rpm stroke speed, which yielded 196.23 g/L reducing sugar. The fermentation process was also carried out, with a production value of 0.45 g ethanol/g reducing sugar, which is equivalent to 88.61% of ethanol yield after fermentation by using Saccharomyces cerevisiae (S. cerevisiae. The physical and chemical properties of the produced ethanol are within the specifications of the ASTM D4806 standard. The good quality of ethanol produced from this study indicates that Manihot glaziovii (M. glaziovii has great potential as bioethanol feedstock.

  10. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  11. The use of sugar beet pulp lignin for the production of vanillin.

    Science.gov (United States)

    Aarabi, Aazam; Mizani, Maryam; Honarvar, Masoud

    2017-01-01

    The objectives of this work is to produce vanillin from sugar beet pulp by lignin oxidation and evaluate the effect of process parameters (temperature, partial pressure of oxygen, reaction time, CuSO4 as a catalyst) on the yield of vanillin. Purification and separation of vanillin from pressurized extract was carried out by organic solvent and crystallization. HPLC, FT-IR, H NMR, GC/MS and DSC methods were performed to approve the vanillin crystal. Results showed that production of vanillin was significantly affected by four parameters, and an optimal conditions for production of vanillin was found 4.3bar for an oxygen partial pressure under a temperature of 156°C and duration of time 30min without CuSO4, corresponding to 1439.3mg/100g vanillin. Thermal property of syntesis vanillin was coincide to DSC pure vanillin curve but there were differences in ΔH°f and ΔHc.

  12. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.

    Science.gov (United States)

    Song, Kuo; Tan, Xiaoming; Liang, Yajing; Lu, Xuefeng

    2016-09-01

    It is important to obtain abundant sugar feedstocks economically and sustainably for bio-fermentation industry, especially for producing cheap biofuels and biochemicals. Besides plant biomass, photosynthetic cyanobacteria have also been considered to be potential microbe candidates for sustainable production of carbohydrate feedstocks. As the fastest growing cyanobacterium reported so far, Synechococcus elongatus UTEX 2973 (Syn2973) might have huge potential for bioproduction. In this study, we explored the potentials of this strain as photo-bioreactors for sucrose and glycogen production. Under nitrogen-replete condition, Syn2973 could accumulate glycogen with a rate of 0.75 g L(-1) day(-1) at the exponential phase and reach a glycogen content as high as 51 % of the dry cell weight (DCW) at the stationary phase. By introducing a sucrose transporter CscB, Syn2973 was endowed with an ability to secrete over 94 % sucrose out of cells under salt stress condition. The highest extracellular sucrose productivity reached 35.5 mg L(-1) h(-1) for the Syn2973 strain expressing cscB, which contained the similar amounts of intracellular glycogen with the wild type. Potassium chloride was firstly proved to induce sucrose accumulation as well as sodium chloride in Syn2973. By semi-continuous culturing, 8.7 g L(-1) sucrose was produced by the cscB-expressing strain of Syn2973 in 21 days. These results support that Syn2973 is a promising candidate with great potential for production of sugars.

  13. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  14. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept.

    Science.gov (United States)

    Nguyen, H T T; Nevoigt, E

    2009-11-01

    Dihydroxyacetone (DHA) has numerous industrial applications. In this work, we pursue the idea to produce DHA from sugars in the yeast Saccharomyces cerevisiae, via glycerol as an intermediate. Firstly, three glycerol dehydrogenase (GDH) genes from different microbial sources were expressed in yeast. Among them, the NAD(+)-dependent GDH of Hansenula polymorpha showed the highest glycerol-oxidizing activity. DHA concentration in shake-flask experiments was roughly 100mg/lDHA from 20g/l glucose, i.e. five times the wild-type level. This level was achieved only when cultures were subjected to osmotic stress, known to enhance glycerol production and accumulation in S. cerevisiae. Secondly, DHA kinase activity was abolished to prevent conversion of DHA to dihydroxyacetone phosphate (DHAP). The dak1Deltadak2Delta double-deletion mutant overexpressing H. polymorpha gdh produced 700mg/l DHA under the same conditions. Although current DHA yield and titer still need to be optimized, our approach provides the proof of concept for producing DHA from sugars in yeast.

  15. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis.

  16. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  17. Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1987-08-01

    Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.

  18. Optimization of ethanol production from hot-water extracts of sugar maple chips

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Liu, Shijie [Department of Paper and Bioprocess Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210 (United States)

    2009-11-15

    Hot-water extracts from sugar maple chips prior to papermaking was employed in this study to produce ethanol by Pichia stipitis 58784. The effects of several factors, seed culture age, fermentation time, inoculum quantity, agitation rate, percent extract, concentration of inorganic nitrogen source (NH{sub 4}){sub 2}SO{sub 4} and pH value, on ethanol production were investigated by orthogonal experiments. Orthogonal analysis shows that the optimal fermentation was obtained in the condition of 48-h seed culture, 120-h fermentation, 16% inoculum, 180 rpm, containing 30% extracts, 8% ammonium sulphate supplement and pH 5. This optimal condition was verified at 800-mL level in a 1.3 L fermentor. The ethanol yield reached 82.27% of the theoretical (20.57 g/L) after 120 h. (author)

  19. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  20. Metabolic Engineering of Zymomonas mobilis for 2,3-Butanediol Production from Lignocellulosic Biomass Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat-Chen; Chen, Xiaowen; Dowe, Nancy; Himmel, Michael E.; Zhang, Min

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.

  1. Methodology of factorial design deriving guidelines for simulation of growth curve and production of sugars by Spirulina (Arthrospira) maxima

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2f factorial design was brought up to derive guidelines to simulate growth curve and production of sugars by Spirulina (Arthrospira) maxima. The growth curve or accumulation process of sugars was idealized by sets of straight lines limited by phase transfers of growth or accumulation of sugars. Normal analyses of the critical values of the transfers were used to derive their linear relationships with the initial conditions of the experimental factors. These linear functions were called guidelines and were used to simulate the growth curve or accumulation of sugars. Generalization of the guideline technique was determined by the kinetic limitation of nutrient nitrogen or sulfur that was dependent upon their stoichiometric deficiency directly derived from their initial values in the medium. This method uses the initial conditions of culture and does not need measurements of concentrations of nitrate, sulfate and pigments during cultivation. It is a practical and useful alternative way to trace and predict approximately the growth curve and production of sugars by S. maxima.

  2. Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids

    OpenAIRE

    Sun, Ning; Liu, Hanbin; Sathitsuksanoh, Noppadon; Stavila, Vitalie; Sawant, Manali; Bonito, Anaise; Tran, Kim; George, Anthe; Sale, Kenneth L.; Singh, Seema; Simmons, Blake A.; Holmes, Bradley M.

    2013-01-01

    Background The use of Ionic liquids (ILs) as biomass solvents is considered to be an attractive alternative for the pretreatment of lignocellulosic biomass. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars during IL pretreatment. This could potentially provide a means of liberating fermentable sugars from biomass without the use of costly enzymes. However, the separation of the sugars from the aqueous IL and recovery of IL is challenging and impera...

  3. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it

  4. Evaluation of the activated charcoals and adsorption conditions used in the treatments of sugarcane bagasse hydrolysate for xylitol production

    Energy Technology Data Exchange (ETDEWEB)

    Marton, J.M.; Felipe, M.G.A.; Almeida e Silva, J.B. [School of Chemical Engineering at Lorena (FAENQUIL), SP (Brazil). Dept. of Biotechnology], Email: jmarcelo@cetesb.sp.gov.br; Pessoa Junior, A. [University of Sao Paulo (USP), SP (Brazil)

    2006-01-15

    Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite), each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it to 5.5 with H

  5. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.

    Science.gov (United States)

    Ferrara, Maria Antonieta; Bon, Elba P S; Araujo Neto, Julio Silva

    2002-01-01

    The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.

  6. Examination of zinc adsorption capacity of soils treated with different pyrolysis products

    Directory of Open Access Journals (Sweden)

    Rétháti Gabriella

    2014-11-01

    Full Text Available Organic matter input into soils is essential regarding agricultural, environmental and soil science aspects as well. However, the application of the pyrolysed forms of biochars and materials with different organic matter content gained more attention in order to decrease the emission of the green house gases (CO2, N2O from the soil. During pyrolysis, the materials containing high organic matter (biomass-originated organic matter are heated in oxygen-free (or limited amount of oxygen environment. As a result, the solid phase, which remains after eliminating the gases and liquid phase, is more stable compared to the original product, it cannot be mineralized easily in the soil and its utilization is more beneficial in terms of climatic aspects. Furthermore, it can improve soil structure and it can retain soil moisture and cations in the topsoil for long periods of time, which is very important for plants. In our experiment, the effects of biochar and bone char were examined on soils by zinc adsorption experiments. Based on our experiments, we concluded that the pyrolysis products can have significant Zn adsorption capacity compared to the soil. Bone ash can adsorb more Zn than the charcoal product. The Zn adsorption capacity of soils treated by pyrolysis products can be described by Langmuir adsorption isotherms. However, based on the amount of pyrolysis products, one or two term Langmuir isotherm fits well on the experiment data, which depends on the time the pyrolysis product has spent in the soil.

  7. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Export certificate for sugar-containing products..., DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY QUOTAS Administration of Quotas § 132.17 Export...), the importer must possess a valid export certificate in order to claim the in-quota tariff rate...

  8. Developing of new products of starch sugar%淀粉糖新产品的开发与研究

    Institute of Scientific and Technical Information of China (English)

    蒋世琼; 马丽

    2001-01-01

    The paper presents the status quo and prospects of developing new products of starch sugar,such as isomaltooligosaccharides,trehalose and erythritol by applying biological technology at home and abroad.%阐述了国内外应用生物技术开发淀粉糖新产品的现状与前景。

  9. Development of an integrated approach for α-pinene recovery and sugar production from loblolly pine using ionic liquids

    DEFF Research Database (Denmark)

    Papa, Gabriella; Kirby, James; Murthy Konda, N. V. S. N.

    2017-01-01

    perspective for the production of advanced cellulosic biofuels. To date, there have been very few examples where a single conversion process has enabled recovery of both terpenes and fermentable sugars in an integrated fashion. We have used the ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate [C2C1Im......][OAc] at 120 °C and 160 °C in conjunction with analytical protocols using GC-MS, to extract α-pinene and simultaneously pretreat the pine to generate high yields of fermentable sugars after saccharification. Compared to solvent extraction, the IL process enabled higher recovery rates for α-pinene, from three...

  10. Opportunities for small-scale biorefinery for production of sugar and ethanol in the Netherlands

    NARCIS (Netherlands)

    Kolfschoten, R.C.; Bruins, M.E.; Sanders, J.P.M.

    2014-01-01

    Developments such as the Common Agricultural Policy reform, growth of the bio-based economy, increasing energy prices, increasing sustainability demands, and expected growth of global sugar demand change the environment in which the sugar producing industry operates. In order to remain competitive a

  11. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  12. Sugar Beet (Beta vulgaris L. Yields and Potential for Bioethanol Production under Irrigation Regime

    Directory of Open Access Journals (Sweden)

    Simona C. BÂRSAN

    2015-12-01

    Full Text Available The current study was carried out to analyse three sugar beet genotypes regarding to the economic yield and the potential to produce bioethanol, under the influence of furrow irrigation regime in specific conditions of Transylvanian Plain, North-West Romania. The research factors, genotype (‘Leila’, ‘Clementina’ and ‘Libero’ and irrigation regime were studied within a polyfactorial experimental design. The results obtained indicated that in specific climatic conditions of Transylvanian Plain, ‘Libero’ genotype had a great performance and produced the highest yields. The average production of ‘Libero’ genotype was superior than ‘Clementina’ and ‘Leila’ varieties, both in irrigated and non-irrigated conditions, as it follows: 38.98 t ha–1, respectively, 52.72 t ha–1 in the first year of research; 47.63 t ha–1, respectively, 59.73 t ha–1 (in the second year; 2014-60.87 t ha–1, respectively, 74.43 t ha–1 (in the third year. Moreover, the production increased with 11.5% under irrigated conditions for all the studied genotypes. The results also revealed the positive influence of the irrigation regime on the qualitative parameters of the bioethanol (ethanol, higher saturated monoalcohols, methanol, water, inorganic chloride, cooper, phosphorous, sulphur etc. indicating that the obtained bioethanol might be a viable alternative for fossil fuels.

  13. Investigation of the effect of culture type on biological hydrogen production from sugar industry wastes.

    Science.gov (United States)

    Ozkan, Leyla; Erguder, Tuba H; Demirer, Goksel N

    2010-05-01

    The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC. Two different COD levels (4.5 and 30g/L COD) were investigated for each culture type. Reactors with initial COD concentration of 4.5g/L had higher H(2) yields (20.3-87.7mL H(2)/g COD) than the reactors with initial COD concentration of 30g/L (0.9-16.6mL H(2)/g COD). The 2-bromoethanesulfonate and heat treatment of MAC inhibited the methanogenic activity, but did not increase the H(2) production yield. The maximum H(2) production (87.7mL H(2)/g COD) and minimum methanogenic activity were observed in the unseeded reactor with 4.5g/L of initial COD.

  14. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    Science.gov (United States)

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.

  15. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse.

    Science.gov (United States)

    Moraes, B S; Triolo, J M; Lecona, V P; Zaiat, M; Sommer, S G

    2015-08-01

    Bioethanol production generates large amounts of vinasse, which is suitable for biogas production. In this study, the anaerobic digestion of sugar beet vinasse was optimised using continuous stirred-tank reactors (CSTR) supplemented either with lime fertiliser or with 3% cow manure. In both reactors, the C/N ratio was adjusted by adding straw. The biochemical methane potential (BMP) of vinasse was 267.4±4.5LCH4kgVS(-1). Due to the low content of macro- and micronutrients and low C/N ratio of vinasse, biogas production failed when vinasse alone was fed to the reactor. When co-substrate was added, biogas production achieved very close to the BMP of vinasse, being 235.7±32.2LCH4kgVS(-1) from the fertiliser supplied reactor and 265.2±26.8LCH4kgVS(-1) in manure supplied reactor at steady state. Anaerobic digestion was the most stable when cow manure was supplied to digestion of vinasse.

  16. PRODUCTION OF FERMENTABLE SUGARS FROM OIL PALM EMPTY FRUIT BUNCH USING CRUDE CELLULASE COCKTAILS WITH TRICHODERMA ASPERELLUM UPM1 AND ASPERGILLUS FUMIGATUS UPM2 FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Nurul Kartini Abu Bakar,

    2012-06-01

    Full Text Available Utilization of oil palm empty fruit bunch (OPEFB for bioethanol production with crude cellulase cocktails from locally isolated fungi was studied. Enzymatic saccharification of alkaline pretreated OPEFB was done using different cellulase enzyme preparations. Crude cellulase cocktails from Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 produced 8.37 g/L reducing sugars with 0.17 g/g yield. Production of bioethanol from OPEFB hydrolysate using Baker’s yeast produced approximately 0.59 g/L ethanol, corresponding to 13.8% of the theoretical yield. High reducing sugars concentration in the final fermentation samples resulted from accumulation of non-fermentable sugars such as xylose and cellobiose that were not consumed by the yeast. The results obtained support the possible utilization of OPEFB biomass for bioethanol production in the future.

  17. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2016-10-01

    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  18. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    Science.gov (United States)

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  19. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2.

    Science.gov (United States)

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production.

  20. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  1. Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig; Kristiansen, Rikke M.; Madsen, Mikkel G.

    2014-01-01

    Spoilage of chocolate pralines, due to growth of microorganisms tolerating low water activity, causes problems in the confectionary industry. Therefore, an increased knowledge on which organisms are present in the chocolate fillings and their tolerance towards low aw, pH, ethanol and other...... preservatives is needed. Using media containing 40-50% glucose (aw 0.872-0.925) bacteria, yeasts and moulds were isolated from chocolate pralines (aw 0.70-0.898) of nine manufactures and sugar syrups (aw 0.854) used as ingredient in chocolate praline production by one of the manufacturers. Isolates were...... of Zygosaccharomyces rouxii, Bacillus subtilis and Aspergillus terreus, respectively.Fifteen isolates were screened for their ability to grow in presence of low aw (0.65-0.90), low pH (pH=2.0-7.0), ethanol (0-15%), sorbic acid (0-1500ppm) and different temperatures (15°C-25°C) relevant for chocolate manufacturing. Z...

  2. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP.

  3. A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar

    Science.gov (United States)

    Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan

    1998-10-01

    There is current interest in and concern for the development of environmentally friendly bioprocesses whereby biomass and the biodegradable content of municipal wastes can be converted to useful forms of energy. For example, cellulose, a glucose polymer that is the principal component of biomass and paper waste, can be enzymatically degraded to glucose, which can subsequently be converted by fermentation or further enzymatic reaction to fuels such as ethanol or hydrogen. These products represent alternative energy sources to fossil fuels such as oil. Demonstration of the relevant reactions in high-school and undergraduate college laboratories would have value not only in illustrating environmentally friendly biotechnology for the utilization of renewable energy sources, such as cellulosic wastes, but could also be used to teach the principles of enzyme-catalyzed reactions. In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter. Furthermore, it is shown that the renewable resource cellulose, in its soluble derivative from carboxymethylcellulose, as well as aspen-wood waste, is also a source of hydrogen if the enzyme cellulase is included in the reaction mixture.

  4. Understanding the impact of crop and food production on the water environment--using sugar as a model.

    Science.gov (United States)

    Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze-Aurich, Jochen

    2014-01-15

    The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops.

  5. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen.

  6. Production of nanoparticles under benign conditions using vitamins, sugars, glutathione and polyphenols from tea and winery

    Science.gov (United States)

    In continuation of our developmental program for sustainable pathways to nanomaterials, an account of greener preparation of nanoparticles utilizing naturally occurring reagents such as vitamins, sugars, tea extracts, and biodegradable polymers will be presented which reduces or ...

  7. Utilization of distillery slop for sugar cane production and environmental pollution reduction

    OpenAIRE

    2010-01-01

    The research aimed to study the effect of distillery slop and chemical fertilizer on soil fertility, growth and yield of sugar cane. The field experiment was conducted on Mahasarakam soil series, using the K 88-92 variety of sugar cane. The results showed that distillery slop significantly increased some nutrients in soil, particularly potassium, magnesium, sulfur and chloride. The results also showed that application of distillery slop did not affect most of the physical properties of soil. ...

  8. Transgene escape in sugar beet production fields: data from six years farm scale monitoring.

    Science.gov (United States)

    Darmency, Henri; Vigouroux, Yves; Gestat De Garambé, Thierry; Richard-Molard, Marc; Muchembled, Claude

    2007-01-01

    Concerns have been raised in Europe about the efficiency, sustainability, and environmental impact of the first genetically modified crops. The committees and regulators in charge of approving procedures have encouraged a field trial approach for safety assessment studies under current agronomic conditions. We describe the gene flow from sugar beet (Beta vulgaris L.) in a multi-year and multi-crop monitoring study on farmers' fields at two locations that has been carried out since 1995. We analyzed two sugar beet lines that have been genetically transformed for herbicide resistance. One sugar beet has resistance to glufosinate and the other to glyphosate. Large differences among lines, years and locations were observed. These differences provided a broad range of situations to estimate the risks. Sugar beet bolters produced the majority (86%) of the herbicide-resistant seeds harvested in the field. Direct pollen flow from sugar beet bolters to weed beets that were growing within the same field as well as in a neighboring field that was left fallow accounted for only 0.4% of the resistant seeds released over the years and locations. Descendants of the hybrids between the sugar beet and the weed beet produced the remaining 13.6% of resistant seeds. Herbicide-resistant seeds from the progeny of the weed beet were recorded up to 112 m away from the closest transgenic pollen donor. Indications were observed of non-randomness of the weed beet producing resistant progeny. We also analyzed pollen flow to male-sterile bait plants located within and outside of the sugar beet field. Herbicide-resistant pollen flow was recorded up to 277 m, and fitted with an inverse power regression. Using sugar beet varieties with no, or very low, sensitivity to bolting and destroying bolters are two necessary measures that could delay gene flow.

  9. Sugar Substitutes

    Science.gov (United States)

    ... sugar and they aren't alcohol. They are carbohydrates that occur naturally in certain fruits and can also be manufactured. They get their name because they have a chemical structure similar to sugar and to alcohol. Sugar alcohols ...

  10. Study of the production of ethanol from sugar beets for use as a motor fuel. Final report, February 1, 1980-April 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Baird, H W

    1981-04-27

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  11. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  12. Economic analyse of industrial production and electric energy consumption on a sugar-alcohol plant; Analise economica da producao industrial e do consumo de energia eletrica em uma usina sucro-alcooleira

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Aderson

    1993-10-01

    Economic aspects of industrial production of sugar cane and automotive alcohol fuel, the relation between its production and electric energy consumption, electric energy costs to self generated electric power and concessionary supply, involved in plant production on Ribeirao Preto, SP, Brazil, are presented. Studies to verify the relationships between sugar and alcohol production with milling ours as well as sugar cane processed with sugar and alcohol produced are also discussed 27 refs., 12 figs., 38 tabs.

  13. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.

    OpenAIRE

    Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J; Hols, Pascal

    2007-01-01

    Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two...

  14. Effect of Ripeness and Drying Process on Sugar and Ethanol Production from Giant Reed (Arundo donax L.

    Directory of Open Access Journals (Sweden)

    Egidio Viola

    2015-04-01

    Full Text Available The work highlighted the influence of the water content within the starting biomass, drying procedure and ripeness on the enzymatic digestibility of the giant reed, one of the most suitable nonfood crops for bioenergy and bio-compound production. Fresh green reed was treated as received, while oven-dried green and ripe reed were humidified before the steam explosion pretreatment that was carried out at 210 ℃ for 10 minutes. The exploded biomasses were extracted with water to remove the soluble hemicellulose and potential inhibitors; the insoluble residue was submitted to enzymatic hydrolysis and alcoholic fermentation. The process was evaluated in terms of sugars recovery and ethanol yield. After the sequence of pretreatment, enzymatic hydrolysis and fermentation by Saccharomyces cerevisiae 132 g; 103 g; 162 g of ethanol; and 77 g; 63 g; 92 g of pentosanes were respectively obtained from 1 kgDM of fresh green reed; dried green reed or ripe reed. The ripe reed contains more carbohydrates than the green reed and the resulting sugar and ethanol production was higher, in spite of lower saccharification yield. While drying the fresh biomass is good practice for biomass preservation, it negatively affects the recovery of free sugars and the ethanol production, because of fiber hornification which hinders enzyme access in the hydrolysis step.

  15. Studying the effectiveness of re-hydration on productivity in a sugar beet workers among farmers in West Azarbaijan city

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-09-01

    Full Text Available Introduction: Heat-related illnesses are major causes of morbidity in the world. Workers who are exposed to extreme heat are not be able to activate their compensatory mechanisms and their health will consequently be at risk. Heat stress due to its impact on work performance increases the likelihood of worker disease and injuries and it also affect productivity. During sugar beet harvest, farmers from about 8 am to 4 pm, are exposed to sunlight and excessive heat. Therefore, preventive measures are essential in order to protect the health of farmers and improve productivity. The aim of this project as to study the effectiveness of the rehydration to reduce heat stress and increasing productivity during sugar beet harvest, conducted in 2012.   .Material and Method: in this project, 20 farmers from sugar beet farmers were studied during summer season, from 8 am to 4 pm in West Azarbaijan- Boukan city where the average temperature and relative humidity were 29.85 0C and 41%, respectively during sugar beet harvest. Selection criteria were defined as working more than 50% of the day’s working schedule and to have worked for at least 10 days of the follow-up period. Individual characteristics and water consumption rate during the work shift and also Production output data by farmers were recorded at the end of the working day. Environmental parameters using a portable monitoring device was measured and recorded and finally, the collected data was used for analysis using spss software version 20.   .Results: WBGT-TWA index for four the period of the time from morning to afternoon obtained 27.39 0C, as it was greater than the allowable thresholds. Ten workers receive 6-7 L of liquid and harvest production was significantly increased among those who are better hydrated (P=0.005, from 5 to 7 tons of harvest sugar beet per any worker per day, against lower 5 tons for farmers without drinking enough water.  . Conclusion: Farmers productivity can be

  16. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period

    Directory of Open Access Journals (Sweden)

    L. M. Sorathiya

    2015-01-01

    Full Text Available Aim: The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. Materials and Methods: This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L. tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50% of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Results: Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. Conclusion: It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding.

  17. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    Science.gov (United States)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  18. Integration of biopolymer production with process water treatment at a sugar factory.

    Science.gov (United States)

    Anterrieu, Simon; Quadri, Luca; Geurkink, Bert; Dinkla, Inez; Bengtsson, Simon; Arcos-Hernandez, Monica; Alexandersson, Tomas; Morgan-Sagastume, Fernando; Karlsson, Anton; Hjort, Markus; Karabegovic, Lamija; Magnusson, Per; Johansson, Peter; Christensson, Magnus; Werker, Alan

    2014-06-25

    The present investigation has focused on generating a surplus denitrifying biomass with high polyhydroxyalkanoate (PHA) producing potential while maintaining water treatment performance in biological nitrogen removal. The motivation for the study was to examine integration of PHA production into the water treatment and residuals management needs at the Suiker Unie sugar beet factory in Groningen, the Netherlands. At the factory, process waters are treated in nitrifying-denitrifying sequencing batch reactors (SBRs) to remove nitrogen found in condensate. Organic slippage (COD) in waters coming from beet washing is the substrate used for denitrification. The full-scale SBR was mimicked at laboratory scale. In two parallel laboratory scale SBRs, a mixed-culture biomass selection strategy of anoxic-feast and aerobic-famine was investigated using the condensate and wash water from Suiker Unie. One laboratory SBR was operated as conventional activated sludge with long solids retention time similar to the full-scale (SRT >16 days) while the other SBR was a hybrid biofilm-activated sludge (IFAS) process with short SRT (4-6 days) for the suspended solids. Both SBRs were found to produce biomass with augmented PHA production potential while sustaining process water treatment for carbon, nitrogen and phosphorus for the factory process waters. PHA producing potential in excess of 60 percent g-PHA/g-VSS was achieved with the lab scale surplus biomass. Surplus biomass of low (4-6 days) and high (>16 days) solids retention time yielded similar results in PHA accumulation potential. However, nitrification performance was found to be more robust for the IFAS SBR. Assessment of the SBR microbial ecology based on 16sDNA and selected PHA synthase genes at full-scale in comparison to biomass from the laboratory scale SBRs suggested that the full-scale process was enriched with a PHA storing microbial community. However, structure-function relationships based on RNA levels for the

  19. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    Science.gov (United States)

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage.

  20. Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry.

    Science.gov (United States)

    Debowski, M; Krzemieniewski, M; Zieliński, M; Dudek, M; Grala, A

    2013-01-01

    The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.

  1. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    Science.gov (United States)

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars.

  2. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    OpenAIRE

    2014-01-01

    This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L.) at four different levels of replacement (0, 30, 50, and 70%) for cane sugar (Saccharum officinarum RB.) in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of in...

  3. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    Science.gov (United States)

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  4. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    Science.gov (United States)

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean.

  5. Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production.

    Science.gov (United States)

    Marvig, Cecilie L; Kristiansen, Rikke M; Madsen, Mikkel G; Nielsen, Dennis S

    2014-08-18

    Spoilage of chocolate pralines, due to growth of microorganisms tolerating low water activity, causes problems in the confectionary industry. Therefore, an increased knowledge on which organisms are present in the chocolate fillings and their tolerance towards low aw, pH, ethanol and other preservatives is needed. Using media containing 40-50% glucose (aw 0.872-0.925) bacteria, yeasts and moulds were isolated from chocolate pralines (aw 0.70-0.898) of nine manufactures and sugar syrups (aw 0.854) used as ingredient in chocolate praline production by one of the manufacturers. Isolates were identified by conventional microbiological analyses and by sequencing of their 16S rRNA, 26S rRNA (D1/D2-region) or calmodulin genes. Further, for several species the identity was confirmed by amplification and sequencing of additional genes. In total 677 isolates were identified as belonging to ten different bacteria species, six yeast species and ten mould species with yeast being the most frequently isolated. Bacteria and moulds were found in low numbers, whereas yeast were found in numbers up to 10(7)CFU/g. The most frequently isolated yeast, bacteria and moulds belonged to the species of Zygosaccharomyces rouxii, Bacillus subtilis and Aspergillus terreus, respectively. Fifteen isolates were screened for their ability to grow in presence of low aw (0.65-0.90), low pH (pH=2.0-7.0), ethanol (0-15%), sorbic acid (0-1,500 ppm) and different temperatures (15°C-25°C) relevant for chocolate manufacturing. Z. rouxii was overall the most tolerant organism to the stress factors and grew within the same range of environmental conditions as found in chocolate pralines. It was able to grow at water activities down to 0.70, ethanol concentrations up to 6.0%, pH down to pH2.0, sorbic acid concentrations up to 1,500 ppm and at all temperatures tested. Eurotium amstelodami also showed high tolerance towards all the stress factors except for ethanol. None of the bacteria were able to grow at

  6. Sugar from Palms

    DEFF Research Database (Denmark)

    Barfod, Anders

    Throughout the tropics and subtropics a large number of products are derived from the sugar-rich sap tapped from palms. I will give an overview of the most important species being exploited, harvesting practices and yields. I will further provide insights in the biomechanmics of sugar...... transportation in palms, which remain an enigma. Finally, the prospects for developing palm sugar into a commodity of worlswide significance will be discussed....

  7. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    OpenAIRE

    Marli Camassola; Dillon, Aldo J.P.

    2014-01-01

    The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.25...

  8. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    Directory of Open Access Journals (Sweden)

    Milenna Nunes Moreira

    2014-09-01

    Full Text Available This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L. at four different levels of replacement (0, 30, 50, and 70% for cane sugar (Saccharum officinarum RB. in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of incubation. The byproducts of Moringa had the highest degradability, and castor presented the lowest values at all evaluated levels of replacement. Castor bean byproduct showed the highest total gas production, cotton showed the lowest production, and the byproduct of Moringa at the 70% level showed the best ruminal fermentation results. These results demonstrate that the use of oil seed press cake from biodiesel production (Helianthus annuus L. and Ricinus communis can replace cane sugar in ruminant feed.

  9. Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Scherer, P. [Lifetec Process Engineering, Faculty of Life Sciences, Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg (Germany)

    2008-03-15

    Single-stage continuous anaerobic conversion of sugar beet silage without manure to methane was investigated in this experimental work, using a laboratory-scale mesophilic anaerobic biogas digester. The sugar beet silage had an extreme low pH of 3.3. The reactor was operated in a hydraulic retention time (HRT) range of between 95 and 15 days, and an organic loading rate (OLR) range of between 0.937 and 6.33 g{sup -1} VS l{sup -1} d{sup -1}. The highest specific gas production rate (spec. GPR) of 0.72 l g VS{sup -1} d{sup -1} could be obtained at 25 days of HRT, with an average methane content of about 63%, at a pH of around 6.8. Since sugar beet silage without the leaves is a poor substrate, in terms of the availability of the nutrients and the buffering capacity, external supplementation of nitrogen and buffering agents has to be regularly performed, in order to achieve a stable and an efficient process. Sodium or potassium hydrogen carbonate addition seemed to function best in our case, among the other agents used, to provide adequate buffering capacity and to keep the digester pH stable during the operation. Use of a new harvest (a new charge of substrate) also affected the spec. GPR values significantly. (author)

  10. Optimization of enzymatic digestibility of sodium hydroxidehydrogen peroxide oxidative pretreated siam weed for reducing sugar production

    Directory of Open Access Journals (Sweden)

    Augustine O. Ayeni

    2014-09-01

    Full Text Available This study evaluated the enzymatic conversion of alkaline peroxide oxidative pretreatment of an invasive lignocellulosic biomass (siam weed to reducing sugar, amenable to further microbial effects at the downstream processing. Using a statistical design of experiments approach (response surface methodology, optimum pretreatment conditions of 43.7 oC, 9.3 h, and 0.4% H2O2 , and enzymatic hydrolysis conditions of 25 FPU cellulase/g treated biomass, 50 oC hydrolysis temperature, 2% biomass loading, and 72 h hydrolysis period, 391.3 mg/g reducing sugar yield was achieved and validated. At the optimized pretreatment and enzymatic conditions, the conversion of treated biomass to untreated biomass was about a 6-fold increase.

  11. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    De Bari, Isabella; De Canio, Paola; Cuna, Daniela; Liuzzi, Federico; Capece, Angela; Romano, Patrizia

    2013-09-25

    Bioethanol can be produced from several biomasses including lignocellulosic materials. Besides 6-carbon sugars that represent the prevalent carbohydrates, some of these feedstocks contain significant amounts of 5-carbon sugars. One common limit of the major part of the xylose-fermenting yeasts is the diauxic shift between the uptake of glucose and xylose during the fermentation of mixed syrups. Thus, optimized fermentation strategies are required. In this paper the ability of Scheffersomyces stipitis strain NRRLY-11544 to ferment mixed syrups with a total sugar concentration in the range 40-80 g/L was investigated by using mono cultures, co-cultures with Saccharomyces cerevisiae strain Bakers Yeast Type II and single cultures immobilized in silica-hydrogel films. The experimental design for the fermentations with immobilized cells included the process analysis in function of two parameters: the fraction of the gel in the broth and the concentration of the cells loaded in the gel. Furthermore, for each total sugars level, the fermentative course of S. stipitis was analyzed at several glucose-to xylose ratios. The results indicated that the use of S. stipitis and S. cerevisiae in free co-cultures ensured faster processes than single cultures of S. stipitis either free or immobilized. However, the rapid production of ethanol by S. cerevisiae inhibited S. stipitis and caused a stuck of the process. Immobilization of S. stipitis in silica-hydrogel increased the relative consumption rate of xylose-to-glucose by 2-6 times depending on the composition of the fermentation medium. Furthermore the films performances appeared stable over three weeks of continuous operations. However, on the whole, the final process yields obtained with the immobilized cells were not meaningfully different from that of the free cells. This was probably due to concurrent fermentations operated by the cells released in the broth. Optimization of the carrier characteristics could improve the

  12. Evaluating the effect of wood ultrastructural changes from mechanical treatment on kinetics of monomeric sugars and chemicals production in acid bisulfite treatment.

    Science.gov (United States)

    Liu, Yalan; Wang, Jinwu; Wolcott, Michael P

    2017-02-01

    Currently, various chemical-mechanical treatments were widely used in biofuel production to achieve high total sugar yields. However, the interaction between two treatments was scarcely investigated. In this study, we employed a ball milling process to create ultrastructural changes for Douglas-fir (Pseudotsuga menziesii) micronized wood powders. The 0, 30, and 60min ball milled wood powders resulted in a crystallinity index of 0.41, 0.21, and 0.10 respectively. It was found that the ultrastructural changes accelerate monomeric sugars production without influencing the yield of sugar degradation products. The optimal acid bisulfite treatment time was substantially decreased from 120min to 40min as the cellulose crystallinity decreased. Meanwhile, total sugar yield increased from 65% to 92% and had a linear relation with a decrease of the cellulose crystallinity.

  13. Utilization of distillery slop for sugar cane production and environmental pollution reduction

    Directory of Open Access Journals (Sweden)

    Tasanee Thitakamol

    2010-07-01

    Full Text Available The research aimed to study the effect of distillery slop and chemical fertilizer on soil fertility, growth and yield of sugar cane. The field experiment was conducted on Mahasarakam soil series, using the K 88-92 variety of sugar cane. The results showed that distillery slop significantly increased some nutrients in soil, particularly potassium, magnesium, sulfur and chloride. The results also showed that application of distillery slop did not affect most of the physical properties of soil. Only the saturated hydraulic conductivity was significantly decreased under non-application of fertilizer. Under the application of distillery slop, chemical fertilizer had no significant effect on the yield and the juice quality of sugar cane for both crop years. However, under non-application of distillery slop in the first crop year, application of 21-0-0 and 20-20-0 fertilizer had a significant effect on cane yield. With the application of chemical fertilizer, distillery slop had an influence on the yield of sugar cane in both crop years while different doses of slop did not make any significant difference on cane yield. The average yields of the first crop year were 126.7, 195.6, 203.0 and 187.2 ton/hectare and those of the second crop year were 85.0, 150.0, 150.8 and 142.4 ton/hectare after the application of 0, 187.5, 375 and 562.5 m3/hectare, respectively. The results also showed that application of distillery slop did not have any significant effect on juice quality for both crop years. Investigation of slop trace under the ground surface indicated that application of distillery slop did not affect the quality of underground water as the deepest level of trace was only 50 centimeters.

  14. Transgene escape in sugar beet production fields: data from six years farm scale monitoring

    OpenAIRE

    Darmency, Henri; Vigouroux, Yves; Gestat de Garambé, Thierry; RICHARD-MOLARD, Marc; Muchembled, Claude

    2007-01-01

    Concerns have been raised in Europe about the efficiency, sustainability, and environmental impact of the first genetically modified crops. The committees and regulators in charge of approving procedures have encouraged a field trial approach for safety assessment studies under current agronomic conditions. We describe the gene flow from sugar beet (Beta vulgaris L.) in a multi-year and multi-crop monitoring study on farmers' fields at two locations that has been carried out since 1995. We an...

  15. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption.

    Science.gov (United States)

    Redondas, V; Gómez, X; García, S; Pevida, C; Rubiera, F; Morán, A; Pis, J J

    2012-01-01

    The production of H(2) by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H(2) streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO(2) from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H(2) yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H(2) producing microflora leading to a reduction in specific H(2) production. Adsorption of CO(2) from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H(2)S onto the activated carbon also took place, there being no evidence of H(2)S present in the bio-H(2) exiting the column. Nevertheless, the concentration of H(2)S was very low, and this co-adsorption did not affect the CO(2) capture capacity of the activated carbon.

  16. Environmental regulation, productive efficiency and cost of pollution abatement: a case study of the sugar industry in India.

    Science.gov (United States)

    Murty, M N; Kumar, Surender; Paul, Mahua

    2006-04-01

    In this paper the input distance function is estimated for the Indian Sugar industry under alternative assumptions of weak and strong disposability of bad outputs. The estimated distance function is used to make the estimates of environmental efficiency, Malmquist productivity index and shadow prices of pollutants. The technical efficiency measure estimated under the assumption of weak disposability of bad outputs is utilized to test the Porter hypothesis. Marginal costs of pollution abatement functions are estimated for different pollutants of water. Pollutant specific taxes are computed using the tax-standards method.

  17. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  18. Effects of hydrothermal pretreatment of sugar beet pulp for methane production.

    Science.gov (United States)

    Ziemiński, K; Romanowska, I; Kowalska-Wentel, M; Cyran, M

    2014-08-01

    The effect of Liquid Hot Water treatment conditions on the degree of sugar beet pulp (SBP) degradation was studied. The SBP was subjected to hydrothermal processing at temperatures ranging from 120 to 200 °C. The relationship between processing temperature and parameters of liquid and solid fractions of resulting hydrolysates as well as the efficiency of their methane fermentation was determined. The highest concentration of free glucose (3.29 mg ml(-1)) was observed when the hydrolysis was conducted at 160 °C (it was 4-fold higher than that after processing at 120 °C). Total acids and aldehydes concentrations in the liquid fractions were increased from 0.005 mg ml(-1) for the untreated SBP to 1.61 mg ml(-1) after its processing at 200 °C. Parameters of the hydrolysates obtained by the LHW treatment decided of the efficiency of methane fermentation. The highest cumulative methane yield (502.50 L CH₄ kg(-1)VS) was obtained from the sugar beet pulp hydrolysate produced at 160 °C.

  19. Production of reducing sugar from oil palm empty fruit bunch (EFB cellulose fibres via acid hydrolysis

    Directory of Open Access Journals (Sweden)

    Siew Xian Chin

    2013-02-01

    Full Text Available Cellulosic fibre of oil palm empty fruit bunches (EFB were used as a raw material for acid hydrolysis using mineral acids (H2SO4 and HCl to produce reducing sugar at moderate temperature and atmospheric pressure. Experiments were carried out to investigate the effect of the hydrolysis parameters, including acid concentration, temperature, and reaction time, on the total reducing sugar (TRS yield with the aid of response surface methodology (RSM. The preliminary hydrolysis studies of the EFB fibres showed that the presence of lignin in the fibres significantly affected the TRS yield. The maximum predicted TRS yield using H2SO4 was 30.61% under optimal conditions: acid concentration of 5 N, temperature of 139.65 oC, and reaction time of 4.16 h. For the hydrolysis using HCl, the maximum predicted TRS yield is 39.81% under optimal conditions: acid concentration of 4.63 N, temperature of 133.7 oC, reaction time of 2.05 h.

  20. 76 FR 50285 - Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2011-08-12

    ... TRADE REPRESENTATIVE Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar and Sugar-Containing Products AGENCY: Office of the United States Trade Representative... quotas for imported raw cane sugar, refined and specialty sugar and sugar-containing products....

  1. 75 FR 50796 - Fiscal Year 2011 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2010-08-17

    ... TRADE REPRESENTATIVE Fiscal Year 2011 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States Trade Representative... quotas for imported raw cane sugar, refined and specialty sugar, and sugar-containing products....

  2. 77 FR 57180 - Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2012-09-17

    ... REPRESENTATIVE Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States Trade Representative. ACTION: Notice... raw cane sugar, refined and specialty sugar, and sugar-containing products. DATES: Effective...

  3. 75 FR 53013 - Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2010-08-30

    ... TRADE REPRESENTATIVE Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-containing Products; Revision AGENCY: Office of the United States Trade... allocations of raw cane sugar, refined and special sugar, and sugar-containing products. USTR is revising...

  4. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics.

  5. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides.

    Science.gov (United States)

    Bjerrum, Christian J; Canfield, Donald E

    2002-05-09

    After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only approximately 10-25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth--as previously speculated--and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.

  6. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    Science.gov (United States)

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process.

  7. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  8. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.

    Science.gov (United States)

    Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization.

  9. Mass Production of Ginseng (Panax ginseng) Embryoids on Media Containing High Concentrations of Sugar1.

    Science.gov (United States)

    Asaka, I; Ii, I; Hirotani, M; Asada, Y; Yoshokawa, T; Furuya, T

    1994-04-01

    A lot of ginseng embryoids were produced by culturing on high concentrations of sugar media from the embryogenic tissues obtained by moderately high temperature treatment. When the sucrose concentration was 100 g/l, the number of embryoids produced were over 100 pieces per g of inoculum weight. It was about ten times of that produced by culturing on 30 g/l of sucrose. Glucose showed an effect similar to sucrose on the basis of weight percentage. However, mannitol did not show this effect. The embryoids obtained by these processes redifferentiated to normal plantlets on culturing on the medium containing 30 g/l of sucrose. The saponin components of the tissue containing embryoids showed a similar pattern to those of natural GINSENG by HPLC.

  10. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.

    Science.gov (United States)

    Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J; Hols, Pascal

    2007-03-01

    Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.

  11. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  12. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Claudia Conesa

    2015-09-01

    Full Text Available Electrochemical Impedance Spectroscopy (EIS has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%. These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  13. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-09-11

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  14. Characterization of the endogenous enzymatic hydrolyses of Petroselinum crispum glycosides: determined by chromatography upon their sugar and flavonoid products.

    Science.gov (United States)

    Boldizsár, Imre; Füzfai, Zsófia; Molnár-Perl, Ibolya

    2013-06-07

    The behavior of the flavonoid diglycosides, relevant constituents of parsley (Petroselinum crispum) fruit (PFr) and leaf (PLe) samples was characterized upon their enzymatic hydrolyses applying complementary liquid chromatography-ultraviolet (LC-UV) and gas chromatography mass selective (GC-MS) detections. Analyses were performed in quantitative manner, from the same extracts as a function of hydrolysis times. Both in fruit and leaf tissue extracts, in intact and in enzyme hydrolyzed ones, apigenin, chrysoeriol, their glycosides, sugars, sugar alcohols, carboxylic acids and phytosterols, in total 17 constituents were identified and quantified. Based primarily on the selective mass fragmentation properties of the trimethylsilyl (oxime) ether/ester derivatives of constituents, we confirmed several novelties to the field. (i) It was shown for the first time that in parsley tissues different types of glycosidase enzyme are active. In PFr samples, both the stepwise and disaccharide specific endogenous mechanisms were certified, quantifying simultaneously the continuous release of apigenin, chrysoeriol, 2-O-apiosyl-apiose, apiose and glucose. (ii) 2-O-Apiosyl-glucose was demonstrated as disaccharide due to its formation under derivatization conditions from parsley glycosides. (iii) Both in PFr and in PLe samples even the invertase enzyme activity was attainable: sucrose decomposition in both tissues was going on with the same intensity. Three different types of enzymatic glycosidase processes were followed with their specific hydrolysis products by means of HPLC-UV and GC-MS, simultaneously.

  15. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  16. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams, als

  17. Sustainability aspects of biobased applications : comparison of different crops and products from the sugar platform BO-12.05-002-008

    NARCIS (Netherlands)

    Bos, H.L.; Meesters, K.P.H.; Conijn, J.G.; Corre, W.J.; Patel, M.

    2011-01-01

    In this study different uses of biomass are compared. In order to allow for a systematic comparison the study focuses on three different chemicals that can be produced from sugar. In this way it is also, in principle, possible to compare different crops for the production of the same product. The st

  18. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  19. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases.

    Science.gov (United States)

    Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias

    2016-02-01

    Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible.

  20. Correlation between production and milk composition and feeding behavior of lactating cows fed diets containing sugar cane silage

    Directory of Open Access Journals (Sweden)

    Susi Cristina dos Santos Guimarães Martins

    2015-07-01

    Full Text Available This work aimed to evaluate the correlations between production and milk composition and feeding behavior of lactating cows. The cows had an average of 100 days of lactation and a production were arranged in two 4 x 4 Latin squares conpound of the four periods, four diets and four animals. The diets were formulated to be isonitrogenous with roughage: concentrate ratio of approximately 55:45. As forage, were evaluate four silages sugar cane: without additive (control, with 1% urea, with 0.5% urea + 0.5% CaO and with 1% CaO. The experimental period lasted 60 days divided into four periods of 15 days. Feeding behavior was assessed on the 13 day of each experimental period, for 24 hours, every five minutes. From the data 24 behavioral variables were determined, which were correlated with the data of production and milk composition. The behavioral variable eating and ruminating, DM intake in grams/day, rumination efficiencies in grams of DM and neutral detergent fiber were positively correlated (P<0.05 with milk production in kg/day and the production corrected for 4% fat. However, there was a negative correlation between feeding time and the milk fat percentage. Despite the low values of the correlations can be inferred from the results, the data can be used to develop models to predictyield and composition of milk from the feeding behavior variables.

  1. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    OpenAIRE

    Borja Velazquez-Marti; Sergio Pérez-Pacheco; Juan Gaibor-Chávez; Paola Wilcaso

    2016-01-01

    Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioeth...

  2. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    Directory of Open Access Journals (Sweden)

    Moh Djaeni

    2013-06-01

    Full Text Available Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60% and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite, and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.

  3. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production.

    Science.gov (United States)

    Zhu, Hong-Ji; Liu, Jia-Heng; Sun, Li-Fan; Hu, Zong-Fu; Qiao, Jian-Jun

    2013-05-01

    Spent mushroom substrate (SMS) was pretreated with alkaline reagents including potassium hydroxide, lime and ammonia to enhance enzymatic saccharification. Under the best pretreatment conditions (1M KOH, 80 °C, 90 min; 1M lime, 80 °C, 120 min; 10 M ammonia, 70 °C, 120 min), the total reducing sugar (TRS) yield reached 258.6, 204.2 and 251.2 mg/g raw SMS, which were respectively 6.15, 4.86, and 5.98 times of untreated SMS. The effects of pretreatment by above alkaline reagents and sulfuric acid on the composition and structure of SMS were evaluated to provide comparative performance data. A new process, combined alkali and acid (CAA) pretreatment followed by enzymatic hydrolysis, was innovatively proposed to improve the cost-effectiveness and avoid environmental problems. The SMS residue after CAA pretreatment-enzymatic hydrolysis process was converted to biofertilizer with Pichia farinose FL7 and a cell density of 3.0×10(8) cfu/g in biomass was attained.

  4. Optimization of the pretreatment of Prosopis nigra sawdust for the production of fermentable sugars

    Directory of Open Access Journals (Sweden)

    Eliana P. Dagnino

    2013-02-01

    Full Text Available The black carob tree (Prosopis nigra is a particularly valued species in Chaco, Argentina on account of its hard wood. Finding a use for the sawdust, the main industrial residue of wood, could be useful within the furniture industry of any country in the tropics seeking to apply the biorefinery concept. For the conversion of wood carbohydrates to bioethanol, a pretreatment stage is necessary. The objective of this work was to find the acid pretreatment conditions that maximize the extraction of xylose with minimum degradation, while maximizing the concentration of glucans in the pretreated solid to obtain better enzymatic accessibility, using black carob tree sawdust as the raw material. The optimization was carried out by use of a central composite design (CCD with two independent variables: the concentration of the sulfuric acid solution and the heating time. Optimal enzymatic hydrolysis occurred at the mean values of the tested acid solution concentration (1.2% and after shorter heating times (10.2 min. The concentration of sugars after the enzymatic hydrolysis of the pretreated solid over a time period of 72 h was three times higher than the untreated solid.

  5. IMPACT OF FURFURAL ON THE SUGAR ANALYSIS OF PRE-HYDROLYSIS LIQUOR OF KRAFT-BASED DISSOLVING PULP PRODUCTION PROCESS USING THE HPAEC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Abrar Saeed

    2011-03-01

    Full Text Available High performance anion-exchange chromatography with pulse ampero-metric detector (HPAEC-PAD is a reliable method to systematically determine the sugar contents in pulp and paper waste streams, including bleaching and extraction liquors. We used the same method to determine the sugar content of industrially produced pre-hydrolysis liquor (PHL from a kraft-based dissolving pulp production process. The analysis showed that the traditional method cannot be applied for sugar analysis, and an improvement on the method was required. In fact, the presence of furfural in the PHL sample was the reason for the required modification. It was noted that the removal of furfural via evaporation could improve the reliability of the HPAEC technique for sugar assessments. If the concentration of furfural was higher than 0.045% (wt. in the PHL, the error introduced in the sugar analysis was profound. Also, the industrially produced PHL contained more furfural than the laboratory produced PHL under the same hydrolysis conditions. Consequently, the concentration of furfural in the PHL should be taken into account for sugar analysis using the HPAEC technique.

  6. Fed-batch alcoholic fermentation of sugar cane blackstrap molasses: Influence of the feeding rate on yeast yield and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, J.C.M. de; Aquarone, E.; Sato, S.; Brazzach, M.L.; Moraes, D.A. (Faculdade de Ciencias Farmaceuticas, Sao Paulo Univ., SP (Brazil)); Borzani, W. (Centro de Desenvolvimento Biotecnologico, Joinville, SC (Brazil))

    1993-02-01

    Fed-batch ethanol fermentation tests of sugar cane blackstrap molasses were carried out at 32deg C and pH 4.5-5.0, using pressed yeast as inoculum, and with no air supply. Two values of the fermentor filling-up time were adopted: 5 h and 7 h. The feeding rates obeyed equation F=F[sub 0].e[sup K.t], with K equal to 0.0, 0.2, 0.4, 0.6 and 0.8 h[sup -1]. The average yeast yields and the average yeast productivities increased up to 33% and 45%, respectively, while the ethanol yield (average=76%; standard deviation=4%) was practically unaffected when K increased from 0 to 0.8 h[sup -1]. (orig.).

  7. Use of sugar cane molasses and vinasse for proteic and lipidic biomass production by yeast and bacteria

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2005-02-01

    Full Text Available This work evaluated the lipid and protein growth and synthesis capacity by Saccharomyces cerevisiae, Rhodotoruda mucilaginosa, Candida lipolytica, a yeast isolated from vinasse lakes and Corynebacterium glutamicum in 10% molasses and sugar cane crude vinasse. All microorganisms grew both in molasses and vinasse. The highest growth in crude vinasse was performed by R. mucilaginosa (7.05 g/L, and in 10% molasses, by C. lipolytica, yielding 6,09 g/L. In vinasse, the highest protein content in the biomass was produced by S. cerevisiae (50.35% and in 10% molasses, by C. glutamicum (46,16%. C. lipolytica and R. mucilaginosa showed the best lipid production, above 20% and 18%, respectively, both in vinasse and in molasses.

  8. Zeolite H-USY for the production of lactic acid and methyl lactate from C-3-sugars

    DEFF Research Database (Denmark)

    West, R.M.; Holm, Martin Spangsberg; Shunmugavel, Saravanamurugan

    2010-01-01

    Lactic acid is an interesting platform chemical with many promising applications. This includes the use as a building block for the production of biodegradable plastics and environmentally friendly solvents. A study of the liquid-phase conversion of the triose-sugars, glyceraldehyde...... and dihydroxyacetone directly to methyl lactate and lactic acid catalyzed by inexpensive commercially available zeolites is presented. One particular zeolite, H-USY (Si/Al = 6) is shown to be quite active with near quantitative yields for this isomerization. Deactivation of the H-USY-zeolite was studied by correlating...... the catalytic activity to data obtained by TPO, XRD, N-2-sorption, and NH3-TPD on fresh and used catalysts. Coking and irreversible framework damage occurs when lactic acid is produced under aqueous conditions. In methanol, methyl lactate is produced and catalyst deactivation is suppressed. Additionally...

  9. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    Science.gov (United States)

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions.

  10. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  11. A study on cations and color removal from thin sugar juice by modified sugar beet pulp.

    Science.gov (United States)

    Arslanoglu, Hasan; Tumen, Fikret

    2012-06-01

    This article describes the use of citric acid modified sugar beet pulp as new ion-exchanger sorbent for the removal of metal cations and colorants from thin juice. The results of batch adsorption runs concerning the effects of contact time, material dosage, temperature and pH drop were presented and discussed. Experimental data on the removal of metal cations showed that the sorption process was rapid and reached equilibrium in 60 min. Modified material in acidic form caused to a significant pH drop in thin juice, which could result with sucrose inversion. Uptake of metal cations increased with temperature whereas that of color decreased. Neutralised type modified product gave more satisfying results. After six successive contacts, 49.7%, 37.5% and 43.7% removals for Ca-Mg, K and color, respectively, were obtained by using neutralised form of modified sugar beet pulp.

  12. Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture.

    Science.gov (United States)

    Camassola, Marli; Dillon, Aldo J P

    2014-01-01

    The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147 U · mL(-1)) was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher β -glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups.

  13. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Marli Camassola

    2014-01-01

    Full Text Available The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147 U·mL−1 was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher β-glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups.

  14. Investigation of the effect of glucose syrup and brown sugar as low-cost substrate for lipid production by Mortierella alpine CBS 754.68

    Directory of Open Access Journals (Sweden)

    saed Montazeri

    2016-06-01

    Full Text Available Introduction: Arachidonic acid is an important essential fatty acid in human nutrition. The filamentous fungus Mortierella alpina has been identified as a promising producer of arachidonic acid. Mortierella alpine can accumulate up to 40% (w/w lipid, of which up to 40% can be arachidonic acid. Materials and methods: Mortierella alpina CBS 754.68 was cultivated in low cost substrate such as glucose syrup, brown sugar and starch for lipid and arachidonic acid production. The reduced sugar, total lipids and content of ARA were determined by dinitrosalicylic acid method, soxhlet and Gas chromatography–mass spectrometry (GC-MS respectively. Results: The carbon sources were applied at 70 g/l and nitrogen source (soybean powder at 10 g/lit. The results showed that lipid in dry biomass in glucose syrup, starch and brown sugar media were obtained 32, 25 and 13 % w/w respectively. The arachidonic acid contents of lipid in the glucose syrup, starch and brown sugar media were 41, 33 and 31 % w/w respectively. Discussion and conclusion: Lipid fatty acid compositions are affected by the growth of microorganism. Cell membrane fatty acids such as stearic acid and oleic acid increased substantially concomitant with increases in the amount of biomass. Biomass and oil production efficiency fell due to inappropriate brown sugar medium.

  15. A comparative assessment of the potential of polysaccharide production and intracellular sugar composition within Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (Aphyllophoromycetideae).

    Science.gov (United States)

    Stajić, Mirjana; Glamoclija, Jasmina; Maksimović, Vuk; Vukojević, Jelena; Simonić, Jasmina; Zervakis, George

    2011-01-01

    Ganoderma lucidum is a well-known medicinal mushroom species in which polysaccharides are one of the major sources of biological activity. The species was considered as a species-complex due to significant variations in morphological, biochemical, and genetic features among populations with a worldwide distribution. This fact was the basis for setting the aim of this research: to study intraspecific diversity in polysaccharide production and intracellular sugar composition among selected G. lucidum strains. The presence ofintraspecific diversity among 10 G. lucidum strains, from different areas worldwide, was noted. Values of produced mycelia biomass and intracellular polysaccharides were found in wide ranges (3.1 - 28.2 g L(-1) and 20.0 - 53.3 mg g(-1), respectively), while differences in extracellular polysaccharide amounts were minor (0.2 - 1.5 mg mL(-1)). The significant quantitative and qualitative differences in intracellular sugar composition were noted. Glucose was the predominant sugar in almost all strains except one (HAI 447), where sucrose was dominant. The potential of polysaccharide production and intracellular sugar composition could be one more taxonomic criterion for strain characterization within G. lucidum. The differences in intracellular sugar composition and proportions could be reflected in features of produced polysaccharides and also in their biological activities.

  16. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (saa) pretreatment and fermentation to succinic acid by Escherichia coli afp184

    Science.gov (United States)

    Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...

  17. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.; Zeeland, van A.N.T.; Sanchez Garcia, D.; Punt, A.M.; Eggink, G.

    2015-01-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretre

  18. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Directory of Open Access Journals (Sweden)

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  19. Mercury from chlor-alkali plants: measured concentrations in food product sugar

    Directory of Open Access Journals (Sweden)

    Hightower Jane

    2009-01-01

    Full Text Available Abstract Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.

  20. A detailed analysis of entropy production and improvement of the thermodynamic cycle of an adsorption refrigerating plant

    Science.gov (United States)

    Okunev, B. N.; Safonov, M. S.

    2006-07-01

    A thermodynamic analysis of an adsorption refrigerating plant with closed loops for a working substance and auxiliary liquid heat carrier has been carried out in application to the adsorption pair “water-CaCl2 impregnated into the pores of a silica gel.” Using the obtained periodic solutions of the system of energy-balance equations for the heat carrier and the sorbent layer, the most thermodynamically effective modes of operation of the refrigerating plant have been determined as functions of governing parameters. The entropy production in various modules of the plant is calculated, and the main sources of entropy generation are revealed. This made it possible to suggest an improved scheme of an adsorption refrigerating cycle with regenerative heat exchangers connected at the inlet and outlet from the adsorbers. The possibility of a considerable increase in the coefficient of thermodynamic efficiency in such a system has been justified.

  1. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    Science.gov (United States)

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2010-09-28

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

  2. Implications for operational control of adult mosquito production in cisterns and wells in St. Augustine, Florida using attractive sugar baits

    Science.gov (United States)

    The aim of this study was to further investigate the use of attractive sugar baits as an effective, inexpensive, and environmentally friendly tool for integrated mosquito management programs. Mosquitoes were offered dyed sugar bait in wells and cisterns in an urban tourist area in St. Augustine, Flo...

  3. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.

    Science.gov (United States)

    Scholl, Angélica Luisi; Menegol, Daiane; Pitarelo, Ana Paula; Fontana, Roselei Claudete; Zandoná Filho, Arion; Ramos, Luiz Pereira; Dillon, Aldo José Pinheiro; Camassola, Marli

    2015-09-01

    In this work, steam explosion was used a pretreatment method to improve the conversion of elephant grass (Pennisetum purpureum) to cellulosic ethanol. This way, enzymatic hydrolysis of vaccum-drained and water-washed steam-treated substrates was carried out with Penicillium echinulatum enzymes while Saccharomyces cerevisiae CAT-1 was used for fermentation. After 48 h of hydrolysis, the highest yield of reducing sugars was obtained from vaccum-drained steam-treated substrates that were produced after 10 min at 200 °C (863.42 ± 62.52 mg/g). However, the highest glucose yield was derived from water-washed steam-treated substrates that were produced after 10 min at 190 °C (248.34 ± 6.27 mg/g) and 200 °C (246.00 ± 9.60 mg/g). Nevertheless, the highest ethanol production was obtained from water-washed steam-treated substrates that were produced after 6 min at 200 °C. These data revealed that water washing is a critical step for ethanol production from steam-treated elephant grass and that pretreatment generates a great deal of water soluble inhibitory compounds for hydrolysis and fermentation, which were partly characterized as part of this study.

  4. Inhibitory effect of sorbitol on sugar metabolism of Streptococcus mutans in vitro and on acid production in dental plaque in vivo.

    Science.gov (United States)

    Takahashi-Abbe, S; Abbe, K; Takahashi, N; Tamazawa, Y; Yamada, T

    2001-04-01

    This study was conducted to find out whether sorbitol inhibits the sugar metabolism of Streptococcus mutans in vitro and the acid production in dental plaque in vivo. S. mutans NCIB 11723 was anaerobically grown in sorbitol-containing medium. The rate of acid production from sugars was estimated with a pH stat. The rate of acid production from glucose or sucrose was not changed at various concentrations of oxygen. By the addition of sorbitol to sugar, however, the acid production was decreased with increasing levels of oxygen. Intracellular NADH/NAD+ ratio and (dihydroxyacetone-phosphate+glyceraldehyde-phosphate)/3-phosphoglycerate ratio were high whenever the acid production was inhibited by sorbitol. Sorbitol also inhibited the acid production in dental plaque in vivo. These results suggest that the increased NADH/NAD+ ratio during sorbitol metabolism through the inactivation of pyruvate formate-lyase by oxygen inhibited glyceraldehyde-phosphate dehydrogenase and then the acid production of S. mutans and the one in dental plaque.

  5. High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source.

    Science.gov (United States)

    Charoenrat, Theppanya; Antimanon, Sompot; Kocharin, Kanokarn; Tanapongpipat, Sutipa; Roongsawang, Niran

    2016-12-01

    The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.

  6. Sugar substitutes: Health controversy over perceived benefits

    OpenAIRE

    Tandel, Kirtida R.

    2011-01-01

    Sugar is an inseparable part of the food we consume. But too much sugar is not ideal for our teeth and waistline. There have been some controversial suggestions that excessive sugar may play an important role in certain degenerative diseases. So artificial sweeteners or artificially sweetened products continue to attract consumers. A sugar substitute (artificial sweetener) is a food additive that duplicates the effect of sugar in taste, but usually has less food energy. Besides its benefits, ...

  7. Hydrolysis of Oil Palm Empty Fruit Bunch Fibers to Produce Sugar Hydrolyzate as Raw Material for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Fitriani Kasim

    2013-01-01

    Full Text Available A study conducted to see the effect of the regulation and control of temperature on the length of the hydrolysis of oil palm empty fruit bunches fiber and the resulting hydrolyzate sugar levels, which will be planned to be used as raw material for bioethanol. Therefore do oil palm empty fruit bunches fiber hydrolysis with sulfuric acid (H2SO4 at low concentrations (1% using an autoclave with a temperature of 120 ° C and 130 ° C, and the time for 30, 60, 90, 120 minutes. After that the observed reducing sugar levels by using a method Luff Schoorl. The results showed that setting temperature and time influence on sugar levels resulting hydrolyzate where the optimum temperature and time to produce the highest sugar content reducing at 130 ° C with a long 60 minutes, with the resulting reducing in sugar content was 3.51%. The results obtained are much higher than previous studies conducted by researchers who carried out the straw fibers under the same conditions by using a solution of 1% H2SO4 and hydrolysis time 1 hour, but no temperature control and heating is only done on a gas stove, which acquired sugar 0.22%. As for the gain of 0.78% sugar, hydrolysis takes 4 hours, with a concentration of 10% sulfuric acid.

  8. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    Science.gov (United States)

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  9. Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Dixit, Pooja; Gupta, Ravi P; Kagdiyal, V; Kumar, Ravindra; Tuli, Deepak K

    2016-09-20

    In this study, five ionic liquids (ILs) have been explored for biomass pretreatment for the production of fermentable sugar. We also investigated the driving factors responsible for improved enzymatic digestibility of various ILs treated biomass along with postulating the plausible mechanism thereof. Post pretreatment, mainly two factors impacted the enzymatic digestibility (i) structural deformation (cellulose I to II) along with xylan/lignin removal and (ii) properties of ILs; wherein, K-T parameters, viscosity and surface tension had a direct influence on pretreatment. A systematic investigation of these parameters and their impact on enzymatic digestibility is drawn. [C2mim][OAc] with β-value 1.32 resulted 97.7% of glucose yield using 10 FPU/g of biomass. A closer insight into the cellulose structural transformation has prompted a plausible mechanism explaining the better digestibility. The impact of these parameters on the digestibility can pave the way to customize the process to make biomass vulnerable to enzymatic attack.

  10. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in production of sugar

    Science.gov (United States)

    Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.

  11. MOF-5-Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; McDonald, Kyle A; Matzger, Adam J

    2016-09-19

    An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF-5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF-5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.

  12. Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars.

    Science.gov (United States)

    Gandolfi, Stefano; Ottolina, Gianluca; Consonni, Roberto; Riva, Sergio; Patel, Ilabahen

    2014-07-01

    Fractionation of hemp hurds into its three main components, cellulose, hemicellulose, and lignin, was carried out using organosolv pretreatment. The effect of processing parameters, such as temperature, catalyst concentration, reaction time, and methanol (MeOH) concentration, on the dissolution and recovery of hemicellulose and lignin was determined. More than 75% of total hemicellulose and 75% of total lignin was removed in a single step with low amounts of degradation products under the following conditions: 165 °C, 3% H2 SO4 , 20 min reaction time, and 45% MeOH. Enzymatic hydrolysis of the residual pretreated biomass yielded up to 60% of cellulose-to-glucose conversion. The maximum recovery of the main components was obtained at a combined severity factor value of around one. Characterization of pretreated biomass and isolated lignin was carried out with FTIR and 2D (13) C-(1) H correlation HSQC NMR spectroscopy, the latter technique providing detailed structural information about the obtained methanol organosolv lignin (MOSL). Results suggested that xylopyranoside is the major carbohydrate associated with hemp lignin. The chemical properties of MOSL samples in terms of their phenolic group content and antioxidant capacity were also investigated. The results showed that MOSL samples have a high phenolic group content and antioxidant capacity relative to Klason lignin.

  13. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse).

  14. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    F. Veana

    2014-06-01

    Full Text Available Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents; the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid. Results indicated that, the enzymatic yield (5231 U/L is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse.

  15. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw.

    Science.gov (United States)

    Hu, Qiulong; Su, Xiaojun; Tan, Lin; Liu, Xianghua; Wu, Anjun; Su, Dingding; Tian, Kaizhong; Xiong, Xingyao

    2013-01-01

    Reed lignocellulose was subjected to a steam explosion pretreatment to obtain a high conversion rate of sugar after subsequent enzymatic hydrolysis using a commercial cellulase mixture. Under conditions of differing temperature (200 °C, 220 °C and 240 °C) and residence time (2, 5, and 8 min), the effect of the pretreatment on the sugar yield from enzymatic hydrolysis was studied. The highest respective reducing sugar and glucose yields were 36.14% and 15.35% after 60-h enzymatic hydrolysis of reed straw that had been pretreated with a steam explosion at 220 °C for 5 min. Fourier transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used in this study to comprehensively investigate the steam explosion-induced changes in the organizational structure and morphological properties of reed straw to analyze the reason for the increased sugar yield from enzymatic hydrolysis after the steam explosion.

  16. Sugar composition and yield of syrup production from the pulp of Moroccan carob pods (Ceratonia siliqua L.

    Directory of Open Access Journals (Sweden)

    H. El Batal

    2016-11-01

    Full Text Available The aim of this work is to provide a process for obtaining natural carob syrup of Morocco carob pods and their total and reducing sugar. Samples were collected from different regions in the agro-forestry system of Morocco. The total sugar and reducing sugar in pods obtained from different regions were 31.5–50.1 and 10.2–14.6 g/100 g “%w/w”, respectively. The yield of syrup from the different regions varies between 28.76 and 37.22 g/100 g “%w/w”. Populations from Essaouira and Beni-mellal have higher levels of sugar and yield of syrup. The values obtained vary according to the origin of the samples.

  17. Fermentation of various sugars and sugar substitutes by oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Boonyanit Thaweboon; Sroisiri Thaweboon; Doan Minh Tri

    2011-01-01

    Objective: To examine acid production of caries-associated strains of oral microorganisms and salivary microorganisms from sugar and sugar substitutes. Methods:Standard and clinical strains of Streptococcus mutans (S. mutans), Lactobacillus casei (L. casei) and Candida albicans were incubated in peptone-yeast-extract media containing 1% test sugar (sucrose, glucose, fructose) or sugar substitutes (xylitol, sorbitol, trehalulose and palatinose) at 37 ℃in 5% CO2 for 24-48 h. The pH of each culture was measured and microbial growth was determined as optical density at 660 nm. Paraffin-stimulated saliva collected from high caries-risk persons were added to media containing 10%test sugar or sugar substitutes. The pH of medium was measured at each time interval from 0-90 minutes. Results:All types of sugar and trehalulose could be fermented by all test microorganisms in pH lower than 5.5 except sucrose by standard strain of L. casei. All sugar and sugar substitutes supported growth of all organisms except xylitol for S. mutans. In the fermentation assay by salivary microorganisms, all sugar could be utilized and produced pH< 5.5 within 10 minutes of incubation and the pH drop was prolonged to until 90 minutes. Conversely, xylitol and palatinose were not fermented by microorganisms in saliva. Conclusions:All test microorganisms could ferment sucrose, glucose, fructose and trehalulose to pH lower than 5.5. Sugar alcohols and palatinose were not utilized well by organisms and may be used as sugar substitutes to reduce dental caries incidence. However, further studies particularly clinical investigations are required to evaluate the cariogenicity of these sugar substitutes.

  18. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production.

  19. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    Directory of Open Access Journals (Sweden)

    Y. S. Mohammad

    2014-01-01

    Full Text Available Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and increasing faecal bulk pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    based on newly developed scientific evidence related to sugar beet fibre and “increasing faecal bulk”. The food constituent that is the subject of the health claim is sugar beet fibre. The Panel considers that sugar beet fibre is sufficiently characterised in relation to the claimed effect. The claimed......Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... that a cause and effect relationship has been established between the consumption of sugar beet fibre and increasing faecal bulk. The following wording reflects the scientific evidence: “Sugar beet fibre increases faecal bulk”. In order to bear the claim a food should be at least “high in fibre” as per...

  1. A case study of a sugar and alcohol plant: prospects for the production of alcohol and exceeding energy; Um estudo de caso de uma usina de acucar e alcool: perspectivas para a producao de alcool e energia excedente

    Energy Technology Data Exchange (ETDEWEB)

    Halmeman, Maria Cristina Rodrigues; Oliveira, Franciene Gois; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)], E-mail: cristhalmeman@gmail.com; Halmenan, Radames Juliano [Universidade Tecnologica Federal do Parana (UTFPR), Campo Mourao, PR (Brazil); Michels, Roger Nabeyama [Instituto Federal de Santa Catarina (IFSC), Luzerna, SC (Brazil)

    2010-07-01

    Brazil stands out in the world scene as the largest producer and exporter of sugar and the main producer of ethanol derived from sugar cane, which generates the bagasse used to produce electrical energy for the plant as well as for electricity companies. Energy products from sugar cane, such as ethanol and bagasse have contributed significantly to reduce the gases that contribute to the greenhouse effect by replacing fossil fuels, that is, gasoline and diesel. The research is defined as exploratory and descriptive, the data were obtained in June, 2009 in a sugar cane and alcohol plant located in the state of Sao Paulo, Brazil. It was sought through direct interviews, to check what the prospects for the processing of sugar cane, alcohol production and generation of exceeding energy are. Therefore, the purpose of this study is to contextualize the current production of alcohol and electrical energy, with projections up to 2016. (author)

  2. 制糖工业废水CODcr和BOD5相关性探讨%Relevance of CODcrand BOD5in Sugar Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    王云华

    2001-01-01

    在制糖工业废水的监测中,CODcr和BOD5均与水体的有机物有密切联系,且它们之间还存在一定的比例关系。通过对多组数据的相关性分析,确定以甘蔗为原料的制糖废水,CODcr和BOD5之间存在一定的相关性,可以通过CODcr值估算BOD5的值。%According to the monitoring of sugar production wastewater, CODcr and BOD5have close and ratio relation with the organism in the water. The analysis of relative data shows that CODcr and BOD5have their own correlation in the sugar production wastewater with sugarcanes as raw materials.

  3. Sweeteners - sugars

    Science.gov (United States)

    ... added sugar in soda. However, popular "vitamin-type" waters, sports drinks, coffee drinks, and energy drinks also contain a lot ... Drink water instead of regular soda, "vitamin-type" water, sports drinks, coffee drinks, and energy drinks. Eat less candy and ...

  4. 27 CFR 24.181 - Use of sugar.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of sugar. 24.181... OF THE TREASURY LIQUORS WINE Production of Wine § 24.181 Use of sugar. Only sugar, as defined in § 24.10, may be used in the production of standard wine. The quantity of sugar used will be...

  5. Managing your blood sugar

    Science.gov (United States)

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... Know how to: Recognize and treat low blood sugar (hypoglycemia) Recognize and treat high blood sugar (hyperglycemia) ...

  6. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-León

    1999-01-01

    Full Text Available Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH42SO4 , NH4H2PO4 and (NH42HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9/gDM. The influence of temperature and initial moisture of the substrate was studied through a 2² experimental plan design. No statistical differences were found within the range of 30-35ºC and 60-70% for temperature and moisture respectively. The biotechnological parameters of the process were derived from the Oxygen Uptake Rate (OUR pattern, which corresponded to the order of 10(9spores/g moist material. The specific growth rate, maintenance coefficient and the yield based on O2 consumption were 0.108 h-1, 0.001 g.O2/g.biomass.h and 2.7 g biomass/g O2 consumed, respectively.Esporos de Tricoderma harzianum Nº 53 foram produzidos por fermentação no estado sólido (FES utilizando bagaço de cana como suporte e melaço de cana como fonte de carbono. Diferentes fontes de nitrogênio foram testadas (uréia, (NH42 SO4 , NH4H2PO4 e (NH42HPO4 na produção de esporos. As mais elevadas concentrações de esporos (10(9 esporos/g de suporte úmido foram obtidas utilizando a uréia como fonte de nitrogênio. O efeito da temperatura e umidade inicial foram estudadas através da utilização da planificação experimental utilizando um modelo 2². Não foi encontrada diferença estatística na produção de esporos na faixa de temperatura compreendida entre 30-35 ° C e umidade inicial de 60-70%. Os parâmetros biotecnológicos foram determinados através da taxa de oxigênio consumido (OUR correspondente a uma produção de 10(9 esporos/g de suporte úmido. A taxa de crescimento especifico, coeficiente de manutenção e rendimento foram

  7. Implications for operational control of adult mosquito production in cisterns and wells in St. Augustine, FL using attractive sugar baits.

    Science.gov (United States)

    Qualls, Whitney A; Xue, Rudy; Revay, Edita E; Allan, Sandra A; Müller, Günter C

    2012-11-01

    The aim of this study was to further investigate the use of attractive sugar baits as an effective, inexpensive, and environmentally friendly tool for integrated mosquito management programs. Mosquitoes were offered dyed sugar bait in wells and cisterns in an urban tourist area in St. Augustine, FL. Exit traps were constructed to cover the well and cistern openings so the number of resting and emerging mosquitoes stained by feeding on the sugar bait could be monitored. Four mosquito species were collected from these structures: Aedes albopictus (Skuse), Anopheles crucians (Wiedemann), Culex quinquefasciatus Say, and Toxorhynchites rutilus rutilus (Coquillett). Overall, 90% (1482/1644) of the mosquitoes trapped were stained. In general, the number of mosquitoes stained was significantly greater in wells (Pcisterns (P<0.0001) than the numbers that were not stained by the colored bait. Based on the number of mosquitoes stained, we would have expected considerable mosquito mortality had the sugar bait contained an oral toxin. The results of this study support the concept of using attractive toxic sugar baits as an effective tool for integrated mosquito management.

  8. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C.

    Science.gov (United States)

    Wang, Liang; Ou, Mark S; Nieves, Ismael; Erickson, John E; Vermerris, Wilfred; Ingram, L O; Shanmugam, K T

    2015-12-01

    In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C.

  9. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology

    2011-04-15

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)

  10. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Maiti, Bodhisatta; Rathore, Ankita; Srivastava, Saurav; Shekhawat, Mitali; Srivastava, Pradeep

    2011-04-01

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 °C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value.

  11. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    Behzad Satari

    2016-02-01

    Full Text Available The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  12. Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds.

    Science.gov (United States)

    Yang, Yiqiong; Gao, Naiyun; Chu, Wenhai; Zhang, Yongji; Ma, Yan

    2012-03-30

    The calcination products containing Mg(II), Al(III), and Fe(III) in the brucite-like layers with varying Mg/Al/Fe molar ratios at 550°C were used as the adsorbent to remove perchlorate from aqueous solution, while the Mg/(Al-Fe) hydrotalcite compounds were synthesized by co-precipitation method at a constant pH value. The Mg/(Al-Fe) hydrotalcite compounds (HMAF) were characterized by XRD, FT-IR and TG-DTA. The characteristics showed that the layered double hydroxides structures in the HMAF were lost during calcination at 550°C, but were reconstructed subsequent to adsorption of perchlorate, indicating that the 'memory effect' appeared to play an important role in perchlorate adsorption. Batch adsorption studies were conducted under various equilibration conditions, such as molar ratios of Mg/Al/Fe, calcined temperature, different initial solution pH, adsorbent dose, initial perchlorate concentration, and co-existing anions. It was found that the existence of ferric iron in calcined Mg/(Al-Fe) hydrotalcite compound (CHMAF) was favorable to removal of perchlorate from water, and the best ratio of Mg/Al/Fe is 3:0.8:0.2 (CHMAF5%). This study demonstrated that the calcination product of Mg/(Al-Fe) hydrotalcite-like compound was a promising adsorbent for control of the perchlorate pollution in water.

  13. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.

    Science.gov (United States)

    Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.

  14. 微生物发酵法生产糖醇的研究进展%Research Progress on Production of Sugar Alcohols by Microbial Fermentation

    Institute of Scientific and Technical Information of China (English)

    樊洁; 韩烨; 周志江; 赵鑫

    2013-01-01

    Sugar alcohol has attracted great interest for its low sweetness, low calorie, well-taste, stability and good-solution etc. Sugar alcohol production by microbial fermentation has gradually become a hot research area, owing to its moderate process and low energy consumption. This review summarized the research progress in the production by microbial fermentation of the common sugar alcohols sorbitol, mannitol, xylitol and erythritol.%糖醇具有甜度低、热值低、口感好、稳定性强、水溶性高、适宜人群广等特点,越来越受到消费者的欢迎。微生物发酵法过程温和,能耗低,因此利用微生物发酵法生产糖醇逐步成为研究热点。本文就用微生物发酵法生产常见糖醇-山梨醇、甘露醇、木糖醇、赤藓糖醇的研究进展进行了综述。

  15. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios.

    Science.gov (United States)

    Luers, Lars; Rysiewski, Karolina; Dumpitak, Christian; Birkmann, Eva

    2012-04-01

    Reducing sugars and reactive dicarbonyl compounds play a major role in glycation of proteins in vivo. Glycation of proteins is the first step in of a nonenzymatic reaction, resulting in advanced glycation end products (AGEs). AGEs can inactivate proteins or modify their biological activities. Therefore, it is important to understand the mechanism of AGE formation. Here, we systematically analyzed the kinetics of AGE formation in vitro by fluorescence and absorption measurements utilizing a microplate reader system and bovine serum albumin (BSA) as a model protein. Comparing different concentrations of BSA, we applied various reducing sugars and reactive dicarbonyl compounds as AGE-inducing agents at different concentrations. In summary, this experimental setup enabled us to measure the kinetics of AGE formation in an efficient and defined way.

  16. Correcting the dry matter content of sugar beet silages as a substrate for biogas production; Die Korrektur des Trockensubstanzgehaltes von Zuckerruebensilagen als Substrat fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Strubelt, Cornelia [Blgg Deutschland GmbH (Germany). Analytiklabor fuer Landwirtschaft und Umwelt; Weissbach, Friedrich

    2008-11-15

    During the process of determining DM content in silages, volatile compounds (fermentation acids and alcohols) are lost. Therefore, the DM content measured in the conventional way has to be corrected afterwards. If that is not done, calculations on nutrient contents, as well as specific biogas yields will be false, causing experimental data to be misleading. Up to half of the organic matter of sugar beet silages can consist of volatile fermentation products. Without exact knowledge of the respective fermentation acid and alcohol content, conclusions about the substrate specific gas yield cannot be drawn. After equations to correct the dry matter content of maize silages and grass silage, an equation for DM correction for ensiled sugar beets silage is recommended here. (orig.)

  17. High production of plant type levan in sugar beet transformed with timothy (Phleum pratense) 6-SFT genes.

    Science.gov (United States)

    Matsuhira, Hiroaki; Tamura, Ken-ichi; Tamagake, Hideto; Sato, Yutaka; Anzai, Hiroyuki; Yoshida, Midori

    2014-12-20

    Levan, a type of fructan, is an oligomer or polymer with mainly a β(2,6)-linked fructose chain attached to sucrose. We introduced two timothy genes, PpFT1 and PpFT2, coding for two homologous sucrose:fructan 6-fructosyltransferases into sugar beet. Sugar beet produces a high concentration of sucrose, a starting substrate in fructan synthesis, in the root. Among transgenic T1 lines, we obtained sugar beet transformants that accumulated large amounts of β(2,6)-linked levans (about 20 to 75mgg(-1) FW) in the roots. The transformed sugar beet plants possessing PpFT1 or PpFT2 produced linear levans with different degrees of polymerization (DP). Namely, the PpFT1 transformants accumulated mainly high DP levans including those with DP>40, while the PpFT2 transformants accumulated levans with DP between 3 and 40. Chromatograms showed that PpFT2 produces pure β(2,6)-linked linear levans compared with fructans synthesized by PpFT1. These levans belong to the high DP class of plant fructans, but have much shorter DP than that of levans generally produced by microorganisms.

  18. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément

    2015-01-01

    are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during...

  19. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    Directory of Open Access Journals (Sweden)

    T.S. El-Tayeb

    2012-12-01

    Full Text Available This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v to 5 % (v/v decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v followed by sulphuric acid (1.0 % v/v resulted in the highest conversion percentage (41.3 % w/w on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v. Formation of furfural and hydroxymethylfurfural (HMF were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v ethanol and 8.2 % (v/w conversion coefficient were obtained.

  20. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    OpenAIRE

    2014-01-01

    This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L.) at four different levels of replacement (0, 30, 50, and 70%) for cane sugar (Saccharum officinarum RB.) in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of in...

  1. 7 CFR 58.934 - Sugars.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sugars. 58.934 Section 58.934 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....934 Sugars. Any sugar used in the manufacture of sweetened condensed or sterilized milk products...

  2. 27 CFR 24.317 - Sugar record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sugar record. 24.317... OF THE TREASURY LIQUORS WINE Records and Reports § 24.317 Sugar record. A proprietor who receives, stores, or uses sugar shall maintain a record of receipt and use. The record will show the date...

  3. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.

    Science.gov (United States)

    Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan

    2014-01-01

    Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars.

  4. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012)

    OpenAIRE

    2015-01-01

    Abstract This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via mul...

  5. Mapping Economic Development: The South Seas Government and Sugar Production in Japan’s South Pacific Mandate, 1919–1941

    Directory of Open Access Journals (Sweden)

    Ti Ngo

    2012-03-01

    Full Text Available Japan acquired the Mariana, Caroline, and Marshall Island chains as a League of Nations mandate following World War I. Why did the local administration (the South Seas Government or Nanyōchō heavily subsidize the establishment of a sugar industry? While the South Seas Government did not explicitly state why it chose to support the sugar industry despite the wealth of oceanic resources surrounding the islands, imperial maps of the South Pacific produced by the Japanese navy and the South Seas Government provide a window into how both parties envisioned and planned for the economic future of the mandate. These maps included information regarding the available natural resources, land, and culture level of the Micronesian population. The author argues that in depicting the islands as spaces where a “primitive” nonagricultural population failed to take advantage of the islands’ resources, mapmakers and officials planned for the mass migration of Japanese labor to the mandate in order to support a newly established sugar industry.

  6. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry- SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Hytoenen, E.; Haekkinen, M. (VTT Technical Research Centre of Finland, Espoo (Finland)), email: anne.kallioinen@vtt.fi (and others)

    2011-11-15

    In the SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as raw materials for production of sugars to be processed further to ethanol or other chemicals. These raw materials, containing high proportion of carbohydrates have been analysed and pretreated for enzymatic hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Small carboxylic acids were an interesting side product from oxidation pretreatment. For feasibility study, 8 process cases have been selected and will be compared. Optimal enzyme mixtures have been determined for hydrolysis of pretreated materials. Results show that optimal enzyme composition depends clearly on the raw material and the pretreatment method. Pretreated raw materials were also hydrolysed efficiently in high dry matter conditions with commercial enzymes. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could only be detected with catalytically oxidised spruce. In addition, the induction of hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  7. Potential areas for the expansion of the sugar cane production; Areas potenciais para a expansao da producao de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    The evaluation of the potential areas for the expansion of the sugar cane cultivation was based on the estimation of the agricultural productivity aptitude as function of the soil and climate characteristics using maps with geo referred in scales of 1/5,000,000. Areas had been discarded which integrate of three large biomass of the country: Amazonia, Pantanal and Mata Atlantica, and all the areas with some type of restriction, such as environmental reservations, national parks, indigenous, military and urban areas. Were not considered areas with crop mechanization essential for the environmental and social sustainability with declivity more than 12%.

  8. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes.

  9. Research Advance on Application of Sugar Beet Pulp in Dairy Production%甜菜渣在奶牛生产应用中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王超; 齐智利; 董淑慧; 卜登攀

    2013-01-01

    Sugar beet pulp contains various available nutrients for animals as main by-product of sugar manufacturing.But its dosage needs to be limited in dairy production because of the antinutritional factors.In this article,the authors have reviewed the nutritive value,antinutritional factors,suitable volume of addition,and applying notes in order to give some advices in dairy production.%甜菜渣作为制糖工业的主要副产品,含有多种可被家畜吸收利用的营养素.同时由于含有一些不利于奶牛生长的抗营养因子,因此在奶牛生产中需要限制用量 本文主要从甜菜渣的营养价值及抗营养因子、在奶牛日粮中的适宜添加量及应用注意事项等几个方面进行综述,以期为甜菜渣在奶牛日粮中的应用提供建议.

  10. Fractionation of corn fiber treated by soaking in aqueous ammonia (SAA) for isolation of hemicellulose B and production of C5 sugars by enzyme hydrolysis.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Johnston, David B; Drapcho, Caye

    2011-08-01

    A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cleavage into xylo-oligosaccharides and subsequently recovered by precipitation with ethanol. The pretreatment step resulted in high retention of major sugars and improvement of subsequent enzymatic hydrolysis. The recovered hemicellulose B was hydrolyzed by a cocktail of enzymes that consisted of β-glucosidase, pectinase, xylanase, and ferulic acid esterase (FAE). Xylanase alone was ineffective, demonstrating yields of less than 2% of xylose and arabinose. The greatest xylose and arabinose yields, 44% and 53%, respectively, were obtained by the combination of pectinase and FAE. A mass balance accounted for 87% of the initially present glucan, 91% of the xylan, and 90% of the arabinan. The developed process offered a means for production of corn fiber gum as a value-added co-product and C5 sugars, which could be converted to other valuable co-products through fermentation in a corn wet-milling biorefinery.

  11. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation.

    Science.gov (United States)

    Zhao, Xuebing; Fan, Ming; Zeng, Jing; Du, Wei; Liu, Canming; Liu, Dehua

    2013-04-10

    A commercial macroporous resin (D3520) was screened for lipase recovery by adsorption from the aqueous phase of biodiesel production. The influences of several factors on the adsorption kinetics were investigated. It was found that the kinetic behavior of lipase adsorption by macroporous resin could be well described by pseudo-first-order model. Temperature had no significant effects on lipase adsorption, while resin-to-protein ratio (R) significantly affected both rate constant (k1) and equilibrium adsorption capacity (Qe). No lipase was adsorbed when mixing (shaking) was not performed; however, protein recovery reached 98% after the adsorption was conducted at 200rpm for 5h in a shaker. The presence of methanol and glycerol showed significant negative influence on lipase adsorption kinetics. Particularly, increasing glycerol concentration could dramatically decrease k1 but not impact Qe. Biodiesel was found to dramatically decrease Qe even present at a concentration as low as 0.02%, while k1 was found to increase with biodiesel concentration. The adsorbed lipase showed a relatively stable catalytic activity in tert-butanol system, but poor stability in solvent-free system when used for biodiesel preparation. Oil and biodiesel were also found to adsorb onto resin during transesterification in solvent-free system. Therefore, the resin had to be washed by anhydrous methanol before re-used for lipase recovery.

  12. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    Science.gov (United States)

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-01-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water. PMID:27695005

  13. Sweeteners - sugar substitutes

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007492.htm Sweeteners - sugar substitutes To use the sharing features on this ... that are used in place of sweeteners with sugar (sucrose) or sugar alcohols . They may also be ...

  14. Home blood sugar testing

    Science.gov (United States)

    Diabetes - home glucose testing; Diabetes - home blood sugar testing ... Usual times to test your blood sugar are before meals and at bedtime. Your provider may ask you to check your blood sugar 2 hours after a meal. Ask ...

  15. Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

    Science.gov (United States)

    Atanda, Luqman; Shrotri, Abhijit; Mukundan, Swathi; Ma, Qing; Konarova, Muxina; Beltramini, Jorge

    2015-09-01

    A water-THF biphasic system containing N-methyl-2-pyrrolidone (NMP) was found to enable the efficient synthesis of 5-hydroxymethylfurfural (HMF) from a variety of sugars (simple to complex) using phosphated TiO2 as a catalyst. Fructose and glucose were selectively converted to HMF resulting in 98 % and 90 % yield, respectively, at 175 °C. Cellobiose and sucrose also gave rise to high HMF yields of 94 % and 98 %, respectively, at 180 °C. Other sugar variants such as starch (potato and rice) and cellulose were also investigated. The yields of HMF from starch (80-85 %) were high, whereas cellulose resulted in a modest yield of 33 %. Direct transformation of cellulose to HMF in significant yield (86 %) was assisted by mechanocatalytic depolymerization-ball milling of acid-impregnated cellulose. This effectively reduced cellulose crystallinity and particle size, forming soluble cello-oligomers; this is responsible for the enhanced substrate-catalytic sites contact and subsequent rate of HMF formation. During catalyst recyclability, P-TiO2 was observed to be reusable for four cycles without any loss in activity. We also investigated the conversion of the cello-oligomers to HMF in a continuous flow reactor. Good HMF yield (53 %) was achieved using a water-methyl isobutyl ketone+NMP biphasic system.

  16. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Haekkinen, M.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anne.kallioinen@vtt.fi

    2010-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic and alkaline oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could be detected only with catalytically oxidised spruce. In addition, the hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  17. Effect of extrusion conditions and hydrolysis with fiber-degrading enzymes on the production of C5 and C6 sugars from brewers’ spent grain for bioethanol production

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-03-01

    Full Text Available The bioconversion of brewers’ spent grain into bioethanol was investigated in the present study using thermoplastic extrusion and the use of fiber degrading enzymes. The extrusion conditions i.e. tempering moisture, screws speed, and temperature of last zone of the barrel were taken into account in order to optimize the yield of C5 and C6 sugars during the subsequent enzymatic hydrolysis step of the fibers. The most important variable that affected the sugar yield was the extrusion temperature, followed by the screws speed. The best extrusion conditions were 20% tempering moisture, 200 rpm and 50 °C. No enzymatic and yeast inhibitors were detected in any of the enzymatically-treated fiber hydrolyzates. The fermentation resulted in 5.43 mL bioethanol per 100g of extruded brewers’ spent grain (dry weight basis. The only sugar consumed was glucose. The free amino nitrogen amount quantified in the hydrolyzates was as low as >20 mg L-1, negatively affecting sugars consumption during the fermentation and consequently the ethanol yield.

  18. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products.

    Science.gov (United States)

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-09-01

    A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na(+) cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs.

  19. Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and decreasing intestinal transit time pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... based on newly developed scientific evidence related to sugar beet fibre and “decreasing intestinal transit time”. The food constituent that is the subject of the health claim is sugar beet fibre. This opinion applies to sugar beet fibre naturally present in foods and to those forms added to foods...... that decreasing intestinal (orofaecal) transit time may be a beneficial physiological effect. The applicant provided four human studies as pertinent to the health claim. The Panel considers that no conclusion can be drawn from three studies for the scientific substantiation of the claim owing to methodological...

  20. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  1. INCREASING ADSORPTION OF ACTIVATED CARBON FROM PALM OIL SHELL FOR ADSORB H2S FROM BIOGAS PRODUCTION BY IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Wasan Phooratsamee

    2014-01-01

    Full Text Available Biogas is the combustible gas produced through a biological process, known as anaerobic digestion which is the process operated at low-temperature and without air. Biogas consists of 55-80% CH4, 20-45% CO2 with trace amount of H2S and other impurities. Common H2S removal technologies from biogas fall into one of adsorption on a solid such as iron oxide based materials, activated carbon or impregnated activated carbon. Conventionally, activated carbon is produced from biomass residues and agricultural residues such as palm oil shell which promising approach for the production of cheap. It is so due to the palm oil shell carries a large amount of carbon content which it is the main composition of activated carbon. Therefore, it is usable as raw material for producing impregnated activated carbon and used as adsorbents. The aim of this study is a produce the activated carbon from palm oil shells by chemical activation using ZnCl2 and optimal conditions after impregnated them with NaOH, KI and K2CO3 for H2S absorption from biogas product. In this research, production of activated carbon involved three stages; (i carbonization of raw material in an inert atmosphere which was carbonized in a muffle furnace at 600°C for 1 h; (ii secondly activation of char product from the first stages at fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length which was studied to observe the effect of char product: Chemical agent ratio (ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h; and (iii finally alkali impregnated activated carbon which were immersed 1:3 ratio in 500 mL of 1 N NaOH, KI and K2CO3 solutions and stirred for 30 min. The result showed that the surface area and the pore volume increased progressively with increasing the char product: Chemical agent ratio. The maximum

  2. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Yu; Chen, Chao; Xu, Youqiang; Zhang, Lijie; Han, Binbin; Gao, Chao; Tao, Fei; Ma, Cuiqing; Xu, Ping

    2015-03-01

    Biotechnological production of biofuels is restricted by toxicity of the products such as ethanol and butanol. As its low toxicity to microbes, 2,3-butanediol (2,3-BD), a fuel and platform bio-chemical, could be a promising alternative for biofuel production from renewable bioresources. In addition, no bacterial strains have been reported to produce enantiopure 2,3-BD using lignocellulosic hydrolysates. In this study, Enterobacter cloacae strain SDM was systematically and metabolically engineered to construct an efficient biocatalyst for production of the fuel and enantiopure bio-chemical-(2R,3R)-2,3-BD. First, the various (2R,3R)-2,3-BD dehydrogenase encoding genes were expressed in a meso-2,3-BD dehydrogenase encoding gene disrupted E. cloacae strain under native promoter Pb of the 2,3-BD biosynthetic gene cluster of E. cloacae. Then, carbon catabolite repression was eliminated via inactivation of the glucose transporter encoding gene ptsG and overexpression of a galactose permease encoding gene galP. The resultant strain could utilize glucose and xylose simultaneously. To improve the efficiency of (2R,3R)-2,3-BD production, the byproduct-producing genes (ldh and frdA) were knocked out, thereby enhancing the yield of (2R,3R)-2,3-BD by 16.5% in 500-mL Erlenmeyer flasks. By using fed-batch fermentation in a 5-L bioreactor, 152.0 g/L (2R,3R)-2,3-BD (purity>97.5%) was produced within 44 h with a specific productivity of 3.5 g/[Lh] and a yield of 97.7% from a mixture of glucose and xylose, two major carbohydrate components in lignocellulosic hydrolysates. In addition, when a lignocellulosic hydrolysate was used as the substrate, 119.4 g/L (2R,3R)-2,3-BD (purity>96.0%) was produced within 51 h with a productivity of 2.3g/[Lh] and a yield of 95.0%. These results show that the highest records have been acquired for enantiopure (2R,3R)-2,3-BD production by a native or engineered strain from biomass-derived sugars. In addition to producing the 2,3-BD, our systematic

  3. Enzymatic hydrolysis of oil palm empty fruits bunch fiber using Celluclast® and Accellerase® BG for sugar production

    Science.gov (United States)

    Salleh, Noor Shafryna; Murad, Abdul Munir Abdul

    2016-11-01

    In this work, the ability of commercial Trichoderma reesei cellulases preparation, Celluclast® or in combination with Accellerase®BG β-glucosidase to hydrolyse pretreated oil palm empty fruit bunch (OPEFB) was evaluated. Celluclast® alone hydrolyzed OPEFB to produce 2.41±0.44 mg glucose per gram OPEFB. However, the production of glucose was significantly improved with supplementation of Accellerase®BG (8.12±0.93 mg/g). This result suggested that the endoglucanases and exoglucanases in Celluclast® and β-glucosidase in Accellerase®BG able to work synergistically to increase the production of glucose from OPEFB. In addition, the production of xylose was also improved by 30% when the enzyme mixture was used. The result suggested that the mixture of Celluclast® with Accellerase®BG work synergistically to improve the production of sugars by removing the inhibition by cellobiose for complete cellulose hydrolysis. The production of glucose and xylose from OPEFB wastes showed the potential of this biomass as the source of renewable energy and fine chemicals production in Malaysia.

  4. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.

    Science.gov (United States)

    Huang, Yi; Han, Minfang

    2011-10-15

    Fly ash-based geopolymer with α-Al(2)O(3) addition were synthesized and used to remove formaldehyde from indoor air. The microstructure, mechanical and formaldehyde adsorption properties of the geopolymer products obtained were investigated. The results showed that α-Al(2)O(3) addition with appropriate amount (such as 5 wt%) increased the geopolymerization extent, resulting in the increase of surface area and compressive strength. In addition, the improvement of structural ordering level for geopolymer sample with 5 wt% α-Al(2)O(3) addition was found through FTIR analysis. By contrast, excessive addition (such as 10 wt%) had the opposite effect. The test of formaldehyde adsorption capacity confirmed that fly ash-based geopolymer product exhibited much better property of adsorbing indoor formaldehyde physically and chemically than fly ash itself. The surface area was an important but not unique factor influencing the adsorption capacity of geopolymers.

  5. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud.

    Science.gov (United States)

    Shen, Jing; Fatehi, Pedram; Soleimani, Pendar; Ni, Yonghao

    2011-11-01

    Dissolved lignocelluloses from the pre-hydrolysis liquor (PHL) of kraft-based dissolving pulp production process were recovered by adsorption to lime mud produced in the causticizing plant of the kraft process. The adsorption of lignocelluloses was a fast process, and could be completed within one hour. The addition of polydiallyldimethylammonium chloride (PDADMAC) significantly increased the amounts of adsorbed lignin and hemicelluloses, which more than doubled at the PDADMAC dosage of 0.1% (based on the weight of PHL). The measured heating values of the adsorbed lignocelluloses indicate that adsorption of lignocelluloses to lime mud may result in the energy saving of the lime kiln. The process proposed in this study could also be adapted to decrease inhibitor concentrations (lignin and acetic acid) if the dissolved hemicelluloses in the PHL were used to produce value-added products, e.g., ethanol, xylitol, based on the fermentation process.

  6. Starches and their sugar derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, P. (Societe Roquette Freres, 62 - Lestrem (France))

    1982-12-01

    After reviewing the composition of natural starches and their uses, the author deals with starch transformation processes, either by physical processing or chemical treatment. He describes particularly the various starch hydrolysis products together with their derivatives, amongst which are sought products which could replace sugar.

  7. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  8. Investigation of Adsorption Behavior of Ba and Other Fission Products on the Sr·spc Chromatographic Column by Static Method

    Institute of Scientific and Technical Information of China (English)

    YANG; Lei; MA; Peng; YANG; Su-liang; LIANG; Xiao-hu

    2012-01-01

    <正>Adsorption behavior of Ba, Cs and some other fission products on the Sr·spc resin has been investigated for the purpose of extracting 141Ba from the fission product. Sr·spc resin with the main functional group of 18-crown-6 ether was purchased from US. Eichrom Company. Tracers of Ba, Cs and some other fission products were acquired from an irradiated U target.

  9. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-ji; LIU Ya-nan; LI Xing; YAO Juan-juan

    2007-01-01

    In recent years, membrane ultrafiltration (UF) of surface water for drinking water treatment has become a more attractive technology worldwide as a possible alternative treatment to conventional clarification. To evaluate the performance of ultrafiltration membranes for treatment of surface water in North China, a 48-m2 low pressure hollow fiber membrane ultrafiltration pilot plant was constructed. Ultrafiltration was operated in cross-flow and with powdered activated carbon (PAC) adsorption. Turbidity was almost completely removed to less than 0.2 NTU (below Chinese standard 1 NTU). It was found that PAC addition enhanced organic matter removal. The combined process of PAC/UF allowed to 41% removal of CODMn, 46% removal of DOC and 57% decrease in UV254 absorbance. The elimination of particles, from average 12000/ml in the raw water to approximately 15/ml in the permeated, was observed. When PAC concentration was below 30 mg/L, backwashing could recovery the membrane flux with backwash interval/backwashing duration of 1/30.

  10. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012).

    Science.gov (United States)

    Ferreira, Nathália Luíza; Claro, Rafael Moreira; Lopes, Aline Cristine Souza

    2015-12-01

    This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.

  13. Consumption of sugar-rich food products among Brazilian students:National School Health Survey (PeNSE 2012

    Directory of Open Access Journals (Sweden)

    Nathália Luíza Ferreira

    2015-12-01

    Full Text Available Abstract This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012. Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.

  14. Application of organic discarded goods in cane sugar production%蔗糖生产中的有机废弃物资源化利用研究

    Institute of Scientific and Technical Information of China (English)

    谭宏伟; 周柳强; 谢如林; 黄美福; 谢刚; 黄春荣; 覃懿

    2016-01-01

    蔗糖业是广西主要支柱产业,广西的甘蔗种植面积、蔗糖产量连续多年稳居全国第一,蔗糖总产量占全国总产量的60%以上。在制糖生产过程中,甘蔗压榨中除压榨出糖汁外,在糖汁精炼过程中还产生数量巨大的糖厂废弃污染物,主要是滤泥和废糖蜜生产酒精的酒精废液。近年广西年入榨甘蔗8000~5800万t,产生滤泥约250万t,废糖蜜约250万t。在广西应用蔗糖厂的滤泥和酒精废液对甘蔗产量的影响的13个试验点的统计结果表明,施用酒精废液和滤泥的分别比复合肥处理增产甘蔗15.0t/hm²和13.5t/hm²,增产率分别18.8%和17.2%。蔗糖生产中的有机废弃物滤泥和酒精废液含有丰富的有机质、氮、磷和钾,以公顷施用75t酒精废液计,它能提供当季甘蔗生产所需的N 484.5kg,P2O512.9kg,K2O 816.0kg,并带来6294.0kg有机质;公顷施用7500kg滤泥计,它能提供当季甘蔗生产所需的N 129.0kg,P2O590.0kg,K2O 13.2kg,并带来4320.0kg有机质。蔗糖生产中的有机废弃物滤泥和酒精废液含有甘蔗吸收的矿质养分,其中:N 59300t,P2O525300t,K2O 31700t,有机质1650250t;应用这些矿质营养对甘蔗种植区的矿质营养平衡循环、培肥甘蔗种植区土壤肥力、保护甘蔗种植区生态环境和实现甘蔗生产的可持续稳定地增长,将有重要的作用。%The cane sugar industry is a main industry of Guangxi. The sugarcane cultivated area of Guangxi , output of cane sugar occupy first in the whole country steadily for years, the total output of cane sugar accounts for over 60% of national total output.In refining sugar the production process, the sugarcane also produced the sugar refinery enormous in quantity and discarded goods the pollutant while the syrup refines besides pressing out the syrup when pressed , it is mainly the vinasse straining the mud and abolishing the molasses to produce the alcohol

  15. Material flow analysis in sugar production for the assessment of residue production; Anche dallo zucchero si producono residui. Analisi dei flussi di materia della produzione dello zucchero per la stima delle quantita' di residui prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, G. [Ancona Univ., Ancona (Italy). Dipt. di Biotecnologie agrarie ed ambientali

    2001-06-01

    As far as residue disposal is concerned, sugar production represents one of the most interesting processes of agro-industry. In point of fact, the amount of sugar beets processed in one season by a sugar refinery is in the order of hundreds of thousands of tons, while only a little over one tenth of them is made into sugar. As a consequence, the residual mass gives rise to a disposal problem, which represents an essential aspect of the economy of the whole process, which must, among all else, deal with European Union restrictions. During the last few years, in particular, the sector is undergoing a transformation phase due to the reduction of both sugar exports (EU commitment as a result of the 1994 GATT agreement) and financial support to agriculture production. Moreover, the by-products of the process are ever more suffering the competition of other raw materials made available at competitive prices by the international market. It is therefore necessary to find - also for residues of scarce practical interest - alternative outlets able to redress the difficult balance between a correct environmental destination and the reduction of production costs. This article aims at analysing the set of problems, hoping to offer useful elements for the prospective definition of new disposal techniques. The analysis point of reference is a sugar refinery in central Italy, characterised by a productive potential of over 10,000 ton/day of sugar beets. [Italian] La produzione dello zucchero rappresenta uno dei processi dell'industria agroalimentare piu' interessanti in tema di smaltimento dei residui della lavorazione. Di fatto, la quantita' di barbabietole lavorate nel corso della stagione da parte di uno zuccherificio e' dell'ordine delle centinaia di migliaia di tonnellate a stagione e poco piu' di un decimo di questa viene trasformato in zucchero. Per la restante massa residua, sorge quindi il problema dello smaltimento che rappresenta un aspetto

  16. Determination of endotoxins in sugar with the Limulus test.

    Science.gov (United States)

    Haskå, G; Nystrand, R

    1979-12-01

    The Limulus amebocyte lysate test has been used for determination of pyrogens in sugar of different qualities. All the samples of domestic white sugar and beet raw sugar produced in Sweden during 1976 had a very low content of endotoxins, less than 10 ng/g of sugar. Imported cane raw sugar was, however, highly contaminated. The highest value obtained corresponds to about 100 mg of Escherichia coli endotoxin per g of raw sugar. Such crude sugar cannot, even after refining, be used for medical purposes. Instead, Swedish beet sugar is used as the raw material for production of invert sugar solutions for parenteral administration. The amount of endotoxin in this sugar is less than 1 ng/g.

  17. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Baral, Khagendra Raj; Fitamo, Temesgen Mathewos

    2016-01-01

    Several countries have established a number of increased targets for energy production from renewable sources. Biogas production, which will play a key role in future energy systems largely based on renewable sources, is expected to grow significantly in the next few decades. To achieve these amb......Several countries have established a number of increased targets for energy production from renewable sources. Biogas production, which will play a key role in future energy systems largely based on renewable sources, is expected to grow significantly in the next few decades. To achieve...

  18. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.

    Science.gov (United States)

    Uyar, Basar; Gürgan, Muazzez; Özgür, Ebru; Gündüz, Ufuk; Yücel, Meral; Eroglu, Inci

    2015-10-01

    Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains.

  19. LONG TERM 32-YEAR-OLD APPLICATION OF FERTILIZERS FOR THE FERTILITY OF THE ORDINARY BLACK SOIL AND PRODUCTIVITY OF SUGAR BEET

    Directory of Open Access Journals (Sweden)

    Neshchadim N. N.

    2016-03-01

    Full Text Available The article deals with the effectiveness of mineral and organic fertilizers in long-term application (for more than thirty years according to the influence on the fertility of ordinary black soil of the Western Ciscaucasia and productivity of sugar beet. The investigations were carried out in the long-term stationary experiment laid on the experimental stationary section "Severokubanskaya agricultural experimental station" of P.P. Lukyanenko Krasnodar Agricultural Research Institute. The experiment was laid simultaneously in time and space in two ten-course crop rotations and combined grain-grass tilled. In the structure of sown areas sugar beet occupied 10% of crop rotation area and was placed after the winter wheat. During three rotations it was studied: 1- control without fertilizer with natural forming level of mineral nutrition; 2- minimal dose N21P26K16 3- medium dose N43P52K33 ; 4 - N43P52K33, 5- high dose N96P104K68; 6- organo-mineral system¹ N43P52K34 + 12 t/ha of manure; 7- organo-mineral system² N20P24K34 + II-III rotations tillage of straw crop + 6 t/ha of manure; 8- medium dose P52K33; 9- medium dose N43K33; 10- medium dose N43K52. The soil which is used by organo-mineral system with increased and high standards of mineral fertilizers had higher concentration of mineral nitrogen. Long systematic application of fertilizer had more noticeable effect on soil phosphorus regime. The provision of soil by exchange potassium tended to decline from rotation to rotation. If at the completion of the first rotation the content of this battery was at the level 362,0-433,0 mg / kg of soil, in 2010, these values were 356,0-405,0 mg / kg of soil, remaining at the level of increased and high provision characterized to ordinary black-soil. Fertilizers for crop rotation provided almost equal yield increase: in the first rotation - 4,9-16,0 t / ha in the second 5,3- 17,1, the third 6,1-15,5 t / ha. In the moderate favorable for moisture and

  20. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  1. Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland

    Directory of Open Access Journals (Sweden)

    Jan Eric Jessen

    2012-01-01

    Full Text Available Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol and xylose (1.25 mol/mol. Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g−1 but the lowest on straw (0.8 mM·g−1. Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g−1 to 3.3 mM·g−1 using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g−1.

  2. Production and productivity of sugar cane bagasse during 2008/2009 crop season for electrical energy conservation; Producao e produtividade de bagaco de cana-de-acucar ao longo da safra 2008/2009, visando a cogeracao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz Carlos; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify sources of energy generation, Brazil has encouraged cogeneration of energy from biomass. Among the various biomasses sources, sugar cane bagasse is one that combines the best economic attributes to be due mainly to industrial production in large quantities. This study aimed to evaluate the bagasse productive potential of two varieties of sugarcane during the harvest period. The experiment was conducted at UNESP, Jaboticabal County. The experimental design was completely randomized split plot, having the two sugarcane cultivars as plots, and the split times of the 11 tests during the season and 3 replications. Were estimated production (kg tc{sup -1}) and productivity (t ha{sup -1}) residue for each cultivar in their own times. The cultivars showed differences from the average production of mulch. However, obtained similar behavior throughout the season, characterized by progressive cuts. For bagasse Productivity, the cultivars showed differences in average values and behavior throughout the season. The cultivar IACSP95-5000 had the best performance in relation to production and productivity of bagasse, can be used for cogeneration for most of the season. The cultivar RB855536 presented a lower performance, achieving low production and productivity of bagasse, indicating its lower potential in relation to energy generation. (author)

  3. THE FACTORS FORMING QUALITY OF GRANULATED SUGAR

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2015-01-01

    Full Text Available Sugar, with good taste and high caloric, is one of the most popular human food. Consumers sugar must be sure that the sugar under normal conditions of use is of high quality and is not harmful to the health of the product. One reason for the decline in the quality of sugar is bacterial contamination. This is because the sugar industry products are good targets for the development of different groups of microorganisms, e.g., Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and others. These organisms are affected with beets, and then with sugar beet chips and diffusion juice fall into the processing line of sugar production. Their number in the diffusion juice varies and depends on many facto rs such as the quality of raw materials, the quality of cleaning beet root colonization of transporter-washing and the supply of water to the diffusion process, the temperature of the diffusion and others. In the diffusion unit has the most favorable conditions for the development of micro-organisms. Some of them, especially resistant bacteria and thermophilic bacteria or their spores, forming a capsule which protects against external influences occur in the final product sugar. When injected into the fresh crop of product (juice, syrup, they begin to multiply rapidly, causing difficulties in the process. The higher seeding beet microorganisms, the more they decompose and emit sucrose metabolism byproducts. To reduce the negative impact of microbiological and reduce losses from decomposition of sucrose conducted research on the possibility of using chlorine-containing substances in the sugar industry. It was established experimentally that the investigated chlorinated drug has bacteriostatic action and can be recommended for use in sugar beet production.

  4. Methods for dehydration of sugars and sugar alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-08-10

    The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H.sub.2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H.sub.2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co-catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.

  5. Facile heterogenization of a cobalt catalyst via graphene adsorption: robust and versatile dihydrogen production systems.

    Science.gov (United States)

    Eady, Shawn C; Peczonczyk, Sabrina L; Maldonado, Stephen; Lehnert, Nicolai

    2014-07-28

    A heterogeneous dihydrogen (H2) production system has been attained by simply soaking electrodes made from electro-deposited graphene on FTO plated glass in solutions of a cobalt bis(dithiolate) compound. The resulting electrodes are active in weakly acidic aqueous solutions (pH > 3), have relatively low overpotentials (0.37 V versus platinum), show high catalytic rates (TOF > 1000 s(-1)), and are resistant to degradation by dioxygen.

  6. Low blood sugar - newborns

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007306.htm Low blood sugar - newborns To use the sharing features on this page, please enable JavaScript. A low blood sugar level in newborn babies is also called neonatal ...

  7. Hyperactivity and sugar

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002426.htm Hyperactivity and sugar To use the sharing features on this page, ... more likely to be hyperactive if they eat sugar, artificial sweeteners, or certain food colorings. Other experts ...

  8. High blood sugar

    Science.gov (United States)

    ... High blood glucose - self-care; Diabetes - high blood sugar ... Symptoms of high blood sugar can include: Being very thirsty or having a dry mouth Having blurry vision Having dry skin Feeling weak or tired ...

  9. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation

    DEFF Research Database (Denmark)

    Holck, Jesper; Hjernø, K.; Lorentzen, A.

    2011-01-01

    Sugar beet pectin was degraded enzymatically and separated by ion exchange chromatography into series of highly purified homogalacturonides and rhamnogalacturonides. MALDI-TOF/TOF mass-spectrometry was used to determine sizes and structural features. The methodology was based on the sequential use...... of monocomponent enzymes that were selected to target specific substructures in the sugar beet pectin. Notably pectin lyase and rhamnogalacturonan I lyase were used, which allowed detection of the resulting cleavage products by UV spectroscopy. Seven different homogalacturonides (HG) with degrees of polymerization...

  10. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period.

    Science.gov (United States)

    Penner, G B; Oba, M

    2009-07-01

    The current study was undertaken to investigate the effect of feeding diets varying in sugar concentration to postpartum transition cows on productivity, ruminal fermentation, and nutrient digestibility. We hypothesized that the high-sugar diet would increase dry matter intake and lactation performance. The secondary objective was to characterize changes in ruminal fermentation and nutrient digestibility over the first 4 wk of lactation. Fifty-two Holstein cows, including 28 primiparous and 24 multiparous cows, 10 of which were previously fitted with a ruminal cannula, were assigned to the experimental diets containing either high sugar (HS = 8.4%) or low sugar (LS = 4.7%) immediately after calving, based on their expected calving date. Data and samples were collected on d 5.2 +/- 0.3, 12.2 +/- 0.3, 19.2 +/- 0.3, and 26.1 +/- 0.3 relative to parturition for wk 1, 2, 3, and 4 respectively. Cows fed HS had increased dry matter intake compared with those fed LS (18.3. vs. 17.2 kg/d). Further, cows fed HS sorted for particles retained on the pan of the Penn State Particle Size Separator to a greater extent than cows fed LS. Feeding HS tended to increase nadir (5.62 vs. 5.42), mean (6.21 vs. 6.06), and maximum pH (6.83 vs. 6.65). The duration (h/d) and area (pH x min/d) that ruminal pH was below pH 5.8 were not affected by treatment. Ruminal volatile fatty acid concentration and molar proportions of individual volatile fatty acids were not affected by treatment. The digestibility of dry matter, organic matter, neutral detergent fiber, and starch were not affected by treatment, averaging 63.3, 65.2, 43.2, and 93.5%, respectively. Feeding HS decreased plasma glucose concentration compared with feeding LS (51.3 vs. 54.0 mg/dL), but concentration of plasma insulin was not affected by treatment, averaging 4.17 microIU/mL. Cows fed HS had higher concentrations of plasma beta-hydroxybutrate (17.5 vs. 10.5 mg/dL) and nonesterified fatty acids (344 vs. 280 microEq/L). Milk yield

  11. Monitoring Blood Sugar: The Importance of Checking Blood Sugar Levels

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Monitoring Blood Sugar KidsHealth > For Parents > Monitoring Blood Sugar Print A ... Tests Record Keeping The Importance of Checking Blood Sugar Levels Besides helping to keep blood sugar levels ( ...

  12. Monitoring Blood Sugar: The Importance of Checking Blood Sugar Levels

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Monitoring Blood Sugar KidsHealth > For Parents > Monitoring Blood Sugar A ... Other Tests Record Keeping The Importance of Checking Blood Sugar Levels Besides helping to keep blood sugar ...

  13. Hydrophobic sugar holograms

    Science.gov (United States)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  14. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.

    Science.gov (United States)

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival

    2015-04-21

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  15. Bagasse production potential from late sugar cane cultivars; Potencial produtivo de bagaco por cultivares tardios de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz C.; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify energy sources, the residue of sugarcane gathers attributes that qualify its use. Therefore, this study was to evaluate the potential of bagasse production in late cultivars of sugarcane. The experimental design was a randomized block design with 6 treatments (cultivars) and 3 replications. The experiment was carried out at FCAV/UNESP Jaboticabal. To calculate the productivity, it was counted the number of stems in a row linear meter, it was obtained the weight of stems. The percentage of fiber for each cultivar was determined by a calculation of estimated production and productivity of mulch. Using these values to estimate the number of people who would benefit from the energy generated from the combustion of bagasse in a process of cogeneration power. The results were submitted to analysis of variance by F test and averages compared by Tukey test at 5% probability. Cultivars RB867515, RB72454 and CTC6 showed the best performance, indicating its greater potential for power cogeneration. Cultivars CTC IAC94-2 and 2101 were lower when considering the results obtained. (author)

  16. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability.

    Science.gov (United States)

    Laluce, Cecilia; Tognolli, João Olimpio; de Oliveira, Karen Fernanda; Souza, Crisla Serra; Morais, Meline Rezende

    2009-06-01

    Aiming to obtain rapid fermentations with high ethanol yields and a retention of high final viabilities (responses), a 2(3) full-factorial central composite design combined with response surface methodology was employed using inoculum size, sucrose concentration, and temperature as independent variables. From this statistical treatment, two well-fitted regression equations having coefficients significant at the 5% level were obtained to predict the viability and ethanol production responses. Three-dimensional response surfaces showed that increasing temperatures had greater negative effects on viability than on ethanol production. Increasing sucrose concentrations improved both ethanol production and viability. The interactions between the inoculum size and the sucrose concentrations had no significant effect on viability. Thus, the lowering of the process temperature is recommended in order to minimize cell mortality and maintain high levels of ethanol production when the temperature is on the increase in the industrial reactor. Optimized conditions (200 g/l initial sucrose, 40 g/l of dry cell mass, 30 degrees C) were experimentally confirmed and the optimal responses are 80.8 +/- 2.0 g/l of maximal ethanol plus a viability retention of 99.0 +/- 3.0% for a 4-h fermentation period. During consecutive fermentations with cell reuse, the yeast cell viability has to be kept at a high level in order to prevent the collapse of the process.

  17. Sugar cane bagasse pyrolysis: process optimization and products characterization; Pirolise do bagaco de cana: otimizacao do processo e caracterizacao dos produtos

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Sergio

    1994-07-01

    The ghost of drying of natural resources, mainly the petroleum, desolate the Earth. Although the concern with this fact is recent, it has motivated a run in search of the alternative sources that can replace their self. An alternative source that come earning special attention is biomass, whose research come increasing annually. In Brazil, an important form of biomass, that is rejected like waste and utilized to little noble aim, is the sugar cane bagasse. The objective of this work is to present a conversion process of the bagasse in fuels and raw materials for the chemistry industry. The conversion method adopted was the pyrolysis. To the realization of this conversion, it was constructed a horizontal bed oven, with continuous flow of nitrogen, which carried the pyrolised volatile material, for the trap, during the process. The pyrolysis study was done in the range of 400 deg C to 900 deg C and was optimized utilizing the factorial design. The char, which is a pyrolysis product, was characterized by thermogravimetric and spectroscopic techniques. The tar, which is another pyrolysis product, was characterized by chromatographic and spectroscopic techniques. The results obtained shows that the tar is abundant in organic acids, such fenols and carboxylic acids, which has great utility as raw materials in the chemistry industry. The char, obtained in the range of 400 deg C to 600 deg C, is rich inorganic material, making possible its posterior processing to obtain oils. (author)

  18. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties

    OpenAIRE

    2014-01-01

    Brewer’s spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer’s spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different ...

  19. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  20. Moisture sorption curves of fruit and nut cereal bar prepared with sugar and sugar substitutes.

    Science.gov (United States)

    Pallavi, Byrappa Vasu; Chetana, Ramakrishna; Ravi, Ramaswamy; Reddy, Sunkireddy Yella

    2015-03-01

    Low sugar, low fat, dry fruit and nut cereal bars without sugar were prepared using cereals, nuts, and sugar substitutes. The sorption characteristics of the bars prepared with sugar substitutes in comparison with that of sugar were studied by keeping the bars at water activity (aw) from 0.1 to 0.9. The sorption isotherms of low sugar bars were practically identical below aw of 0.5 but above aw of 0.5, a clear differentiation in the isotherms could be observed compared to that of sugar counterpart. A sharp increase in moisture content was observed in the bars prepared with alternative sweeteners, above aw 0.6, whereas a gradual increase in aw was observed in the case of bar prepared with sugar. The ERH (Equilibrium relative humidity) value for bar with sugar was 50 %, and for bars prepared with alternative sweeteners, it was about 60 %. Low sugar cereal bar prepared with sorbitol + maltitol (SM) syrup scored higher sensory quality compared to other product prepared with sorbitol + nutriose (SN) as the former retained softness and chewiness on storage. Thus, it was observed that bars with alternative sweeteners will be more stable as their ERH is closer to normal ambient conditions compared to that prepared with sugar.

  1. Bio-oil production and removal of organic load by microalga Scenedesmus sp. using culture medium contaminated with different sugars, cheese whey and whey permeate.

    Science.gov (United States)

    Borges, Wesley da Silva; Araújo, Breno Severiano Alves; Moura, Lucas Gomes; Coutinho Filho, Ubirajara; de Resende, Miriam Maria; Cardoso, Vicelma Luiz

    2016-05-15

    The objective of this study was to evaluate the bio-oil production and the organic load removal using the microalga Scenedesmus sp. The cultivation was carried out in reactors with a total volume of 3 L and 0.7 vvm aeration, with illumination in photoperiods of 12 h light/12 h dark for 12 days. The following sugar concentrations were tested: 2.5, 5.0 and 10 g/L of glucose, lactose, fructose and galactose with 10% inoculum volume. After experiments were performed with cheese whey in natura and cheese whey permeate with different lactose concentrations (1.5, 2.5, 3.5 and 5.0 g/L). In these experiments the inoculum concentrations were 10, 15, 20 and 30% (v/v). The results showed that this microalga was effective for the production of lipids when it was cultivated in medium with cheese whey in natura with 2.5 g/L of lactose and 20% inoculum (v/v). Using cheese whey in natura at the concentration of 3.5 g/L of lactose and 30% (v/v) of inoculum obtained 77.9% of TOC removal and 38.447 mg of TOC removed/mg oil produced. It was also observed that when there is increased production of bio-oil, there is less removal of organic matter. The addition of glucose, fructose or galactose in the medium did not enhance the production of bio-oil by Scenedesmus sp. when compared to lactose, but increased the organic matter removal.

  2. Effect of Sugar Content on Acetaldehyde Yield in Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Cahours X

    2014-12-01

    Full Text Available The relationship between cigarette blend sugar and acetaldehyde formed in its smoke is a matter of current regulatory interest. This paper provides a re-analysis of data from 83 European commercial cigarettes studied in the 1970s and more modern data on sugar levels and acetaldehyde yields from a series of 97 European commercial cigarettes containing both inherent sugar and in other cases inherent and added sugar. It also provides data from 65 experimental cigarette products made from single curing grades of tobacco, having a wide range of inherent sugar levels but no added sugar.

  3. The energetic analysis of ethanol systems production from the manioc, the sugar cane and the corn crops; Analise energetica de sistemas de producao de etanol de mandioca, cana-de-acucar e milho

    Energy Technology Data Exchange (ETDEWEB)

    Salla, Diones Assis [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Pos-graduacao em Agronomia], E-mail: diones.salla@gmail.com; Cabello, Claudio [Universidade Estadual Paulista (CERAT/UNESP), Botucatu, SP (Brazil). Centro de Raizes e Amidos Tropicais], E-mail: dircerat@fca.unesp.br

    2010-07-01

    The objective of this work was the analysis of the energetic ethanol production systems using as source of carbohydrates, manioc, sugar cane and maize crops. The searches were carried from the field in the Paranapanema River Valley, state of Sao Paulo in the operations of cultivation and industrial processing of raw materials for analysis. The expenditure of energy concerning the agricultural part was made by the energy consumption of stage production of one hectare of sugar cane, cassava and corn, tillage and planting procedure, inputs, driving the crop, harvest, transport industry and energy draining. The expenditure of energy referring to the part was made by the industry energy consumption of stage processing of one tonne of sugar cane, cassava and corn, in the operations of disintegration / milling, hydrolysis / treatment of the broth, fermentation, distillation and maintenance of equipment. Under the system of agronomic production of raw materials, manioc presented an energy expenditure below that of sugar cane and maize (9,528.33 MJ ha{sup -1}; 14,370.90 MJ ha{sup -1} and 15,633.83 MJ ha{sup -1}, respectively). For the ethanol produced, the operations of cultivation has consumed 1.54 MJ l{sup -1} with manioc; MJ 1.99 l{sup -1} with sugar cane, and 7.9 MJ l{sup -1} with the corn. In the industrial processing of a ton of raw material, sugar cane presented an energy cost less than the cassava and maize (1,641.56 MJ t{sup -1}; 2,208.28 MJ t{sup -1} and MJ 3,882.39 t{sup -1}, respectively), however, showed a higher cost than when they related to ethanol produced (19.38 MJ l{sup -1}; 11.76 MJ l{sup -1} and 11.76 MJ l{sup -1}, respectively). In the final energy balance for each mega joules of energy invested in sugar cane were required 1.09 MJ (9%), for each mega joules of energy invested in manioc were required 1.76 MJ (76%) and for each mega joules energy invested in maize were required 1.19 MJ (19%). Overall, it appears that the manioc consumes less energy than

  4. Monitoring Your Blood Sugar Level

    Science.gov (United States)

    ... Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety ... Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics ...

  5. Carbohydrates, Sugar, and Your Child

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Carbohydrates, Sugar, and Your Child KidsHealth > For Parents > Carbohydrates, Sugar, ... a 1-ounce equivalent. previous continue Sizing Up Sugar Foods that are high in added sugar (soda, ...

  6. Sugar exported: sugar packed in containers

    Directory of Open Access Journals (Sweden)

    José Alberto Yemal

    2010-04-01

    Full Text Available This paper presents a study in the port sector specialized in handling of bagged sugar. Sugar has always been exported in bags of 50 kg, placed directly in the holds of ships for general cargo. It appears that this form of transport has become obsolete now, the market for the direct form of transport of sugar packed in containers. Companies involved in this type of port handling need understand the reasons that are influencing this new mode of transportation as a way to fit and remain active and competitive in the industry.

  7. Transformations of lead 1,3-propylenediaminetetraacetate to its MOF products for the selective adsorption of methanol

    Science.gov (United States)

    Dai, Jun-Wei; Li, Xing; Zheng, Jian-Mei; Dong, Xin; Zhou, Zhao-Hui

    2016-05-01

    Water soluble coordination polymer of potassium lead 1,3-propylenediaminetetraacetate {K4[Pb2(1,3-pdta)2]·6H2O}n (1) and its insoluble products {[Pb(1,3-H2pdta)(H2O)]·2H2O}n (2), {[Pb2(1,3-pdta)(H2O)4]·4H2O}n (3) and [Pb2(1,3-pdta)(H2O)2]n (4) were obtained from the direct reactions of lead nitrate with 1,3-propylenediaminetetraacetic acid in different conditions (1,3-H4pdta=1,3-propylenediaminetetraacetic acid). The former 1 could be converted to the insoluble products of {[Pb2(1,3-pdta)(H2O)4]·4H2O}n (3) and [Pb2(1,3-pdta)(H2O)2]n (4) in weak acidic solution. The complexes have been full characterized by EA, FT-IR, solution and solid state 13C NMR spectra, thermogravimetric and structural analyses. Interestingly, 3 contains a unique (H2O)26 cluster and a 5.2 Å pore after eliminating the guest water molecules, which exhibits reversible adsorption for methanol. This is confirmed by PXRD and solid state 13C NMR analyses. Nano-confined methanol in microporous structure has been observed based on the large downfield shift of 13C NMR signal (Δδ 9.72 ppm), attributing to the methyl group in methanol.

  8. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    fermentation coupled with Reverse Enhanced Electro-Dialysis (REED) at D=0.0417 h-1 (1 day HRT) in experiments with a mixture of glucose and xylose in synthetic growth medium as well as with increasing concentrations of PHWS (up to 100%). Data obtained from experiments with synthetic medium showed......) and resulted in a butyric acid productivity and yield of 1.31g/L/h and 0.44 g/g, respectively at 1 day HRT. Acknowledgements: This work is a part of EU-7th Framework programme supported project SUPRABIO (FP7-cooperationproject no 241640)....

  9. Thermal treatment of Lloydminster heavy oil: yield and product separation by adsorption chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, P.K.; Sastre, H.; Chornet, E.; Kotlyar, L.S.; Ripmeester, J.A.; Overend, R.P. (University of Sherbrooke, Quebec (Canada). Dept. of Chemical Engineering)

    1989-09-01

    The effect of thermal treatment on Lloydminster heavy oil has been studied under pyrolytic, catalytic and non-catalytic hydropyrolysis and hydrogen donor solvent (tetralin) regimes using a batch autoclave. Product yields are reported for each type of reaction regime in terms of gases, maltenes, asphaltenes and toluene insoluble organic matter (coke). The maltene fraction was further separated by column chromatography into four chemical compound types namely: saturates, mono- and di-aromatics, polyaromatics and polars. The asphaltene fraction was also separated in four fractions by column chromatography by elution with solvents of increasing polarity. These fractions were characterized by FTIR and {sup 1}{sup 3}C NMR. The evolution of these fractions was studied as a function of the treatment. Tetralin was found to be effective in eliminating coke and increasing the maltene content relative to other treatments. It has been observed that the decrease of polyaromatic and polar species in the maltenes results in a corresponding increase of saturates. The asphaltene yield also decreases with thermal treatment. In all treatments the asphaltene fractions rich in polar and highly functional groups decrease drastically. 34 refs., 7 figs., 2 tabs.

  10. Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries

    Directory of Open Access Journals (Sweden)

    Gillian Eggleston

    2015-09-01

    Full Text Available Like many other industries, the sugar and sugar-bioproduct industries are facing important sustainability issues and opportunities. The relatively low and fluctuating profit for sugar, surpluses of sugar, world-wide trend to produce alternative, renewable bio-based fuels and chemicals to those derived from petroleum and reduce greenhouse gases, water- and energy-intensive factories and refineries, and increased consumer demands for sustainably manufactured products are putting pressure on the industries to diversify for sustainability. Sugar crops, including sugar and energy cane (Saccharum officinarum, sugar and energy beets (Beta vulgaris, and sweet sorghum (Sorghum bicolor L. Moench, are excellent, renewable biomass feedstocks because of their availability, their being amongst the plants that give the highest yields of carbohydrates per hectare, and high sugar contents. While much research has been focused on conversion technologies for advanced biofuels and bioproducts, attention is now focused on developing sustainable supply chains of sugar feedstocks for the new, flexible biorefineries, with customers wanting maximum feedstock reliability and quality, while minimizing cost. All biomass from sugar crops are potential feedstocks. The cogeneration of bioelectricity from bagasse and leaf residues is being increasingly manufactured in more countries and, due to the high carbon content of bagasse and leaves, can also be converted into value-added products such as biochar. Sugar crops are superior feedstocks for the production of platform chemicals for the manufacture of a range of end-products, e.g., bioplastics, chemicals, and biomaterials. In several countries and regions, green sustainability criteria are now in place and have to be met to count against national biofuel targets. Processes to convert high-fiber sugar crop biomass into biofuel have been developed but there has only been limited commercialization at the large-scale.

  11. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Bhattacharya, Sourish; Bachani, Pooja; Mishra, Sandhya

    2016-03-01

    For the commercialization of microalgal based biofuels, utilization of de-oiled carbohydrate rich biomass is important. In the present study, chemo-enzymatic hydrolysis of mixotrophically grown Scenedesmus sp. CCNM 1077 de-oiled biomass is evaluated. Among the chemical hydrolysis, use of 0.5M HCl for 45 min at 121°C resulted in highest saccharification yield of 37.87% w/w of de-oiled biomass. However, enzymatic hydrolysis using Viscozyme L at loading rate of 20 FBGU/g of de-oiled biomass, pH 5.5 and temperature 45°C for 72 h resulted in saccharification yield of 43.44% w/w of de-oiled biomass. Further, 78% ethanol production efficiency was achieved with enzymatically hydrolyzed de-oiled biomass using yeast Saccharomyces cerevisiae ATCC 6793. These findings of the present study show application of mixotrophically grown de-oiled biomass of Scenedesmus sp. CCNM 1077 as promising feedstock for bioethanol production.

  12. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    Science.gov (United States)

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  13. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  14. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  15. Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids

    Directory of Open Access Journals (Sweden)

    Ali Heidarzadeh Vazifehkhoran

    2016-05-01

    Full Text Available The biochemical methane potential and composition of sugar beet pulp silage were investigated using samples taken from six different depths in both open and closed silos (height 3.6 m. The biochemical methane potential (BMP of pulp silage in open silos ranged from 337 to 420 normal litre (NL CH4/kg volatile solids (VS, while the BMP of pulp silage in closed silos varied between 411 and 451 NL CH4/kg VS. The biochemical methane potential peaked at a depth of 1.45 m with 420 NL CH4/kg VS for open silos and 451 NL CH4/kg VS for closed silos. The ethanol concentration and biochemical methane potential showed the same trend with depth throughout the silos. The energy loss correlated to the loss of volatile solids, and the depths described a linear relationship between them for both the open and closed silos (R2 = 0.997 for the open silo and R2 = 0.991 for the closed silo. The energy potentials and composition of beet pulp silage were highly stratified and there was a risk that the silage samples were not representative in investigations of biomass quality for energy production.

  16. Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

    Science.gov (United States)

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2016-05-01

    The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane.

  17. Design and Application of CASS Activated Sludge Process for Treating Cane Sugar Production Wastewater%CASS活性污泥工艺对甘蔗制糖生产废水处理的设计和应用

    Institute of Scientific and Technical Information of China (English)

    陆明凯

    2012-01-01

      甘蔗制糖生产是广西重要的工业经济支柱之一,但制糖生产过程产生的有机废水也严重污染水体环境。本文通过介绍甘蔗制糖过程废水产生情况,阐述CASS活性污泥工艺,结合实际工程设计情况,说明CASS活性污泥工艺对甘蔗制糖废水处理应用的可行性及优越性。%  Cane sugar production is one of the importance industrial economy pillars in Guangxi. However, the organic waste water generated during sugar production process also contaminates water environment seriously. In this paper, wastewater generated during the cane sugar manufacture process and the CASS activated sludge process are introduced. The feasibility and superiority of using CASS activated sludge process to treat sugar wastewater are discussed basing on actual engineering design situation.

  18. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production.

    Science.gov (United States)

    Bruce, Thiago; Leite, Fernanda Gomes; Miranda, Milene; Thompson, Cristiane C; Pereira, Nei; Faber, Mariana; Thompson, Fabiano L

    2016-03-01

    Clostridium butyricum is widely used to produce organic solvents such as ethanol, butanol and acetone. We sequenced the entire genome of C. butyricum INCQS635 by using Ion Torrent technology. We found a high contribution of sequences assigned for carbohydrate subsystems (15-20 % of known sequences). Annotation based on protein-conserved domains revealed a higher diversity of glycoside hydrolases than previously found in C. acetobutylicum ATCC824 strain. More than 30 glycoside hydrolases (GH) families were found; families of GH involved in degradation of galactan, cellulose, starch and chitin were identified as most abundant (close to 50 % of all sequences assigned as GH) in C. butyricum INCQS635. KEGG metabolic pathways reconstruction allowed us to verify possible routes in the C. butyricum INCQS635 and C. acetobutylicum ATCC824 genomes. Metabolic pathways for ethanol synthesis are similar for both species, but alcohol dehydrogenase of C. butyricum INCQS635 and C. acetobutylicum ATCC824 was different. The genomic repertoire of C. butyricum is an important resource to underpin future studies towards improved solvents production.

  19. Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection.

    Science.gov (United States)

    Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M

    2010-09-01

    Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters.

  20. Engineering the production of sugar alcohols in transgenic plants: Extending the limits of photosynthesis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-31

    In the different tobacco lines expressing different polyols, the authors have investigated how the presence of polyols affects ion uptake during short periods of stress. In addition, they began investigations on recovery from short periods of stress, e.g. eight days of drought and/or five days in 400 mM NaCl. The transgenic plants take up sodium more slowly. The next set of experiments, modeled after the experiments done with Mesembryanthemum will investigate ion transport and partitioning in control and transgenic tobacco. Photosynthetic activities of drought-stressed mannitol/ononitrol tobacco were investigated. Measurements of fluorescence, carbon fixation rates and electron transport indicated that the polyol-containing plants loose photosynthetic competence more slowly than controls. Transfer of the mtlD gene (mannitol production) into Arabidopsis has been accomplished. The transgenic plants are phenotypically normal. They survive 300 mM NaCl when the stress is started when the plants are mature--in contrast to wild type which is killed at 150 mM. Seeds from mannitol-containing plants germinate (100%) in 100 mM NaCl while germination rate of wild type is about 20%. In 200 mM NaCl n wild type germinates, while in some transgenic lines still 50% of the seeds germinated. At 250 mM NaCl during germination, the transgenic seeds are severely impaired, only 10 to 20% begin germination.

  1. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars.

    Science.gov (United States)

    Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C

    2013-08-01

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.

  2. Study of adsorption isotherms of green coconut pulp

    Directory of Open Access Journals (Sweden)

    Fábia Carolina Gonçalves Lavoyer

    2013-03-01

    Full Text Available Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L. stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.

  3. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Directory of Open Access Journals (Sweden)

    Jodi T. Bernstein

    2016-09-01

    Full Text Available A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a the first systematic calculation of free sugar contents; (b a comprehensive assessment of total sugar and free sugar levels; and (c sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP database 2013 (n = 15,342. Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL: desserts (94%, 15 g, and 12 g, sugars and sweets (91%, 50 g, and 50 g, and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively. Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption.

  4. Sugar - a harmless indulgence?

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Andersen, Niels Lyhne; Ovesen, L.

    1998-01-01

    The consumption of sugar is relatively high in Denmark - and other industrial countries - and many persons have a consumption which exceeds the recommended level of maximally 10% of energy intake. A high sugar consumption may reduce the nutrient density of the diet and increase the risk of vitamin...... and mineral deficiency, especially in low energy consumers. The sugar intake and the fat intake, expressed as percentage of energy, usually show an inverse association. This has lead to the statement that a diet with both a low sugar content and a low fat content is incompatible, but we will argue...... that this is not the fact. The significance of sugar for the development of obesity is not clarified. A high fat content in the diet seems to promote the development of obesity, while a high carbohydrate content tends to reduce obesity. It is not known if sugar in this connection is comparable to the other carbohydrates...

  5. Possibilities for recycling cellulases after use in cotton processing: part I: Effects of end-product inhibition, thermal and mechanical deactivation, and cellulase depletion by adsorption.

    Science.gov (United States)

    Azevedo, Helena; Bishop, David; Cavaco-Paul, Artur

    2002-04-01

    Preliminary recycling experiments with cellulase enzymes after cotton treatments at 50 degrees C showed that activity remaining in the treatment liquors was reduced by about 80% after five recycling steps. The potential problems of end-product inhibition, thermal and mechanical deactivation, and the loss of some components of the cellulase complex by preferential and or irreversible adsorption to cotton substrates were studied. End-product inhibition studies showed that the build-up of cellobiose and glucose would be expected to cause no more than 40% activity loss after five textile treatment cycles. Thermal and mechanical treatments of cellulases suggested that the enzymes start to be deactivated at 60 degrees C and agitation levels similar to those used in textile processing did not cause significant enzyme deactivation. Analysis of cellulase solutions, by fast protein liquid chromatography, before and after adsorption on cotton fabrics, suggested that the cellobiohydrolase II (Cel6A) content of the cellulase complex was reduced, relative to the other components, by preferential adsorption. This would lead to a marked reduction in activity after several treatment cycles and top-up with pure cellobiohydrolase II would be necessary unless this component is easily recoverable from the treated fabric.

  6. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability

    NARCIS (Netherlands)

    Li, X.; Luque-Moreno, L.C.; Oudenhoven, S.R.G; Rehmann, L.; Kersten, S.R.A.; Schuur, B.

    2016-01-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid–liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created fro

  7. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes.

    Science.gov (United States)

    Liu, Xin; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation.

  8. Mathematical methods for the energy calculation of the production of sugar cane (Saccharum spp.); Metodos matematicos para o calculo energetico da producao de cana-de-acucar (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Maria Marcia P. [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Curso de Pos-graduacao em Energia na Agricultura; Basta, Cesar [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Dept. de Bioestatistica

    1999-07-01

    Sugar-cane crop is very energy consumer and contains a large amount of biomass, which is reused as thermal energy in the production system, although most of it is lost by burning during the manual harvest. The objective of the present work is to calculate the energy consumption of the production of sugar-cane and show the viability of substituting manual harvest (burnt sugar-cane) by mechanical harvest (without burning), and thus utilizing all of the biomass. Two methods were used (using equations and matrices) for the calculation of the gross calorific value of this crop. It was found that the total consumption of manual harvest for production is 138.15 Gcal, distributed approximately as follows: seedlings, 61.85%, fuel 16.68%, fertilizers 13.95%, and agrochemicals 6.87%, being insignificant the consumption of labor and machinery (only 0.65%), and mechanical harvest for production is 151,76 Gcal. Furthermore, the viability of substituting manual harvesting by mechanical harvesting is demonstrated economically as well as energetically. (author)

  9. Transport of sugars.

    Science.gov (United States)

    Chen, Li-Qing; Cheung, Lily S; Feng, Liang; Tanner, Widmar; Frommer, Wolf B

    2015-01-01

    Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.

  10. Capture and use of solar radiation, water, and nitrogen by sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Jaggard, K W; Qi, A; Ober, E S

    2009-01-01

    Sugar beet is spring-sown for sugar production in most sugar beet-growing countries. It is grown as a vegetative crop and it accumulates yield (sugar) from very early in its growth cycle. As long as the sugar beet plants do not flower, the sugar accumulation period is indefinite and yield continues to increase. This paper reviews the success of the sugar beet crop in capturing and using solar radiation, water and mineral nitrogen resources. The prospects for improved resource capture and therefore increased sugar yield are also considered, particularly the potential to increase solar radiation interception in the future by sowing the crop in the autumn.

  11. Development and Study on Instant Sugar Substitute Product%速溶餐桌代糖产品的开发及特性研究

    Institute of Scientific and Technical Information of China (English)

    孙平; 赵丰; 张丽彤; 夏爽; 朱奕橦

    2014-01-01

    sucralose 0.7g/100g,raising agent 13g/100g (the mass ratio citric acid∶sodium bicarbonate = 1∶1.4), maltdextrin 86g/100 g,right amount of edible alcohol.The produc-t processed by swing granulation mechanism had porous morphology,which result in good instant.This m-ethod easy to control and low cost,has great industrial production value. With high sweetness sweetener sucralose as raw material, solid sugar substitute product was produced through fluid-bed spray drying granulator or swing granulator. Morphological structure and some properties of the products were tested, and instant of the product produced by 2 different processing methods were compared. The results showed that the optimal formula is: sucralose 0.7g/100g, raising agent 13g/100g (the mass ratio of citric acid tosodium bicarbonate is 1 to 1.4), maltdextrin 86g/100g, defined amount of 95% edible alcohol. The product produced through swing granulator has bulking structure and increased instant. SEM showed that the this product has honeycomb structure holes to accelerate dissolving speed. Method of swing granulator is simple with low cost and industrial production value.%以高甜度甜味剂三氯蔗糖为原料,分别采用流化床喷雾干燥制粒和摇摆造粒机制粒加工制得固态速溶餐桌代糖产品。对制得的产品进行形态结构和部分性质测定,并对两种加工方式制得的产品进行速溶性对比。结果显示,配方为0.7%三氯蔗糖,13%膨松剂(柠檬酸/碳酸氢钠为1∶1.4),86%麦芽糊精,适量的95%食用酒精,经过摇摆造粒机制粒得到的餐桌代糖产品具有膨松结构,速溶性有很大提高。扫描电子显微镜(SEM)显示,摇摆造粒机制粒的产品具有类似蜂窝状的孔洞,可以有效加快溶解速度。摇摆造粒机制粒,方法简单易行,设备造价低,具有工业生产价值。

  12. Exopolysaccharide production is influenced by sugars, N-acylhomoserine lactone, and transcriptional regulators RcsA and RcsB, but does not affect pathogenicity in the plant pathogen Pantoea ananatis.

    Science.gov (United States)

    Morohoshi, Tomohiro; Oseki, Kiemi; Ikeda, Tsukasa

    2011-01-01

    Pantoea ananatis SK-1 produced EPS by AHL-mediated quorum sensing on an LB agar plate containing glucose, fructose, and sucrose. rcsA and rcsB mutants did not produce EPS with or without AHLs and with or without sugars, but they induced necrotic symptoms in onion leaves. These results indicate that EPS production does not relate to the pathogenicity of SK-1.

  13. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.

    Science.gov (United States)

    Jojima, Toru; Omumasaba, Crispinus A; Inui, Masayuki; Yukawa, Hideaki

    2010-01-01

    There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.

  14. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.

    Science.gov (United States)

    Shamsijazeyi, Hadi; Kaghazchi, Tahereh

    2014-01-01

    As an inexpensive method for modification of activated carbons (ACs), sulfurization has attracted significant attention. However, the resulting sulfurized activated carbons (SACs) often are less porous than the original ACs. In this work, we propose a new method for concurrent sulfurization/activation that can lead to preparation of SACs with more porosity than the corresponding non-sulfurized ACs. By using scanning electron microscopy, nitrogen adsorption/desorption, and iodine number experiments, the porous structure of the SACs has been compared with that of non-sulfurized ACs. The specific surface areas of SACs are higher than the corresponding ACs, regardless of the type of activation agents used. For instance, the specific surface area of SAC and AC activated with phosphoric acid is 1,637 and 1,338 m(2)/g, respectively. Additionally, sulfur contents and surface charges (pHpzc) of the SACs and non-sulfurized ACs are compared. In fact, the SACs have higher sulfur contents and more acidic surfaces. Furthermore, the Hg(II) adsorption capacity of SACs has been compared with the corresponding non-sulfurized ACs. The Hg(II) adsorption isotherms on a selected SAC is measured at different pH values and temperatures. Hg(II) adsorptions as high as 293 mg/g are observed by using SACs prepared by the method proposed in this study.

  15. The production and consumption of energetic biomass in the State of Rio de Janeiro: a case study of the sugar alcohol sector; A producao e consumo da biomassa energetica no Estado do Rio de Janeiro: o caso do setor sucro-alcooleiro

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Marcos A.V. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Caetano, Marcelo M.; Cecchi, Jose C. [Secretaria de Tecnologia do Estado, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper analysis the energetic biomass production in the State of Rio de Janeiro, studying the case of the sugar alcohol sector. In order to do so, special attention is given to study of the evolution of the planted area of the sugar cane and derived products production, such as sugar, ethyl alcohol and vegetable residues; and the socio and environmental impacts of these activities in the State of Rio de Janeiro and in the north region of the above named State. Finally, some proposals of strategies for the revitalization and efficiency improvement of the sector are presented 16 refs., 2 figs., 3 tabs.

  16. Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens.

    Science.gov (United States)

    Morra, Simone; Valetti, Francesca; Sarasso, Veronica; Castrignanò, Silvia; Sadeghi, Sheila J; Gilardi, Gianfranco

    2015-12-01

    The [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2 mA cm(-1). The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%. The high turnover frequency of H2 production and the tight coupling of electron transfer, resulting in a Faradaic efficiency close to 100%, support the exploitation of the novel TiO2/CpHydA stationary electrode as a powerful device for H2 production.

  17. Sugar (sucrose) holograms

    Science.gov (United States)

    Ponce-Lee, E. L.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2004-06-01

    Computer holograms made with sugar crystals are reported. This material is well known as a good sweetener; the sugar from sugar cane or sugar beet (sucrose). These sweetener can be applied as honey "water and diluted sugar" easily on any substrate such as plastics or glasses without critical conditions for developed process. This step corresponds only to the cured sucrose as a photopolymer process. The maximum absorption spectra is localized at UV region λ=240 nm. We record with lithographic techniques some gratings, showing a good diffraction efficiency around 45%. This material has good resolution to make diffraction gratings. These properties are attractive because they open the possibility to make phase holograms on candies. Mainly the phase modulation is by refraction index.

  18. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO{sub 2}: Adsorption, kinetics, product analysis and toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Niyaz A.; Khan, A. [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Muneer, M., E-mail: readermuneer@gmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Vijayalakhsmi, S. [SAIF, CRNTS, IIT Bombay, Powai, 400076, Mumbai (India)

    2013-08-01

    This paper deals with the study of photocatalyzed degradation of an insecticide, Thiamethoxam in aqueous suspension of TiO{sub 2}. The adsorption of Thiamethoxam on TiO{sub 2} surface under dark conditions was also investigated in order to find out equilibrium adsorption constant. The degradation kinetics was studied using spectrophotometric method under various conditions such as substrate concentration, type of catalyst, catalyst dosage, pH, and in the presence of electron acceptors such as hydrogen peroxide, potassium bromate, and ammonium persulphate under continuous purging of atmospheric oxygen, and the degradation rates were found to be strongly influenced by these parameters. The results manifested that the photocatalysis of Thiamethoxam follows pseudo-first-order kinetics. The toxicity assessments of the irradiated samples were carried out using human erythrocytes as a model system under in vitro conditions. GC–MS study showed the formation of several intermediate products which were characterised based on their molecular mass and mass fragmentation pattern. A probable mechanism for the formation of various products formed during the photocatalytic process of Thiamethoxam was also proposed. Highlights: • TiO{sub 2} P25 is a more efficient photocatalyst than UV100 and PC500 for degradation of Thiamethoxam. • Low H{sub 2}O{sub 2} dosages enhance degradation whereas overdose retards it. • Toxicity of Thiamethoxam decreases with the increase in irradiation time. • Eight intermediate products have been identified using GC–MS analysis technique.

  19. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  20. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2011-06-01

    Full Text Available Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% antifoam concentration. The fermentation process lasted 7 days and the citric acid concentration was analyzed by High Pressure Liquid Cromatography (HPLC method. Statistica 6 software was used for the data treatment. The mathematical model for the optimization citric acid fermentation in bubble column reactor is Y = 54.507 + 2.9851X - 8.987X12 - 2.581X2 - 15.446X22 - 7.989X1X2 The parameter of Y is citric acid yield, X1 is a coding initial pH and X2 is a coding total sugar concentration. The results has given an initial pH optimum 3.61 and total sugar concentration 19,285% w/v with optimum an yield of 55.03 % . Keywords: Bubble column bioreactor, Citric acid fermentation, Initial pH, Total sugar concentration, Response surface methodology

  1. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    Science.gov (United States)

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  2. Biomass production and biological depuration of sugar cane vinasse by mixed culture of filamentous fungi and yeasts; Producao de biomassa e depuracao biologica da vinhaca de cana-de-acucar por cultura mista de fungos filamentosos e leveduras

    Energy Technology Data Exchange (ETDEWEB)

    Ceccato, Sandra Regina

    1988-12-01

    Sugar and alcohol technology has originated wastes such as vinasse with organic load that causes pollution in Brazil. Many alternatives have been proposed to convert it into useful products such as microbial protein. The aim of this work was to select mixed cultures of filamentous fungi and yeasts with high biomass production in vinasse and to study the cultural condition optimization of the selected combination based on the protein content and the waste depuration. The growth of pure cultures along the time was also evaluated as well as the amino acid composition of the biomass obtained. (author)

  3. Sugar Coated Taro

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Taro is smooth and sticky in texture and rich in fat,protein and sugar.According to Chinese traditional medicine, taro nourishes the spine and stomach and helps energy. Ingredients:500 grams taro (peeled and chopped into diamond-shaped cubes), 15 grams sugar. 250 grams vegetable oil. Method: 1. Heat oil in a wok and add taro cubes. Fry unti they turn golden brown. 2. Take out the taro with a sieve and pour the oil into a container for later use. Add sugar and one tablespoon oil.Stir continuously to prevent burning. When the

  4. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    Directory of Open Access Journals (Sweden)

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  5. Structural and Financial Characteristics of U.S. Sugar Beet Farms. Agricultural Economic Report Number 584.

    Science.gov (United States)

    Clauson, Annette L.; Hoff, Frederic L.

    This report analyzes production and financial characteristics of sugar beet producers in seven regions. Section 1 examines the structural characteristics of U.S. sugar beet producers. Sugar beet production; land use, tenure, irrigation, and livestock enterprises are considered. Section 2 discusses production costs, including cost estimates,…

  6. What Price Sugar? Land, Labor, and Revolution

    Directory of Open Access Journals (Sweden)

    Daniel C. Littlefield

    2008-12-01

    Full Text Available [First paragraph] Sugar, Slavery, and Society: Perspectives on the Caribbean, India, the Mascarenes, and the United States. Bernard Moitt (ed.. Gainesville: University Press of Florida, 2004. vii + 203 pp. (Cloth US $ 65.00 Tropical Babylons: Sugar and the Making of the Atlantic World, 1450-1680. Stuart B. Schwartz (ed.. Chapel Hill: University of North Carolina Press, 2004. xiii + 347 pp. (Paper US $ 22.50 These two books illustrate the fascination that sugar, slavery, and the plantation still exercise over the minds of scholars. One of them also reflects an interest in the influence these have had on the modern world. For students of the history of these things the Schwartz collection is in many ways the more useful. It seeks to fill a lacuna left by the concentration of monographs on the eighteenth and nineteenth centuries, suggesting that we know less about the history of sugar than we thought we did. Perhaps in no other single place is such a range of information on so wide an area presented in such detail for so early a period. Ranging from Iberia to the Caribbean and including consumption as well as production of sugar, with a nod to the slave trade and a very useful note on weights and currencies, this volume is a gold mine of information. It considers (briefly the theoretical meaning as well as the growing of this important crop, contrasting its production in Iberia with that on the Atlantic islands of Madeira and the Canaries, colonized by Iberian powers, and continuing the contrast with São Tomé, off the coast of Africa, and on to Brazil and the Spanish American empire before ending with the British in Barbados. In the transit, it of necessity considers and complicates the meaning of “sugar revolution” and shows how scholars using that term do not always mean the same thing. John McCusker and Russell Menard, for example, tackling a cornerstone of the traditional interpretation of the development of sugar, argue that there

  7. Root rot diseases of sugar beet

    Directory of Open Access Journals (Sweden)

    Jacobsen Barry J.

    2006-01-01

    Full Text Available Root rot diseases of sugar beet caused by Rhizoctonia solani (AG 2-2 IIIB and AG 2-2 IV, R. crocorum, Aphanomyces cochlioides, Phoma betae, Macrophomina phaeseolina, Fusarium oxysporum f.sp. radicis-betae, Pythium aphanidermatum Phytophthora drechsleri, Rhizopus stolonifer, R. arrhizus and Sclerotium rolfsii cause significant losses wherever sugar beets are grown. However, not all these soil-borne pathogens have been reported in all sugar beet production areas. Losses include reduced harvestable tonnage and reduced white sugar recovery. Many of these pathogens also cause post harvest losses in storage piles. Control for diseases caused by these pathogens include disease resistant cultivars, avoidance of stresses, cultural practices such as water management and the use of fungicides.

  8. Blood sugar test - blood

    Science.gov (United States)

    ... blood glucose level ( hypoglycemia ) may be due to: Hypopituitarism (a pituitary gland disorder) Underactive thyroid gland or ... tonic-clonic seizure Glucagon blood test Glucagonoma Hyperthyroidism Hypopituitarism Hypothyroidism Insulinoma Low blood sugar Multiple endocrine neoplasia ( ...

  9. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  10. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment.

    Science.gov (United States)

    Mir, Niyaz A; Khan, A; Muneer, M; Vijayalakhsmi, S

    2013-08-01

    This paper deals with the study of photocatalyzed degradation of an insecticide, Thiamethoxam in aqueous suspension of TiO2. The adsorption of Thiamethoxam on TiO2 surface under dark conditions was also investigated in order to find out equilibrium adsorption constant. The degradation kinetics was studied using spectrophotometric method under various conditions such as substrate concentration, type of catalyst, catalyst dosage, pH, and in the presence of electron acceptors such as hydrogen peroxide, potassium bromate, and ammonium persulphate under continuous purging of atmospheric oxygen, and the degradation rates were found to be strongly influenced by these parameters. The results manifested that the photocatalysis of Thiamethoxam follows pseudo-first-order kinetics. The toxicity assessments of the irradiated samples were carried out using human erythrocytes as a model system under in vitro conditions. GC-MS study showed the formation of several intermediate products which were characterised based on their molecular mass and mass fragmentation pattern. A probable mechanism for the formation of various products formed during the photocatalytic process of Thiamethoxam was also proposed.

  11. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    OpenAIRE

    Belas, M R; Colwell, R.R.

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral fl...

  12. Automated sugar analysis

    Directory of Open Access Journals (Sweden)

    Tadeu Alcides MARQUES

    2016-03-01

    Full Text Available Abstract Sugarcane monosaccharides are reducing sugars, and classical analytical methodologies (Lane-Eynon, Benedict, complexometric-EDTA, Luff-Schoorl, Musson-Walker, Somogyi-Nelson are based on reducing copper ions in alkaline solutions. In Brazil, certain factories use Lane-Eynon, others use the equipment referred to as “REDUTEC”, and additional factories analyze reducing sugars based on a mathematic model. The objective of this paper is to understand the relationship between variations in millivolts, mass and tenors of reducing sugars during the analysis process. Another objective is to generate an automatic model for this process. The work herein uses the equipment referred to as “REDUTEC”, a digital balance, a peristaltic pump, a digital camcorder, math programs and graphics programs. We conclude that the millivolts, mass and tenors of reducing sugars exhibit a good mathematical correlation, and the mathematical model generated was benchmarked to low-concentration reducing sugars (<0.3%. Using the model created herein, reducing sugars analyses can be automated using the new equipment.

  13. Impacts of Greenhouse Gas Emission Regulations on the U.S. Sugar Industry

    OpenAIRE

    Taylor, Richard D; Koo, Won W.

    2010-01-01

    The objective of this study is to evaluate the changes in U.S. sugar production and Greenhouse Gas (GHG) emissions from the sugar industry if the United States regulates GHG emissions from domestic sugar processing facilities. A spatial equilibrium model is developed to optimize sugar production in the United States under a base scenario and three different levels of CO2e taxes or prices of carbon offsets. This research focuses on U.S. sugar production, both beet and cane sugar. In the model ...

  14. The Mexican Sweeteners Market and Sugar Exports to the United States

    OpenAIRE

    Andino, Jose; Taylor, Richard D; Koo, Won W.

    2006-01-01

    This study analyzes the effect of a potential increase in sugar imports from Mexico on the U.S. sugar price, and its consequences for producers and consumers. Additional sugar imports would cause a substantial reduction of sugar prices in the United States and consequently an increase in consumption. Due to low commodity prices, acreage and total production of beet and cane sugar in the United States are expected to fall. Under these circumstances, social welfare in the United States may incr...

  15. The Sugar Tax in Holland

    NARCIS (Netherlands)

    Ajjaji, Fadoua

    2016-01-01

    This inquiry supports the theory of a sugar tax has a positive influence on the sugar consumption of Dutch individuals. Once a tax is implemented, the sugar consumption declines. Furthermore, this study supported the hypothesis claiming that children have a positive influence on their parental sugar

  16. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the condit

  17. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production

    Directory of Open Access Journals (Sweden)

    Franke Ana

    2010-04-01

    Full Text Available Abstract Background The conditions for steam pretreatment of sugar cane bagasse and leaves were studied using CO2 as an impregnating agent. The following conditions were investigated: time (5 to 15 min and temperature (190 to 220°C. The pretreatment was assessed in terms of glucose and xylose yields after enzymatic hydrolysis and inhibitor formation (furfural and hydroxymethylfurfural in the pretreatment. Results from pretreatment using SO2 as impregnating agent was used as reference. Results For sugar cane bagasse, the highest glucose yield (86.6% of theoretical was obtained after pretreatment at 205°C for 15 min. For sugar cane leaves the highest glucose yield (97.2% of theoretical was obtained after pretreatment at 220°C for 5 min. The reference pretreatment, using impregnation with SO2 and performed at 190°C for 5 min, resulted in an overall glucose yield of 79.7% and 91.9% for bagasse and leaves, respectively. Conclusions Comparable pretreatment performance was obtained with CO2 as compared to when SO2 is used, although higher temperature and pressure were needed. The results are encouraging as some characteristics of CO2 are very attractive, such as high availability, low cost, low toxicity, low corrosivity and low occupational risk.

  18. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)

    2010-01-15

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  19. Sugar substitutes: Health controversy over perceived benefits

    Directory of Open Access Journals (Sweden)

    Kirtida R Tandel

    2011-01-01

    Full Text Available Sugar is an inseparable part of the food we consume. But too much sugar is not ideal for our teeth and waistline. There have been some controversial suggestions that excessive sugar may play an important role in certain degenerative diseases. So artificial sweeteners or artificially sweetened products continue to attract consumers. A sugar substitute (artificial sweetener is a food additive that duplicates the effect of sugar in taste, but usually has less food energy. Besides its benefits, animal studies have convincingly proven that artificial sweeteners cause weight gain, brain tumors, bladder cancer and many other health hazards. Some kind of health related side effects including carcinogenicity are also noted in humans. A large number of studies have been carried out on these substances with conclusions ranging from "safe under all conditions" to "unsafe at any dose". Scientists are divided in their views on the issue of artificial sweetener safety. In scientific as well as in lay publications, supporting studies are often widely referenced while the opposing results are de-emphasized or dismissed. So this review aims to explore the health controversy over perceived benefits of sugar substitutes.

  20. Sugar palm ethanol. Analysis of economic feasibility and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Van den Bos, A.; Hamelinck, C. [Ecofys Netherlands, Utrecht (Netherlands); Martini, E.; Roshetko, J.; Walden, D. [Winrock, Little Rock, AR (United States)

    2011-08-15

    This study evaluates whether sugar palm is a suitable crop for biofuels and how production of ethanol from sugar palm in a large-scale setting is sustainable and economically feasible. Key questions are: Are the assumed high yields realistic in practice for sustained periods in largescale plantations?; Can sugar palm indeed compete economically with other crops for biofuels?; What are the effects of large-scale cultivation and processing of sugar palm for the natural environment and the local community? To answer these questions, Ecofys and Winrock have assessed the feasibility of largescale sugar palm cultivation for the production of ethanol using empirical data from existing sugar palm plantings. We analysed two production models to investigate the range of outcomes when varying important parameters: (1) a conservative system, whereby sugar palms are mixed with other crops and (2) an intensive system to explore the theoretical maximum yield when solely focusing on sugar palm. As background, Chapter 2 first describes the process of sugar palm cultivation, the 'tapping' and conversion into ethanol. Chapter 3 describes the data collection by Winrock. It presents an overview of the collected field data and explains the main empirical findings. Chapter 4 elaborates the two production systems and presents the results of the economic analyses (summarized in cash flow diagrams showing the timing of costs and benefits). Chapter 5 analyses the possible sustainability risks and benefits of sugar palm ethanol and investigates the integration possibilities of sugar palm in agro-forestry systems with other crops. Finally, Chapter 6 concludes by evaluating the potential of sugar palm as a source of biofuel and providing recommendations.

  1. СHIPS FROM SUGAR BEET

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. Priority social problem in the Russian Federation is to provide diverse populations rational healthy diet, taking into account their traditions and economic status. Solving this problem requires the development of processing industries of agriculture on the basis of the improvement of existing and creation of new energy-saving environmentally friendly technologies that can provide deep, if possible without waste, recycling of raw materials. Therefore, the aim of research was the development of technology for production of sugar beet chips. Technology is as follows: sugar beet supplied into the washing machine to remove dirt from its surface. Washed roots inspect on conveyor belts. Next pure sugar beets sent to steam-heat treatment for cleaning the skin. After the beets is subjected to cutting by combining this process with a treatment with an aqueous solution of citric acid. Then he sent for the drying process is completed upon reaching a product of moisture content of 4-5 %. Drying chips feature is that under the high temperature reaction proceeds melanoidins between proteins and sugars present in sugar beet. As a result, the product obtained has the following characteristics: gold-yellow color; absence of a characteristic odor of sugar beet; pleasant sour taste; humidity of 4-5%. Thus, the new technology is relevant, because now the chips are one of the most popular products, ready to eat. A beet chips are rich in dietary fiber (pectin, hemicellulose and cellulose - 4-5 % minerals - macroelements (potassium, sodium, magnesium, calcium, phosphorus, trace elements (iron, zinc, copper, manganese - 0.5-0.6 %, and are the product of a functional food.

  2. Prognosis of organic sugar cane spirit production in the Araras region / Prognose da produção de cachaça orgânica na região de Araras

    Directory of Open Access Journals (Sweden)

    Davi Guilherme Gaspar Ruas

    2009-03-01

    Full Text Available In spite of social and economic value of the Brazilian sugar cane spirit or cachaça, there are few studies about the parameters of agroindustrial of sugar cane and the profile of the producers, along with concern for quality. This agro-industry has significant number of small producers with it’s activity one way to obtain an income, bringing employments and foreign exchange to the country. However, these producers manufacture empirical and rudimental way, based on common sense or information by father or son. The aim of the study was to characterize the profile of the producers of sugar cane spirit or cachaça of the region of Araras, linked them to the viability of obtaining a products of high quality using organic methods. As result of this study was evidenced that the region of Araras shows the same characteristic profile of this sector, where a large majority work in informal conditions, without certificate on Agriculture Ministry and sell its production in local markets. The conditions of manufacturing juice of sugar cane are very rudimentary, where a large majority of producers with simple distillations apparatus. Relatively to the possibility of production of organic sugar cane spirit or cachaça, the main difficulty is located on the rural area, caused by the strong dependence on soluble chemical fertilizers. The production of organic sugar cane spirit or organic cachaça would be one alternative sufficient practicable and attractiveApesar da importância econômica e social da aguardente de cana-de-açúcar ou cachaça, são escassos os trabalhos encontrados na literatura que estabelecem comparações entre as características agroindustriais da cultura e o perfil do produtor, aliado à preocupação com a qualidade. Esta agroindústria se caracteriza por apresentar significativa quantidade de pequenos produtores que possuem nesta atividade uma forma de geração de renda, trazendo para o País divisas e empregos. Entretanto

  3. Intestinal sugar transport

    Institute of Scientific and Technical Information of China (English)

    Laurie A Drozdowski; Alan BR Thomson

    2006-01-01

    Carbohydrates are an important component of the diet.The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucraseisomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.

  4. Determination of reducing sugar content in sugary health care products by titration method%滴定法测定含糖保健品中还原糖含量

    Institute of Scientific and Technical Information of China (English)

    高俊婕; 卿太辉; 蔡伟江

    2015-01-01

    Objective To establish a method for the quantitative analysis of reducing sugar content in sugary health care products. Methods The samples were directly detected by titration method. Hydrochloric acid was added after removal of the protein in the samples, and the copper sulphate solution added with the sample solution after treatment and the blank copper sulphate solution were titrated with glucose standard solution, then the content of reducing sugar in health care products was calculated based on the different consumption of glucose standard solution in the two kinds of solutions. Results The relative standard deviation (RSD) of titration was 0.4%, and the RSD of the hydrolyzate within 2 h was 0.7%, the recovery of reducing sugar by titration was in the range of 100.2%~102.1%, the average recovery was 101.4%, and the relative standard deviation was 0.8%at 3 different adding levels. Conclusion This method is simple, fast, and suitable for the determination of reducing sugar in sugary health care products.%目的:建立含糖保健品中还原糖的定量分析方法。方法采用滴定法直接进行检测。样品除去蛋白质后,加入盐酸,再用葡萄糖标准溶液来滴定加有处理后样品溶液的酒石酸铜溶液和酒石酸铜空白溶液,根据二者的葡萄糖标准溶液消耗量不同,计算测得保健品中还原糖的含量。结果方法的精密度实验相对标准偏RSD为0.4%,水解液在2 h内的RSD为0.7%,3个不同添加水平下,滴定还原糖的回收率范围为100.2%~102.1%,平均回收率101.4%,相对偏差为0.8%。结论本方法样品前处理简单,操作比较快速,适用于添加糖类保健品中还原糖的含量测定。

  5. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory measure...

  6. Characterization of sugar cane bagasse ash as raw material for the production of ceramics; Caracterizacao de cinzas de bagaco de cana como materia prima para producao de ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fredericci, C.; Indelicato, R.L.; Ferreira Neto, J.B.; Ribeiro, T.R.; Landgraf, F.J.G., E-mail: catiaf@ipt.br [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, G.F.B. Lenz e [Universidade de Sao Paulo (Poli/USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2012-07-01

    The aim of this paper was to analyze the sugar cane bagasse ash from three Sugar and Alcohol Plant of the State of Sao Paulo - Brazil. We intend to show the discrepancies between them, so that this raw material could be used with greater quality control in ceramic industries. The bagasse were analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy. The ashes were analyzed by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, and granulometric separation. The results indicated that the content of SiO{sub 2} ranging from 50-80% by weight depends on the granulometry of the bagasse and on the region where it was collected. The analyses of X-ray diffraction indicate SiO{sub 2}, Fe{sub 2}O{sub 3}, K{sub 2}SO{sub 4} and Mg{sub 2}P{sub 2}O{sub 7} as crystalline phases. (author)

  7. DETERMINATION OF THERMODYNAMIC AND KINETIC PARAMETERS OF LARGE SCALE CHROMATOGRAPHIC SEPARATION OF SUGAR AND REDUCING SUGAR

    Institute of Scientific and Technical Information of China (English)

    LiZhong; ShuWenli; 等

    1996-01-01

    The parameter identification model of large scale chromatography separation process is proposed.The phase equilibrium constants and lumped mass transfer coefficients of sugar and reducing sugar adsorption on D1,D2 and D3 resins as well as the axial dispersion coefficients of the fluid through packed columns are determined by means of the pulse-response experiment technique with an inert substance as a tracer and the chromatography measuring technique.The elution curve calculated from these parameters is good agreement with the experimental elution curve.The sensitivity analysis of these parameters is carried out ,and the result shows that the elution curves of chromatography separation are more sensitive to the variations of the phase equilibrium relationship than to the variation of the axial dispersion as well as the lumped mass transfer coefficients.

  8. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons.

    Science.gov (United States)

    Mudoga, H L; Yucel, H; Kincal, N S

    2008-06-01

    Sugar syrup decolorization was studied using two commercial and eight beet pulp based activated carbons. In an attempt to relate decolorizing performances to other characteristics, surface areas, pore volumes, bulk densities and ash contents of the carbons in the powdered form; pH and electrical conductivities of their suspensions and their color adsorption properties from iodine and molasses solution were determined. The color removal capabilities of all carbons were measured at 1/100 (w/w) dosage, and isotherms were determined on better samples. The two commercial activated carbons showed different decolorization efficiencies; which could be related to their physical and chemical properties. The decolorization efficiency of beet pulp carbon prepared at 750 degrees C and activated for 5h using CO2 was much better than the others and close to the better one of the commercial activated carbons used. It is evident that beet pulp is an inexpensive potential precursor for activated carbons for use in sugar refining.

  9. An Update on the Consequences of EU Sugar Reform

    Directory of Open Access Journals (Sweden)

    Sibusiso Moyo

    2011-10-01

    Full Text Available Since its formation the European Union (EU has employed a rather complicated policy to ensure high prices to domestic sugar growers and trade preferences to certain sugar exporting countries, e.g. the African Caribbean and Pacific (ACP group. One result of this policy is that the EU has been both the second largest importer and second largest exporter in the world market. Under pressure from the World Trade Organization (WTO, the EU agreed to reform its policies toward sugar in 2001, with the full effect of the reforms being fully implemented in 2006. In this paper, the impact of the sugar reform on EU production, consumption, imports, and exports is examined especially with regard to how it all affects the ACP countries who receive preferential treatment regarding access to EU sugar markets. Preliminary analysis indicates that lowering domestic EU prices, while quotas requirements for ACP countries remain intact might have negative revenue implications for poor sugar producers.

  10. Enzymatic conversion of cellulosic materials to sugars and alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Klyosov, A.A.

    1986-01-01

    This techno-economic study deals with the production of sugars and alcohols from cellulosic materials. It covers such key subjects as: potential raw materials; the state-of-the-art on production technologies; the economics of extant processes; and finally infers implications for developing countries from the foregoing. It is clear that a large number of cellulose-, starch-, and sugar-containing plants can be processed to produce sugars and alcohols. Sugar-containing plants such as sugarcane, sweet sorghum, and nipa palm are the best candidates for the high-yield production of alcohol fuel. Likewise, the starch-containing crops such as cassava, sweet potatoes, yams, taro, and tannia are good candidates, but require an additional step to break down starch to sugar. However, the emphasis of this report is on the major part of biomass containing cellulose and which, therefore, needs special treatment before it can be used to produce glucose and alcohols. 21 references.

  11. Root rot in sugar beet piles at harvest

    Science.gov (United States)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  12. Free sugar profile in cycads.

    Science.gov (United States)

    Marler, Thomas E; Lindström, Anders J

    2014-01-01

    The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date.

  13. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode.

    Science.gov (United States)

    Yardım, Yavuz; Gülcan, Mehmet; Şentürk, Zühre

    2013-12-01

    A method for the determination of food additive vanillin was developed by adsorptive stripping voltammetry. Its determination was carried out at the anodically pre-treated boron-doped diamond electrode in aqueous solutions. Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in phosphate buffer, pH 2.5 at +1.14 V (vs. Ag/AgCl) (a pre-concentration step being carried out at open-circuit condition for 60s). A linear calibration graph was obtained in the concentration range of 0.5-15.0 μg mL(-1) (3.3×10(-6)-9.8×10(-5) mol L(-1)) with a detection limit of 0.024 μg mL(-1) (1.6×10(-7) mol L(-1)). As an example, the practical applicability of the proposed method was tested for the determination of this flavouring agent in commercial pudding powder of Keshkule (Turkish milk pudding with almond flour).

  14. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  15. Nucleic acid and protein elimination during the sugar manufacturing process of conventional and transgenic sugar beets.

    Science.gov (United States)

    Klein, J; Altenbuchner, J; Mattes, R

    1998-02-26

    The fate of cellular DNA during the standard purification steps of the sugar manufacturing process from conventional and transgenic sugar beets was determined. Indigenous nucleases of sugar beet cells were found to be active during the first extraction step (raw juice production) which was carried out at 70 degrees C. This and the consecutive steps of the manufacturing process were validated in terms of DNA degradation by competitive PCR of added external DNA. Each step of the process proved to be very efficient in the removal of nucleic acids. Taken together, the purification steps have the potential to reduce the amount of DNA by a factor of > 10(14), exceeding by far the total amount of DNA present in sugar beets. Furthermore, the gene products of the transgenes neomycin phosphotransferase and BNYVV (rhizomania virus) coat protein CP21 were shown to be removed during the purification steps, so that they could not be detected in the resulting white sugar. Thus, sugar obtained from conventional and transgenic beets is indistinguishable or substantially equivalent with respect to purity.

  16. Forecasting Sales in a Sugar Factory

    Directory of Open Access Journals (Sweden)

    Vassilios ASSIMAKOPOULOS

    2011-12-01

    Full Text Available Beets’ cultivation and sugar production represent one of the most important parts of Greek agricultural economy. A careful and well-organized planning of the production as well as the determination of an accurate safety stock is important for sugar industry, as for many other companies and organizations, in order to define the production quantity which leads to maximum revenues and profits. Forecasting, and especially widely used statistical forecasting techniques, is the best way for policymakers to organize their activities and company’s production and make the appropriate adjustments. Apparently, management information systems and forecasting support packages play a leading role in this area, since the amount of data under process is usually quite large and demands an automated procedure to effectively produce and evaluate forecasts. In this case study, “Pythia”, an expert forecasting platform developed by the Forecasting and Strategy Unit of the National Technical University of Athens, was implemented on a monthly data series regarding sugar sales of a Greek sugar factory for the years 2000-2005, bringing theory and practice together. Additionally, the methods or combinations of methods which are well suited for this time series are highlighted based on three error indices. Finally, the results of the study and conclusions are considered and perspectives of progress and development in the field of forecasting are contemplated.

  17. Manage your blood sugar (image)

    Science.gov (United States)

    Checking your blood sugar levels often and writing down the results will tell you how well you are managing your diabetes so you ... possible. The best times to check your blood sugar are before meals and at bedtime. Your blood ...

  18. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis Efeito da presença de etanol inicial na produção de etanol em caldo de cana-de-açúcar fermentado por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Marcia Sadae Tano

    2003-07-01

    Full Text Available Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g sugar consumed.Foi avaliada a produção de etanol em caldo de cana-de-açúcar com alta concentração de açúcar inicial, fermentado por Z. mobilis, na presença e na ausência de etanol inicial. A produção de etanol nos dois meios foi baixa. A presença de etanol inicial no caldo de cana-de-açúcar causou uma redução de 48,8% na produção de etanol, de 25% na produção de biomassa e de 28,3% no consumo de açúcar total. A presença de etanol inicial ao meio não teve efeito significante para a produção de levana e no coeficiente de produtividade em biomassa (g biomassa/g açúcar consumido.

  19. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  20. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  1. Sugar Beet (Beta vulgaris L.)

    OpenAIRE

    Kagami, Hiroyo; Kurata, Masayuki; Matsuhira, Hiroaki; Taguchi, Kazunori; Mikami, Tetsuo; Tamagake, Hideto; Kubo, Tomohiko

    2014-01-01

    Creating transgenic plants is invaluable for the genetic analysis of sugar beet and will be increasingly important as sugar beet genomic technologies progress. A protocol for Agrobacterium-mediated transformation of sugar beet is described in this chapter. Our protocol is optimized for a sugar beet genotype that performs exceptionally well in tissue culture, including the steps of dedifferentiation, callus proliferation, and regeneration. Because of the infrequent occurrence of such a genotyp...

  2. 苦瓜枸杞低糖酸奶的研制%Production and research on low-sugar yoghurt with balsam pear and Lycium barbarum

    Institute of Scientific and Technical Information of China (English)

    宋立; 李雨露; 马勇; 吕长鑫; 励建荣

    2011-01-01

    The optimum formula and technique of yoghurt were studied by using aspartame and acesulfame potassium as substitutes of sucrose with milk,balsam pear,Lycium barbarum and de-fatted milk powder as material. The results showed that 3% of mixed bacteria with lactobacillus l. d. Bulgaricus and Str. Thermophilus as proportion 1∶ 1 was inoculated after milk,the sweetener 0. 010%(aspartame:acesulfame potassium=1∶ 1),balsam pear juice 1. 5%,Lycium barbarum juice 3% and 2% de-fatted milk powder were mixed,homogenized and sterilized. The low- sugar yoghurt with balsam pear and Lycium barbarum was produced through fermentation under 42℃ for 4h. The low-sugar yoghurt was uniform in color,fine in texture and smooth organizing,delicious taste in sour and sweet with coordinated flavour.%研究了以牛奶、苦瓜、枸杞、脱脂奶粉为主要原料,并以阿斯巴甜和安赛蜜替代蔗糖来生产酸奶的最佳配方及工艺。结果表明,牛奶与0.010%的甜味剂(阿斯巴甜∶安赛蜜=1∶1)、1.5%的苦瓜汁、3%的枸杞汁、2%的脱脂奶粉混合、均质、杀菌后,接入保加利亚乳杆菌与嗜热链球菌比例为1∶1的混合菌种3%,在42℃条件下发酵4h,制得颜色均一、组织细腻、酸甜爽口、香味协调的苦瓜枸杞低糖酸奶。

  3. Production of rhizobia inoculant using sugar mill filter mud%利用糖厂滤泥生产根瘤菌菌剂

    Institute of Scientific and Technical Information of China (English)

    刘晓举; 陈宝娣; 郭继强

    2013-01-01

    测定了甘蔗糖厂滤泥的成分,确定滤泥中含有足够根瘤菌生长所需要的营养元素.在滤泥中接种根瘤菌进行培养实验,分析了根瘤菌在滤泥中的生长状况.利用单因素实验和响应面的方法,分析优化了大豆根瘤菌在滤泥中生长的最佳条件:温度29℃,pH7.5,总糖总氮比7∶10,湿度72.97%,接种量51.3 ml/kg.脱水滤泥可以作为根瘤菌生长的载体.%The composition of the cane sugar mill filter mud suggested that there are enough nutritive element for the growth of rhizobium in the filter mud.The cell growth of rhizobia in the filter mud was analyzed.With single factor test and response surface methodology,the optimum condition for growth of rhizobia is:temperature 29 ℃,pH 7.5,the ratio of total sugar and total nitrogen 7 ∶ 10,humidity 72.97%,inoculum size of filter mud 51.3 mL/g.This suggested that the dehydration filter mud can be used to the growth of rhizobia.

  4. Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production.

    Science.gov (United States)

    Ibrahim, M F; Razak, M N A; Phang, L Y; Hassan, M A; Abd-Aziz, S

    2013-07-01

    Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.

  5. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  6. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  7. Domestication of the high-sugar-tolerant Mortierella alpina on arachidonic acid (ARA) production%花生四烯酸产生菌高山被孢霉的高糖驯化研究

    Institute of Scientific and Technical Information of China (English)

    曾思钰; 凌雪萍; 张长杰; 卢英华

    2012-01-01

    [目的]提高花生四烯酸(Arachidonic acid,ARA)产量,克服ARA产生菌高山被孢霉(Mortierella alpina)在长期的保存及使用过程中易受到外界条件影响发生退化,从而导致菌种耗糖量降低、影响菌种摄入营养的能力和不利于工业化生产的缺点.[方法]首先采用固体培养基驯化,将菌种逐级涂布于梯度高糖PDA平板(含糖量分别为2%、5%、7%、10%和15%)培养,挑选经固体驯化后能耐受10%高糖浓度平板的菌种,转接到两种含不同氮源的梯度高糖(含糖量分别为3%、4%、5%和6%)液体培养基中进行驯化,最后对驯化后的菌种进行2L发酵罐放大实验.[结果]当培养基中以酵母粉为氮源时,驯化后菌体的最高耗糖量由3 g/(L·d)提高到12 g/(L·d);当培养基中以玉米浆为氮源时,驯化后菌体的最高耗糖量由7 g/(L·d)提高到12 g/(L·d).摇瓶驯化实验结果表明以玉米浆为氮源驯化的菌种发酵效果较好,发酵罐实验结果显示菌体生物量为50 g/L,总油脂为18 g/L,目的产物ARA产量为8g/L.相比未驯化之前的发酵结果,生物量和总油脂含量提高了近3倍,ARA产量提高了近4倍.[结论]经过高糖驯化,菌种的耗糖能力得到提高,生物量、总油脂及ARA的产量也都有所增加,从而可以使菌种在保存和使用过程中不易退化,保持稳定.%[Objective] In order to improve arachidonia acid (ARA) production, and prevent the degeneration of ARA-producing strain Mortierella alpina in long-term culture preservation and cultivation, which could lead to low consumption rate of substrates like carbon source. [Methods] Mortierella alpina strain was first domesticated in high-sugar PDA plate with gradient sugar content (2%, 5%, 7%, 10% and 15%). The strain which grew better in the solid medium containing 10% sugar was then selected and transferred to two liquid high-sugar media with different nitrogen sources to domesticate. The gradient sugar

  8. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    Science.gov (United States)

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    The main goal of the current investigation was to use sugar cane bagasse ash (SCBA) and to compare its adsorption efficiency with Magnesol XL as synthetic adsorbents to regenerate the quality of used frying sunflower oil. In addition, to evaluate the effect of water washing process on the quality of used frying oil and the treated oil. The metal patterns of sugar cane bagasse ash and Magnesol XL were determined. Some physical and chemical properties of unused, used frying and used-treated sunflower oil were determined. Sunflower oil sample was heated at 180 °C + 5 °C, then frozen French fries potato were fried every 30 min. during a continuous period of 20 h. Oil samples were taken every 4 h. The filter aids were added individually to the used frying oil at levels 1, 2 and 3 % (w / v), then mechanically stirred for 60 min at 105 °C. The results indicate that all the filter aids under study were characterized by high levels of Si and variable levels of other minerals. The highest level of Si was recorded for sugar cane bagasse ash (SCBA) was 76.79 wt. %. Frying process caused significant (P ≤ 0.05) increases in physico-chemical properties of sunflower oil. The treatments of used frying sunflower oil with different levels of sugar cane bagasse ash and Magnesol XL caused significant (P ≤ 0.05) increase in the quality of treated oil, however the soap content of treated oil was increased, therefore, the effect of water washing process on the quality of used frying and used-treated sunflower oil was evaluated. The values of soap and Total polar compounds after water treatment were about 4.62 and 7.27 times as low as that for sunflower oil treated with 3 % sugar cane bagasse ash (SCBA). The results of the present study indicate that filtration treatment with different levels of sugar cane bagasse ash( SCBA) regenerated the quality of used sunflower oil and possess higher adsorbing effects than the synthetic filter aid ( Magnesol XL ) in

  9. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  10. 75 FR 60715 - Domestic Sugar Program-FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing Allotments and...

    Science.gov (United States)

    2010-10-01

    ... Commodity Credit Corporation Domestic Sugar Program--FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing... 2010 (FY 2010) State sugar marketing allotments and company allocations to sugarcane and sugar beet processors. This applies to all domestic sugar marketed for human consumption in the United States...

  11. Monitoring Domoic Acid production by Solid Phase Adsorption Toxin Tracking off the Santa Cruz Municipal Warf, Santa Cruz, California

    Science.gov (United States)

    Nolan, M.; Ziccarelli, L.; Kudela, R. M.

    2013-12-01

    Certain species of the diatom genus Pseudo-nitzschia are producers of the neurotoxin, domoic acid (DA). DA is known to cause amnesic shellfish poisoning also known as domoic acid poisoning, which can lead to permanent brain damage in humans and marine mammals. DA accumulates at higher trophic levels, generally due to consumption of toxic cells or through trophic transfer, and can potentially cause death of both humans and marine wildlife. The Santa Cruz Municipal Warf experiences periodic rises in DA concentrations, which can reach toxic levels in shellfish, fish, and other marine organisms. While these increases in toxicity often occur during Pseudo-nitzschia blooms, several periods of elevated DA have occurred when diatom abundance is restricted and/or dominated by non-toxic species, and there is increasing evidence that DA dissolved in seawater may be prevalent. One theory suggests that senescent or dead Pseudo-nitzschia cells sink to the benthos while retaining their toxin and are buried in sediment following the death of a bloom. Therefore, DA may accumulate in the benthos, where it is eventually released during storms or wave and tide conditions that disturb the sediment. We sampled DA in situ using Solid Phase Adsorption Toxin Tracking (SPATT) bags SPATT uses a synthetic resin to capture dissolved DA, allowing for the determination of integrated DA concentrations at known time intervals. The alternative method is mussel biotoxin monitoring, but it is less accurate due to uncertainties in the time of DA accumulation within the mussel, and the lack of uptake of dissolved DA by the mussel. We deployed and collected SPATT off the Santa Cruz Municipal Wharf at multiple depths beginning in February 2013. We expect to see increasing DA following the death of a harmful algal bloom. Under pre-bloom conditions, little to no DA has been detected in mussels or surface SPATT, but DA from SPATT is frequently observed at depth, suggesting that the sediment is exposed to

  12. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  13. Analysis and Modeling of spatio-temporal Patterns of Carbon and Water Fluxes in Production Fields of Winter Wheat and Sugar Beet

    Science.gov (United States)

    Kupisch, M.; Langensiepen, M.; van Wijk, M.; Stadler, A.; Ewert, F.

    2011-12-01

    Gas exchange of CO2 and water vapour are important processes that determine crop growth and yield. Understanding their spatio-temporal variability at field level is necessary for accurate simulation of crop growth in fields with heterogeneous growing conditions and for parameterizing soil-vegetation-atmosphere transfer (SVAT) models. Accordingly, relationships between the spatio-temporal patterns of assimilation and transpiration rates and environmental (e.g. soil) heterogeneity are of specific interest. A particular challenge refers then to the appropriate method of up-scaling of these relationships from the leaf to the canopy and field level. Therefore, gas-exchange (CO2 and water vapour) was measured at different points in winter wheat and sugar beet fieldsboth at leaf and at canopy level in a nearly biweekly cycle during the growing seasons 2010 and 2011. The measurements comprised also C/N-content of leaf, leaf area index, soil water content and soil nitrogen content. The results revealed a strong spatial heterogeneity of carbon and water canopy fluxes across the fields. While canopy measurements had a temporal variability with distinct diurnal and seasonal patterns, the temporal (and spatial) variability of leaf level photosynthesisand transpirationwas comparably small.Further analysis suggests that the observed spatial and seasonal variability of canopy measurements was mainly caused by field heterogeneity in LAI and less by gas exchange rates per unit leaf area. However, both crops differed in their response to drought stress: while wheat responded mainly through irreversible reduction in green leaf area, the canopy assimilation rate of sugar beets decreases only temporarily with no observed effects in LAI. The obtained datasets from both years are the basis for parameterizing a crop growth model with canopy assimilation and transpiration components and for developing appropriate up-scaling methods from leaf to field. Our results indicate that it is

  14. Big Sugar in southern Africa: rural development and the perverted potential of sugar/ethanol exports.

    Science.gov (United States)

    Richardson, Ben

    2010-01-01

    This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives.

  15. CAUSES OF CRISIS SITUATION IN UKRAINE SUGAR INDUSTRY ENTERPRISES AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2014-04-01

    Full Text Available Current state and major trends of functioning of the sugar industry enterprises in Ukraine are characterized. The industry's place in the structure of social production in Ukraine is highlighted. The dynamics of the number of operating sugar factories and dynamics of production and consumption of sugar in Ukraine during recent years are displayed. The performance of the sugar factories is analyzed. Forecasted assessment of the of PEST- factors on the development of the sugar industry is shown. The basic entry barriers to the industry for new players are indicated. The description of major players in the sugar market is made. Level of concentration of sugar market in Ukraine is calculated and conclusions about its dynamics are made. Factors of crisis state of sugar industry enterprises in Ukraine are determined. Suggestions on implementation of priority measures aimed at improving the efficiency of industry's management in order to drive the enterprises out of the crisis are formulated.

  16. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    Science.gov (United States)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 32 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  17. [Replacing of residue from production of palm Palm Royal Australian (Archontophoenix alexan- drae) in silage of sugar cane in diets of sheep].

    Science.gov (United States)

    Bayão, Geraldo Fábio Viana; Queiroz, Augusto César de; Freitas, Samuel Galvão de; Batalha, Camila Delveaux Araujo; Sousa, Katiene Régia Silva; Pimentel, Róberson Machado; Cardoso, Lucas Ladeira; Cardoso, Alex Junio da Silva

    2014-12-01

    The aim of this study was to evaluate the chemical composition, voluntary intake and apparent digestibility of the diets containing residue from palm heart of Australian Royal Palm (Archontophoenix alexandrae) to replace sugar cane on sheep. Twelve sheep were used with average live weight of 23.3 ± 2.8 Kg and they placed in metabolism cages and distributed in six latin square 2 x 2 in a factorial design 3 x 2 (three types of residue--sheet, bark and composed--and two levels of residue's replacement, 5% and 15%). It was observed higher intake of dry matter (DM), organic matter (OM), nonfiber carbohydrates (NFC) by substitution of composed residue. The average values of apparent digestibility of DM, OM, crude protein (CP), neutral detergent fibre correct for ash and protein (NDFap) and total digestible nutrients (TDN) were higher for sheet residue. There was interaction between type of residue and level of residue's replacement on the urinary excretion of total nitrogen (NUE), apparent nitrogen balance (BNA) and microbial nitrogen compost (NMIC). Residues from palm heart of Australian Royal Palm can be used as roughage in the ruminants'diet, and of these residues, the sheet and composed residue showed better response in the evaluated characteristics.

  18. A Discussion on Cane Sugar Production of Water-saving Measures%浅谈甘蔗制糖生产节水措施

    Institute of Scientific and Technical Information of China (English)

    李锦生; 唐海燕; 韦丽娜

    2012-01-01

    Based on the lack of water resource, problems of water access and drainage, and the requirements of "The Eleventh Five-Year" on the sugar mills in energy saving and emission reduction, it is supposed that measures should be applied including new energy saving and environmental protection equipment, drainage system that divert clean water from polluted, clean water recycling, and polluted water treatment, etc. Appropriate management and assessment mechanism should be also appled to achieve the purpose of conservation and emission reduction.%本文根据近年来糖厂在扩建、改造后面临的水资源缺乏,取、排水困难及“十一五”节能减排对糖厂的目标要求,认为制糖生产可以通过采用新型节能环保设备对排水进行清污分流、清水循环利用、污水终端治理等措施,配合适当的管理考核机制达到节水减排的目的。

  19. Characterization of sugar cane bagasse ash as supplementary material for Portland cement

    OpenAIRE

    Janneth Torres Agredo; Ruby Mejía de Gutiérrez; Escandón Giraldo, Camilo E.; Luis Octavio González Salcedo

    2014-01-01

    Sugar Cane Bagasse is a by-product of the sugar agroindustry; it is partly used as fuel. However, bagasse ash (SCBA) is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows h...

  20. The sugar industry in Peru

    Directory of Open Access Journals (Sweden)

    Klaren, Peter F.

    2005-04-01

    Full Text Available Since the early Colonial times sugar production has been a key sector in the Peruvian export economy. This article analyzes its evolution as from the beginning of its modern phase by mid 19th Century, its consolidation in the Northern coastal region, and its concentration in scale-economy plants. The prosperity of this type of production contributed to the formation of both an oligarchy which governed the country until 1968, and the populist party (APRA and its electoral basis (the so-called «Aprista North». In the sixties Velasco Alvarado’s military revolution nationalized the sugar industry, which underwent structural changes leading to a serious crisis in the eighties that has not been overcome up-todate.

    La producción de azúcar ha constituido un importante sector en la economía exportadora del Perú desde el período colonial temprano. Este artículo analiza su evolución, sobre todo tras el inicio de su fase moderna, fechada a partir de mediados del siglo XIX, cuando se modernizó, se consolidó en la región costera septentrional y se concentró en fábricas que operaban con economías de escala. Su prosperidad, contribuyó, además, a la formación de una oligarquía que gobernó el país hasta 1968 y del partido populista, APRA, y su base electoral (el llamado «sólido Norte aprista». La revolución militar de Velasco Alvarado nacionalizó la industria en la década de 1960 y los cambios estructurales que sufrió posteriormente le condujeron a una grave crisis en los años ochenta que aún no ha superado.

  1. Fermentable sugars from biopolymers of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, K.; Das, K.; Sharma, D.K.

    1987-11-01

    Ethanol can replace oil as a fuel and its use would help in the conservation of the meagre oil reserves in India. The article indicates some convenient and cost-effective processes for the production of ethanol from biopolymers available in bagasse, an agricultural residue. A two-stage acid hydrolysis process produced a maximum of fermentable sugars at 35%. Calcium chloride used as a promoter enhanced production by 3.5%. Other promoters are under investigation. Agitation had a significant effect on production, complete hydrolysis being possible between 10-45 minutes depending on temperature. The fermentable sugars obtained, xylose and glucose, can then be fermented to ethanol in an integrated three-stage process. 11 refs., 3 figs., 3 tabs.

  2. Free Sugar Profile in Cycads

    Directory of Open Access Journals (Sweden)

    Thomas Edward Marler

    2014-10-01

    Full Text Available The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date.

  3. Adsorption equilibria of dimethylnaphthalene isomers

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Morbidelli, M. [Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata; Rombi, E.; Monaci, R.; Ferino, I.; Solinas, V. [Univ. di Cagliari (Italy). Dipt. di Scienze Chimiche

    1996-01-01

    Commercial sources of DMNs are the aromatic petroleum fraction of the appropriate boiling range and the coal liquefaction products. Adsorption processes for separating mixtures of dimethylnaphthalene (DMN) isomers are of potential interest for the production of 2,6-DMN. In this work, the adsorption equilibria of liquid mixtures of DMN isomers on zeolites have been investigated experimentally. The separation factors between the various isomers have been found to depend strongly on the composition of the fluid phase. A suitable equilibrium model, based on the adsorbed solution theory, has been developed to describe the multicomponent adsorption equilibria in the entire range of interest. Its performance has been tested using binary and ternary equilibrium data.

  4. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    Science.gov (United States)

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu(2+) caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.

  5. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  6. Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar.

    Science.gov (United States)

    Cho, Dong-Wan; Lee, Jechan; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol

    2016-11-01

    A new-fashioned fabrication recipe for a magnetic carbon nanocomposite (Fe3O4@C) via pyrolysis of sugar with magnetite (Fe3O4) nanoparticles was developed for the practical environmental application as an adsorbent. In order to synthesize Fe3O4@C, the thermal degradation of sugar was firstly investigated via thermo-gravimetric analysis (TGA) to explore the optimal pyrolytic conditions for fabricating Fe3O4@C. This study laid a great emphasis on the physicochemical characterization of pyrogenic Fe3O4@C through various analytical techniques, which experimentally validated that Fe3O4@C retained thin graphitic carbon layers containing carboxyl groups on the surface with the point of zero charge (pHpzc) of 7.5. Based on adsorption tests of methylene blue (MB), it was found the optimal mass ratio of sugar to Fe3O4 was 0.15 with pyrolysis temperature of 500 °C. The adsorption capacity of Fe3O4@C for MB was 52.6 mg g(-1) and MB adsorption showed a strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. In regeneration experiments, Fe3O4@C retained 84% of its initial adsorption capacity after completing four consecutive adsorption cycles.

  7. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50 μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  8. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)

    许国旺; R.Lehmann; 路鑫; H.M.Liebich; 张玉奎; 卢佩章

    2000-01-01

    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  9. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Science.gov (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  10. Optimización energética para la producción simultánea de azúcar y alcohol en Tucumán, R. Argentina Energetic optimization for simultaneous sugar and alcohol production

    Directory of Open Access Journals (Sweden)

    Oscar A. Diez

    2011-12-01

    Full Text Available En este trabajo, se analiza la producción simultánea de azúcar y alcohol en la industria azucarera de la provincia de Tucumán, R. Argentina, y se establece una metodología analítica que permite determinar los rangos productivos para cada uno de los productos finales, minimizando el consumo energético de la planta. Se trabajó sobre un modelo productivo de azúcar blanco directo con destilería anexa. Para lograr los resultados expuestos, se partió de datos históricos o relevados de la planta y de los resultados obtenidos para el consumo del vapor de baja presión, con los simuladores de las operaciones de calentamiento-evaporación y cocimiento (SIMCE y CALCO, ambos programas desarrollados por la Estación Experimental Agroindustrial Obispo Colombres (EEAOC. Se analizaron diferentes opciones productivas: empleo de dos o tres cocimientos, diferentes niveles de uso de los vapores vegetales y cambio en la pureza de la miel final, entre otras. Los resultados obtenidos justifican numéricamente el uso de dos cocimientos para incrementar la producción de alcohol y del valor ideal de la pureza de la miel final. Cuando se requiere producir aún más alcohol, surge como recomendable desde el punto de vista energético, el desvío de jugo a la destilería anexa. La metodología utilizada permite además cuantificar el impacto de minimizar el consumo de vapor por litro de alcohol a producir en destilación, como así también las mejoras en los valores de eficiencia en el proceso de fermentación. Desde el punto de vista energético, el análisis permite cuantificar las mejoras esperadas en los valores de retorno energético para cada opción analizada.Simultaneous sugar and alcohol production in sugar factories in the province of Tucumán, Argentina, is analyzed, presenting an analytical method for establishing productive ranges for both products, while optimizing energy use. A model for direct production of sugar with an attached distillery was

  11. Determination of flocculated impurities on heat sheets in the starch sugar production%淀粉糖生产中换热片絮凝杂质的测定研究

    Institute of Scientific and Technical Information of China (English)

    罗建勇; 于培玲; 郭峰; 蔡莽劝; 黄立新

    2015-01-01

    Mechanical Vapor Recompression system reusing the secondary steam is used by the company to preheat sugar solution, and some solid objects often appear on the heat exchanger sheets that get in touch with sugar solution. The solid objects affect the heat changing effects and the production efficiency seriously , and need to be cleaned regularly. This paper focuses on the composition and physic-chemical properties of the impurities. The results are as follows:the impuri-ties contain water about 94.43%;the brix of sample filtrate is 0.3%;the filtrate contains glucose and other sugary sub-stances;impurities involves protein (33.7%), crude fiber (27.04%), ash (4.73%, mainly contains diatomite), fat (0.21%), wa-ter-soluble carbohydrate ( 5.09%), non-sugar components (2.84%) and activated carbon (30%).%采用蒸汽机械再压缩系统进行二次蒸汽的利用,以换热器进行糖液预热,但接触糖液的换热片上时常出现有絮凝状杂质,需定期清理,严重影响了换热效果和生产效率。通过对絮凝状杂质的基本组成、理化性质进行检测分析,结果表明,该杂质中水分含量94.43%,滤液锤度约0.3%,滤液含葡萄糖等糖类物质,杂质含有蛋白质(33.7%)、粗纤维(27.04%)、灰分(4.73%)、脂肪(0.21%)、水溶性糖(5.09%)、非糖分(2.84%)和活性炭(30%),灰分主要含硅藻土。

  12. Protein abundance changes of Zygosaccharomyces rouxii in different sugar concentrations.

    Science.gov (United States)

    Guo, Hong; Niu, Chen; Liu, Bin; Wei, JianPing; Wang, HuXuan; Yuan, YaHong; Yue, TianLi

    2016-09-16

    Zygosaccharomyces rouxii is a yeast which can cause spoilage in the concentrated juice industries. It exhibits resistance to high sugar concentrations but genome- and proteome-wide studies on Z. rouxii in response to high sugar concentrations have been poorly investigated. Herein, by using a 2-D electrophoresis based workflow, the proteome of a wild strain of Z. rouxii under different sugar concentrations has been analyzed. Proteins were extracted, quantified, and subjected to 2-DE analysis in the pH range 4-7. Differences in growth (lag phase), protein content (13.97-19.23mg/g cell dry weight) and number of resolved spots (196-296) were found between sugar concentrations. ANOVA test showed that 168 spots were different, and 47 spots, corresponding to 40 unique gene products have been identified. These protein species are involved in carbohydrate and energy metabolism, amino acid metabolism, response to stimulus, protein transport and vesicle organization, cell morphogenesis regulation, transcription and translation, nucleotide metabolism, amino-sugar nucleotide-sugar pathways, oxidoreductases balancing, and ribosome biogenesis. The present study provides important information about how Z. rouxii acts to cope with high sugar concentration at molecular levels, which might enhance our global understanding of Z. rouxii's high sugar-tolerance trait.

  13. The Development of Sugar-Based Anti-Melanogenic Agents.

    Science.gov (United States)

    Bin, Bum-Ho; Kim, Sung Tae; Bhin, Jinhyuk; Lee, Tae Ryong; Cho, Eun-Gyung

    2016-04-16

    The regulation of melanin production is important for managing skin darkness and hyperpigmentary disorders. Numerous anti-melanogenic agents that target tyrosinase activity/stability, melanosome maturation/transfer, or melanogenesis-related signaling pathways have been developed. As a rate-limiting enzyme in melanogenesis, tyrosinase has been the most attractive target, but tyrosinase-targeted treatments still pose serious potential risks, indicating the necessity of developing lower-risk anti-melanogenic agents. Sugars are ubiquitous natural compounds found in humans and other organisms. Here, we review the recent advances in research on the roles of sugars and sugar-related agents in melanogenesis and in the development of sugar-based anti-melanogenic agents. The proposed mechanisms of action of these agents include: (a) (natural sugars) disturbing proper melanosome maturation by inducing osmotic stress and inhibiting the PI3 kinase pathway and (b) (sugar derivatives) inhibiting tyrosinase maturation by blocking N-glycosylation. Finally, we propose an alternative strategy for developing anti-melanogenic sugars that theoretically reduce melanosomal pH by inhibiting a sucrose transporter and reduce tyrosinase activity by inhibiting copper incorporation into an active site. These studies provide evidence of the utility of sugar-based anti-melanogenic agents in managing skin darkness and curing pigmentary disorders and suggest a future direction for the development of physiologically favorable anti-melanogenic agents.

  14. 3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol.

    Science.gov (United States)

    Yun, Eun Ju; Lee, Ah Reum; Kim, Jung Hyun; Cho, Kyung Mun; Kim, Kyoung Heon

    2017-04-15

    The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries.

  15. Study on the factors influencing the ash changes in starch sugar production process%淀粉糖生产过程相关因素影响灰分变化的研究

    Institute of Scientific and Technical Information of China (English)

    郭峰; 李茹; 罗思; 黄立新

    2016-01-01

    测定了果葡糖浆和葡萄糖浆生产过程中原料、中间物料和产品的灰分、电导率、pH、钠离子浓度等指标。结果表明,果葡糖浆和葡萄糖浆生产过程中,灰分的变化与电导率、pH、钠离子浓度的变化具有相关性,为进一步研究淀粉糖生产在线监控灰分含量提供了基础数据和技术参考。%Ash content,conductivity,pH,sodium ion concentration of raw starch,intermediate materials and products were measured in the high fructose corn syrup and glucose syrup production process. The results indicated that the changes had dependent interaction between the ash content and its conductivity,pH and sodium ion concentration of high fructose corn syrup and glucose syrup. This study might provide more references for the further study of on–line analysis of ash content in the starch sugar production process.

  16. Does the EU sugar policy reform increase added sugar consumption? An empirical evidence on the soft drink market.

    Science.gov (United States)

    Bonnet, Céline; Requillart, Vincent

    2011-09-01

    Whereas National Health authorities recommend a decrease in the consumption of 'added' sugar, a reform on the sugar market will lead to a 36% decrease of the sugar price in the EU. Using French data on soft drinks purchases, this paper investigates the anticipated impact of this reform on the consumption of sugar-sweetened beverages. The reform of the EU sugar policy leads to a decrease in regular soft drink prices by 3% and varies across brands. To assess substitution within this food category, we use a random-coefficients logit model that takes into account a large number of differentiated products and heterogeneity in consumers' behavior. Results suggest that price changes would lead to an increase in market shares of regular products by 7.5% and to substitutions between brands to the benefit of products with the highest sugar content. On the whole, it would raise consumption of regular soft drinks by more than 1 litre per person per year and consumption of added sugar by 124 g per person per year, this increase being larger in households composed of overweight and obese individuals.

  17. 76 FR 62339 - Domestic Sugar Program-2011-Crop Cane Sugar and Beet Sugar Marketing Allotments and Company...

    Science.gov (United States)

    2011-10-07

    ... Commodity Credit Corporation Domestic Sugar Program--2011-Crop Cane Sugar and Beet Sugar Marketing... Commodity Credit Corporation (CCC) is issuing this notice to publish the fiscal year (FY) 2012 State sugar marketing allotments and company allocations to sugarcane and sugar beet processors, which apply to...

  18. Regulation of sucrose synthase activity and sugar yield by nitrogen in sugar beet

    Institute of Scientific and Technical Information of China (English)

    LI Caifeng; MA Fengming; LI Wenhua; WANG Rui; CHEN Shengyong; LUO Yu

    2007-01-01

    The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet were studied in the field experiment by nutrient solution culture. The results showed that SS activity in leaves was lower than that in roots. With nitrogen level increasing,SS decomposition activity enhanced, and synthesis activity reduced. SS activity was regulated by different nitrogen forms and the ratio of NO3- and NH4+. SS synthesis activity was enhanced as NH4+ increasing when NO3-: NH4+≥ 1, and it decreased as increasing NH4+ when NO3-: NH4+≤1, and it was the highest when NO3-: NH4+=1. SS decomposition activity was enhanced as NO3- increasing.Sucrose content in root was lowed as nitrogen level increasing, but it was enhanced as NH4+ increasing in the same nitrogen level.Root and sugar yield were the highest in the medium nitrogen level and NO3-: NH4+=1. The result in field experiment corresponded with that in the nutrient fluid culture. It provides a basis for using reasonably nitrogen fertilizer in sugar beet production.

  19. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.

    Science.gov (United States)

    Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo

    2016-09-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield.

  20. 淀粉水解糖与谷氨酸反应物的制备与分析%Preparation and Analysis of Product From Reaction Between the Hydrolysate of the Sugar and Glutamic Acid

    Institute of Scientific and Technical Information of China (English)

    宋文东; 周靖; 邵艳秋; 刘倩

    2001-01-01

    This paper reported that 5 h reaction between hydrolysate of the sugar (200 g) and glutamic acid (8 0 g,pH=7) at 95~105 ℃ produced a sticky brown product. The ether-soluable compounds of the reaction products from the hy drolysate of the sugar and glutamic acid has been analyzed with GC-MS. The chart s of the mass spec trum was verified by NIST62LIB and NIST12LIB spectrum library index c ombinding with EPA/NIH standard mass spectrum. Unification of the whole iron fl ow has been accepted as quantitative method. The analysis result shows that this condensation product has 21 contants. Five of them are Furans and Pyrans, which are respectively. The above five contants share 60.13%, and their most common charateristic fragr ance is caramel dece at which can be used to color cigarate and fruit and make them fragrant.%报道了用淀粉水解糖与谷氨酸在pH=7,温度95~105 ℃下反应5 h, 得到粘稠状棕色反应物 。用气相色谱-质谱(GC-MS)对其醚溶性产物进行分析。质谱图的确认采用NIST62LIB及N IST12LIB谱库检索及EPA/NIH质谱标准图相结合。定量采用总离子流各峰面积归一化。分析 结果表明:此种缩合产物为21个组分,其中吡喃、呋喃类化合物占5种,其含量占总量的60.13%。香气特征为焦糖香,可用于烟草及食品的着色致香。

  1. Method for determining the composition of the sugar moiety of a sugar containing compound

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to methods of labeling sugar moieties of sugar containing compounds including glycopeptides. The compounds presented in the present invention facilitate reliable detection of sugar moieties of sugar containing compounds by a combination of spectroscopy methods...

  2. Frequently Asked Questions about Sugar

    Science.gov (United States)

    ... AHA recommend as a limit for daily added sugars intake? The American Heart Association recommends that no more ... zinc. Also, diets that are high in added sugars are typically low in fiber. This is ... energy intake, which can result in weight loss. Why are “ ...

  3. Sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Kagami, Hiroyo; Kurata, Masayuki; Matsuhira, Hiroaki; Taguchi, Kazunori; Mikami, Tetsuo; Tamagake, Hideto; Kubo, Tomohiko

    2015-01-01

    Creating transgenic plants is invaluable for the genetic analysis of sugar beet and will be increasingly important as sugar beet genomic technologies progress. A protocol for Agrobacterium-mediated transformation of sugar beet is described in this chapter. Our protocol is optimized for a sugar beet genotype that performs exceptionally well in tissue culture, including the steps of dedifferentiation, callus proliferation, and regeneration. Because of the infrequent occurrence of such a genotype in sugar beet populations, our protocol includes an in vitro propagation method for germplasm preservation. The starting materials for transgenic experiments are aseptic shoots grown from surface-sterilized seed balls. Callus is induced from leaf explants and subsequently infected with Agrobacterium. Plantlets are regenerated from transgenic callus and vernalized for flowering, if necessary. The efficiency of transformation was quite high; in our laboratory, the culture of only ten leaf explants, on average, generated one transgenic plant.

  4. Rapid Purification of Glycerol by-product from Biodiesel Production through Combined Process of Microwave Assisted Acidification and Adsorption via Chitosan Immobilized with Yeast

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2014-01-01

    Full Text Available Biodiesel is a proven alternative to the petroleum diesel fuel. During biodiesel production, glycerol is produced as a by-product. This by-product consist of impureties such as soap, salts, sodium catalyst and so on. Traditionally, two of the most conventional techniques that is applied to glycerol purification are distillation and ion-exchange. These techniques are, however, still expensive to generate pure glycerol. Recently, several alternative “combination” treatment procedures have been used. These treatment has several advantages over others methods such as producing large amounts of glycerol-rich layer that requires simple treatments and not causing any high operational cost. In this study, the combination treatment process have been used in order to reach high glycerol content. Basically, these stages starts with using microwave assisted acidification process and the next process utilizing a bioadsorbent synthesized from dead yeast cells immobilized on chitosan. The final yield of glycerol was about 93.1-94.2% (w/w.

  5. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    Science.gov (United States)

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  6. Lipase-catalyzed syntheses of sugar esters in non-aqueous media.

    Science.gov (United States)

    Kobayashi, Takashi

    2011-10-01

    The lipase-catalyzed reaction is useful to obtain sugar esters with chemically defined structures and will contribute to the synthesis of sugar-based compounds by a chemo-enzymatic pathway. The synthesis of sugar esters in nonaqueous media has been attempted for a quarter century. To facilitate the reactions, they have been performed either in an organic solvent with/without a polar adjuvant or in an ionic liquid, or by using a hydrophobic sugar derivative. In this review, the following points are discussed: (1) various synthetic methods of sugar esters; (2) role of the solvents or adjuvants; and (3) improvement in the productivity.

  7. Urinary Sugars--A Biomarker of Total Sugars Intake.

    Science.gov (United States)

    Tasevska, Natasha

    2015-07-01

    Measurement error in self-reported sugars intake may explain the lack of consistency in the epidemiologic evidence on the association between sugars and disease risk. This review describes the development and applications of a biomarker of sugars intake, informs its future use and recommends directions for future research. Recently, 24 h urinary sucrose and fructose were suggested as a predictive biomarker for total sugars intake, based on findings from three highly controlled feeding studies conducted in the United Kingdom. From this work, a calibration equation for the biomarker that provides an unbiased measure of sugars intake was generated that has since been used in two US-based studies with free-living individuals to assess measurement error in dietary self-reports and to develop regression calibration equations that could be used in future diet-disease analyses. Further applications of the biomarker include its use as a surrogate measure of intake in diet-disease association studies. Although this biomarker has great potential and exhibits favorable characteristics, available data come from a few controlled studies with limited sample sizes conducted in the UK. Larger feeding studies conducted in different populations are needed to further explore biomarker characteristics and stability of its biases, compare its performance, and generate a unique, or population-specific biomarker calibration equations to be applied in future studies. A validated sugars biomarker is critical for informed interpretation of sugars-disease association studies.

  8. EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. O. Ayeni

    Full Text Available Abstract Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h and 96 h, substrate concentration (20, 30, 40, and 50 g/L, and enzyme loadings (10, 25, 40, 50 FPU/g dry biomass, which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent enzymatic hydrolysis improved the ethanol yield of the biomass.

  9. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  10. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda Eckard

    2012-01-01

    Full Text Available Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM, fourier transform infrared spectroscopy (FT-IR, capillary electrophoresis (CE, and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  11. Eliminate Sweetened Drinks, Cut Kids' Sugar Intake

    Science.gov (United States)

    ... fullstory_161163.html Eliminate Sweetened Drinks, Cut Kids' Sugar Intake Average U.S. child consumes about 80 grams ... Looking for the quickest way to cut added sugar from your kid's diet? Eliminate sugar-sweetened drinks, ...

  12. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  13. A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods

    NARCIS (Netherlands)

    Pyrgakis, Konstantinos A.; Vrije, de G.J.; Siegers-Budde, M.A.W.; Kyriakou, Kyriakos; Lopez Contreras, A.M.; Kokossis, Antonis C.

    2016-01-01

    Biomass fermentation to Iso-propanol, Butanol and Ethanol (IBE) is particularly important as IBE is a common building block in the development of biorefineries and IBE-producing bacteria are robust industrial organisms, capable to utilize the sugars of the lignocellulosic biomass. Research is focuse

  14. Non-enzymatic glycation of melamine with sugars and sugar like compounds.

    Science.gov (United States)

    Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A

    2013-02-01

    Melamine (1,3,5-triazine-2,4,6-triamine) is employed in the manufacture of plastics, laminates and glues, yet, it has been found sometimes added illegally to dairy products to artificially inflate foods' protein content. In 2008, dairy products adulterated with melamine were blamed for the death of several infants in China, a situation that forced Beijing to introduce stricter food safety measures. The objectives of this study were threefold: (1) to investigate the susceptibility of the amine groups of melamine to glycation with D-galactose, D-glucose and lactose, sugars commonly found in milk, (2) to study the rate and extent of melamine's glycation with methylglyoxal, glyoxal and DL-glyceraldehyde, three highly reactive metabolites of D-galactose, D-glucose and lactose, and (3) to characterize, using mass spectrometry, the Advanced Glycation Endproducts (AGEs) of melamine with sugars found commonly in milk and their metabolites. Incubation of D-galactose, D-glucose and lactose with melamine revealed that D-galactose was the most potent glycator of melamine, followed by D-glucose, then lactose. Methylglyoxal, glyoxal, and DL-glyceraldehyde glycated melamine more extensively than D-galactose, with each yielding a broader range of AGEs. The non-enzymatic modification of melamine by sugars and sugar-like compounds warrants further investigation, as this process may influence melamine's toxicity in vivo.

  15. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses

    Directory of Open Access Journals (Sweden)

    Abe Tatsuya

    2012-08-01

    Full Text Available Abstract Background Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Results Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS, and nuclear magnetic resonance (NMR measurements. Conclusion The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6-β-D-fructofuranosyl-(2 1-α-D-glucopyranoside (named β-planteose, α-D-galactopyranosyl-(1- > 1-β-D-fructofuranosyl-(2 1-α-D-glucopyranoside (named1-planteose, α-D-glucopyranosyl-(1- > 6-α-D-glucopyranosyl-(1 2-β-D-fructofuranoside (theanderose, and β-D-glucopyranosyl-(1- > 3-α-D-glucopyranosyl-(1 2-β-D-fructofuranoside (laminaribiofructose. 1-planteose and laminaribiofructose were isolated from natural sources for the first time.

  16. High risk pesticides in sugar beet protection

    Directory of Open Access Journals (Sweden)

    Šovljanski Radmila A.

    2006-01-01

    Full Text Available According to traits of pesticides permitted to use in sugar beet (oral percutaneus and inhalation toxicity, toxicity to wildlife, bees and aquatic organisms, re-entry interval, maximum number of treatments, effects on reproduction do not present health risk in sugar production/technology. However, the danger exists for workers by chronic exposure during the application, especially from pesticide being potential endocrine disruptors (EDS (fentin acetate, benomyl, endosulfan, methomyl, methidathion. EDS can cause sterility or decreased fertility, impaired development, birth defects of the reproductive tract and metabolic disorders. Authors recommend limited application of EDS pesticides (to limit the number of treatments to only one during the vegetation, replacement with pesticides with low risk to humans game and fishes, as well as mandatory submission of re-entry data for registration.

  17. The government policy related to sugar-sweetened beverages in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Thahir Haning

    2016-09-01

    Full Text Available Background: There are several options to enforce reduction in the use of sugary drinks such as strengthening regulations, taxation on the products and food labeling.  Aims & Objectives: 1 Identify the policy in Indonesia that regulates the quantity and the use of sugar in a beverage product; 2 Describe the sugar content in sugar-sweetened beverages (SSB and its impact on human health. Material & Methods: Literature search on sugar use and tax policies on SSB was conducted and 6 relevant documents were found. A total of 91 SSB products were selected systematically by randomly selecting 5 beverages per day for 20 days. Beverages chosen were certified Halal by Majelis Ulama Indonesia, having product labeling, and certified by BPOM. Results: Indonesia has no policy related to restriction of sugar use. The contribution of sugar to energy of SSB products is quite high (75.68%. SSB intake may increase the risk of obesity and non-communicable diseases. Conclusion: The absence of tax policy and rules for regulating the use of sugar in a product can cause an increase in sugar consumption per day. It could potentially lead to non-communicable diseases and could have enormous consequences in health financing. The government needs to create policies for preventing the widespread impact of sugar consumption. Advocacy efforts to encourage the establishment of SSB taxation should be done.

  18. Determination of Soluble Sugar in Dairy Product by HPLC-ELSD%HPLC-ELSD法同时测定乳制品中5种水溶性糖的含量

    Institute of Scientific and Technical Information of China (English)

    闫正; 张玉; 李盈辰; 李小亭; 赵志磊

    2011-01-01

    A quantitative assay for the determination of sugar, such as fructose, galactose, sucrose, maltose and lactose was established by high performance liquid chromatography (HPLC). Sugars were extracted from samples with water by ultrasonic oscillation and isolated by solid phase extraction with cartridge after protein precipitation by using K4 Fe(CN)6 and Zn( CH3 CO0)2. The separation was performed in the carbohydrate column(4.6 mm× 250 mm), acetonitrile: water (80: 20) (V/V) as mobile phase, Evaporative Light Scattering detector was adopted. The results showed that the linear relation of fructose galactose sucrose maltose and lactose was well in the range of 1~10 mg/mL, the average recoveries in the 93.0%-108.9% ,RSD in the range of 0.85~2.7%. The method was accuracy, sensitivity and feasibility to analyze the residues of fructose, galactose, sucrose, maltose and lactose in dairy products.%建立了HPLC-ELSD同时检测乳制品中5种水溶性糖的分析方法.将奶粉样品用60~70℃水溶解后超声波提取,亚铁氰化钾溶液和乙酸锌溶液沉淀蛋白,C18固相萃取小柱净化,碳水化合物色谱柱分离,y(乙腈)∶y(水)=80∶20流动相洗脱,蒸发光散射检测器检测.结果表明:果糖、半乳糖、蔗糖、麦芽糖和乳糖在1~10 mg/mL内呈现良好的线性关系,加标平均回收率为93.0%~108.9%,RSD为0.85%~2.7%.该方法简便快速,灵敏度高,且重复性好,可为奶粉及其他乳制品中水溶性糖的检测提供技术支持.

  19. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  20. Studies of adsorption conditions in prothrombin complex concehtrates production%凝血酶原复合物制备过程吸附条件的研究

    Institute of Scientific and Technical Information of China (English)

    曹海军; 杜晞; 叶生亮; 张学俊; 王宗奎; 林方昭; 李长清

    2012-01-01

    Objective To study adsorption conditions of coagulation factor Ⅱ , Ⅵ, Ⅸ, Ⅹ in prothrombin complex concentrates (PCC) production and improve activity recovery of PCC. Methods Orthogonal experiment was designed for the e-quilibration system of DEAE-SephadexA-50 geL Three variable factors,sodium citrate,sodium chloride and pH,and their respective three levels were selected,and then equilibration buffer were prepared based on L9(33)table. 9 equal parts of the gel were equilibrated respectively by equilibration buffer, and then different equilibrated DEAE-SephadexA-50 gel was mixed with cryoprecipitate supernatant in the proportion of 1. 67g: 1L for adsorption of coagulation factor Ⅱ , Ⅵ, Ⅸ, Ⅹ, at 4℃. After that, the gel was washed, and then the coagulation factor Ⅱ , Ⅵ, Ⅸ, Ⅹ were eluted. The activity and their recovery of the coagulation factors in the eluate was measured and analyzed on the basis of orthogonal design-direct method. According to analysis results,the better adsorption conditions were obtained,and then were verified. Furthermore,the relationship between conductivity of equilibration system and activity recovery of four kinds coagulation factors was analyzed. Results Sodium citrate,sodium chloride and pH have diverse impacts on activity recovery of four coagulation factors. The effect of pH on four factors shows same tendency,the lower pH the higher recovery,on the contrary,sodium citrate and sodium chloride have distinct effects on four factors. The higher sodium citrate concentration the higher activity recovery of factors Ⅱ , Ⅵ, Ⅸ, Ⅹ,however the recovery of factor Ⅸ is higher when sodium citrate is in (0. 012 ~0. 02)mol/L The lower sodium chloride concentration the higher recovery of factorsⅡ , Ⅵ, Ⅸ, Ⅹ,however the recovery offactor X is higher when sodium chloride is in (0. 1~0.14)mol/L It was not line-relation that between conductivity of equilibration system and activity recovery of four kinds

  1. Cross-sectional survey of the amount of free sugars and calories in carbonated sugar-sweetened beverages on sale in the UK

    Science.gov (United States)

    Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A

    2016-01-01

    Objectives To investigate the free sugars and calorie content of carbonated sugar-sweetened beverages (CSSB) available in the main UK supermarkets. Study design We carried out a cross-sectional survey in 2014 of 169 CSSB. Methods The free sugars (sugars g/100 mL) and calorie (kcal/100 mL) were collected from product packaging and nutrient information panels of CSSB available in 9 main UK supermarkets. Results The average free sugars content in CSSB was 30.1±10.7 g/330 mL, and 91% of CSSB would receive a ‘red’ (high) label for sugars per serving. There was a large variation in sugars content between different flavours of CSSB and within the same type of flavour ranging from 3.3 to 52.8 g/330 mL. On average, ginger beer (38.5±9.9 g/330 mL) contained the highest amounts of sugars and ginger ale (22.9±7.7 g/330 mL) contained the lowest. Cola flavour is the most popular flavour in the UK with an average free sugars content of 35.0±1.1 g/330 mL. On average, the supermarket own brand contained lower levels of sugars than branded products (27.9±10.6 vs 31.6±10.6 g/330 mL, p=0.02). The average calorie content in CSSB was 126.1±43.5 kcal/330 mL. Cola flavour had a calorie content of 143.5±5.2 kcal/330 mL. Among the 169 products surveyed, 55% exceeded the maximum daily recommendation for free sugars intake (30 g) per 330 mL. Conclusions Free sugars content of CSSB in the UK is high and is a major contributor to free sugars intake. There is a wide variation in the sugars content of CSSB and even within the same flavour of CSSB. These findings demonstrate that the amount of free sugars added to CSSB can be reduced without technical issues, and there is an urgent need to set incremental free sugars reduction targets. A reduction in sugars content and overall CSSB consumption will be very beneficial in reducing obesity, type 2 diabetes and dental caries.

  2. Energy analysis of the production process of sugar using modern technologies of process integration; Analisis energetico del proceso de produccion del azucar utilizando tecnicas modernas de integracion de proceso

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa Ibarra, Luis; Arriola Medellin, Alejandro [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    The application of new concepts for the energy analysis of industrial processes, which consider the thermal integration of the process equipment, not only allows to detect energy recovery potentials that cannot be visualized with the traditional treatment of energy diagnosis of individual equipment, allows in addition, to suggest changes in the operation of the process that, without modifying the production, result in the reduction of the consumption of energy by the services and fuel. The analysis of thermal integration is illustrated for the case of a sugar mill, detecting a reduction potential in the use of fuel oil of 75%, and a potential increase of electrical production by cogeneration of 41%, departing from the modification of the use of the steam available in the process, and of the change of operation parameters of operation in the evaporation section. [Spanish] La aplicacion de nuevos conceptos para el analisis energetico de procesos industriales, los cuales consideran la integracion termica de los equipos del proceso, no unicamente permiten detectar potenciales de recuperacion de energia que no se pueden visualizar con el tratamiento tradicional de diagnostico energetico de equipos individuales, permiten ademas, sugerir cambios en la operacion del proceso que, sin modificar la produccion, redundan en una reduccion del consumo de servicios y combustible. El analisis de la integracion termica se ilustra para el caso de un ingenio azucarero, detectandose un potencial de reduccion del uso de combustoleo de 75%, y un potencial de incremento de produccion electrica por cogeneracion de 41%, a partir de la modificacion del uso del vapor disponible en el proceso, y del cambio de parametros de operacion en la seccion de evaporacion.

  3. Biotechnological production of bioflavors and functional sugars Produção biotecnológica de bioaromas e açúcares funcionais

    Directory of Open Access Journals (Sweden)

    Juliano Lemos Bicas

    2010-03-01

    Full Text Available Bioflavors and oligosaccharides are two classes of substances that may be produced biotechnologically through microbial bioprocesses. These compounds have attracted the interest of pharmaceutical and food industries not only due to their technological properties (sweetening/fiber or flavoring, respectively, but also as a consequence of other functional properties such as, for example, health promoting benefits. The use of agro-industrial residues as substrates in biotechnological processes seems to be a valuable alternative in helping to overcome the high manufacturing costs of industrial fermentations. This manuscript reviews the most important advances in biotechnological production of bioflavors and oligosaccharides. The use of some agro-industrial residues in such processes is also cited and discussed, showing that this is a rising trend in biotechnology.Bioaromas e oligossacarídeos são duas classes de substâncias que podem ser produzidas biotecnológicamente por meio de bioprocessos microbiológicos. Estes compostos têm atraído o interesse das indústrias farmacêutica e de alimentos não só devido às suas propriedades tecnológicas (adoçantes/fibras ou aromatizantes, respectivamente, mas também como consequência de outras propriedades funcionais como, por exemplo, benefícios na promoção da saúde. O uso de resíduos agroindustriais como substrato em processos biotecnológicos parece ser uma alternativa valiosa para superar os altos custos de manufatura envolvidos nas fermentações industriais. Este manuscrito faz uma revisão dos mais importantes avanços na produção biotecnológica de bioaromas e oligossacarídeos. O uso de alguns resíduos agroindustriais nestes processos também são citados e discutidos, mostrando que esta é uma tendência crescente na biotecnologia.

  4. Performance of the biogas project in Ziyang sugar factory

    Energy Technology Data Exchange (ETDEWEB)

    Dezhao He [Chengdu Biogas Research Inst., Chengdu (China)

    2000-07-01

    Located in Houjiaping town, Ziyang county, Ziyang Sugar Factory was installed in 1958 as a state enterprise, which mainly processes sugar cane to produce sugar. Sideline products include alcohol and paper. Nowadays, its daily capacity of sugar cane extraction is 1,000 tons and potable alcohol production is 15 - 20 tons. Its annual output value is 25 million Yuan. This plant is one of the backbones in Sichuan sugar cane processing enterprises. The biogas project of the Ziyang Sugar Factory was one of the large biogas installations in China, completed during the Seventh Five-year Plan. The distillery wastewater (slops) from the alcoholic fermentation process of starch (fresh potato, dry potato, kernel and Chinese sorghum) and sugar molasses as substrates is disposed of. The slop has a low pH, a high organic concentration, a high content of suspended solids, a dark colour and a high temperature. Its daily discharge quantity is 200 tons corresponding to 2/3 of total wastewater in that plant. It is a serious source of water pollution when it is directly discharged into Tuojiang River. Therefore, due to its high concentration of polluting substances, anaerobic treatment of distillery wastewater has been decided. This is the first case of wastewater treatment in Nudging city. The construction of this biogas installation started in July 1987. On November 25, 1988, the digester began to produce biogas. Up to now, the digesters have properly operated for more than one year. Besides its use as daily household fuel for the 810 employees, biogas is also supplied to the plant cafeteria as cooking fuel and to some production purposes within the plant, which has achieved obvious economic benefits. The designed capacity of daily biogas production for this biogas plant is 3,000 - 4,000 m{sup 3}. (orig.)

  5. Multiple applications of ion chromatography oligosaccharide fingerprint profiles to solve a variety of sugar and sugar-biofuel industry problems.

    Science.gov (United States)

    Eggleston, Gillian; Borges, Eduardo

    2015-03-25

    Sugar crops contain a broad variety of carbohydrates used for human consumption and the production of biofuels and bioproducts. Ion chromatography with integrated pulsed amperometric detection (IC-IPAD) can be used to simultaneously detect mono-, di-, and oligosaccharides, oligosaccharide isomers, mannitol, and ethanol in complex matrices from sugar crops. By utilizing a strong NaOH/NaOAc gradient method over 45 min, oligosaccharides of at least 2-12 dp can be detected. Fingerprint IC oligosaccharide profiles are extremely selective, sensitive, and reliable and can detect deterioration product metabolites from as low as 100 colony-forming units/mL lactic acid bacteria. The IC fingerprints can also be used to (i) monitor freeze deterioration, (ii) optimize harvesting methods and cut-to-crush times, (iii) differentiate between white refined sugar from sugar cane and from sugar beets, (iv) verify the activities of carbohydrate enzymes, (v) select yeasts for ethanol fermentations, and (vi) isolate and diagnose infections and processing problems in sugar factories.

  6. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  7. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  8. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  9. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  10. 76 FR 36512 - USDA Increases the Domestic Sugar Overall Allotment Quantity, Reassigns Domestic Cane Sugar...

    Science.gov (United States)

    2011-06-22

    ... Office of the Secretary USDA Increases the Domestic Sugar Overall Allotment Quantity, Reassigns Domestic Cane Sugar Allotments, and Increases the Fiscal Year 2011 Raw Sugar Tariff-Rate Quota AGENCY: Office of... in the domestic sugar Overall Allotment Quantity (OAQ); a reassignment of surplus sugar...

  11. Optimal concentration for sugar transport in plants

    OpenAIRE

    Jensen, Kaare H; Savage, Jessica A; Holbrook, N. Michele

    2013-01-01

    Vascular plants transport energy in the form of sugars from the leaves where they are produced to sites of active growth. The mass flow of sugars through the phloem vascular system is determined by the sap flow rate and the sugar concentration. If the concentration is low, little energy is transferred from source to sink. If it is too high, sap viscosity impedes flow. An interesting question is therefore at which concentration is the sugar flow optimal. Optimization of sugar flow and transpor...

  12. Miracle fruit: An alternative sugar substitute in sour beverages.

    Science.gov (United States)

    Rodrigues, Jéssica Ferreira; Andrade, Rafaela da Silva; Bastos, Sabrina Carvalho; Coelho, Sandra Bragança; Pinheiro, Ana Carla Marques

    2016-12-01

    High sugar consumption has been related to several chronic diseases and thus, many alternative sweeteners have been extensively researched. However, there is still controversy regarding the harmful effects of their consumption, mainly regarding the use of artificial sweeteners, controversy which increases the demand for natural sweeteners, such as miracle fruit. This tropical plant grows in West Africa is named for its unique ability of changing a sour taste into sweet. Therefore, this study aimed to characterize the temporal profile of miracle fruit and assess its sugar substitute power in sour beverages through time-intensity and temporal dominance of sensations tests. For this, unsweetened lemonade and lemonades with sugar, sucralose and previous miracle fruit ingestions were evaluated. We noted that the dynamic profile of lemonade ingested after miracle fruit ingestion indicates that it seems to be a good sugar substitute, since it provides high sweetness intensity and persistence, reduced product sourness and an absence of aftertastes. The miracle fruit also provided a sensory profile similar to that of sucralose, an established and recognized sugar substitute. The results of this study provide important information for future applications of miracle fruit as a sugar substitute in sour beverages, providing an alternative use for a natural substance as a sweetening agent.

  13. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  14. Adsorption of ochratoxin A (OTA) anodic oxidation product on glassy carbon electrodes in highly acidic reaction media: Its thermodynamic and kinetics characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Eduardo Alejandro; Zon, Maria Alicia [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales. Universidad Nacional de Rio Cuarto, Agencia Postal No. 3, 5800 Rio Cuarto (Argentina); Jara Ulloa, Paola Andrea; Squella, Juan Arturo; Nunez Vergara, Luis [Laboratorio de Bioelectroquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Santiago (Chile); Fernandez, Hector, E-mail: hfernandez@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales. Universidad Nacional de Rio Cuarto, Agencia Postal No. 3, 5800 Rio Cuarto (Argentina)

    2010-01-01

    We study the thermodynamics and kinetics of the adsorption of a redox couple having quinone nature on glassy carbon electrodes. This couple is produced by the anodic oxidation of mycotoxin ochratoxin A in 10% acetonitrile + 90% 1 M HClO{sub 4} aqueous solution. The quasi-reversible redox couple was studied by both cyclic (CV) and square wave (SWV) voltammetric techniques. The Frumkin adsorption isotherm best described the specific interaction of the redox couple with carbon electrodes. By fitting the experimental data, we obtained values of -28.4 kJ mol{sup -1} and 0.70 +- 0.02 for the Gibbs free energy of adsorption and the interaction parameter, respectively. SWV fully characterized the thermodynamics and kinetics of the adsorbed redox couple, using a combination of the 'quasi-reversible maximum' and the 'splitting of SW peaks' methods. Average values of 0.609 +- 0.003 V and 0.45 +- 0.06 were obtained for the formal potential and the anodic transfer coefficient, respectively. Moreover, a formal rate constant of 10.7 s{sup -1} was obtained. SWV was also employed to generate calibration curves. The lowest concentration of mycotoxin was 1.24 x 10{sup -8} M (5 ppb), measured indirectly with a signal to noise ratio of 3:1.

  15. Production of a new adsorbent from Moroccan oil shale by chemical activation and its adsorption characteristics for U and Th bearing species

    Science.gov (United States)

    Khouya, E.; Fakhi, S.; Hannache, H.; Ichcho, S.; Pailler, R.; Naslain, R.; Abbe, J. C.

    2005-03-01

    New adsorbents were prepared from Moroccan oil shale of Tarfaya (layer R3) by chemical activation with sulphuric acid diluted at 80%. The influence of activation temperature, atmosphere gas, holding time in oven and weight ratio of sulphuric acid to precursor was investigated by determination of yield of adsorbents and adsorption capacity of methylene blue. The best adsorbent properties were found for a particular combination of the chosen parameters: temperature and time of activation respectively equal to 250° C and 2 hours, the gas vector being nitrogen (N{2}). The adsorption capacity for methylene blue and specific surface (SBET) of the new adsorbent were equal to 300 mg/g and 270 m2/g respectively. The batch mode experiment was used to explore the feasibility of this adsorbent for removal of radionuclides (U and Th) from aqueous solution. Applicability of the adsorbent was examined for synthetic solution prepared from hydrated uranyl nitrate (UO{2}(NO{3})2.6H{2}O) and hydrated thorium nitrate (Th(NO{3})4.5H{2}O). The parameters of adsorption for the two radioelements were determined by application of the Langmuir, Freundlich and Elovich models.

  16. Production of a new adsorbent from Moroccan oil shale by chemical activation and its adsorption characteristics for U and Th bearing species

    Energy Technology Data Exchange (ETDEWEB)

    Khouya, E.; Hannache, H.; Ichcho, S. [Faculte des Sciences Ben M' sik, Lab. des Materiaux Thermostructuraux, Casablanca (Morocco); Khouya, E.; Fakhi, S. [Faculte des Sciences Ben M' sik, Lab. de Radiochimie, Casablanca (Morocco); Pailler, R.; Naslain, R. [Bordeaux-1 Univ., Lab. des Composites Thermostructuraux, UMR 5801 CNRS-CEA-SNECMA, 33 (France); Abbe, J.C. [Ecole des Mines de Nantes, Lab. d' Analyse Subatech, 44 (France)

    2005-03-01

    New adsorbents were prepared from Moroccan oil shale of Tarfaya (layer R3) by chemical activation with sulphuric acid diluted at 80%. The influence of activation temperature, atmosphere gas, holding time in oven and weight ratio of sulphuric acid to precursor was investigated by determination of yield of adsorbents and adsorption capacity of methylene blue. The best adsorbent properties were found for a particular combination of the chosen parameters: temperature and time of activation respectively equal to 250 C and 2 hours, the gas vector being nitrogen (N{sub 2}). The adsorption capacity for methylene blue and specific surface (S{sub BET}) of the new adsorbent were equal to 300 mg/g and 270 m{sup 2}/g respectively. The batch mode experiment was used to explore the feasibility of this adsorbent for removal of radionuclides (U and Th) from aqueous solution. Applicability of the adsorbent was examined for synthetic solution prepared from hydrated uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}.6H{sub 2}O) and hydrated thorium nitrate (Th(NO{sub 3}){sub 4}.5H{sub 2}O). The parameters of adsorption for the two radioelements were determined by application of the Langmuir, Freundlich and Elovich models. (authors)

  17. Adsorption of ammonium on biochar prepared from giant reed.

    Science.gov (United States)

    Hou, Jie; Huang, Lei; Yang, Zhimin; Zhao, Yaqi; Deng, Chaoren; Chen, Yucheng; Li, Xin

    2016-10-01

    Giant reed was used as precursor for making biochar in order for the adsorption of NH4 (+)-N from aqueous solution. And the adsorption of the product to NH4 (+)-N was examined. The surface features of biochar were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD). XRD patterns showed several peaks and correspond to the high amount of crystalline material. The crystals contain KCl, K2O, CaO, MgO, and SiO and possess high surface area which enhances adsorption. The influence of different parameters such as initial concentration, adsorption time, pH, and ionic strength has been carried out. The adsorption could reach equilibrium through 24 h reaction and had the best adsorption amount at the solution pH values from 7 to 9. The cation has great influence on the adsorption of NH4 (+)-N, whereas the anion exerted a weaker effect. The adsorption followed pseudo-first-order and pseudo-second-order models. And the intraparticle diffusion and desorption studies further elucidated that the mechanism of adsorption on the product was ion exchange. The product equilibrium data was well described by the Langmuir and Freundlich model. The maximum adsorption capacities were 1.490 mg/g. Biochar derived from giant reed at 500 °C was suggested as a promising adsorbent for the removal of NH4 (+)-N from slightly polluted wastewater.

  18. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Science.gov (United States)

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  19. SOUFFLE WITH REDUCED AMOUNT OF SUGAR

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. Was studied the technology of producing aerated candies "Souffle" with replacement of sugar to molasses with increased shelf life, molded by "jetting" with a vacuum syringe with continuous action, which is used in the meat industry, into metallized film type "flow-pack ". Studied the process of foaming disperse systems. Studied the process of gelation and gelation affected by various factors. To establish a relationship between the effective viscosity and jelly mass of gelation ability of agar were achieved the dependence according to the effective viscosity of the jelly mass shear rate and a shear rate on the shear stress at temperature of 65 ˚C and a mass fraction of solids of 78%. Viscosity reduction has a positive effect on the process of molding molasses candies by the "extrusion". Were definede values of the plastic strength of jelly masses and found that replacing sugar to molasses reduces the plastic strength, but it does not affect a good form-stable ability. Cinnamon was added into the prescription whipped composition to improve the nutritional value of products. Were defined organoleptic, physical and chemical qualities, calculated energy value of the products. High hygroscopic souffle on molasses requires hermetic packaging. Proposed a new progressive method of forming a souffle with a vacuum syringe with continuous action, which is used in the meat industry to form sausages. Curing and structure foarming implemented directly in the shell for 2 h, which is an important advantage of this method. Whipped products on molasses are functional.

  20. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non...... system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h(-1). Use of the bacitracin- linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation...... at a processing rate of 12 m h(-1) resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h(-1) raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased...