WorldWideScience

Sample records for adsorption equilibrium adsorption

  1. Adsorption

    Directory of Open Access Journals (Sweden)

    Denis J.L. Guerra

    2016-09-01

    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  2. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  3. CrⅥ adsorption on four typical soil colloids: equilibrium and kinetics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of CrⅥ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of CrⅥ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of CrⅥ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on CrⅥ adsorption on different soil colloid and clay minerals are also investigated.

  4. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  5. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    G Karthikeyan; K Anbalagan; N Muthulakshmi Andal

    2004-03-01

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified. The fraction of adsorption, and the intraparticle diffusion rate constant, are calculated at different environments and the results are discussed. The nature of adsorption of the zinc (II) - chitosan system is explained using Freundlich, Langmuir isotherms and thermodynamic parameters.

  6. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  7. Equilibrium and kinetics of water adsorption in carbon molecular sieve: theory and experiment.

    Science.gov (United States)

    Rutherford, S W; Coons, J E

    2004-09-28

    Measurements of water adsorption equilibrium and kinetics in Takeda carbon molecular sieve (CMS) were undertaken in an effort to characterize fundamental mechanisms of adsorption and transport. Adsorption equilibrium revealed a type III isotherm that was characterized by cooperative multimolecular sorption theory. Water adsorption was found to be reversible and did not display hysteresis upon desorption over the conditions studied. Adsorption kinetics measurements revealed that a Fickian diffusion mechanism governed the uptake of water and that the rate of adsorption decreased with increasing relative pressure. Previous investigations have attributed the observed decreasing trend in the rate of adsorption to blocking of micropores. Here, it is proposed that the decrease is attributed to the thermodynamic correction to Fick's law which is formulated on the basis of the chemical potential as the driving force for transport. The thermodynamically corrected formulation accounted for observations of transport of water and other molecules in CMS.

  8. Development of adsorbent from Teflon waste by radiation induced grafting: equilibrium and kinetic adsorption of dyes.

    Science.gov (United States)

    Goel, N K; Kumar, Virendra; Pahan, S; Bhardwaj, Y K; Sabharwal, S

    2011-10-15

    Mutual radiation grafting technique was employed to graft polyacrylic acid (PAA) onto Polytetrafluoroethylene (Teflon) scrap using high energy gamma radiation. Polyacrylic acid-g-Teflon (PAA-g-Teflon) adsorbent was characterized by grafting extent measurement, FTIR spectroscopy, SEM and wet ability & surface energy analysis. The PAA-g-Teflon adsorbent was studied for dye adsorption from aqueous solution of basic dyes, namely, Basic red 29 (BR29) and Basic yellow 11 (BY11). The equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm models, whereas, adsorption kinetics was analyzed using pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models. Equilibrium adsorption of BR29 was better explained by Langmuir adsorption model, while that of BY11 by Freundlich adsorption model. The adsorption capacity for BY11 was more than for BR29. Separation factor (R(L)) was found to be in the range 0 dyes. Higher coefficient of determination (r(2) > 0.99) and better agreement between the q(e,cal) and q(e,exp) values suggested that pseudo-second order kinetic model better represents the kinetic adsorption data. The non-linearity obtained for intra-particle diffusion plot indicated, more than one process is involved in the adsorption of basic dyes. The desorption studies showed that ~95% of the adsorbed dye could be eluted in suitable eluent.

  9. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  10. Equilibrium adsorption and self-assembly of patchy colloids in microchannels

    CERN Document Server

    Marshall, Bennett D

    2016-01-01

    A new theory is developed to describe the equilibrium adsorption and self-assembly of patchy colloids in microchannels. The adsorption theory is developed in classical density functional theory, with the adsorbed phase and fluid phase modeled using thermodynamic perturbation theory. In this work we propose that the introduction of patches on the colloids greatly enhances the temperature dependent and reversible adsorption of colloids in microchannels. It is shown how bulk fluid density, patch size, temperature and channel diameter can be manipulated to achieve the adsorption and self-assembly of patchy colloids in microchannels.

  11. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Delgado, R.A.; Cotoruelo-Minguez, L.M.; Rodriguez, J.J. (Univ. de Malaga (Spain))

    1992-06-01

    Equilibrium data for the adsorption of sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) from aqueous solutions by Amberlite XAD-4 and XAD-7 polymeric resins at temperatures in the 10-40C range have been obtained. The specific surface area of the resins plays a major role in adsorption, and thus the best results have been obtained with XAD-4 resin. A higher adsorption of SDBS over SLS was also observed. Several adsorption isotherm models have been used to fit the experimental data. The best results have been obtained with the Redlich-Peterson and Langmuir-Freundlich equations. Estimations of the isosteric heat of adsorption, free energy, and entropy of adsorption are also reported.

  12. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Azouaou, N., E-mail: azouaou20@yahoo.fr [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Sadaoui, Z. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Djaafri, A. [Central laboratory, SEAAL, 97 Parc ben omar, Kouba, Algiers (Algeria); Mokaddem, H. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria)

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd{sup 2+} adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g{sup -1}. Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd{sup 2+} removal.

  13. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  14. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    谢自立; 敦坤敏; 吴菊芳; 袁存禾

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  15. Equilibrium and kinetic analysis of CO2-N2 adsorption separation by concentration pulse chromatography.

    Science.gov (United States)

    Li, Peiyuan; Tezel, F Handan

    2007-09-01

    CO2 and N(2) adsorption kinetics and equilibrium behaviours have been studied with silicalite, NaY and 13X by using concentration pulse chromatography for the separation of these gases in the present study. Adsorption Henry's Law constants, the heat of adsorption values, micropore diffusion coefficients and corresponding activation energies are determined experimentally and the three different mass transfer mechanisms are discussed. From the equilibrium data, the corresponding separation factors are obtained for the adsorption separation processes. The heat of adsorption values as well as the Henry's Law adsorption equilibrium constants of CO(2) are much higher than those of N(2) for all the adsorbents studied. 13X, NaY and silicalite all have good separation factors for CO(2)/N(2) system based on equilibrium processes. The order of the equilibrium separation factors is 13X (Ceca)>13X (Zeochem)>NaY (UOP)>silicalite (UOP). Equilibrium selectivity favours CO(2) over N(2). Micropore diffusion resistance is the definite dominant mass transfer mechanism for CO(2) with silicalite and NaY.

  16. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  17. REMOVAL OF METHYLENE BLUE BY ADSORPTION ONTO RETAMA RAETAM PLANT: KINETICS AND EQUILIBRIUM STUDY

    Directory of Open Access Journals (Sweden)

    Dalila Badis

    2016-12-01

    Full Text Available The feasibility of using medicinal plants species Retama raetam as a low cost and an eco-friendly adsorbent for the adsorption of cationic dye methylene blue from simulated aqueous solution has been investigated. Adsorption kinetics of methylene blue onto Retama raetam plants was studied in a batch system. The effects of pH and contact time were examined. The methylene blue maximum adsorption occurred at pH 8 and the lowest adsorption occurred at pH 2. The apparent equilibrium was reached after 120 min. Optimal experimental conditions were determined. Adsorption modelling parameters for Freundlich and Langmuir isotherms were determined and, based on R2, various error distribution functions were evaluated as well. Adsorption isotherm was best described by non linear Freundlich isotherm model. Thermodynamic studies show that adsorption was spontaneous and exothermic. For determining the best-fit-kinetic adsorption model, the experimental data were analyzed by using pseudo-first-order, pseudo-second-order, pseudo-third-order, Esquivel, and Elovich models. Linear regressive and non-linear regressive method was used to obtain the relative parameters. The statistical functions were estimated to find the suitable method that fit better the experimental data. Both methods were appropriate for obtaining the parameters. The linear pseudo-second-order (type 9 and type 10 models were the best to fit the equilibrium data. The present work showed that plant Retama raetam can be used as a low cost adsorbent for the removal of methylene blue from water.

  18. Adsorption equilibrium of citric acid from supercritical carbon dioxide/ethanol on cyano column

    Institute of Scientific and Technical Information of China (English)

    Huisheng L; Guoqing Wang; Minhua Zhang; Zhongfeng Geng; Miao Yang; Yanpeng Sun

    2015-01-01

    Supercritical adsorption equilibrium has a significant role in defining supercritical adsorption behavior. In this paper, the adsorption equilibrium of citric acid from supercritical CO2/ethanol on a cyano column was systemat-ical y investigated with the elution by characteristic point method. Equilibrium loading was obtained at 313.15 K and 321.15 K with supercritical CO2/ethanol densities varying from 0.7068 g·cm−3 to 0.8019 g·cm−3. The exper-imental results showed that the adsorption capacity of citric acid decreased with increasing temperature and in-creasing density of the supercritical CO2/ethanol mobile phase. The adsorption equilibrium data were fitted wel by the Quadratic Hill isotherm model and the isotherms showed anti-Langmuir behavior. The monolayer satura-tion adsorption capacity of citric acid is in the range of 44.54 mg·cm−3 to 64.66 mg·cm−3 with an average value of 56.86 mg·cm−3.

  19. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    Science.gov (United States)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  20. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics.

    Science.gov (United States)

    Kumar, Arvind; Prasad, B; Mishra, I M

    2008-04-01

    The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50PAC and GAC, respectively. Error analysis also confirmed the efficacy of the R-P isotherm to best fit the experimental data. The pseudo-second order kinetic model best represents the kinetics of the adsorption of AN onto PAC and GAC. Maximum adsorption capacity of PAC and GAC at optimum conditions of AN removal (adsorbent dose approximately 20 g/l of solution, and equilibrium time approximately 5 h) was found to be 51.72 and 46.63 mg/g, respectively.

  1. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B; Mishra, I.M.; Wasewar, K. L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  2. Adsorption of Reactive Black 5 on Synthesized Titanium Dioxide Nanoparticles: Equilibrium Isotherm and Kinetic Studies

    OpenAIRE

    Shaheed, Majeed A.; Falah H. Hussein

    2014-01-01

    The synthesized titanium dioxide nanoparticles (TiO2-NPs) were used as adsorbent to remove reactive black 5 (RB 5) in aqueous solution. Various factors affecting adsorption of RB 5 aqueous solutions such as pH, initial concentration, contact time, dose of nanoparticles, and temperature were analyzed at fixed solid/solution ratio. Langmuir and Freundlich isotherms were used as model adsorption equilibrium data. Langmuir isotherm was found to be the most adequate model. The pseudo-first-order, ...

  3. Equilibrium, Kinetics, and Thermodynamics of Remazol Brilliant Blue R Dye Adsorption onto Activated Carbon Prepared from Pinang Frond

    OpenAIRE

    Mohd Azhar Ahmad; Safarudin Gazali Herawan; Ahmad Anas Yusof

    2014-01-01

    The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorpt...

  4. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    Science.gov (United States)

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  5. Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: Equilibrium, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Abdessalem Omri

    2016-11-01

    Full Text Available The adsorption of bentazon onto Lawsonia inermis wood-based activated carbon (LWAC was carried out in this work. The effects of different reaction parameters such as the initial bentazon concentration, contact time, activated carbon dosage, stirring rate, temperature and pH on bentazon adsorption were investigated in a batch process mode. Equilibrium data were analyzed by the Langmuir, Freundlich and Temkin isotherm model. Langmuir isotherm provided the best fit to the equilibrium data with maximum adsorption capacity of 169.49 mg/g at 20 °C. Adsorption kinetic was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° showed that the adsorption of bentazon onto LWAC was feasible, spontaneous and exothermic at 20–40 °C. Desorption of the used LWAC was studied using ethanol as solvent and a percent desorption efficiency of bentazon equalizes 73.8% was obtained after three cycles.

  6. Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm

    Directory of Open Access Journals (Sweden)

    Kaman Sherlynna Parveen Deshon

    2017-01-01

    Full Text Available The current ponding system applied for palm oil mill effluent (POME treatment often struggle to comply with the POME discharge limit, thus it has become a major environmental concern. Batch adsorption study was conducted for reducing the Chemical Oxygen Demand (COD, Total Suspended Solids (TSS and Color of pre-treated POME using coconut shell-based activated carbon (CS-AC. The CS-AC showed BET surface area of 744.118 m2/g, with pore volume of 04359cm3/g. The adsorption uptake was studied at various contact time and POME initial concentration. The CS-AC exhibited good ability with average percentage removal of 70% for COD, TSS and Color. The adsorption uptake increased over time and attained equilibrium in 30 hours. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Based on the coefficient regression and sum of squared errors, the Langmuir isotherm described the adsorption of COD satisfactorily, while best described the TSS and Color adsorption; giving the highest adsorption capacity of 10.215 mg/g, 1.435 mg/g, and 63.291 PtCo/g respectively. The CS-AC was shown to be a promising adsorbent for treating POME and was able to comply with the Environmental Quality Act (EQA discharge limit. The outcome of treated effluent using CS-AC was shown to be cleaner than the industrial biologically treated effluent, achieved within shorter treatment time.

  7. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon.

    Science.gov (United States)

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2015-01-08

    In this work, the results of equilibrium and dynamic adsorption tests of hexavalent chromium, Cr (VI), on activated carbon are presented. Adsorption isotherms were determined at different levels of pH and temperature. Dynamic tests were carried out in terms of breakthrough curves of lab-scale fixed bed column at different pH, inlet concentration and flow rate. Both the adsorption isotherms and the breakthrough curves showed non-linear and unconventional trends. The experimental results revealed that chromium speciation played a key role in the adsorption process, also for the occurrence of Cr(VI)-to-Cr(III) reduction reactions. Equilibrium tests were interpreted in light of a multi-component Langmuir model supported by ion speciation analysis. For the interpretation of the adsorption dynamic tests, a mass transfer model was proposed. Dynamic tests at pH 11 were well described considering the external mass transfer as the rate controlling step. Differently, for dynamic tests at pH 6 the same model provided a satisfying description of the experimental breakthrough curves only until a sorbent coverage around 1.6mgg(-1). Above this level, a marked reduction of the breakthrough curve slope was observed in response to a transition to an inter-particle adsorption mechanism.

  8. Adsorption of Reactive Black 5 on Synthesized Titanium Dioxide Nanoparticles: Equilibrium Isotherm and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Majeed A. Shaheed

    2014-01-01

    Full Text Available The synthesized titanium dioxide nanoparticles (TiO2-NPs were used as adsorbent to remove reactive black 5 (RB 5 in aqueous solution. Various factors affecting adsorption of RB 5 aqueous solutions such as pH, initial concentration, contact time, dose of nanoparticles, and temperature were analyzed at fixed solid/solution ratio. Langmuir and Freundlich isotherms were used as model adsorption equilibrium data. Langmuir isotherm was found to be the most adequate model. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to describe the adsorption kinetics. The experimental data was fitted to pseudo-second-order kinetics. The thermodynamic parameters such as Gibbs-free energy, enthalpy, and entropy changes were determined. These parameters indicated the endothermic and spontaneity nature of the adsorption. The results demonstrated the fact that the TiO2-NPs are promising adsorbent for the removal of RB 5 from aqueous solutions.

  9. Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics.

    Science.gov (United States)

    Vázquez, G; González-Alvarez, J; García, A I; Freire, M S; Antorrena, G

    2007-05-01

    This work studies phenol adsorption on Pinus pinaster bark that has been previously treated with formaldehyde in acid medium. The influence of several variables such as solid/liquid ratio, pH and initial concentration of phenol in the solution on the adsorption capacity of the bark has been analysed. A kinetic model based on phenol diffusion within the pores of the adsorbent was in agreement with the results obtained for high initial concentrations of phenol, allowing the determination of diffusion coefficients. Adsorption equilibrium data were fitted by the Freundlich and BET isotherms. From their parameters phenol adsorption capacity and intensity, as well as the specific surface (BET) of the adsorbent, were determined.

  10. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    Science.gov (United States)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  11. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA.

    Science.gov (United States)

    Yi, Honghong; Deng, Hua; Tang, Xiaolong; Yu, Qiongfen; Zhou, Xuan; Liu, Haiyan

    2012-02-15

    In order to develop a single-step process for removing SO(2), NO, CO(2) in flue gas simultaneously by co-adsorption method. Pure component adsorption equilibrium and kinetics of SO(2), NO, and CO(2) on zeolite NaY, NaX, CaA were obtained respectively. Equilibrium data were analyzed by equilibrium model and Henry's law constant. The results suggest that Adsorption affinity follows the trend SO(2)>CO(2)>NO for the same adsorbent. Zeolite with stronger polar surface is a more promising adsorbent candidate. Kinetics behavior was investigated using the breakthrough curve method. The overall mass transfer coefficient and diffusivity factor were determined by a linear driving force model. The results are indicative of micropore diffusion controlling mechanism. NaY zeolite has the minimum resistance of mass transfer duo to the wide pore distribution and large pore amount. CaA zeolite exhibits the highest spatial hindered effect. Finally, co-adsorption effect of SO(2), NO, and CO(2) were investigated by multi-components breakthrough method. SO(2) and NO may form new adsorbed species, however, CO(2) presents a fast breakthrough. Chemical adsorption causes SO(2) transforms to SO(4)(2-), however, element N and C are not detected in adsorbed zeolites.

  12. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling.

    Science.gov (United States)

    Ahmad, A A; Hameed, B H; Aziz, N

    2007-03-01

    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.

  13. Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems

    Institute of Scientific and Technical Information of China (English)

    MAIGA Abdoulaye Siddeye; CHEN Guang-ming; WANG Qin

    2007-01-01

    Two adsorption refrigeration working pairs of zeolite with water and ethanol were studied and the parameters of Dubinin-Astakhov model were regressed using the experimental data of equilibrium. The coefficient of heterogeneity varied from 1.305 to 1.52 for the zeolite-water pair and from 1.73 to 2.128 for zeolite-ethanol pair. The maximum adsorption capacity varied from 0.315 to 0.34 for zeolite-water and 0.23 to 0.28 for zeolite-ethanol, respectively. The results showed that the zeolite-water pair is suitable for solar energy cooling not only because of the high latent heat of vaporization of water but also because of the better equilibrium performance. On the other hand, zeolite-ethanol gives a high adsorption capacity at high regeneration temperature, which means it can be used in heat engine systems like buses and cars.

  14. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

    Institute of Scientific and Technical Information of China (English)

    LONG Chao; LI AiMin; HU DaBo; LIU FuQiang; ZHANG QuanXing

    2008-01-01

    In this research, static adsorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene, and fluorene, from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288-308 K is investigated. Several isotherm equations are correlated with the equilibrium data, and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations, providing evidence that pore-filling is the dominating sorption mechanism for PAHs. The study shows that the molecular size of adsorbates has distinct in-fluence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs; the larger the adsorbate molecular size, the lower the adsorption equilibrium capacity. Based on the Polanyi-Dubinin-Manes model, the molecular size of adsorbates was introduced to adjust the adsorbate molar volume. Plots of qv vs. (σε/Vs) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

  15. Equilibrium adsorption of rhodamine B on used black tea leaves from acidic aqueous solution

    Directory of Open Access Journals (Sweden)

    Mohammad Abul Hossain

    2012-10-01

    Full Text Available The presence of carcinogenic dye like rhodamine B (Rh-B in textile wastewater affects the quality of water to consumers. The adsorption of Rh-B on used black tea leaves (UBTL was studied in batch process to investigate its removal efficiency. The effects of contact time, concentration, temperature, pH etc. on adsorption have been investigated. The UV-visible spectrophotometer was used for analysis of Rh-B at constant pH. The adsorption isotherms were constructed for different temperatures using acidic solution of pH 2.0. Freundlich, Langmuir and Dubinin–Raduskevich (D-R equations were used to analyze the equilibrium adsorption data. The experimental data follows Freundlich equation more precisely compare with the Langmuir one. The maximum amount adsorbed calculated from Langmuir equation is 72.5 mg/g at 30 oC which is increased with increasing temperature. Separation factor and thermodynamic parameters revealed that the process is favorable, spontaneous and endothermic nature. Possible mechanism of the process was elucidated from the effect of solution pH on amount adsorbed. The endothermic nature of the adsorption might be due to the fragmentation of Rh-B molecules during the adsorption process.

  16. Adsorption of Nickel Ion by Low Cost Carbon-Kinetic, Thermodynamic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    V. Vijayakumaran

    2009-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing nickel ion. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plot were found to around 43 mg/g at an initial pH of 7.0. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0 value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of nickel ion on MCC involves chemisorption as well as physisorption mechanism.

  17. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies.

    Science.gov (United States)

    Sabna, V; Thampi, Santosh G; Chandrakaran, S

    2016-12-01

    Synthetic dyes present in effluent from textile, paper and paint industries contain crystal violet (CV), a known carcinogenic agent. This study investigates the modification of multiwalled carbon nanotubes by acid reflux method and equilibrium and kinetic behaviour of adsorption of CV onto functionalized multi-walled carbon nanotubes (fMWNTs) in batch system. High stability of the fMWNTs suspension in water indicates the hydrophilicity of fMWNTs induced due to the formation of functional groups that make hydrogen bonds with water molecules. fMWNTs were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and the functional groups present on the fMWNTs were confirmed. Characteristic variation was observed in the FTIR spectra of fMWNTs after adsorption of crystal violet onto it. Adsorption characteristics were evaluated as a function of system variables such as contact time, dosage of fMWNTs and initial concentration and pH of the crystal violet solution. Adsorption capacity of fMWNTs and percentage removal of the dye increased with increase in contact time, adsorbent dosage and pH but declined with increase in initial concentration of the dye. fMWNTs showed higher adsorption capacity compared to that of pristine MWNTs. Data showed good fit with the Langmuir and Freundlich isotherm models and the pseudo-second order kinetic model; the maximum adsorption capacity was 90.52mg/g. Kinetic parameters such as rate constants, equilibrium adsorption capacities and regression coefficients were estimated. Results indicate that fMWNTs are an effective adsorbent for the removal of crystal violet from aqueous solution.

  18. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  19. Equilibrium, kinetics and thermodynamics studies of textile dyes adsorption on modified Tunisian clay

    Directory of Open Access Journals (Sweden)

    naghmouchi nahed

    2016-04-01

    Full Text Available The adsorption capacity of two anionic textile dyes (RR120 and BB150 on DMSO intercalated Tunisian raw clay was investigated with respect to contact time, initial dye concentration, pH and Temperature. The equilibrium data were fitted into Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The kinetic parameters were calculated using pseudo-first order, pseudo second-order, intra-particle diffusion and Elovich kinetic models. The thermodynamic parameters (DH°, DS° and DG° of the adsorption process were also evaluated.

  20. Equilibrium and kinetic aspects of sodium cromoglycate adsorption on chitosan: mass uptake and surface charging considerations.

    Science.gov (United States)

    de Lima, C R M; Pereira, M R; Fonseca, J L C

    2013-09-01

    Chitosan has more and more been suggested as a material for use as adsorbent in the treatment of effluents as well as in the synthesis of drug-loaded nanoparticles for controlled release. In both cases, a good understanding of the process of adsorption, both kinetically and in terms of equilibrium, has an importance of its own. In this manuscript we study the interaction between sodium cromoglycate, a drug used in asthma treatment, and chitosan. Equilibrium experiments showed that Sips (or Freundlich-Langmuir) isotherm described well the resultant data and adsorption possibly occurred as in multilayers. A model based on ordinary reaction-rate theory, compounded of two processes, each one with a correlated velocity constant, described the kinetics of sorption. Kinetic and equilibrium data suggested the possibility of surface rearrangement, favored by the increase of temperature.

  1. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    Science.gov (United States)

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  2. Equilibrium and Kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent

    OpenAIRE

    2010-01-01

    The adsorption of Rhodamine-B (RB) from aqueous solutions by cocoa (Theobroma cacao) shell activated carbon (CSAC) was studied in a batch adsorption system. The adsorption studies include both equilibrium adsorption isotherms and kinetics. The adsorption equilibrium was represented with Langmuir, Freundlich, Tempkin, Harkin’s - Jura and Dubinin-Radushkevich isotherm models. Pseudo first order, pseudo second order, Elovich and Intraparticle diffusion kinetic models were used to test the adsorp...

  3. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Directory of Open Access Journals (Sweden)

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  4. Equilibrium and kinetic modeling of adsorptive sulfur removal from gasoline by synthesized Ce-Y zeolite

    Science.gov (United States)

    Montazerolghaem, Maryam; Rahimi, Amir; Seyedeyn-Azad, Fakhry

    2010-11-01

    In this research, the adsorption of a model sulfur compound, thiophene, from a simulated gasoline onto Ce-Y zeolite in pellet and powder forms was investigated. For this purpose, zeolite Na-Y was synthesized, and Ce-Y zeolite was prepared via solid-state ion-exchanged (SSIE) method. Adsorptive desulfurization of model gasoline was conducted in a batch reactor at ambient conditions to evaluate the equilibrium and kinetics of thiophene adsorption onto Ce-Y zeolite. The equilibrium data were fitted to Langmuire and Toth models. Pseudo-n-order and modified n-order models, LDF-base model, and intra-particle diffusion model were evaluated to fit the kinetic of the adsorption process and to determine the mechanism of it. The corresponding parameters and/or correlation coefficients of each model were reported. The LDF-base model was used also to fit the mass transfer coefficient for both powder and pellet forms of the adsorbent. The best fit estimates for the mass transfer coefficient were obtained 4 × 10-11 m/s and k = 3.1 × 10-12[exp( - t/τ) + 1/(t + 10-4)], for powder and pellet form adsorbents, respectively.

  5. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    Science.gov (United States)

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  6. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    Science.gov (United States)

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution.

  7. Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Sangeetha, D

    2004-12-15

    Phosphate removal from aqueous solution was investigated using ZnCl(2)-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3-10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.

  8. PREPARATION AND CHARACTERIZATION OF NOVEL CHITOSAN DERIVATIVES:ADSORPTION EQUILIBRIUM OF IRON(Ⅲ)ION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 KJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.

  9. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Ahmet [Chairmenship of Environmental Protection Department, Antalya Great Municipality, Antalya (Turkey); Arslankaya, Ertan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Istanbul (Turkey); Tosun, Ismail [Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta (Turkey)]. E-mail: ismailt@mmf.sdu.edu.tr

    2007-07-19

    Adsorption of Pb(II) ions from aqueous solution onto clinoptilolite has been investigated to evaluate the effects of contact time, initial concentration and pretreatment of clinoptilolite on the removal of Pb(II). Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Temkin and Dubinin-Radushkevich), four three-parameter (Redlich-Peterson, Sips, Toth and Khan) isotherm models, and kinetic models including the pseudo-first order, the pseudo-second order and Elovich equations using nonlinear regression technique. Of the two-parameter isotherms, Temkin isotherm was the best to describe the experimental data. Three-parameter isotherms have higher regression coefficients (>0.99) and lower relative errors (<5%) than two-parameter isotherms. The best fitting isotherm was the Sips followed by Toth and Redlich-Peterson isotherm equations. Maximum experimental adsorption capacity was found to be 80.933 and 122.400 mg/g for raw and pretreated clinoptilolite, respectively, for the initial concentration of 400 mg/L. Kinetic parameters; rate constants, equilibrium adsorption capacities and related coefficients for each kinetic model were evaluated according to relative errors and correlation coefficients. Results of the kinetic studies show that best fitted kinetic models are obtained to be in the order: the pseudo-first order, the pseudo-second order and Elovich equations. Using the thermodynamic equilibrium coefficients, Gibbs free energy of the Pb(II)-clinoptilolite system was evaluated. The negative value of change in Gibbs free energy ({delta}G{sup o}) indicates that adsorption of Pb(II) on clinoptilolite is spontaneous.

  10. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this research,static adsorption of three polycyclic aromatic hydrocarbons(PAHs),naphthalene,acenaphthene,and fluorene,from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288-308 K is investigated.Several isotherm equations are correlated with the equilibrium data,and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations,providing evidence that pore-filling is the dominating sorption mechanism for PAHs.The study shows that the molecular size of adsorbates has distinct in-fluence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs;the larger the adsorbate molecular size,the lower the adsorption equilibrium capacity.Based on the Polanyi-Dubinin-Manes model,the molecular size of adsorbates was introduced to adjust the adsorbate molar volume.Plots of qv vs.(σε /Vs) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

  11. Generalized Fick Jacobs Approach for describing Adsorption Desorption Kinetics in Irregular Pores under Non Equilibrium Conditions

    CERN Document Server

    Ledesma-Durán, Aldo; Santamaría-Holek, Iván

    2016-01-01

    We present a study exploring the range of applicability of a generalized Fick Jacobs equation in the case when diffusive mass transport of a fluid along a pore includes chemical reactions in the bulk and pore surface. The study contemplates nonequilibrium boundary conditions and makes emphasis on the comparison between the predictions coming from the projected Fick Jacobs description and the corresponding predictions of the original two dimensional mass balance equation, establishing a simple cuantitative criterion of validity of the projected description. For the adsorption desorption process, we demonstrate that the length and the local curvature of the pore are the relevant geometric quantities for its description, allowing for giving very precise predictions of the mass concentration along the pore. Some schematic cases involving adsorption and chemical reaction are used to quantify with detail the concentration profiles in transient and stationary states involving equilibrium and nonequilibrium situation...

  12. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    Science.gov (United States)

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  13. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: hqhu@mail.hzau.edu.cn [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)

    2009-02-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  14. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Science.gov (United States)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  15. ADSORPTION CHARACTERIZATION OF CO(II IONS ONTO CHEMICALLY TREATED QUERCUS COCCIFERA SHELL: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES

    Directory of Open Access Journals (Sweden)

    M. Hamdi Karaoglu

    2011-04-01

    Full Text Available Quercus coccifera shell (QCS, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent to remove cobalt(II from water. Before the adsorption experiments, QCS was subjected to chemical treatment to provide maximum surface area. Then, the kinetics and adsorption mechanism of Co(II ions on QCS were studied using different parameters such as adsorbent dosage, initial concentration, temperature, contact time, and solution pH. The loaded metals could be desorbed effectively with dilute hydrochloric acid, nitric acid, and 0.1 M EDTA. The Langmuir and Freundlich models were used to describe the uptake of cobalt on QCS. The equilibrium adsorption data were better fitted to Langmuir adsorption isotherm model. The maximum adsorption capacity (qm of QCS for Co(II was 33 mg g-1. Various kinetic models were used to describe the adsorption process. The adsorption followed pseudo second-order kinetic model. The intraparticle diffusion was found to be the rate-limiting step in the adsorption process. The diffusion coefficients were calculated and found to be in the range of 3.11×10−6 to 168.78×10−6 cm2s-1. The negative DH* value indicated exothermic nature of the adsorption.

  16. Efficient adsorption of 4-Chloroguiacol from aqueous solution using optimal activated carbon: Equilibrium isotherms and kinetics modeling

    Directory of Open Access Journals (Sweden)

    Afidah Abdul Rahim

    2016-10-01

    Full Text Available The optimal activated carbon produced from Prosopis africana seed hulls (PASH-AC was obtained using the impregnation ratio of 3.19, activation temperature of 780 °C and activation time of 63 min with surface area of 1095.56 m2/g and monolayer adsorption capacity of 498.67 mg/g. The adsorption data were also modeled using five various forms of the linearized Langmuir equations as well as Freundlich and Temkin adsorption isotherms. In comparing the legitimacy of each isotherm model, chi square (χ2 was incorporated with the correlation coefficient (R2 to justify the basis for selecting the best adsorption model. Langmuir-2 > Freundlich > Temkin isotherms was the best order that described the equilibrium adsorption data. The results revealed pseudo-second-order to be the most ideal model in describing the kinetics data.

  17. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays

    Science.gov (United States)

    Garshasbi, Vahid; Jahangiri, Mansour; Anbia, Mansoor

    2017-01-01

    Zeolite 13X was successfully synthesized by hydrothermal treatment using natural clays extracted from Iranian resources. The preliminary natural materials and the final zeolite 13X samples were characterized by X-ray Diffraction (XRD), Fourier-Transfer Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and N2 adsorption-desorption isotherm. The effects of various factors such as NaOH addition amount and aging time on the crystalline products were studied during the synthesis process. The optimum conditions related to the synthesis of zeolite 13X were set. Accordingly, NaOH concentration was equal to 4 M. It was further crystallized at 65 °C for 72 h after its homogenization by agitation at room temperature for 120 h. In this study, the zeolite 13X prepared from natural kaolin (13X-K) showed a high BET surface area of 591 m2/g with higher micropore volume (0.250 cm3/g) than other materials. Adsorption equilibrium isotherms of CO2 were investigated using a static, volumetric method. In addition, pressures for the pure component data extended up to 20 bar. The adsorption equilibrium data of CO2 was fitted to Langmuir, Freundlich, Lamgmuir-Freundlich, Toth and BET isotherm models. It was found that the Langmuir-Freundlich model was more suitable than other models for CO2 description. The results showed that the synthetic zeolite has higher equilibrium selectivity for CO2. Also, the CO2 uptake by zeolite 13X-K was equal to 6.9 mmol/g.

  18. Kinetics, Equilibrium, and Thermodynamic Studies on Adsorption of Methylene Blue by Carbonized Plant Leaf Powder

    Directory of Open Access Journals (Sweden)

    V. Gunasekar

    2013-01-01

    Full Text Available Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9, dye concentration (50, 100, 150, and 200 mg/dm3, adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3, and temperature (303, 313, and 323 K were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with high R2 and low chi2 values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔS values for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.

  19. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon

    Directory of Open Access Journals (Sweden)

    N.T. Abdel-Ghani

    2016-01-01

    Full Text Available The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120min. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intraparticle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986. The intraparticle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944. The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

  20. Low-pressure equilibrium binary argon-methane gas mixture adsorption on exfoliated graphite: Experiments and simulations

    Science.gov (United States)

    Albesa, Alberto; Russell, Brice; Vicente, José Luis; Rafti, Matías

    2016-04-01

    Adsorption equilibrium measurements of pure methane, pure argon, and binary mixtures over exfoliated graphite were carried for different initial compositions, temperatures, and total pressures in the range of 0.1-1.5 Torr using the volumetric static method. Diagrams for gas and adsorbed phase compositions were constructed for the conditions explored, and isosteric heats of adsorption were calculated. Experimental results were compared with predictions obtained with Monte Carlo simulations and using the Ideal Adsorbed Solution Theory (IAST).

  1. Adsorption of Congo Red by Ni/Al-CO3: Equilibrium, Thermodynamic and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    N. Ayawei

    2015-09-01

    Full Text Available Experimental investigations were carried out using Ni/Al-CO3 layered double hydroxide as adsorbent for removal of toxic anionic dye namely Congo red from aqueous solutions. The effect of contact time, initial dye concentration and temperature were experimentally studied in batch mode to evaluate the kinetic, equilibrium and thermodynamic parameters of the adsorption process. Experimental results revealed that the degradation of the dye is mostly dependent on temperature. The dye degradation process obeyed the zero-order kinetic model, first-order kinetic model, second-order kinetic model, pseudo second order kinetic and third order kinetic model with correlation coefficient values 1, 0.9998, 0.9999, 0.9999 and 0.9997 respectively. Langmuir, Freundlich, Temkin and Dubinin-Kaganer-Radushkevic isotherms were applied to the equilibrium data and was well described by all. Thermodynamic studies showed congo red adsorption on the layered double hydroxide was endothermic and spontaneous in nature. The results indicate that layered double hydroxide could be employed as alternative for removal of anionic dyes from industrial wastewater.

  2. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    Science.gov (United States)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  3. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Maksin, Danijela D., E-mail: dmaksin@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia); Nastasovic, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Milutinovic-Nikolic, Aleksandra D., E-mail: snikolic@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Surucic, Ljiljana T., E-mail: ljilja_m@yahoo.com [University of Belgrade, Faculty of Forestry, Kneza Viseslava 1, Belgrade (Serbia); Sandic, Zvjezdana P., E-mail: zvjezdana.sandic@gmail.com [Faculty of Science, Mladena Stojanovica 2, Banja Luka, Bosnia and Herzegovina (Bosnia and Herzegowina); Hercigonja, Radmila V., E-mail: radah@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11001 Belgrade (Serbia); Onjia, Antonije E., E-mail: onjia@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. Black-Right-Pointing-Pointer Chemisorption and pore diffusion are characteristics of this sorption system. Black-Right-Pointing-Pointer Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g{sup -1}. Black-Right-Pointing-Pointer Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. Black-Right-Pointing-Pointer A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70 Degree-Sign C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q{sub max}, at pH 1.8 and 25 Degree-Sign C was 143 mg g{sup -1} for PGME2-deta (sample with the highest amino group concentration) while at 70 Degree-Sign C Q{sub max} reached the high value of 198

  4. Equilibrium adsorption of methane, ethane, ethylene, and propylene and their mixtures on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. (Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (ES))

    1989-04-01

    The authors discuss pure gas adsorption isotherms of methane, ethane, ethylene, and propylene on activated carbon determined at 323{Kappa} and pressures in the range 0-100 kPa. Binary and ternary adsorption isotherms were also determined at the same temperature and pressures for all the mixtures of these adsorbates, with the exception of methane-propylene mixtures due to their difference in adsorption capacity. Two models have been applied for correlation and prediction of mixture adsorption equilibria-the ideal adsorbed solution (IAS) and the real adsorbed solution (RAS). This second model provides better results for all the systems.

  5. Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling.

    Science.gov (United States)

    Hafeznezami, Saeedreza; Zimmer-Faust, Amity G; Dunne, Aislinn; Tran, Tiffany; Yang, Chao; Lam, Jacquelyn R; Reynolds, Matthew D; Davis, James A; Jay, Jennifer A

    2016-08-01

    Application of empirical models to adsorption of contaminants on natural heterogeneous sorbents is often challenging due to the uncertainty associated with fitting experimental data and determining adjustable parameters. Sediment samples from contaminated and uncontaminated portions of a study site in Maine, USA were collected and investigated for adsorption of arsenate [As(V)]. Two kinetic models were used to describe the results of single solute batch adsorption experiments. Piecewise linear regression of data linearized to fit pseudo-first order kinetic model resulted in two distinct rates and a cutoff time point of 14-19 h delineating the biphasic behavior of solute adsorption. During the initial rapid adsorption stage, an average of 60-80% of the total adsorption took place. Pseudo-second order kinetic models provided the best fit to the experimental data (R(2) > 0.99) and were capable of describing the adsorption over the entire range of experiments. Both Langmuir and Freundlich isotherms provided reasonable fits to the adsorption data at equilibrium. Langmuir-derived maximum adsorption capacity (St) of the studied sediments ranged between 29 and 97 mg/kg increasing from contaminated to uncontaminated sites. Solid phase As content of the sediments ranged from 3.8 to 10 mg/kg and the As/Fe ratios were highest in the amorphous phase. High-pH desorption experiments resulted in a greater percentage of solid phase As released into solution from experimentally-loaded sediments than from the unaltered samples suggesting that As(V) adsorption takes place on different reversible and irreversible surface sites.

  6. Adsorption of Heavy Metal Ions from Aqueous Solutions by Zeolite Based on Oil Shale Ash: Kinetic and Equilibrium Studies

    Institute of Scientific and Technical Information of China (English)

    BAO Wei-wei; ZOU Hai-feng; GAN Shu-cai; XU Xue-chun; JI Gui-juan; ZHENG Ke-yan

    2013-01-01

    Na-A zeolite was successfully synthesized via the alkaline fusion method with oil shale ash as the raw material.The adsorption capacity of it was tested by removing CU2+,Ni2+,Pb2+ and Cd2+ from aqueous solutions.The results reveal the maximum adsorption capacity of adsorbent for Pb2+,Cu2+,Cd2+ and Ni2+ were 224.72,156.74,118.34 and 53.02 mg/g,respectively.The effects of contact time and pH value of solutions on the adsorption efficiency of the zeolite were evaluated.Besides,The equilibrium adsorption data and the batch kinetic data were correlated with Langmuir and Freundlich models and the pseudo-first-order and pseudo-second-order models separately.The results show that the Langmuir isotherm and the pseudo-second-order equation were more suitable for the adsorption of Na-A zeolite for the metal ions.In addition,Thermodynamic parameters of the adsorption(the Gibbs free energy,entropy,and enthalpy) were also evaluated and discussed.The results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions and the synthesized zeolite was an effective adsorbent for the removal of metal ions from aqueous solution.

  7. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.

    Science.gov (United States)

    Simanaviciute, Deimante; Klimaviciute, Rima; Rutkaite, Ramune

    2017-02-01

    In the present study, the equilibrium adsorption of caffeic acid (CA) and its derivatives, namely, chlorogenic (CGA) and rosmarinic (RA) acids on cationic cross-linked starch (CCS) with degree of substitution of quaternary ammonium groups of 0.42 have been investigated in relation to the structure and acidity of phenolic acids. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of CA, CGA and RA from their initial solutions and solutions having the equimolar amount of NaOH at different temperatures. In the case of adsorption from the initial solutions of acids the values of adsorption parameters were closely related to the dissociation constants of investigated acids. According to the increasing effectiveness of adsorption, phenolic acids could be arranged in the following order: CA

  8. Development, Construction, and Operation of a Multisample Volumetric Apparatus for the Study of Gas Adsorption Equilibrium

    Science.gov (United States)

    Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.

    2015-01-01

    The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…

  9. Carbonaceous materials for adsorptive refrigerators

    Science.gov (United States)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  10. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  11. Adsorption of Remazol Brilliant Blue R using ZnO fine powder: Equilibrium, kinetic and thermodynamic modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Ada, Kezban [Department of Chemistry, Faculty of Arts and Sciences, Kirikkale University, 71450 Yahsihan-Kirikkale (Turkey); Ergene, Aysun, E-mail: ayergene@yahoo.com [Department of Biology, Faculty of Arts and Sciences, Kirikkale University, 71450 Yahsihan-Kirikkale (Turkey); Tan, Sema; Yalcin, Emine [Department of Biology, Faculty of Arts and Sciences, Kirikkale University, 71450 Yahsihan-Kirikkale (Turkey)

    2009-06-15

    Zinc oxide powders with six-sided flake-like particles were prepared by homogeneous precipitation from boiling aqueous solutions that contained excess urea and 0.075 (Z075) and 0.300 (Z300) M Zn{sup 2+}. The average sizes of the particles are 37 and 46 {mu}m, while the average sizes of the crystals are {approx}45 for Z075 and Z300 at 1000 deg. C. Equilibrium, kinetic and thermodynamic studies were carried out for the adsorption of RBBR dye from aqueous solution using both types of ZnO in the form of fine powders. The effects of pH, initial dye concentration, contact time and temperature of solution on the adsorption were studied. Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm models were used to describe the adsorption of RBBR onto ZnO powders. The Langmuir and D-R isotherm models fit the equilibrium data better than the Temkin isotherm model. The monomolecular adsorption capacity of Z075 and Z300 was determined to be 190 and 345 mg g{sup -1} for RBBR, respectively. The Lagergren first-order, Ritchie second-order kinetic and intra-particle diffusion models were used for the adsorption of the dye onto ZnO powders. The Ritchie second-order model was suitable for describing the adsorption kinetics for the removal of RBBR from aqueous solution onto Z075 and Z300. Thermodynamic parameters, such as the Gibbs free energy ({Delta}G{sup numbersign}), enthalpy ({Delta}H{sup numbersign}), entropy ({Delta}S{sup numbersign}) and equilibrium constant of activation (K{sup numbersign}) were calculated. These parameters showed that the adsorption process of RBBR onto Z075 and Z300 was an endothermic process of a chemical nature under the studied conditions.

  12. Adsorption of Remazol Brilliant Blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies.

    Science.gov (United States)

    Ada, Kezban; Ergene, Aysun; Tan, Sema; Yalçin, Emine

    2009-06-15

    Zinc oxide powders with six-sided flake-like particles were prepared by homogeneous precipitation from boiling aqueous solutions that contained excess urea and 0.075 (Z075) and 0.300 (Z300)M Zn(2+). The average sizes of the particles are 37 and 46 microm, while the average sizes of the crystals are approximately 45 for Z075 and Z300 at 1000 degrees C. Equilibrium, kinetic and thermodynamic studies were carried out for the adsorption of RBBR dye from aqueous solution using both types of ZnO in the form of fine powders. The effects of pH, initial dye concentration, contact time and temperature of solution on the adsorption were studied. Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm models were used to describe the adsorption of RBBR onto ZnO powders. The Langmuir and D-R isotherm models fit the equilibrium data better than the Temkin isotherm model. The monomolecular adsorption capacity of Z075 and Z300 was determined to be 190 and 345 mg g(-1) for RBBR, respectively. The Lagergren first-order, Ritchie second-order kinetic and intra-particle diffusion models were used for the adsorption of the dye onto ZnO powders. The Ritchie second-order model was suitable for describing the adsorption kinetics for the removal of RBBR from aqueous solution onto Z075 and Z300. Thermodynamic parameters, such as the Gibbs free energy (DeltaG(#)), enthalpy (DeltaH(#)), entropy (DeltaS(#)) and equilibrium constant of activation (K(#)) were calculated. These parameters showed that the adsorption process of RBBR onto Z075 and Z300 was an endothermic process of a chemical nature under the studied conditions.

  13. Equilibrium and Kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao shell as a new adsorbent

    Directory of Open Access Journals (Sweden)

    C. Theivarasu,

    2010-11-01

    Full Text Available The adsorption of Rhodamine-B (RB from aqueous solutions by cocoa (Theobroma cacao shell activated carbon (CSAC was studied in a batch adsorption system. The adsorption studies include both equilibrium adsorption isotherms and kinetics. The adsorption equilibrium was represented with Langmuir, Freundlich, Tempkin, Harkin’s - Jura and Dubinin-Radushkevich isotherm models. Pseudo first order, pseudo second order, Elovich and Intraparticle diffusion kinetic models were used to test the adsorption kinetics. The kinetic data were well described by the pseudo second order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results indicated that CSAC could be employed as a lowcost alternative for the removal of RB from diluted industrial effluents.

  14. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2013-05-01

    Full Text Available Doxorubicin hydrochloride (DOX is an effective anticancer agent for leukemia chemotherapy, although its clinical use has been limited because of its side effects such as cardiotoxicity, alopecia, vomiting, and leucopenia. Attention has been focussed on developing new drug carriers with high adsorption capacity and rapid adsorption rate in order to minimize the side effects of DOX. Graphene oxide (GO, a new type of nanomaterial in the carbon family, was prepared by Hummers method and used as adsorbent for DOX from aqueous solution. The physico-chemical properties of GO were characterized by transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR, zeta potential, and element analysis. The adsorption properties of DOX on GO were studied as a function of contact time, adsorbent dosage, temperature and pH value. The results showed that GO had a maximum adsorption capacity of 1428.57 mg/g and the adsorption isotherm data fitted the Langmuir model. The kinetics of adsorption fits a pseudo-second-order model. The thermodynamic studies indicate that the adsorption of DOX on GO is spontaneous and endothermic in nature.

  15. Equilibrium Kinetics and Isotherm Studies of Cu (II Adsorption from Waste Water onto Alkali Activated Oil Palm Ash

    Directory of Open Access Journals (Sweden)

    Zaira Z. Chowdhury

    2011-01-01

    Full Text Available Problem statement: Heavy metal accumulation in waste water could affect aquatic life, human health and overall ecosystem adversely. Therefore, in recent years much emphasis has been given for the use of industrial waste material as low cost adsorbents for removal of metallic contaminants from waste water. Approach: Present study deals with the adsorption equilibrium and kinetics of Cu (II cation using sodium hydroxide activated Oil Palm Ash (OPA. Adsorption was investigated in a batch system with respect to various parameters such as initial metal ion concentration, contact time and pH of the solution. Surface characterization of the prepared adsorbent was done by using surface area analyzer, Scanning Electron Microscope (SEM and X-ray Fluorescence and compared with natural oil palm ash. The adsorption equilibrium data were best represented by Langmuir, Freundlich and Temkin model. Equilibrium kinetics studies were performed by Pseudo first order, Pseudo second order and Intra-particle diffusion. Results: Maximum monolayer adsorption capacity observed at 30°C was 18.86 mg g−1. Kinetic data correlated well with the pseudo second order model, suggesting that the adsorption process might be chemical sorption. The linear plots of intra particle diffusion revealed that the adsorption process was mainly governed by pore diffusion. Equilibrium uptake was increased with increase of initial concentration and contact time. Experimental data showed that about 96.03% of copper can be removed at pH 5.5. Conclusion: The research concluded that activation by alkali treatment of natural OPA would produce sufficient porosities and surface area and it has got good potential to remove Cu (II from waste water.

  16. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    Directory of Open Access Journals (Sweden)

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II, Co(II and Ni(II. The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity obtained from the Langmuir isotherm plots was found around 28mg/g for all selected metal ions at an initial pH of 6. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying pH of the metal ion solutions. The type I and II isotherms obtained, positive H0 values, pH dependent results and desorption of metal ions in mineral acid suggests that the adsorption of metal ions on this type of adsorbent involves both chemisorption and physical adsorption mechanisms.

  17. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    Science.gov (United States)

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents.

  18. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  19. Tungsten removal from molybdate solutions using chelating ion-exchange resin:Equilibrium adsorption isotherm and kinetics

    Institute of Scientific and Technical Information of China (English)

    朱先正; 霍广生; 倪捷; 宋琼

    2016-01-01

    The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2MoO4 and Na2WO4 solutions. The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model. The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin, and the corresponding activation energy is calculated to be 21.976 kJ/mol.

  20. Impact of the molecular structure and adsorption mode of D-π-A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO2 surface.

    Science.gov (United States)

    Ooyama, Yousuke; Yamaguchi, Naoya; Ohshita, Joji; Harima, Yutaka

    2016-12-07

    D-π-A dyes NI-4 bearing a pyridyl group, YNI-1 bearing two pyridyl groups and YNI-2 bearing two thienylpyridyl groups as the anchoring group on the TiO2 surface have been developed as dye sensitizers for dye-sensitized solar cells (DSSCs), where NI-4 and YNI-2 can adsorb onto the TiO2 electrode through the formation of the coordinate bond between the pyridyl group of the dye and the Lewis acid site (exposed Ti(n+) cations) on the TiO2 surface, but YNI-1 is predominantly adsorbed on the TiO2 electrode through the formation of the hydrogen bond between the pyridyl group of the dye and the Brønsted acid sites (surface-bound hydroxyl groups, Ti-OH) on the TiO2 surface. The difference in the dye-adsorption mode among the three dyes on the TiO2 surface has been investigated from the adsorption equilibrium constant (Kad) based on the Langmuir adsorption isotherms. It was found that the Kad values of YNI-1 and YNI-2 are higher than that of NI-4, and more interestingly, the Kad value of YNI-2 is higher than that of YNI-1. This work demonstrates that that for the D-π-A dye sensitizers with the pyridyl group as the anchoring group to the TiO2 surface the number of pyridyl groups and the dye-adsorption mode on the TiO2 electrode as well as the molecular structure of the dye sensitizer affect the Kad value for the adsorption of the dye to the TiO2 electrode, that is, resulting in a difference in the Kad value among the D-π-A dye sensitizers NI-4, YNI-1 and YNI-2.

  1. Adsorption of Hg(II from Aqueous Solution Using Adulsa (Justicia adhatoda Leaves Powder: Kinetic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Mohd Aslam

    2013-01-01

    Full Text Available The ability of Adulsa leaves powder (ALP to adsorb Hg(II from aqueous solutions has been investigated through batch experiments. The ALP biomass was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental parameters that were investigated in this study included pH, adsorbent dosage, and effect of contact time along with initial metal ion concentration. The adsorption process was relatively fast, and equilibrium was achieved after 40 min of contact time. The maximum removal of Hg(II, 97.5% was observed at pH 6. The adsorption data were correlated with Langmuir, Freundlich, and Temkin isotherms. Isotherms results were amply fitted by the Langmuir model determining a monolayer maximum adsorption capacity (qm of ALP biomass equal to 107.5 mg g−1 and suggesting a functional group-limited sorption process. The kinetic process of Hg(II adsorption onto ALP biomass was tested by applying pseudofirst-order, pseudosecond-order, Elovich, and intraparticle-diffusion models to correlate the experimental data and to determine the kinetic parameters. It was found that the pseudosecond order kinetic model for Hg(II adsorption fitted very well. The rate determining step is described by intraparticle diffusion model. These studies considered the possibility of using Adulsa plant leaves biomass as an inexpensive, efficient, and environmentally safe adsorbent for the treatment of Hg(II contaminated wastewaters.

  2. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash

    Science.gov (United States)

    Zheng, Xuebo; Cui, Hongbiao; Zhu, Zhenqiu; Liang, Jiani

    2017-01-01

    Natural biomass ash of agricultural residuals was collected from a power plant and modified with hexagonal mesoporous silica and functionalized with 3-aminopropyltriethoxysilane. The physicochemical and morphological properties of the biomass ash were analyzed by ICP-OES, SEM, TEM-EDS, FTIR, and BET analysis. The adsorption behavior of the modified product for Cd2+ in aqueous solution was studied as a function of pH, initial metal concentration, equilibrium time, and temperature. Results showed that the specific surface area of the modified product was 9 times that of the natural biomass ash. The modified biomass ash exhibited high affinity for Cd2+ and its adsorption capacity increased sharply with increasing pH from 4.0 to 6.0. The maximum adsorption capacity was 23.95 mg/g in a pH 5 solution with an initial metal concentration of 50 mg/L and a contact time of 90 min. The adsorption of Cd2+ onto the modified biomass ash was well fitted to the Langmuir model and it followed pseudo-second-order kinetics. Thermodynamic analysis results showed that the adsorption of Cd2+ was spontaneous and endothermic in nature. The results suggest that the modified biomass ash is promising for use as an inexpensive and effective adsorbent for Cd2+ removal from aqueous solution.

  3. Experimental study on dynamic gas adsorption

    Institute of Scientific and Technical Information of China (English)

    Qin Yueping; Wang Yaru; Yang Xiaobin; Liu Wei; Luo Wei

    2012-01-01

    In order to predict the actual adsorption amount as gas adsorption reaches the equilibrium,this research designed a dynamic gas adsorption experiment under constant temperature and pressure,and also studied the isopiestic adsorption characteristics of coal samples with same quality but different sizes.Through the experiment,the study found the adsorption-time changing relationships under different pressures of four different size samples.After regression analysis,we obtained the functional relationship between adsorption and time.According to this,the research resulted in the actual adsorption amount when gas adsorption reaches the equilibrium.In addition,the current study obtained the relationship between adsorption and pressure as well as the effect of the coal size to the adsorption rate.These results have great theoretical and practical significance for the prediction of gas amount in coal seam and gas adsorption process.

  4. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    Science.gov (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  5. Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell.

    Science.gov (United States)

    Khaloo, Shokooh Sadat; Matin, Amir Hossein; Sharifi, Sahar; Fadaeinia, Masoumeh; Kazempour, Narges; Mirzadeh, Shaghayegh

    2012-01-01

    The application of almond shell as a low cost natural adsorbent to remove Hg(2+) from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg(2+) uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG(0), ΔH(0) and ΔS(0), indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg(2+) removal from a synthetic effluent.

  6. Removal of Pb from Water by Adsorption on Apple Pomace: Equilibrium, Kinetics, and Thermodynamics Studies

    Directory of Open Access Journals (Sweden)

    Piar Chand

    2013-01-01

    Full Text Available The adsorption-influencing factors such as pH, dose, and time were optimized by batch adsorption study. A 0.8 g dose, 4.0 pH, and 80 min of contact time were optimized for maximum adsorption of Pb on AP. The adsorption isotherms (Langmuir and Freundlich were well fitted to the data obtained with values of qmax (16.39 mg/g; r2=0.985 and K (16.14 mg/g; r2=0.998, respectively. The kinetics study showed that lead adsorption follows the pseudo-second-order kinetics with correlation coefficient (r2 of 0.999 for all of the concentration range. FTIR spectra also showed that the major functional groups like polyphenols (–OH and carbonyl (–CO were responsible for Pb binding on AP. The thermodynamic parameters as ΔG, ΔH (33.54 J/mol, and ΔS (1.08 J/mol/K were also studied and indicate that the reaction is feasible, endothermic, and spontaneous in nature.

  7. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  8. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    Science.gov (United States)

    Yonova, Albena

    2017-03-01

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  9. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  10. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    Science.gov (United States)

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  11. Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies.

    Science.gov (United States)

    Mihaly-Cozmuta, L; Mihaly-Cozmuta, A; Peter, A; Nicula, C; Tutu, H; Silipas, Dan; Indrea, Emil

    2014-05-01

    This paper summarizes the conclusions of experiments conducted on the adsorption of Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), Pb(2+) and Zn(2+) onto zeolite. The focus of the experiments was to establish the influence of the initial pH of the contact solution as well as the selectivity of zeolite on the efficiency of the adsorption process. To this end, experimental adsorption isotherms were established for the pH values ranging from 1 to 4 by using the Na-form of clinoptilolite (particle size range 0.5-1 mm) as an adsorbent. Langmuir, Freundlich and Dubinin-Raduschkevich isotherm models were used to validate the experimental data and the Gibbs free energy was calculated based on the distribution coefficient. From the Langmuir model, correlations between the maximum adsorption capacity and selected physical-chemical parameters of the cations studied were established. The results of the experiments suggest that the selectivity of zeolite is strongly influenced by the pH of the contact solution, dehydration energy of cations, diffusion coefficient and the pH at which the precipitation of hydroxides occurs.

  12. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    Science.gov (United States)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  13. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Aguilar, Nancy Veronica [Environmental Sciences Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico); Munoz-Sandoval, Emilio [Advanced Materials Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico); Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene, E-mail: rene@ipicyt.edu.m [Environmental Sciences Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico)

    2010-02-15

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 {sup o}C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  14. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study.

    Science.gov (United States)

    Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan

    2011-10-15

    The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (ΔH(0)), Gibbs' free energy (ΔG(0)) and entropy (ΔS(0)) were calculated for natural and MnO(2) modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously.

  15. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Pita Rengga Wara Dyah

    2016-01-01

    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.

  16. Adsorption of β-naphthalenesulfonic acid/sulfuric acid from their solution by weakly basic resin: equilibrium

    Institute of Scientific and Technical Information of China (English)

    LI Chang-hai; SHI Peng-fei

    2005-01-01

    Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorption behavior of β-naphthalenesulfonic acid(NSA) and sulfuric acid (H2 SO4 ) from their solution at 25 ℃ onto weakly basic resin D301R. Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The ideal adsorbed solution theory(IAST) coupled with the single-solute adsorption models were used to predict the bisolute competitive adsorption equilibria. The IAST coupled with the Langmuir and the Freundlich model for sulfuric acid and NSA, respectively, yields the favorable representation of the bisolute competitive adsorption behavior.

  17. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.

    Science.gov (United States)

    Amuda, O S; Adelowo, F E; Ologunde, M O

    2009-02-01

    A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63mgCr(VI)/g at initial pH of 3.0 at 30 degrees C for the particle size of 1.00-1.25mm with the use of 12.5, 16.5 and 2.1g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.

  18. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R B

    2001-04-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface

  19. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves

    Science.gov (United States)

    Song, Xue; Wang, Li'ao; Ma, Xu; Zeng, Yunmin

    2017-02-01

    Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO2 and CH4 were studied at 298 K, 308 K and 318 K over the pressure range of 0-1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO2 and CH4 are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔHΘ), standard Gibbs free energy (ΔGΘ) and standard entropy change (ΔSΘ) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.

  20. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    Directory of Open Access Journals (Sweden)

    Yonova Albena

    2017-03-01

    Full Text Available The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3 used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (< 1 atm of working pairs Al2O3/H2O and Al2O3/C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0. Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  1. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste.

    Science.gov (United States)

    Hameed, B H; Mahmoud, D K; Ahmad, A L

    2008-10-01

    In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.

  2. Adsorption equilibrium of uranium on iron oxyhydroxide-PVA hydrogel spheres

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Armindo; Campos, Victor B.; Ribeiro, Luciana S.; Escanio, Camila A.; Silva, Edilaine F.; Oliveira, Felipe W., E-mail: santosa@cdtn.br, E-mail: vbc@cdtn.br, E-mail: lsr@cdtn.br, E-mail: cae@cdtn.br, E-mail: efd@cdtn.br, E-mail: fwfo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Uranium and its compounds are considered strategic mineral resources due to its usage as an energy source and war material. They are harmful to human health. Thus, liquid waste containing low uranium content (≤100 mgU/L), from the mining and/or uranium reprocessing plants or even of the research center activities require the development of methods for their treatment, in a way to reduce its content to 15 μgU/L. Adsorption is one of these methods; it requires the synthesis of preferably spherical adsorbents, chemically and physically stable and with high adsorptive capacity. The sol-gel process can synthesize adsorbents having such characteristics, prioritizing the nanostructuring of iron oxyhydroxide in a hydrophilic PVA (polyvinyl alcohol) polymer network, which had an accessible pore structure (micro-, meso- and macropores + macroholes). We successfully obtained iron-PVA hydrogel spheres with (3433 ± 63 μm) and without (2833 ± 69 μm) macroholes. Both types of spheres have good mechanical strength and chemical stability in the 2-9 pH range. Adsorptive capacity: 413.22 mgU/g (with macroholes; Freundlich model) and 249.38 mgU/g (without macroholes; Langmuir and Freundlich models), at pH 5-6, 30 °C, and 6 h. With 280 mL of with-macrohole hydrogel spheres, we can treat 1 L of liquid waste (100 mgU/L) and reduce uranium content to 20 μgU/L. (author)

  3. ADSORPTION OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS BY DIFFERENT ADMIXTURES – A BATCH EQUILIBRIUM TEST STUDY

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2014-08-01

    Full Text Available Wide variety of inorganic compounds such as nutrients and trace metals, organic chemicals, radioactive contaminants and pathogens are commonly present as contaminants in the groundwater. Migration of contaminants in soil involves important mechanisms such as molecular diffusion, dispersion under physical processes, adsorption, precipitation and oxidation - reduction under chemical processes and biodegradation under biological process. Cr (VI is a major and dangerous contaminant as per the ground water is concerned. There are numerous research work carried out with concentrated efforts by the researchers towards removal of Cr (VI contaminant from aqueous solutions. There are few studies relevant to Cr (VI removal with respect to utilization of low cost admixtures and also soil type. In the present study, different low cost admixtures like rice husk (RH, shredded tyre (ST and fly ash (FA are used to understand the performance in removal of Cr (VI from aqueous solution and also two different soil types are used along with the admixture. The results are discussed in terms of sorption capacity and performance of individual admixture and combination of admixture with soil in removal of contaminant. The fly ash, rice husk and shredded tyre admixtures are used and the results revealed that the shredded tyre showed higher performance in removal of contaminant concentration. Also, the soil which has more fine particle content (size<0.075 mm IS sieve showed reasonable reduction in concentration of contaminant at the lower levels of contaminant initial concentration. The sorption capacity results of Cr (VI contaminant, treated with various admixtures are further validated with the published work of other investigators. The shredded tyre (ST showed more adsorption capacity, i.e., 3.283 mg/g at pH of 4.8. For other admixtures, adsorption capacity value is varying in the range of 0.07 mg/g to 1.7 mg/g. Only in case of activated alumina and modified saw dust

  4. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres.

    Science.gov (United States)

    Zhou, Limin; Wang, Yiping; Liu, Zhirong; Huang, Qunwu

    2009-01-30

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg(2+), Cu(2+), and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3mg/g for Hg(2+), Cu(2+), and Ni(2+) ions, respectively. TMCS displayed higher adsorption capacity for Hg(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA).

  5. Adsorption equilibrium and adsorption rate in N{sub 2}O/hydrogenation synthesis mordenite system; N{sub 2}O/suisoka gosei morudenaito keie ni okeru kyuchaku haiko to kyuchaku sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tadashi; Komatsu, Hiromitsu; Takahashi, Yoshito; Kato, Satoru; Nagahama, Kunio [Tokyo Metropolitan University, Tokyo (Japan)

    1999-06-05

    Adsorption equilibrium and adsorption rate in N{sub 2}O/hydrogenation synthesis mordenite system were examined by the constant volume method. N{sub 2}O introduction pressure was adjusted to 70kPa comparatively high-dense, it was made to contact to the hydrogenation mordenite each other and by the mercury manometer pressure change and the N{sub 2}O absorbed amount was obtained. As the result, the adsorption equilibrium relation of N{sub 2}O could be arranged in the Langmuir style, and it was proven that N{sub 2}O equivalent heat of adsorption corresponded to the physical. And, the diffusion of N{sub 2}O in the hydrogenation synthesis mordenite was analyzed according to the surface diffusion model. Whether it was to show the aging variation of absorbed amount by assuming that it lowers with the progress of the adsorption, at the good accuracy was made on N{sub 2}O surface diffusion coefficient. In addition, the relationship between surface diffusion coefficient and zeolite pore diameter was clearly filtered. (translated by NEDO)

  6. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    Science.gov (United States)

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  7. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  8. Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.

    Science.gov (United States)

    Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas

    2013-03-01

    The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.

  9. Application of a micromembrane chromatography module to the examination of protein adsorption equilibrium.

    Science.gov (United States)

    Káňavová, Natália; Kosior, Anna; Antošová, Monika; Faber, René; Polakovič, Milan

    2012-11-01

    A micromembrane chromatography module based on a 96-well plate design and enabling fast and simple separation of small amounts of proteins was used for the determination of binding capacities of lysozyme, bovine serum albumin, ovalbumin, bovine γ-globulin, and human immunoglobulin G on a hydrophobic membrane Sartobind® Phenyl. Dependence of the binding capacity of the proteins on the ammonium sulfate concentration was examined in the salt concentration range of 0.5-2.0 mol L(-1). An exponential increase of the binding capacity was observed for all proteins. Simple Langmuir one-component isotherm was found suitable for the characterization of the effect of protein concentration in all cases. A combined effect of protein and salt concentrations was expressed via the Langmuir exponential isotherm and fitted the adsorption data for three of the investigated proteins well.

  10. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.

    Science.gov (United States)

    Zoschke, Kristin; Engel, Christina; Börnick, Hilmar; Worch, Eckhard

    2011-10-01

    The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration.

  11. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins.

    Science.gov (United States)

    Nobre, C; Santos, M J; Dominguez, A; Torres, D; Rocha, O; Peres, A M; Rocha, I; Ferreira, E C; Teixeira, J A; Rodrigues, L R

    2009-11-03

    Adsorption equilibrium of fructose, glucose and sucrose was evaluated on sulfonated poly(styrene-co-divinylbenzene) cation-exchange resins. Two types of resins were used: potassium (K+) gel-type and sodium (Na+) macroporous resins. Influence of the cation and effect of the resin structure on adsorption were studied. The adsorption isotherms were determined by the static method in batch mode for mono-component and multi-component sugar mixtures, at 25 and 40 degrees C, in a range of concentrations between 5 and 250 g L(-1). All adsorption isotherms were fitted by a linear model in this range of concentrations. Sugars were adsorbed in both resins by the following order: fructose > glucose > sucrose. Sucrose was more adsorbed in the Na+ macroporous resin, glucose was identically adsorbed, and fructose was more adsorbed in the K+ gel-type resin. Data obtained from the adsorption of multi-component mixtures as compared to the mono-component ones showed a competitive effect on the adsorption at 25 degrees C, and a synergetic effect at 40 degrees C. The temperature increase conducted to a decrease on the adsorption capacity for mono-component sugar mixtures, and to an increase for the multi-component mixtures. Based on the selectivity results, K+ gel-type resin seems to be the best choice for the separation of fructose, glucose and sucrose, at 25 degrees C.

  12. Removal of Mercury(II from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies

    Directory of Open Access Journals (Sweden)

    Shaojun Huang

    2016-01-01

    Full Text Available Poly(1-amino-5-chloroanthraquinone (PACA nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II was investigated by Fourier transform-infrared (FT-IR spectra and X-ray photoelectron spectroscopy (XPS analyses. The adsorption isotherm of Hg(II fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity.

  13. Equilibrium Isotherm Studies of Adsorption of Pigments Extracted from Kuduk-kuduk (Melastoma malabathricum L. Pulp onto TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    N. T. R. N. Kumara

    2014-01-01

    Full Text Available The adsorption of natural pigments onto TiO2 nanoparticles was investigated. The pigments were extracted from the dark purple colored pulp of the berry-like capsule of Kuduk-kuduk (Melastoma malabathricum L.. The Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models were used to analyze the equilibrium experimental data. Data correlated well with the Sips isotherm model, where the heterogeneity factor (n=0.24 indicated heterogeneous adsorption characteristics, with a maximum adsorption capacity of 0.0130 mg/g. The heterogeneous adsorption character was further supported by results obtained from zeta-potential measurements. When a dye-sensitized solar cell (DSSC was sensitized with the extracted pigment, the photo-energy conversion efficiency was measured to be 0.83%, thus proving the suitability of Kuduk-kuduk fruit pulp as a sensitizer in DSSCs.

  14. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2015-01-01

    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  15. 藻蓝蛋白静态吸附平衡及热力学研究%Adsorption equilibrium and thermodynamic of c-phycocyanin

    Institute of Scientific and Technical Information of China (English)

    刘杨; 虞永蕾

    2011-01-01

    研究了钝顶螺旋藻中藻蓝蛋白在DEAE-Sephadex A-50离子交换树脂上的静态吸附平衡,考察了无机盐NaCl浓度和聚合物PEG6000质量分数,以及吸附温度对藻蓝蛋白静态吸附平衡的影响,以Langmuir和Freundlich吸附等温方程分别对不同条件下的吸附平衡数据进行拟合,并计算出吸附过程的热力学参数△G,△H和△S.研究表明:NaCl具有显著抑制藻蓝蛋白吸附的作用,而PEG具有明显促进藻蓝蛋白吸附的作用;Freundlich吸附等温方程对藻蓝蛋白的吸附平衡数据具有更好的拟合效果,并判定吸附过程为优惠吸附;在不同的吸附条件下,AG <0,且其绝对值小于20 k J/mol,表明吸附过程可自发进行并为物理吸附,△H>O,表明该吸附过程为吸热过程,△S>0,该吸附过程属于熵增过程.%The adsorption equilibrium of c-phycocyanin from Spirulina platensis on DEAE-Sephadex A-SO was studied. The effects of NaCl concentration and polymer PEG6000 mass fraction, and adsorption temperature on the adsorption equilibrium of c-phycocyanin were investigated. The adsorption data were fitted to the Langmuir and Freundlich equations, and the thermodynamic parameters such as AG, Aif and AS were calculated. The results imply that NaCl can decrease the adsorption while PEC can increase the adsorption. The experimental data can be well fitted by Freundlich equations and the adsorption is verified to be the optimal adsorption. Under the various adsorption conditions, Gibbs free energy change △G0 indicates that the process is endothermic and physical adsorption. The entropy change △S>0 indicates that the adsorption is an entropic increasing process.

  16. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of

  17. Multilayer adsorption on fractal surfaces.

    Science.gov (United States)

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  18. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  19. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  20. Adsorption in air treatment; Adsorption en traitement de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, Dept. Systemes Energetiques et Environnement, 44 - Nantes (France)

    2003-01-01

    The aim of this article is to present the concepts and technologies of adsorption in air treatment. The following points are more particularly developed: 1 - approach of mechanisms: gas-solid transfer, equilibrium equations, multi-composed adsorption, adsorption influencing parameters, adsorption-desorption capacities and energies, specific case of hydrogen sulfide, the case of ketones; 2 - adsorbents implemented; 3 - adsorption and dynamical adsorber: flow and pressure drop in a porous medium, breakthrough curves, adsorption capacities, modeling of breakthrough curves; 4 - implementation of adsorber: models, dimensioning and practical operating data, process safety; 5 - regeneration of activated charcoals: reactivation, in-situ thermal regeneration. (J.S.)

  1. Adsorption of Zn{sup 2+} ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nibou, D., E-mail: dnibou@yahoo.fr [Laboratoire des Sciences et Genie des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Alger (Algeria); Mekatel, H.; Amokrane, S. [Laboratoire des Sciences et Genie des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Alger (Algeria); Barkat, M. [Centre de Recherche Nucleaire de Draria, B.P. 43, 16003 Draria, Alger (Algeria); Trari, M. [Laboratoire de stockage et de Valorisation des Energies Renouvelables, Universite des Sciences et de la Technologie Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Alger (Algeria)

    2010-01-15

    The adsorption of Zn{sup 2+} onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH{sub 3}){sub 2}]{sub 3}) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K{sub d}) indicated that the Zn{sup 2+} removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn{sup 2+}. The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents.

  2. Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a Fixed-Bed Column

    Directory of Open Access Journals (Sweden)

    N. E. Davila-Guzman

    2016-01-01

    Full Text Available Equilibrium and dynamic adsorption of heavy metals onto spent coffee ground (SCG were studied. The equilibrium adsorption of Cd2+, Cu2+, and Pb2+ in a batch system was modeled by an ion-exchange model (IEM based on an ion-exchange of heavy metals with calcium and protons bonded to active sites on SCG surface. The maximum amount of adsorbed metal ions obtained using the IEM was 0.12, 0.21, and 0.32 mmol/g of Cd2+, Cu2+, and Pb2+, respectively. Regeneration of SCG was evaluated using citric acid, calcium chloride, and nitric acid. The observed trend of desorption efficiency through four adsorption-desorption cycles was HNO3 > CaCl2 > C6H8O7. The effect of process variables such as flow rate and bed height during the dynamic adsorption was evaluated. Moreover, the applicability of a mass transfer model based on external mass transfer resistance, axial dispersion, and ion-exchange isotherm was evaluated, and the results were in good agreement with the experimental data for the adsorption in SCG packed column. The sensitivity analysis of the model parameters showed that axial dispersion coefficient is the most significant parameter in the dynamic simulation. The results obtained showed the potential of SCG as a low-cost material for wastewater metal removal in continuous systems.

  3. Studies of the adsorptive decoloration of aqueous solutions by MDFSD

    Directory of Open Access Journals (Sweden)

    Khaled Hartani

    2016-09-01

    Breakthrough plots were obtained beside the three isotherms. The breakthrough times were found as CV > MB > BG. These results were compatible to the adsorptivity estimated from the isotherms. It was found through this study that adsorption of CV followed pseudo-first order kinetics, the adsorption rate constant increases with increasing temperature, adsorbent concentration, MDFSD dose and pH. The adsorption equilibrium was shifted toward higher adsorption capacity by increasing the substrate concentration, temperature and pH. The adsorption data fit Freundlich, Langmuir, but attained a better correlation with the Langmuir model. Langmuir and freundlich constants, activation enthalpy of adsorption and the adsorption thermodynamic parameters were obtained.

  4. Adsorption Equilibrium and Kinetics of Gardenia Blue on TiO2 Photoelectrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Tae-Young Kim

    2014-01-01

    Full Text Available Nanostructured porous TiO2 paste was deposited on the FTO conductive glass using squeeze printing technique in order to obtain a TiO2 thin film with a thickness of 10 μm and an area of 4 cm2. Gardenia blue (GB extracted from Gardenia jasminode Ellis was employed as the natural dye for a dye-sensitized solar cell (DSSC. Adsorption studies indicated that the maximum adsorption capacity of GB on the surface of TiO2 thin film was approximately 417 mg GB/g TiO2 photoelectrode. The commercial and natural dyes, N-719 and GB, respectively, were employed to measure the adsorption kinetic data, which were analyzed by pseudo-first-order and pseudo-second-order models. The energy conversion efficiency of the TiO2 electrode with successive adsorptions of GB dye was about 0.2%.

  5. Adsorption equilibria of dimethylnaphthalene isomers

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Morbidelli, M. [Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata; Rombi, E.; Monaci, R.; Ferino, I.; Solinas, V. [Univ. di Cagliari (Italy). Dipt. di Scienze Chimiche

    1996-01-01

    Commercial sources of DMNs are the aromatic petroleum fraction of the appropriate boiling range and the coal liquefaction products. Adsorption processes for separating mixtures of dimethylnaphthalene (DMN) isomers are of potential interest for the production of 2,6-DMN. In this work, the adsorption equilibria of liquid mixtures of DMN isomers on zeolites have been investigated experimentally. The separation factors between the various isomers have been found to depend strongly on the composition of the fluid phase. A suitable equilibrium model, based on the adsorbed solution theory, has been developed to describe the multicomponent adsorption equilibria in the entire range of interest. Its performance has been tested using binary and ternary equilibrium data.

  6. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    Science.gov (United States)

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature.

  7. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  8. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Science.gov (United States)

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  9. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  10. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  11. Adsorption Characteristics of Remazol Black B on Anoxic Sludge

    Institute of Scientific and Technical Information of China (English)

    HUANG Man-hong; CHEN Liang; CHEN Dong-hui; CHEN Chao-peng

    2009-01-01

    The adsorption characteristics of Remazol Black B on anoxic sludge were investigated. The parameters, such as initial pH, sulphate concentration, and temperature,affecting the dye adsorption were studied. The adsorption data were analyzed with three adsorption isotherm models,namely Langmuir, Freudlich, and linear partition. The results showed that adsorption of Remazol Black B on the sterilized sludge reached equilibrium in 4 h. It also indicated that pH had significant effect on anoxic sludge adsorption behavior. The adsorption capacity of anoxic sludge decreased with the increase of pH value and the maximum adsorption capacity of dyes occurred at pH = 3. The adsorptive capacities increased with the decrease of temperature and increase of sulphate concentration. Results also indicated that the adsorption equilibrium of Remazol Black B on anoxic sludge could be well fitted by Freundlich model.

  12. Comparison of adsorption equilibrium and kinetic models for a case study of pharmaceutical active ingredient adsorption from fermentation broths: parameter determination, simulation, sensitivity analysis and optimization

    Directory of Open Access Journals (Sweden)

    B. Likozar

    2012-09-01

    Full Text Available Mathematical models for a batch process were developed to predict concentration distributions for an active ingredient (vancomycin adsorption on a representative hydrophobic-molecule adsorbent, using differently diluted crude fermentation broth with cells as the feedstock. The kinetic parameters were estimated using the maximization of the coefficient of determination by a heuristic algorithm. The parameters were estimated for each fermentation broth concentration using four concentration distributions at initial vancomycin concentrations of 4.96, 1.17, 2.78, and 5.54 g l−¹. In sequence, the models and their parameters were validated for fermentation broth concentrations of 0, 20, 50, and 100% (v/v by calculating the coefficient of determination for each concentration distribution at the corresponding initial concentration. The applicability of the validated models for process optimization was investigated by using the models as process simulators to optimize the two process efficiencies.

  13. ADSORPTION OF GOLD ON TBP EXTRACTING RESIN FROM HCl SOLUTION

    Institute of Scientific and Technical Information of China (English)

    GaoHaoqi; CaoZhikai; 等

    1998-01-01

    Adsorption of gold on TBP extracting resin from HCl solution was researched.All the effects of factors,such as solution acidity,TBP content,temperature,etc.,on adsorption equilibrium were discussed and the equilibrium equation was formulated.The breakthough time of adsorption process with fixed bed was studied through experiment.

  14. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  15. A Comparative Study on Equilibrium Adsorption of Dyes on Adsorbents Prepared from Coastal Plant, C. equisetifolia Seeds via Green Modification and Activated Carbon

    Directory of Open Access Journals (Sweden)

    Jaafar Jazulhafiz Jefri

    2016-01-01

    Full Text Available Eco-friendly adsorbents were prepared from coastal plant, C. equisetifolia seeds treated with β-cyclodextrin (Rhusorbent for the removal of dyes. The study was carried out to determine the effectiveness of Rhusorbent to remove common dyes such as malachite green (MG and neutral red (NR dyes from aqueous solutions in batch experiments. The commercial activated carbon (AC was also used in this equilibrium absorption study which includes the effect of adsorbent dosage, initial dye concentration and contact time. The percentage of MG dye removal of about 92.4% and 88.4% was achieved for both Rhusorbent and AC respectively at concentration of 60mg/L and 0.4g absorbent. The equilibrium adsorption of about 91.1% and 79.1% was achieved for both Rhusorbent and AC respectively involving NR dye. The scanning electron micrographs of Rhusorbent show uneven and rough surface prompting evidence for the effective adsorption of MG and NR dyes on the surface of adsorbents. For both adsorption studies, Langmuir and Freundlich isotherm models fitted well the adsorption data involving both Rhusorbent and AC. C. equisetifolia seeds are a potential source for bio-inspired adsorbents for the removal of MG and NR dyes.

  16. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  17. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    Science.gov (United States)

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  18. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming

    2011-01-01

    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.

  1. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  2. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Subhan, Fazle, E-mail: fazle@awkum.edu.pk [Department of Chemistry, Abdul Wali Khan University, Mardan, K.P.K (Pakistan); State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Yan, Zifeng, E-mail: zfyancat@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Peng, Peng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580 (China); Ikram, Muhammad [Department of Chemistry, Abdul Wali Khan University, Mardan, K.P.K (Pakistan); Rehman, Sadia [Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, K.P.K (Pakistan)

    2014-04-01

    Highlights: • High stable and regenerable 20%Ni-AlKIT-6(15) were synthesized. • High dispersion of nickel correlated with ultrasonic dispersion and three-dimensional pore network of AlKIT-6(15). • Sulfur adsorption capacity increases with increasing Lewis acid sites. • The kinetic pseudo second-order model and Langmuir isotherm fit the adsorption of sulfur compounds. - Abstract: High performance nickel supported on mesoporous AlKIT-6 (Si/Al = 15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N{sub 2} adsorption–desorption, XRD, NH{sub 3}-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5–30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization–regeneration cycles.

  3. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  4. 苯-水混合蒸气在活性炭上的二元吸附平衡%Binary Adsorption Equilibrium of Benzene-Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg@m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon. A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal, non-similar binary adsorption systems. A modified Polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculate the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  5. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon%混合蒸汽在活性炭上的吸附平衡

    Institute of Scientific and Technical Information of China (English)

    谢自立; 郭坤敏; 吴菊芳; 袁存乔

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of purevapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extendedXG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activatedcarbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory(IAST).

  6. Adsorption of Pb(Ⅱ) on Sediment of the Dianshan Lake:Adsorption Models and Kinetics

    Institute of Scientific and Technical Information of China (English)

    黄莉桦; 孙为民

    2004-01-01

    The adsorption characteristics of Pb on sediments of the Dianshan Lake in Shanghai was studied. The results show that (1)the relationship between the amount q of apparent equilibrium adsorption and the equilibrium concentration C conforms to the Freundlich isothermal adsorption equation; (2) the adsorption and desorption of Pb on sediments are not reversible, that is, adsorption/desorption of Pb exhibits hysteresis; (3) Pb adsorption behavior is initially fast, followed by a slow reaction, and the slow reaction conforms to a reversible first-order reaction; (4) by deducing the Pb adsorption kinetics, four kinetics parameters n, k1, k2, qmax independent of C could be worked out; (5) the equilibrium parameter (K) and the free energy change (ΔG) could also be determined,and the negative values of free energy change (ΔG) indicate the spontaneous nature of the adsorption.

  7. Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites

    Science.gov (United States)

    Ma, Keming; Wang, Baichen; Chen, Ping; Zhou, Xia

    2011-02-01

    The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.

  8. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    Science.gov (United States)

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  9. Role of the adsorption phenomenon on the ionic equilibrium distribution and on the transient effects in electrolytic cells.

    Science.gov (United States)

    Barbero, Giovanni; Freire, Fernando C M; Scalerandi, Marco; Alexe-Ionescu, Anca L

    2006-09-14

    We analyze the influence of the adsorption of ions at the interfaces on the transient phenomena occurring in an electrolytic cell submitted to a steplike external voltage. In the limit of small amplitude of the applied voltage, where the equation of the problem can be linearized, we obtain an analytical solution for the bulk and surface densities of ions and for the electrical potential. We also obtain, in this limit, the relaxation time for the transient phenomena.

  10. Adsorption of Acid Red 18 (AR18) by Activated Carbon from Poplar Wood- A Kinetic and Equilibrium Study

    OpenAIRE

    Reza Shokoohi; Vahid Vatanpoor; Mansuor Zarrabi; Akram Vatani

    2010-01-01

    Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18) dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dy...

  11. Adsorption of zinc on manganite (γ-MnOOH):particle concentration effect and adsorption reversibility

    Institute of Scientific and Technical Information of China (English)

    QIN Yan-wen; PAN Gang; ZHANG Ming-ming; LI Xian-liang

    2004-01-01

    The adsorption and desorption processes of Zn(Ⅱ) on γ-MnOOH as a function of particle concentrations (Cp) were studied. An obvious Cp effect was observed in this adsorption system. The degree of adsorption hysteresis increased greatly with the increasing of Cp, indicating that the extent of the real metastable-equilibrium states deviating from the ideal equilibrium state was enhanced with the increasing of Cp. The Cp-reversibility relationship confirmed the metastable-equilibrium adsorption (MEA) inequality (Pan, 1998a), which was the core formulation of the MEA theory. Because the MEA inequality was based on the basic hypothesis of MEA theory that adsorption density Г is not a state variable, the Cp-reversibility relationship gave indirect evidence to the basic hypothesis of MEA theory.

  12. Modeling, kinetic, and equilibrium characterization of paraquat adsorption onto polyurethane foam using the ion-pairing technique.

    Science.gov (United States)

    Vinhal, Jonas O; Lage, Mateus R; Carneiro, José Walkimar M; Lima, Claudio F; Cassella, Ricardo J

    2015-06-01

    We studied the adsorption of paraquat onto polyurethane foam (PUF) when it was in a medium containing sodium dodecylsulfate (SDS). The adsorption efficiency was dependent on the concentration of SDS in solution, because the formation of an ion-associate between the cationic paraquat and the dodecylsulfate anion was found to be a fundamental step in the process. A computational study was carried out to identify the possible structure of the ion-associate in aqueous medium. The obtained data demonstrated that the structure is probably formed from four units of dodecylsulfate bonded to one paraquat moiety. The results showed that 94% of the paraquat present in 45 mL of a solution containing 3.90 × 10(-5) mol L(-1) could be retained by 300 mg of PUF, resulting in the removal of 2.20 mg of paraquat. The experimental data were reasonably adjusted to the Freundlich isotherm and to the pseudo-second-order kinetic model. Also, the application of Morris-Weber and Reichenberg models indicated that both film-diffusion and intraparticle-diffusion processes were active during the control of the adsorption kinetics.

  13. Adsorption hysteresis in nanopores

    Science.gov (United States)

    Neimark; Ravikovitch; Vishnyakov

    2000-08-01

    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  14. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  15. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ATTAPULGITE

    Institute of Scientific and Technical Information of China (English)

    WANG Deping; LV Pengfei; YAN Yongsheng; LIU Hui; WANG Guanjun

    2007-01-01

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.

  16. Adsorption behavior of molybdenum onto D314 ion exchange resin

    Institute of Scientific and Technical Information of China (English)

    王明玉; 蒋长俊; 王学文

    2014-01-01

    The adsorption behavior of molybdenum onto D314 was studied with the static adsorption method. The adsorption process was analyzed from thermodynamic and kinetic aspects. The experimental results show that the equilibrium adsorption data conform satisfactorily to the Langmuir equation. In the adsorption process of D314 for molybdenum, the enthalpy changeΔH is positive when temperature is in the range of 298−338 K, which indicates that the adsorption is an endothermic process, and the elevated temperature benefits to the adsorption. Kinetic analysis shows that the adsorption rate is controlled by intraparticle diffusion and chemical diffusion at the same time. The adsorption mechanism of molybdenum onto D314 was discussed based on IR spectra.

  17. Competitive adsorption of heavy metal ions on peat

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-rong; ZHOU Li-min; WEI Peng; ZENG Kai; WEN Chuan-xi; LAN Hui-hua

    2008-01-01

    The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid: equilibrium is reached in twenty minutes. The adsorption of copper, nickel and cadmium is pH dependent over the pH range from 2 to 6. The adsorption kinetics can be excellently described by the Elovich kinetic equation. The adsorption isotherm fits a Langmuir model very well. The adsorption capacifies follow the order Cu2+>Ni2+>Cd2+ in single-component systems and the competitive adsorption capacities fall in the decreasing order Cu2+> Ni2+>Cd2+ in multi-component systems. The adsorption capacities of these three heavy metal ions on peat are consistent with their observed competitive adsorption capacities.

  18. THE ADSORPTION BEHAVIORS OF TOLUENE ON HYPERCROSSLINKED RESINS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Investigation of the adsorption characteristics of toluene on two hypercrosslinked resins. The static and the kinetic adsorption were studied. The equilibrium adsorption date was fitted to freundlich adsorption isotherm models to evaluate the model parameters. The enthalpy, free energy, entropy are indicative of an exothermic, a spontaneous and disorter decreasing process. Experimental results show that the two adsorbents are better than the Amberlite XAD-4 for removingthe toluene in aqueous solutions.

  19. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells:kinetics, equilibrium, and thermodynamics studies

    Institute of Scientific and Technical Information of China (English)

    Jun-jie GAO; Ye-bo QIN; Tao ZHOU; Dong-dong CAO; Ping XU; Danielle HOCHSTETTER; Yue-fei WANG

    2013-01-01

    Tea (Camellia sinensis L.) seed shells,the main byproduct of the manufacture of tea seed oil,were used as precursors for the preparation of tea activated carbon (TAC) in the present study.A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCI2 as an agent.The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g,respectively.The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue.Adsorption kinetics studies indicated that the pseudosecond-order model yielded the best fit for the kinetic data.An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step.Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process.These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  20. Monte Carlo simulations of Protein Adsorption

    Science.gov (United States)

    Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges

    2008-03-01

    Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.

  1. Adsorption of Chlortetracycline from Water by Rectories

    Institute of Scientific and Technical Information of China (English)

    吕国诚; 吴丽梅; 王晓龙; 廖立兵; 王小雨

    2012-01-01

    The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.

  2. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  3. Equilibrium Modeling for Hydrogen Isotope Separation by Cryogenic Adsorption%氢同位素低温吸附分离的平衡吸附模型

    Institute of Scientific and Technical Information of China (English)

    张东辉; 周理; 苏伟; 孙艳

    2006-01-01

    The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carrier gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carrier gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carrier in the fixed column, and the simulation compared well with the experimental results.

  4. Adsorption of Acid Red 18 (AR18 by Activated Carbon from Poplar Wood- A Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2010-01-01

    Full Text Available Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18 dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dye concentration and adsorbent dosage on dye removal. Langmuir and Freundlich isotherm models have been investigated. Pseudo-first order, pseudo-second order and modified pseudo-first order kinetic models have been used for experimental data. The results showed that removal efficiency was increased with increasing of adsorbent dosage, contact time and decreasing of pH, but with increasing of dye concentration, the removal efficiency was decreased. Adsorption isotherm models showed that Langmuir isotherm model was best fitted onto collected data (r2>0.978. In addition, kinetic models showed that sorption of AR18 onto activated carbon prepared from poplar wood follows the pseudo-first order model (r2>0.9758.

  5. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bin...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  6. Adsorption of 2-naphthalenesulfonic acid/sulfuric acid/sulfurous acid from aqueous solution by iron-impregnated weakly basic resin:Equilibrium and model

    Institute of Scientific and Technical Information of China (English)

    Changhai Li; Dongmei Jia

    2016-01-01

    Commercial grade weakly basic resin D301 was impregnated with iron through a simple method using ferric chloride. Experiments for single, bisolute and trinary competitive adsorption were carried out to investigate the adsorption behavior of 2-naphthalenesulfonic acid (NSA), sulfuric acid and sulfurous acid from their solution at 298K onto the novel hybrid iron impregnated D301(Fe-D301). Adsorption affinity of NSA on Fe-D301 was found to be much higher than that of sulfuric acid, while adsorption affinity of sulfuric acid was slightly higher than that of sulfurous acid. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The non-ideal competitive adsorbed model coupled with the single-solute adsorp-tion models were used to predict the bisolute and trinary-solute competitive adsorption equilibria. The NICM coupled with the Langmuir model yields the favorable representation of the bisolute and trinary-solute compet-itive adsorption behavior.

  7. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  8. ADSORPTION OF 2,4-DICHLOROPHENOL IN AQUEOUS SOLUTION ONTO ADSORPTION RESIN MODIFIED BY N-ACETYLANILINE

    Institute of Scientific and Technical Information of China (English)

    Zheng-hao Fei; Hua-bin Zhang; Zong-tang Liu

    2007-01-01

    A hypercrosslinked adsorption resin (ZH-05) modified by N-acetylaniline in the post crosslinking process was prepared. The adsorption properties of ZH-05 toward 2,4-dichlorophenol in comparison with granular activated carbon (GAC) and Amberlite XAD-4 were observed. The present study mainly focuses on the static equilibrium adsorption behaviors, desorption profiles and the proof of chemisorption. The results show that the Langmuir equation can give a perfect fitting to experimental data, and high temperature was favorable for adsorption of 2,4-dichlorophenol on ZH-05. A related equation was used to correlate the amount of chemisorption and the suppositional chemisorption equilibrium concentration of adsorbate in aqueous solution. The adsorption capacities from different ranges of temperature and the static desorption experiment both reveal the same conclusion, i.e., the adsorption of 2,4-dichlorophenol from water on ZH-05 is a coexistent process of physical adsorption and chemical transition as on GAC.

  9. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM.

  10. Modelling and simulation of affinity membrane adsorption.

    Science.gov (United States)

    Boi, Cristiana; Dimartino, Simone; Sarti, Giulio C

    2007-08-24

    A mathematical model for the adsorption of biomolecules on affinity membranes is presented. The model considers convection, diffusion and adsorption kinetics on the membrane module as well as the influence of dead end volumes and lag times; an analysis of flow distribution on the whole system is also included. The parameters used in the simulations were obtained from equilibrium and dynamic experimental data measured for the adsorption of human IgG on A2P-Sartoepoxy affinity membranes. The identification of a bi-Langmuir kinetic mechanisms for the experimental system investigated was paramount for a correct process description and the simulated breakthrough curves were in good agreement with the experimental data. The proposed model provides a new insight into the phenomena involved in the adsorption on affinity membranes and it is a valuable tool to assess the use of membrane adsorbers in large scale processes.

  11. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis

    1997-01-01

    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems req...

  12. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: fgc@nuclear.inin.mx; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)

    2009-03-15

    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  13. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  14. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nevine Kamal, E-mail: nkamalamin@yahoo.com [Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R{sup 2} > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy ({Delta}G{sup o}), standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), and the activation energy (E{sub a}) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  15. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  16. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  17. Ion adsorption components in liquid/solid systems

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-fu; HU Yue-li; ZHAO Fang; HUANG Zhong-zi; LEI Dian

    2006-01-01

    Experiments on Zn2+ and Cd2+ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25-500 mg/L and adsorbent range 10-150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.

  18. Adsorption kinetics,isotherm,and thermodynamic studies of adsorption of pollutant from aqueous solutions onto humic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures,and concentrations.Adsorption isotherms and equilibrium adsorption capacities were determined by the fittings of the experimental data to three well-known iso-therm models:Langmuir,Freundlich,and Redlich-Peterson.The results showed that the Langmuir and Redlich-Peterson models appear to fit the adsorption better than did the Freundlich adsorption model for the adsorption of chromium onto humic acid.The equilibrium constants were used to calculate thermodynamic parameters such as the change of free energy,enthalpy,and entropy.The derived adsorption constants (logaL) and their temperature dependencies from Langmuir isotherm have been used to calculate the corresponding thermodynamic quantities such as the free energy of adsorption,heat,and entropy of adsorption.The thermo-dynamic data indicate that Cr (VI) adsorption onto humic acid is entropically driven and characterized by physical adsorption.

  19. Adsorption of EDTA on activated carbon from aqueous solutions.

    Science.gov (United States)

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  20. Removal of Acid Green 25 from Aqueous Solution by Adsorption

    Directory of Open Access Journals (Sweden)

    R. Parimalam

    2012-01-01

    Full Text Available The adsorptive removal of Acid Green 25 by Ananas Comosus (L Activated carbon was investigated in this study. The effects of initial dye concentration, contact time, pH and temperature were studied for the adsorption of Acid Green 25 in batch mode. At 100 mg/L of initial dye concentration the adsorbent removes 182.6 mg/g of dye from solution; it further increases on increasing the temperature. The calculated values of ∆G° indicate that the adsorption process is spontaneous, negative ∆H° indicate that the adsorption process is exothermic and the positive value of ∆S° indicates the increase in randomness. The rate of dye adsorption follows pseudo second order model with an r2 value of 0. 999. Standard adsorption isotherms were used to fit the experimental equilibrium data. The Langmuir, Freundlich, and Tempkin models are appropriate to explain the adsorption phenomenon with good fit.

  1. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  2. Adsorption of ammonium on biochar prepared from giant reed.

    Science.gov (United States)

    Hou, Jie; Huang, Lei; Yang, Zhimin; Zhao, Yaqi; Deng, Chaoren; Chen, Yucheng; Li, Xin

    2016-10-01

    Giant reed was used as precursor for making biochar in order for the adsorption of NH4 (+)-N from aqueous solution. And the adsorption of the product to NH4 (+)-N was examined. The surface features of biochar were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD). XRD patterns showed several peaks and correspond to the high amount of crystalline material. The crystals contain KCl, K2O, CaO, MgO, and SiO and possess high surface area which enhances adsorption. The influence of different parameters such as initial concentration, adsorption time, pH, and ionic strength has been carried out. The adsorption could reach equilibrium through 24 h reaction and had the best adsorption amount at the solution pH values from 7 to 9. The cation has great influence on the adsorption of NH4 (+)-N, whereas the anion exerted a weaker effect. The adsorption followed pseudo-first-order and pseudo-second-order models. And the intraparticle diffusion and desorption studies further elucidated that the mechanism of adsorption on the product was ion exchange. The product equilibrium data was well described by the Langmuir and Freundlich model. The maximum adsorption capacities were 1.490 mg/g. Biochar derived from giant reed at 500 °C was suggested as a promising adsorbent for the removal of NH4 (+)-N from slightly polluted wastewater.

  3. Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal

    Directory of Open Access Journals (Sweden)

    Zeid Abdullah AlOthman

    2014-12-01

    Full Text Available Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.

  4. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  5. Equilibrium and kinetic modeling of iron adsorption and the effect by chloride, sulfate, and hydroxyl: evaluation of PVC-U drinking pipes.

    Science.gov (United States)

    Wang, Jia -Ying; Li, Shu-Ping; Xin, Kun-Lun; Tao, Tao

    2016-12-01

    The update of pipeline was quick over the last few years and the plastic pipes were widely used in the drinking water distribution systems (DWDSs), especially in the small-diameter pipes. In this study, the iron adsorptive characteristics and the affecting factors in unplasticized poly(vinyl chloride) (PVC-U) pipe were investigated. Results showed that the average amount of iron in the 10-year-old PVC-U pipe's interior surface was 2.80 wt% which was almost 187 times larger than that in a new one. Goethite (α-FeOOH) and magnetite (Fe3O4) were the major iron compounds in the scales which covered on the old pipes' interior surface and showed loose and porous images under a scanning electron microscope. Moreover, the influence of the iron concentration on the adsorption amount and rate was discussed. The adsorption amount was significantly influenced by iron concentration, but similar adsorption rate was discovered. Notably, iron was quantitatively adsorbed by PVC-U pipe during the experimental period in accordance with the pseudo second order kinetic model. Meanwhile, regression model and response surface methodology were used to analyze the regular of iron adsorption in different concentrations of chloride (Cl(-)), sulfate (SO4(2-)), and hydroxyl (OH(-)). It can be concluded that Cl(-) and OH(-) showed the strong ability of iron adsorption which were larger than SO4(2-).

  6. Adsorption equilibrium, kinetics and thermodynamics of α-amylase on poly(DVB-VIM)-Cu(+2) magnetic metal-chelate affinity sorbent.

    Science.gov (United States)

    Osman, Bilgen; Kara, Ali; Demirbel, Emel; Kök, Senay; Beşirli, Necati

    2012-09-01

    Designing an immobilised metal ion affinity process on large-scale demands that a thorough understanding be developed regarding the adsorption behaviour of proteins on metal-loaded gels and the characteristic adsorption parameters to be evaluated. In view of this requirement, interaction of α-amylase as a model protein with newly synthesised magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter, 53-212 μm) was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerising of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterised by N(2) adsorption/desorption isotherms, electron spin resonance, elemental analysis, scanning electron microscope and swelling studies. Cu(2+) ions were chelated on the m-poly(DVB-VIM) beads and used in adsorption of α-amylase in a batch system. The maximum α-amylase adsorption capacity of the m-poly(DVB-VIM)-Cu(2+) beads was determined as 10.84 mg/g at pH 6.0, 25 °C. The adsorption data were analyzed using three isotherm models, which are the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order, modified Ritchie's-second-order and intraparticle diffusion models were used to test dynamic experimental data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes.

  7. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  8. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  9. Comments on "Ion adsorption components in liquid/solid systems"

    Institute of Scientific and Technical Information of China (English)

    LI Wei; PAN Gang

    2007-01-01

    @@ Recently, Wu et al. (J Environ Sci 18(2006) 1167-1175) published a paper entitled as above. In the paper, the authors proposed a plotting method for describing adsorption isotherm, where adsorption density (q e) was plotted against the ratio of equilibrium concentration/particle concentration (Ce/W0) rather than (Ce) as traditionally defined. The authors claimed that this plot can eliminate the "particle concentration effect" (i.e., adsorption isotherm declines with increasing particle concentration), which may otherwise be inevasible with traditionally defined adsorption isotherms. We think that their conclusion is conceptually flawed and the plot may cause substantial inconstancy problems in practice.

  10. Adsorption of tellurium ions by nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.J.; Bateman, J.M.

    1976-05-01

    This study was undertaken to investigate the mechanism of the adsorption process, and to provide chemistry data useful for the design of a Failed Fuel Detection and Location system for pressurized water power reactors. Such systems frequently operate by monitoring the level of a selected fission product in the coolant from each rod channel by means of its nuclear radiation. $sup 132$Te is a suitable nuclide for such monitoring and its adsorption on walls of a chamber offers a particularly simple and convenient preconcentration step. The method was to observe the depletion of tellurite ion from a solution of known initial concentration through adsorption by a NiO suspension. The activity of the samples and hence the tellurium concentration were measured with a Ge(Li) spectrometer, which permitted the 230 keV peak of $sup 132$Te to be isolated from the spectrum of the $sup 132$I daughter. The study shows that adsorption process proceeds by a dehydration reaction between -OH groups on the hydroxylated surface and similar groups on the adsorbing species. The equilibrium adsorption ratio is controlled by the solution pH by its effect on the relative distribution of the neutral, monobasic and dibasic tellurite species via the two acid ionization constants.

  11. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process.

  12. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  13. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  14. Study on Adsorption of Rare Earth Elements by Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Congqiang

    2005-01-01

    For better understanding the adsorption of rare earth elements (REEs) by clay minerals and its controlling factors, the experiments on adsorption of REEs in solutions with 1 g·L-1 kaolinite were performed at different conditions. The results are as follows: the REEs reach equilibrium in the adsorption-desorption process for 24; Langmuir's adsorption curve is used for modeling the adsorption of REEs by kaolinite; a general trend is that the higher the contents of REEs are, the less obvious the fractionation is. Furthermore, there is significant effect of pH on the adsorption and fractionation of REEs by kaolinite, and the REEs distribution coefficient increases with increasing pH. When pH is nearly neutral, as reaches 7, heavy REEs are more adsorbed than light REEs.

  15. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  16. Short-Cycle Adsorption Refrigerator

    Science.gov (United States)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  17. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  18. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  19. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  20. Cadmium adsorption in montmorillonite as affected by glyphosate

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; LUO Xiao-san; SUN Rui-juan; CHEN Huai-man

    2004-01-01

    Behaviors of soil heavy metals are often affected by coexisting herbicides due to their physical and chemical interaction. Effect of glyphosate, an herbicide containing -PO32- and -COOH groups, on cadmium adsorption in montmorillonite was studied in detail. The results showed that cadmium adsorption quantity in montmorillonite increased with increasing soil solution pH and cadmium concentration as usual, but decreased with glyphosate, which is due to the formation of a low affinity complex of Cd and glyphosate and decreasing solution pH induced by glyphosate addition. When the equilibrium solution pH was below 6.7, glyphosate has little effect on cadmium adsorption, but when the equilibrium solution pH was above 6.7, glyphosate significantly decreased cadmium adsorption quantity in montmorillonite. In addition, the adding order of Cd and glyphosate also influenced Cd adsorption quantity in montmorillonite.

  1. Generalized statistical model for multicomponent adsorption equilibria on zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Gamba, G.; Paludetto, R.; Carra, S.; Morbidelli, M. (Dipartimento di Chimica Fisica Applicata, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (IT))

    1988-05-01

    The statistical thermodynamic approach to multicomponent adsorption equilibria on zeolites has been extended to nonideal systems, through the correction of cross coefficients characterizing the interaction between unlike molecules. Estimation of the model parameters requires experimental binary equilibrium data. Comparisons with the classical model based on adsorbed solution theory are reported for three nonideal ternary systems. The two approaches provide comparable results in the simulation of binary and ternary adsorption equilibrium data at constant temperature and pressure.

  2. A comparison of three adsorption equations and sensitivity study of parameter uncertainty effects on adsorption refrigeration thermal performance estimation

    Science.gov (United States)

    Zhao, Yongling; Hu, Eric; Blazewicz, Antoni

    2012-02-01

    This paper presents isosteric-based adsorption equilibrium tests of three activated carbon samples with methanol as an adsorbate. Experimental data was fitted into Langmuir equation, Freundlich equation and Dubinin-Astakov (D-A) equation, respectively. The fitted adsorption equations were compared in terms of agreement with experimental data. Moreover, equation format's impacts on calculation of the coefficient of performance (COP) and refrigeration capacity of an adsorption refrigeration system was analyzed. In addition, the sensitivity of each parameter in each adsorption equation format to the estimation of cycle's COP and refrigeration capacity was investigated. It was found that the D-A equation is the best form for presenting the adsorptive property of a carbon-methanol working pair. The D-A equation is recommended for estimating thermal performance of an adsorption refrigeration system because simulation results obtained using the D-A equation are less sensitive to errors of experimentally determined D-A equation's parameters.

  3. INVESTIGATION OF HEAT TRANSFER CHARACTER ON ADSORBENT BED WITH CONSIDERATION OF NON-EQUILIBRIUM ADSORPTION%具有非平衡吸附特征的吸附床传热特性研究

    Institute of Scientific and Technical Information of China (English)

    王文; 王如竹

    2001-01-01

    吸附床是固体吸附制冷系统的关键部件,对于连续回热等快速进行的吸附制冷循环,吸附床内温度的变化及其压力交变对吸附特性的影响不可忽视。本文对吸附床在吸附、解吸过程中的温度场和吸附率分布进行了模拟计算,并将其与采用平衡吸附模型的计算结果进行了比较,文中比较及结论有助于深入认识吸附床在制冷循环中工作特性,并为吸附床的设计提供参考依据。%The adsorbent bed is the key element of an adsorption refrigeration system.Its operation characteristics of temperature and pressure affect theadsorption characteristics and cycle performance greatly. The discussions about the temperature and adsorbed mass distribution in the adsorbent bedduring adsorption and desorption processes are shown with numerical method.Both models with equilibrium and non-equilibrium adsorption are compared with each other. It is concluded that non-equilibrium adsorption should beconsidered for solid adsorption refrigeration particularly for short cycletime. The discussion and comparison are helpful to reveal operating performance of adsorbent bed and also to provide reference to the design of adsorbent bed.

  4. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  5. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  6. Methanol adsorption studies of electrified ACF by MD simulations

    Institute of Scientific and Technical Information of China (English)

    LIANG Shiqiang; XU Jingzhong

    2004-01-01

    In order to clarify whether static electricity can impose a control on physical adsorption of polar adsorbates, MD simulations were carried out to study the adsorption/desorption behavior of methanol in the nanopores of electrified activated carbon fiber (ACF). Some special phenomena were observed from the MD simulations for methanol adsorption in a mesopore of electrified ACF. For example it takes a shorter time for the adsorbates to reach the adsorption sites on the mesopore wall, the liquid-like methanol is highly condensed, the methanol molecules have a unique distribution of space orientation, and the total energy of equilibrium state dropped a lot. These phenomena indicate the static electricity reinforced the interaction between the polar methanol and the electrified ACF, so that the intensity, stability and regularity of adsorption were increased, and thus we predict that the adsorption capacity will be increased and the adsorption process will be accelerated. When adsorption equilibrium was reached at room temperature, eliminated the electric charges and heated the system, the desorption tendency was evidently observed from our simulations at 60℃ or so.

  7. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    Science.gov (United States)

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  8. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  9. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  10. A biological oil adsorption filter.

    Science.gov (United States)

    Pasila, Antti

    2004-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.

  11. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  12. Adsorption of penicillin by decaffeinated tea waste

    Directory of Open Access Journals (Sweden)

    Gharbani Parvin

    2015-09-01

    Full Text Available Removal of penicillin has been investigated using decaffeinated tea waste (DCTW. Decaffeination of tea waste was investigated using different methods. Results indicate that ozonation was the most effective process for removal of penicillin. Batch adsorption experiments were completed at various temperatures (20, 30, and 40°C, DCTW dosages (2, 4, 6, 8, and 10 g per 250 mL, penicillin concentrations (4, 10, and 14 mg/L, and pH (3, 7, and 10 conditions. Studies showed that adsorption reaches equilibrium within 40 min. The main factor affecting adsorption of penicillin was the solution pH, with maximum adsorption occurring at pH 3. Higher adsorbent dosages and lower penicillin concentrations also resulted in higher percentages of penicillin removal. Results show that data obeyed the pseudo-first-order kinetic and Freundlich isotherm models. This process proves that low-cost DCTW could be used as a high performance adsorbent for removing penicillin from aqueous solutions.

  13. Adsorption of Ions at Uncharged Insoluble Monolayers

    Science.gov (United States)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  14. Adsorption of OCDD on different materials

    Energy Technology Data Exchange (ETDEWEB)

    Li Xian-Wei [Resources and Environmental Engineering Labs, R and D Center, Baoshan Iron and Steel Co., Ltd. (China); Etsuro, S.; Takashi, N. [Inst. of Multidisciplinary Research for Advanced Materials, Tohoku Univ. (Japan); Alfons, B. [Chemical Engineering, Vrije Univ., Brussels (Belgium)

    2004-09-15

    Introduction The concentration of PCDDs/PCDFs in flue gas from incineration has been limited to 0.1 ng TEQ/Nm{sup 3} in Japan, European Union and other countries. In response to strict legislation limiting the dioxin emissions, municipal waste incinerators (MWI) are commonly equipped with one or more techniques for PCDDs/PCDFs removal, such as dry sorbent injection, fixed or moving-bed adsorption and selective oxidation catalytic reactor etc. Up to now, none of these abatement techniques has been generally accepted, and it is comparatively expensive to achieve the goal, due to the problem of collecting the diffused dioxins. Spray dryer and fabric filter combination have been employed to control air emissions of PCDDs and PCDFs from MWIs. Adsorption of PCDDs/PCDFs and PCBs onto activated carbon and calcium (Ca)-based sorbents is of interest in the fields of air pollutant emission control and of contaminated soil treatment. Although activated carbon etc. has long been used as adsorbent for removal of dioxins, there is lack of equilibrium adsorption information for dioxin congeners, because experimental technique developed for measuring adsorption for such low-volatile high-toxicity organic compounds is scarce. A simple method based on Knudsen effusion technique is developed here for evaluating and quick screening of adsorbents.

  15. Adsorption of Compounds that Mimic Urban Stormwater Dissolved Organic Nitrogen.

    Science.gov (United States)

    Mohtadi, Mehrdad; James, Bruce R; Davis, Allen P

    2017-02-01

      Stormwater runoff carrying nitrogen can accelerate eutrophication. Bioretention facilities are among low impact development systems which are commonly used to manage urban stormwater quality and quantity. They are, however, not designed to remove dissolved organic nitrogen (DON) and may become a net DON exporter. Adsorption of seven organic nitrogenous compounds onto several adsorbents was examined. Batch adsorption study revealed that coal activated carbon (AC) exhibited the best performance in adsorption of the selected organic nitrogenous compounds. The highest adsorption capacity of coal AC was 0.4 mg N/g for pyrrole at an equilibrium concentration of 0.02 mg N/L, while adsorption was not detectable for urea at the same equilibrium concentration. The fastest compound to reach equilibrium adsorption capacity onto the coal AC was pyrrole (1 hour). The adsorption capacity of the coal AC for pyrrole and N-acetyl-d-glucosamine and 1-hour contact time is recommended for designing bioretention systems targeting organic nitrogenous compounds.

  16. The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior.

    Science.gov (United States)

    Latour, Robert A

    2015-03-01

    The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process.

  17. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    Science.gov (United States)

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  18. Influence of Si/Al ratio on hexane isomers adsorption equilibria

    NARCIS (Netherlands)

    Ferreira, A.F.P.; Mittelmeijer-Hazeleger, M.C.; Bliek, A.; Moulijn, J.A.

    2008-01-01

    In this work we aim to have a better knowledge of the influence of silica/alumina ratio (SAR) on the adsorption equilibrium of hexane isomers on MFI zeolites. With a manometric set-up coupled with a micro-calorimeter we did address adsorption properties and heats of adsorption of n-hexane, 2-methylp

  19. Adsorption of Halogenated Hydrocarbons from Gaseous Streams by Amberlite XAD-4 Resin and Activated Carbon: Equilibria

    NARCIS (Netherlands)

    Rexwinkel, G.; Heesink, A.B.M.; Swaaij, van W.P.M.

    1999-01-01

    Single-solute adsorption equilibria have been measured for the adsorption of the gaseous solutes chloroform, chlorobenzene, and 1,1,1-trichloroethane onto Amberlite XAD-4 resin. For 1,1,1-trichloroethane the adsorption equilibrium has also been measured with activated carbon Norit ROW 0.8 SUPRA as a

  20. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  1. Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies%由飞灰合成的沸石吸附废水中染料的动态平衡

    Institute of Scientific and Technical Information of China (English)

    王春峰; 李健生; 王连军; 孙秀云; 黄佳佳

    2009-01-01

    The removal performance of a basic dye, methylene blue (MB), in aqueous solution was investigated by adsorption process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX). Both adsorbents FA-ZA and FA-ZX were synthesized from fly ash prepared aluminosilicate gel followed by the hydrothermal treatment at 100℃ with the control of Si/Al molar ratio, respectively. The properties of the synthetic zeolites and commercial grade zeolites, such as thermal stability, elemental composition, and cation exchange capacity, were investigated for comparison. Batch method was used to study the influential parameters, such as initial pH value of the solution, temperatures, and adsorbents dosage, on the adsorption process. The experimental data were well fitted by Ho' pseudo-second-order model and liquid film diffusion model. The suitability of Langmuir and Freundlich isotherms to the equilibrium data was investigated in the solid-liquid system while the Langmuir model produces the best re-sults. Thermodynamic data (△H,△S, and △G) corresponding to the MB uptake were evaluated from the Langmuir model. In all the adsorption experiments, the adsorption capacity followed the order as follows: FA-ZX > FA-ZA. In addition, attempts were also made to regenerate the adsorbents.

  2. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    G Karthikeyan; N Muthulakshmi Andal; K Anbalagan

    2005-11-01

    Adsorption of ferric ions by chitin was studied by the batch equilibration method. The influence of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and temperature were experimentally verified. The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process were calculated. Thermodynamic and equilibrium parameters of the reaction were determined to understand the sorption behaviour of chitin. The results revealed that the adsorption of iron(III) by chitin is spontaneous, endothermic and favourable.

  3. Adsorption of trihalomethanes from water with carbon nanotubes.

    Science.gov (United States)

    Lu, Chungsying; Chung, Yao-Lei; Chang, Kuan-Foo

    2005-03-01

    Commercial carbon nanotubes (CNTs) were purified by acid solution and were employed as adsorbents to study adsorption of trihalomethanes (THMs) from water. The properties of CNTs such as purity, structure and nature of the surface were greatly improved after acid treatment which made CNTs become more hydrophilic and suitable for adsorption of low molecular weight and relatively polar THM molecules. The adsorption of THMs onto CNTs fluctuates very little in the pH range 3-7, but decreases with pH value as pH exceeds 7. A comparative study between CNTs and powdered activated carbon (PAC) for adsorption of THMs from water was also conducted. The short time needed to reach equilibrium as well as the high adsorption capacity of CHCl3, which accounts for a significant portion of THMs in the chlorinated drinking water, suggests that CNTs possess highly potential applications for THMs removal from water.

  4. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    Science.gov (United States)

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  5. Preparation of Aminated Macroporous Polyvinyl Alcohol Resins and Evaluation for Bilirubin Adsorption

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-chao; ZHANG Sheng-nan; HU Yue-han; XIE Hui; OU Lai-liang; YU Yao-ting; KONG De-ling; GU Han-qing

    2008-01-01

    In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine(HAD) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobic interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.

  6. Cryogels: morphological, structural and adsorption characterisation.

    Science.gov (United States)

    Gun'ko, Vladimir M; Savina, Irina N; Mikhalovsky, Sergey V

    2013-01-01

    Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.

  7. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  8. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  9. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    OpenAIRE

    Eko Ariyanto

    2012-01-01

    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  10. Adsorption theory for polydisperse polymers.

    NARCIS (Netherlands)

    Roefs, S.P.F.M.; Scheutjens, J.M.H.M.; Leermakers, F.A.M.

    1994-01-01

    Most polymers are polydisperse. We extend the self-consistent field polymer adsorption theory due to Scheutjens and Fleer to account for an arbitrary polymer molecular weight distribution with a cutoff chain length Nmax. In this paper, the treatment is restricted to homopolymers. For this case a ver

  11. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  12. Micellization and adsorption characteristics of CHAPS

    NARCIS (Netherlands)

    Giacomelli, CE; Vermeer, AWP; Norde, W

    2000-01-01

    The adsorption of CHAPS on hydrophobic latex particles was studied at 22 and 36 degrees C by determining the adsorbed amount and the enthalpy of adsorption. The adsorption process was compared to the micellization of the surfactant. Therefore, the critical micelle concentration (cmc) and the heat of

  13. Micellization and adsorption characteristics of CHAPS

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2000-01-01

    The adsorption of CHAPS on hydrophobic latex particles was studied at 22 and 36 C by determining the adsorbed amount and the enthalpy of adsorption. The adsorption process was compared to the micellization of the surfactant. Therefore, the critical micelle concentration (cmc) and the heat of micelli

  14. Adsorption equilibrium and kinetics of bamboo flavonoids on AB-8 resin%大孔树脂对竹叶总黄酮的吸附平衡和动力学

    Institute of Scientific and Technical Information of China (English)

    康家胜; 方菊; 魏凤玉; 杨艳明

    2011-01-01

    考察了7种大孔树脂对竹叶总黄酮的吸附及解吸特性,发现AB-8大孔树脂具有较高的吸附选择性和良好的脱附性能,并采用静态吸附实验研究了AB-8大孔树脂对竹叶总黄酮的吸附平衡和动力学特性。结果表明,Freundlich方程可较好地描述竹叶总黄酮在AB-8树脂上的吸附平衡;吸附自由能变?G〈0,熵变?S〉0,吸附为自发的熵增过程,升高温度有利于吸附分离。焓变?H为13.45 kJ/mol,在氢键键能范围内;吸附竹叶总黄酮前后树脂的红外谱图也表明,AB-8树脂对竹叶总黄酮分子的吸附是以氢键形式发生的物理吸附。动力学研究表明,吸附过程符合二级动力学方程,颗粒外的液膜扩散是决定吸附速率的主要步骤。%Seven types of macroporous resin were selected to compare their performances in adsorbing and desorbing bamboo flavonoids.AB-8 macroporous resin showed high selectivity and good desorption property.Static sorption experiments were carried out to study the adsorption equilibrium and kinetics of bamboo flavonoids on AB-8 macroporous resin at different temperatures.The results indicated that Freundlich equation was the best for the description of the adsorption equilibrium of bamboo flavonoids on AB-8 resin,the negative value of ΔG and the positive value of ?S showed that the adsorption was a spontaneous process of increased entropy,and the increase of temperature would benefit the adsorption process.The adsorption heat ?H was 13.45 kJ/mol within the range of hydrogen bond energy;and the FT-IR spectra of AB-8 resins before and after bamboo flavonoids adsorption further suggested that the adsorption of bamboo flavonoids on AB-8 resin was a type of physical adsorption with hydrogen bond.The kinetics results revealed the adsorption followed a pseudo-second-order reaction,and the adsorption rate was mainly decided by the film diffusion.

  15. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    Science.gov (United States)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  16. Neon and CO2 adsorption on open carbon nanohorns.

    Science.gov (United States)

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species.

  17. Competition between self-assembly and surface adsorption

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-02-01

    We investigate a minimal equilibrium polymerization model for the competition between self-assembly on a boundary and in solution that arises when an assembling system is in the presence of an adsorbing interface. Adsorption generally occurs upon cooling, but assembly (equilibrium polymerization) may arise either upon cooling or heating. Both cases are shown to exhibit a coupling between adsorption and self-assembly. When both assembly and adsorption proceed upon cooling, a change in the ratio of the enthalpy of adsorption to the enthalpy of assembly in solution can switch the system between a predominance of self-assembly in solution to assembly on the substrate. If assembly is promoted by heating and adsorption by cooling, as in many self-assembling proteins in aqueous solution, then a self-assembly analog of a closed loop phase boundary is found. In particular, the order parameter for assembly on the surface exhibits a peak as a function of temperature. As demonstrated by illustrative examples, the coupling between surface adsorption and self-assembly provides a powerful means of switching self-assembly processes on and off. Understanding and controlling this switching phenomenon will be useful in designing and directing self-assembly processes on surfaces for applications to nanomanufacturing and in developing treatments for diseases arising from pathological adsorption-induced assembly.

  18. Adsorption Characteristics of Polyvinyl Alcohols in Solution on Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Xiu-Yan Pang

    2012-01-01

    Full Text Available Expanded graphite (EG adsorbent was prepared with 50 mesh graphite as raw materials, potassium permanganate as oxidant, and vitriol as intercalation compound. Three kinds of polyvinyl alcohol (PVA with different degree of polymerization (DP in aqueous solution were used as adsorbates. We have studied the influence of initial PVA concentration, temperature and ionic strength on adsorption capacity. Langmuir constants and Gibbs free energy change (⊿G° were calculated according to experimental data respectively. Thermodynamic analysis indicates the equilibrium adsorbance of PVA on EG increase with the rise of SO42– concentration. Adsorption isotherms of PVA with different degree of polymerization are all types and we deduce PVA molecules lie flat on EG surface. Adsorption processes are all spontaneous. Kinetic studies show that the kinetic data can be described by pseudo second-order kinetic model. Second-order rate constants and the initial adsorption rate rise with the increasing of temperature and half-adsorption time decreases with the increasing of temperature. The adsorption activation energy of each PVA is less than 20 kJ•mol−1, physical adsorption is the major mode of the overall adsorption process.

  19. Behavior of phenol adsorption on thermal modified activated carbon☆

    Institute of Scientific and Technical Information of China (English)

    Dengfeng Zhang; Peili Huo; Wei Liu

    2016-01-01

    Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon (AC) samples after thermal modification were prepared by using muffle furnace. The phenol ad-sorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC sam-ples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the exper-imental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach 144.93 mg·g−1 which is higher than that of the raw sample, i.e. 119.53 mg·g−1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.

  20. Thermodynamics of multisolute adsorption from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jossens, L. (Univ. Calif. Berkeley); Fritz, W.; Myers, A.L.; Prausnitz, J.M.; Schluender, E.U.

    1978-01-01

    Equilibrium adsorption data were obtained at 20/sup 0/C on activated carbon for six ternary aqueous systems simulating organic chemical wastewaters (phenol/p-nitrophenol, p-chlorophenol/p-nitrophenol, p-nitrophenol/benzoic acid, p-chlorophenol/phenyl acetic acid, o-phenylphenol/p-nitrophenol, and 2,4-dichlorophenol/dodecyl benzol sulfonic acid). The three-parameter Toth adsorption isotherm represented well the component single-solute data adsorption. With the thermodynamic ideal-adsorbed-solution method, total adsorptions were calculated from single-solute data predicted by the Toth equation and compared with experimental data. Prediction for total adsorption was within approx. 2-10Vertical Bar3<; for adsorption of individual components, within approx. 3-20Vertical Bar3<. A new three-parameter adsorption isotherm was derived, which also represented well the single-solute data. For bi-solute systems where dissociation is negligible, calculated individual adsorptions agreed with experiment within 2Vertical Bar3<. Systematic deviations between calculation and observed results may be due to the acidities of the solutes.

  1. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  2. Studies of the adsorption thermodynamics of oxamyl on fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Government Postgraduate School, Sawai Madhopur (India). Faculty of Agriculture, Dept. of Soil Science

    2000-07-01

    The adsorption thermodynamics of oxamyl on fly ash at 10, 25 and 50{degree}C have been studied via the relevant adsorption isotherms, Freundlich constants, distribution coefficient and other thermodynamic parameters. The data were well fitted by the Freundlich equation and yielded S-shaped isotherms at all the temperatures studied. Thermodynamic parameters such as the thermodynamic equilibrium constant, the standard free energy change, the standard enthalpy change and the standard entropy change have been calculated as a means of predicting the nature of the adsorption process.

  3. General framework for adsorption processes on dynamic interfaces

    Science.gov (United States)

    Schmuck, Markus; Kalliadasis, Serafim

    2016-03-01

    We propose a novel and general variational framework modelling particle adsorption mechanisms on evolving immiscible fluid interfaces. A by-product of our thermodynamic approach is that we systematically obtain analytic adsorption isotherms for given equilibrium interfacial geometries. We validate computationally our mathematical methodology by demonstrating the fundamental properties of decreasing interfacial free energies by increasing interfacial particle densities and of decreasing surface pressure with increasing surface area.

  4. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver;

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...... by a slightly lower equilibrium coverage of H, which is a consequence of the lower heat of adsorption for H on Pd hydride....

  5. Assessment of multi-mycotoxin adsorption efficacy of grape pomace.

    Science.gov (United States)

    Avantaggiato, Giuseppina; Greco, Donato; Damascelli, Anna; Solfrizzo, Michele; Visconti, Angelo

    2014-01-15

    Grape pomace (pulp and skins) was investigated as a new biosorbent for removing mycotoxins from liquid media. In vitro adsorption experiments showed that the pomace obtained from Primitivo grapes is able to sequester rapidly and simultaneously different mycotoxins. Aflatoxin B1 (AFB1) was the most adsorbed mycotoxin followed by zearalenone (ZEA), ochratoxin A (OTA), and fumonisin B1 (FB1), whereas the adsorption of deoxynivalenol (DON) was negligible. AFB1 and ZEA adsorptions were not affected by changing pH values in the pH 3-8 range, whereas OTA and FB1 adsorptions were significantly affected by pH. Equilibrium adsorption isotherms obtained at different temperatures (5-70 °C) and pH values (3 and 7) were modeled and evaluated using the Freundlich, Langmuir, Sips, and Hill models. The goodness of the fits and the parameters involved in the adsorption mechanism were calculated by the nonlinear regression analysis method. The best-fitting models to describe AFB1, ZEA, and OTA adsorption by grape pomace were the Sips, Langmuir, and Freundlich models, respectively. The Langmuir and Sips models were the best models for FB1 adsorption at pH 7 and 3, respectively. The theoretical maximum adsorption capacities (mmol/kg dried pomace) calculated at pH 7 and 3 decreased in the following order: AFB1 (15.0 and 15.1) > ZEA (8.6 and 8.3) > OTA (6.3-6.9) > FB1 (2.2 and 0.4). Single- and multi-mycotoxin adsorption isotherms showed that toxin adsorption is not affected by the simultaneous presence of different mycotoxins in the liquid medium. The profiles of adsorption isotherms obtained at different temperatures and pH and the thermodynamic parameters (ΔG°, ΔH°, ΔS°) suggest that mycotoxin adsorption is an exothermic and spontaneous process, which involves physisorption weak associations. Hydrophobic interactions may be associated with AFB1 and ZEA adsorption, whereas polar noncovalent interactions may be associated with OTA and FB1 adsorption. In conclusion, this study

  6. 螯合树脂对有机胺脱硫液中Fe2+的吸附平衡%Adsorption equilibrium of chelating resin for Fe2+ in organic amine desulfurization solution

    Institute of Scientific and Technical Information of China (English)

    魏凤玉; 晏冉; 薛攀; 孙倩

    2013-01-01

    Four chelating resins were selected to compare their static adsorption and desorption on Fe2+ in the organic amine desulfurization liquid. D751 chelating resin showed high selectivity and good desorption property. Static sorption experiments were carried out to study the adsorption equilibrium of Fe2+on D751 chelating resin at different temperatures, and the adsorption mechanism was discussed by using FI- IR. The experimental results showed that the adsorption behavior of Fe2+ on D751 resin could be well described by either Langmuir or Freundich isotherm and the negative value of △G and the positive value of △S showed that the adsorption was a spontaneous process with increasing entropy, and the increase of temperature would benefit the adsorption process. Ion exchange and chelating adsorption were responsible for the removal of Fe2+ by FI-IR.%研究了4种螯合型树脂对有机胺脱硫液中Fe2+的吸附及解吸特性,发现D751型螯合树脂具有较高的吸附选择性和良好的脱附性能,采用静态吸附实验研究了D751型螯合树脂对Fe2+的吸附平衡,并用红外光谱的方法探讨了树脂吸附Fe2+的机理.结果表明,Langmuir模型和Freundlich模型均能较好地描述D751树脂对Fe2+的吸附行为;吸附自由能变△G<0,熵变AS>0,吸附为自发的熵增过程,升高温度有利于吸附的进行.红外光谱表明,D751树脂通过离子交换和配位双重作用与Fe2+结合.

  7. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  8. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  9. Heats of adsorption for charcoal nitrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.; Akkimaradi, B.S.; Rastogi, S.C. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Rao, R.R. [Government College for Boys, Kolar, Karnataka (India); Srinivasan, K. [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    1999-07-01

    This paper develops an empirical equation for correlation of the loading dependence of the heat of adsorption for two samples of activated charcoal-nitrogen systems. Details are given of the use of isotherm data, the evaluation of the heat of adsorption using the Clausius-Clapeyron equation, the plotting of primary adsorption data, and the plotting of the heat of adsorption as a function of the loading of the two samples. The need to consider the heat of adsorption property when designing a system in which a gaseous medium is adsorbed by a solid sorbent is discussed. (UK)

  10. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  11. Phosphate adsorption on lanthanum loaded biochar.

    Science.gov (United States)

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.

  12. Adsorption of Phosphate on Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HUGUO-SONG; ZHUZU-XIANG; 等

    1992-01-01

    The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isothems of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9,but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces.The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil> lateritic red soil> red soil> paddy soil,which was coincided with the content order of amorphous Al oxide.The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5,respectively.The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5.Generally the desorption was contrary to the adsorption with pH changing.There was a good accordance between adsorption or desorption and the concentration of Al in the suspension.The possible mechanisms of phosphate adsorption are discussed.

  13. Adsorption Studies of Radish Leaf Powder

    Directory of Open Access Journals (Sweden)

    Ankita

    2016-01-01

    Full Text Available Radish leaves (Raphanus sativus powder fractions was subjected to moisture adsorption isotherms at different isothermal temperature conditions from 15-45°C with an equal interval of 10°C. The sorption data obtained in gravimetric static method under 0.11–0.90 water activity conditions were subjected for sorption isotherms and found to be typical sigmoid trend. Experimental data were assessed for the applicability in the prediction through sorption models fitting and found that Polynomial and GAB equations performed well over all fitted models in describing equilibrium moisture content – equilibrium relative humidity (EMC–ERH relationships for shelf stable dehydrated radish leaf powder, over the entire range of temperatures condition under study. The net isosteric heat of sorption, differential entropy and free energy were determined at different temperatures and their dependence was seen with respect to equilibrium moisture content.

  14. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  15. Adsorption of Environmental Pollutants on Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both inorganic and organic pillared montmorillonites were used to adsorb phenol.Batch kinetics and isotherm studies were carried out to evaluate the effect of equilibrium time and pH on adsorption of phenol by montmorillouites and re-adsorbing characteristics of pillared montmorillonites.The adsorption of phenol increased with increasing solution pH values.The elimination ratio of phenol from the solution by the absorption of organic modified pillared montmorillonite (OrPMt) reached equilibrium quickly after vibrating for 5 minutes.Meanwhile for organic montmorillonite (OrMt),pillared montmorillouite (PMt) and montmorillonite (Mt),the time to reach phenol-absorption equilibrium were 20,30 and 90 minutes,respectively.The adsorbing capacity of the pillared montmorillonite modified with surfactant improved greatly.The phenol-adsorbing capacity of pillared montmorillonites mainly depended on microporous structure and surface component of the modified clays.After calcination at 500 ℃,the pillar structure and the basal spacing (1.83 nm) were still stable.So the pillared montmorillonite could be recycled,and it was a potential material for adsorbing environmental pollutants.

  16. Adsorption of ions onto treated natural zeolite

    Directory of Open Access Journals (Sweden)

    Cristiane da Rosa Oliveira

    2007-12-01

    Full Text Available This work presents studies of modification of a natural zeolite by activation with Na+ cations and functionalisation with Ba+2 and/or Cu2+ ions (FZ. The zeolite was characterized, modified and applied in adsorption studies of sulphate and isopropilxanthate ions as flocculated and powdered forms. The reuse of SO4Ba-FZ was investigated by adsorption-removal of either Ba2+ or sulphate ions in stages. Equilibrium data showed that the FZ, flocculated or as powder, provide considerable removal of sulphate ions (q mLangmuir: 1.15 and 1.35 meq.g-1, respectively and isopropilxanthate (q mLangmuir: 0.35 and 0.93 meq.g-1, respectively. The reuse of the SO4-FZ, either powdered or flocculated also uptake significant amount of Ba2+ or sulphate ions (q mLangmuir: 1.15 meq.g-1, providing a new alternative for the exhausted adsorbent. Thus the activated and functionalised zeolites create new options on the materials engineering area with applications in environmental applied adsorption processes.

  17. Aqueous mercury adsorption by activated carbons.

    Science.gov (United States)

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  18. Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds.

    Science.gov (United States)

    Weber, Caroline Trevisan; Collazzo, Gabriela Carvalho; Mazutti, Marcio Antonio; Foletto, Edson Luiz; Dotto, Guilherme Luiz

    2014-01-01

    Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180-200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g(-1) for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.

  19. Studies on Thermodynamic Properties of Adsorption of Theophylline by Phenolic Resin Adsorbents

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong; SHI Zuo-qing; SHI Rong-fu; FAN Yun-ge; YAN Yi-Zhong

    2004-01-01

    In the present work, the equilibrium adsorption of theophylline was studied by phenolic resin adsorbents: JDW-2(made by ourselves) and Duolite S-761 within a temperature range of 303-323 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of theophylline on the two adsorbents, the exponents n>1 indicate that they are favorable to the adsorptions; the negative values of all the isosteric adsorption enthalpies for the theophylline indicate the exothermic process of the adsorption, while the range(10-40 kJ/mol) of their magnitudes manifests the physisorption process; other thermodynamic properties, the free energy changes and the entropy change associated with adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation.

  20. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  1. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.

    Science.gov (United States)

    Shaker, Medhat A; albishri, Hassan M

    2014-09-01

    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical.

  2. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  3. Continuous water treatment by adsorption and electrochemical regeneration.

    Science.gov (United States)

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.

  4. Silicate Adsorption in Paddy Soils of Guangdong Province, China

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-Yuan; LI Hua-Xing; ZHANG Xin-Ming; LU Wei-Sheng; LIU Yuan-Jin

    2006-01-01

    Silicate adsorption in eight paddy soils developed from four different parent materials in Guangdong Province, China was examined to obtain fundamental knowledge of silicate adsorption to improve the efficacy of silicate fertilizer use in these areas. A correlation analysis showed that silicate adsorption did not obey the Langmuir equation (r = -0.664-0.301) but did obey the Freundlich and Temkin equations (P ≤ 0.01, r = 0.885-0.990). When the equilibrium silicate concentration (Ci) was less than 45 mg SiO2 kg-1, the adsorption capacity was in the following decreasing order of paddy soils: basalt-derived > Pearl River Delta sediment-derived > granite-derived > sand-shale-derived. Stepwise regression and path analysis showed that for the investigated paddy soils amorphous MnO and Al2O3 were the two most important materials that affected silicate adsorption. Moreover, as Ci increased, amorphous Al2O3 tended to play a more important role in silicate adsorption, while the effects of amorphous MnO on silicate adsorption tended to decrease.

  5. Adsorption Refrigeration Performance of Shaped MIL-101-Water Working Pair

    Institute of Scientific and Technical Information of China (English)

    芮征球; 李全国; 崔群; 王海燕; 陈海军; 姚虎卿

    2014-01-01

    A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82 °C, which is 7 °C lower than that of silica gel, and the desorption temperature is no more than 100 °C. At the evaporation temperature of 10 °C, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.

  6. Kinetics and isotherms of Neutral Red adsorption on peanut husk

    Institute of Scientific and Technical Information of China (English)

    HAN Runping; HAN Pan; CAI Zhaohui; ZHAO Zhenhui; TANG Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carded out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions.

  7. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    Science.gov (United States)

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  8. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  9. Adsorption of methyl orange onto protonated cross-linked chitosan

    Directory of Open Access Journals (Sweden)

    Ruihua Huang

    2017-01-01

    Full Text Available The adsorption of methyl orange (MO from aqueous solutions on protonated cross-linked chitosan was studied in a batch system. The results showed that the adsorption of MO onto protonated cross-linked chitosan was affected significantly by initial MO concentration, adsorbent dosage, adsorption temperature, and contact time. The pH value of solution had a minor impact on the adsorption of MO in a pH range of 1.0–9.1. The equilibrium isotherms at different temperatures (293, 303, and 313 K and pH values (4.5, 6.7, and 9.1 were investigated. Langmuir model was able to describe these Equilibrium data fitted perfectly. The maximum monolayer adsorption capacities obtained from the Langmuir model were 89.29, 130.9, and 180.2 mg/g at 293, 303, and 313 K, respectively. Adsorption kinetics at different concentrations (100, 200 and 300 mg/L and pH values (4.5, 6.7 and 9.1 were also studied. The kinetics was correlated well with the pseudo second-order model.

  10. On multicomponent adsorption equilibria of xylene mixtures on zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Paludetto, R.; Storti, G.; Gamba, G.; Carra, S.; Morbidelli, M.

    1987-11-01

    Adsorption equilibria of two ternary systems involving m-xylene, p-xylene, and either toluene or isopropylbenzene on zeolite K-Y have been studied. Due to nonideal behavior of the adsorbed phase, m- and p-xylene selectivity is strongly dependent upon composition. In particular, it is found that the addition of a third component can either enhance or depress such selectivity values. Ternary experimental data are well predicted by the developed equilibrium model, whose parameters can be estimated based only on experimental data relative to pure and binary mixtures. Finally, the role of these nonidealities in the equilibrium behavior on the dynamics of adsorption separation columns is discussed.

  11. Potential theory of adsorption for associating mixtures: possibilities and limitations

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Shapiro, Alexander; Kontogeorgis, Georgios

    2013-01-01

    The applicability of the Multicomponent Potential Theory of Adsorption (MPTA) for prediction of the adsorption equilibrium of several associating binary mixtures on different industrial adsorbents is investigated. In the MPTA the adsorbates are considered to be distributed fluids subject...... to describe the solid-fluid interactions. The potential is extended to include adsorbate-absorbent specific capacities rather than an adsorbent specific capacity. Correlations of pure component isotherms are generally excellent with individual capacities, although adsorption on silicas at different...... temperatures still poses a challenge. The quality of the correlations is usually independent on the applied EoS. Predictions for binary mixtures indicate that the MPTA+SRK is superior when adsorption occurs on non-polar or slightly polar adsorbents, while MPTA+CPA performs better for polar adsorbents, or when...

  12. Modelling of copper and zinc adsorption onto zeolite

    Directory of Open Access Journals (Sweden)

    H. Pavolová

    2016-10-01

    Full Text Available Adsorption of Cu(II and Zn(II ions from metallurgical solutions has been studied and the adsorption capacity of zeolite (Nižný Hrabovec, SK has been determined. Zeolites are characterized by relatively high sorption capacity, i.e. Cu(II and Zn(II can be removed even at relatively low concentrations. The experiments were realised in a batch system and evaluated using isotherms. According to the results of the experiments the adsorption equilibrium of Cu(II and Zn(II on zeolite was best described by Freundlich isotherm. The maximum sorption capacity was 1,48 and 1,49 mg/g for Cu(II and Zn(II, respectively. The experimental results of this study demonstrate that zeolite is suitable for adsorption of copper and zinc from aqueous solutions at low concentrations.

  13. Removal of Volatile Organic Compounds by Adsorption and Photocatalytic Oxydation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the study of equilibrium adsorption on viscose rayon-based activated carbon fiber (ACF) by gravimetric method, mounting of TiO2 on PAN-based activated carbon cloth (ACC) and their photocatalytic activity as well as adsorption performance for benzene were investigated. The crystallinity of TiO2 and pore structure were characterized by XRD and N2 adsorption. The results show that crystallinity of TiO2 and pore structure could be postulated by heat treatment condition. Both crystallinity of TiO2 and pore structure of hybrid have effects on photocatalytic performance of TiO2-mounted ACC. It would be more attractive and prospective for the combination of TiO2 photocatalytic activity and adsorption ability of porous materials.

  14. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)

    2010-09-15

    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)

  15. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  16. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  17. Effects of Phosphate Adsorption on Adsorption Desorption and Availability of Cu and Zn Ions in Ultisols and Alfisols

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Surface charge, secondary adsorption-desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequential extraction method, respectively. The soil surface negative charges increased whereas the amount of positive charges decreased with increase of P adsorbed. The soil secondary adsorption capacity for Cu2+and Zn2+ was positively significantly correlated with the amount of P adsorbed by the soils, which could be described by the Langmuir equation. The amounts of Cu2+ and Zn2+ desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear. After the soils adsorbed P,form distribution of Cu2+ and Zn2+ in soils changed remarkably.

  18. Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process

    Institute of Scientific and Technical Information of China (English)

    QADEER Riaz

    2005-01-01

    Influence of temperature on ruthenium adsorption on activated charcoal from 3 mol/L HNO3 solutions was investigated in the temperature range of 288 K to 308 K. It was observed that the rise in temperature increases the adsorption of ruthenium ions on activated charcoal and follows the kinetics of first order rate law with rate constant values 0.0564-0.0640 min-1 in the temperature range of 288 K to 308 K respectively. The activation energy for the adsorption process was found to be 1.3806kJ/mol. Various thermodynamics quantities namely △H, △S and △G were computed from the equilibrium constant KC values. The results indicated a positive heat of adsorption, a positive △S and a negative △G.

  19. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  20. Solar heat utilization for adsorption cooling device

    Directory of Open Access Journals (Sweden)

    Malcho Milan

    2012-04-01

    Full Text Available This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  1. Temperature Dependence of Hydrogen Adsorption Isotherms

    OpenAIRE

    Tibus, Stefan; Klier, Jürgen; Leiderer, Paul

    2005-01-01

    In the past it has already been shown that adsorption isotherms of liquid or solid films are not described completely by the Frenkel-Halsey-Hill theory. Substrate roughness as well as thermal fluctuations have to be taken into account in understanding the adsorption behavior. The inclusion of thermal fluctuations into the adsorption theory has already been addressed and proven to provide an explanation for the deviations found in many experiments. However, a resulting temperature dependence ...

  2. Aspects of vapor adsorption on solids

    Science.gov (United States)

    Beaglehole, David

    1997-02-01

    The paper describes three unexpected phenomena which were observed during studies of the vapour adsorption onto solids. A quadratic variation of the adsorption of water onto borosilicate glass is found at low pressures. Water films condensed onto mica start to conduct electricity at a thickness of almost exactly one monolayer, with fluctuations in the conductivity in the region of onset. Diffusion through a background atmosphere slows the adsorption process and asymetrical fluctuations in thickness are observed.

  3. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    Science.gov (United States)

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  4. Adsorption from Experimental Isotherms of Supercritical Gases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical method was proposed for the determination of absolute adsorption from experimental isotherms. The method is based on the numerical equality of the absolute and the excess adsorption when either the gas phase density or the amount adsorbed is not quite considerable. The initial part of the experimental isotherms, which represents the absolute adsorption, became linear with some mathematical manipulations. The linear isotherms were reliably formulated. As consequence, either the volume or the density of the supercritical adsorbate could be determined by a non-empirical way. This method was illustrated by the adsorption data of supercritical hydrogen and methane on a superactivated carbon in large ranges of temperature and pressure.

  5. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.

  6. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark

    Institute of Scientific and Technical Information of China (English)

    Phussadee Patnukao; Apipreeya Kongsuwan; Prasert Pavasant

    2008-01-01

    Powdered activated carbon (PAC) prepared from Eucalyptus camaldulensis Dehn. bark was tested for its adsorption capacity for Cu(Ⅱ) and Pb(Ⅱ). The experiment was conducted to investigate the effects of pH, contact time, initial metal concentration, and temperature. The best adsorption of both Cu(Ⅱ) and Pb(Ⅱ) occurred at pH 5, where the adsorption reached equilibrium within 45 min for the whole range of initial heavy metal concentrations (0.1-10 mmol/L). The adsorption kinetics was found to follow the pseudo-second order model where equilibrium adsorption capacities and adsorption rate constants increased with initial heavy metal concentrations. The adsorption isotherm followed Langmuir better than Freundlich models within the temperature range (25-60℃). The maximum adsorption capacities (qm) occurred at 60℃, where qm for Cu(Ⅱ) and Pb(Ⅱ) were 0.85 and 0.89 mmol/g, respectively. The enthalpies of Cu(Ⅱ) and Pb(Ⅱ) adsorption were 43.26 and 58.77 kJ/mol, respectively. The positive enthalpy of adsorption indicated an endothermic nature of the adsorption.

  7. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  8. Adsorption kinetics of Rhodamine-B on Used Black Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mohammad Abul Hossain

    2012-08-01

    Full Text Available Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B fromaqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism.The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-secondorder kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  9. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  10. Removal of hydrocarbons from synthetic road runoff through adsorptive filters.

    Science.gov (United States)

    Vesting, Andreas; Heinz, Eva; Helmreich, Brigitte; Wichern, Marc

    2015-01-01

    Compact filter systems, which are installed to significantly reduce the load of pollutants from road runoff, are very promising treatments for urban runoff. The objective of this research was to evaluate the effectiveness of activated carbon, activated lignite, zero valent iron, exfoliated graphite, amorphous ferric hydroxide, and activated alumina at removing petrol hydrocarbons from synthetic road runoff. Therefore, the kinetics and the equilibrium adsorption of petrol hydrocarbons onto these adsorbents were investigated using column adsorption experiments at levels ranging from 100 to 42 g L(-1). Of the tested adsorbents, exfoliated graphite is the most effective with a maximum adsorption capacity for petrol hydrocarbons of 3,850 mg g(-1). The experimental equilibrium data are fitted to the Freundlich and Langmuir models.

  11. Application of adsorption in water purification treatment; Kyuchaku no josui shori eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Sakoda, A. [Tokyo Univ. (Japan)

    1997-08-05

    It is necessary to know that how much the organic materials that are to be removed by adsorption can be adsorbed by active carbon when thinking of water treatment using active carbon adsorption. The adsorption equilibrium relation in general is strongly correlated with the pore distribution and specific surface area of active carbon, however, it is not related directly with the particle form, powder or fiber. Equilibrium adsorption amount against organic material concentration can be decided by the solution of adsorption equilibrium relation and by using this, maximum theoretical amount of water treated per unit amount of activated carbon can be obtained. Adsorption rate is also an important adsorption characteristic similar to adsorption equilibrium relation. In this report, fundamentals of liquid phase adsorption operation using active carbon are described and further, comparatively new type of water treatment using active carbon fiber, biological active carbon and so forth is given. Recently, new materials like virus, pesticides and so forth have been appeared one after another to be treated. In future, development of new process using new type of adsorbents along with the combination of film separation is predicted, however, demand of active carbon may not be reduced so far. 13 refs., 3 figs.

  12. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    Science.gov (United States)

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  13. Adsorption of CO2 by alginate immobilized zeolite beads

    Science.gov (United States)

    Suratman, A.; Kunarti, E. S.; Aprilita, N. H.; Pamurtya, I. C.

    2017-03-01

    Immobilized zeolit in alginate beads for adsorption of CO2 was developed. Alginate immobilized zeolit beads was generated by dropping the mixture of Na-alginate and zeolite solution into Ca2+ solution. The adsorption efficacy such as the influence of contact time, mass of zeolite, flowrate of CO2, and mass of adsorbent was evaluated. The adsorption of CO2 onto alginate immobilized zeolit beads was investigated by performing both equilibrium and kinetic batch test. Bead was characterized by FTIR and SEM. Alginate immobilized zeolit beads demonstrated significantly higher sorption efficacy compared to plain alginate beads and zeolite with 0.25 mmol CO2 adsorbed /g adsorbent. Optimum condition was achieved with mass composition of alginate:zeolite (3:1), flowrate 50 mL/min for 20 minutes. The alginate immobilized zeolit beads showed that adsorption of CO2 followed Freundlich isotherm and pseudo second order kinetic model. Adsorption of CO2 onto alginate immobilized zeolite beads is a physisorption with adsorption energy of 6.37 kJ/mol. This results indicates that the alginate immobilized zeolit beads can be used as promising adsorbents for CO2.

  14. A REVIEW OF HEAVY METAL ADSORPTION BY MARINE ALGAE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  15. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  16. Protein adsorption on nanoparticles: model development using computer simulation

    Science.gov (United States)

    Shao, Qing; Hall, Carol K.

    2016-10-01

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  17. Enhanced adsorption of quaternary amine using modified activated carbon.

    Science.gov (United States)

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  18. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface

    Directory of Open Access Journals (Sweden)

    Jolanta Flieger

    2015-12-01

    Full Text Available A series of imidazolium and pyridinium ionic liquids with different anions (Cl−, Br−, BF4−, PF6− has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile but it was not sensitive to the change of temperature in the range of 5–40 °C.

  19. A review of heavy metal adsorption by marine algae

    Science.gov (United States)

    Pan, Jin-Fen; Lin, Rong-Gen; Ma, Li

    2000-09-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  20. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  1. Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project

    Science.gov (United States)

    Tribe, Lorena; Barja, Beatriz C.

    2004-01-01

    A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…

  2. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been inve

  3. Adsorption of copper(Ⅱ) and chromium(Ⅵ) on diaspore

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; WANG Jian-rong; HU Yue-hua

    2008-01-01

    The adsorption of Cu(Ⅱ) and Cr(Ⅵ) on diaspore was studied with the help of X-ray diffraction analysis, BET measurement, zeta potential measurement and atomic adsorption spectrometry. The adsorption equilibrium almost reaches within 60 min. The adsorption isotherms of Cu(Ⅱ) and Cr(Ⅵ) could be well described by the Langmuir equation. The adsorption capacities of Cu(Ⅱ) and Cr(Ⅵ) are 1.944 and 1.292 mg/g, respectively. The adsorption percentage of Cr(Ⅱ) increases with the increment of solution pH, but the adsorption percentage of Cr(Ⅵ) decreases. This could be explained by zeta potential theoretical and electrostatic attraction between metal ions and diaspore surface.

  4. Kinetics and mechanism of the adsorption of methylene blue onto ACFs

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-yuan

    2008-01-01

    The kinetics and mechanism of methylene blue (MB) adsorption onto activated carbon fibers (ACFs) have been studied.The effects of various experimental parameters, such as the initial MB concentration and the ACF mass, on the adsorption rate were investigated. Equilibrium data were fit well by a Freundlich isotherm equation. Adsorption measurements show that the process is very fast. The adsorption data were modeled using first- and second-order kinetic equations and intra-particle diffusion models. It was found that the first-order kinetic equation could best describe the adsorption kinetics. The adsorption process was found to be complex and controlled by both surface and pore diffusion with surface diffusion at the earlier stages, followed by pore diffusion at the later stages. The thermodynamic parameters △G0, △S0 and △H0, have been calculated. The thermodynamics of the MB-ACF system indicate that the adsorption process is spontaneous.

  5. Kinetics comparison on simultaneous and sequential competitive adsorption of heavy metals in red soils

    Institute of Scientific and Technical Information of China (English)

    王艳; 李忠武; 黄斌; 蒋卫国; 郭亮; 黄金权; 曾光明

    2015-01-01

    To compare the adsorption kinetics of Cu, Zn and Cd introduced into red soils simultaneously and sequentially as well as their distribution coefficients, the ability of red soils to retain heavy metals was evaluated by performing batch experiments. The results indicate that Cu is preferentially adsorbed by red soils no matter in simultaneous or in sequential situation. The adsorption amount of Cd is the minimum in simultaneous competitive adsorption experiment. As heavy metals are added into red soils sequentially, the heavy metal adsorptions are relatively hard to reach equilibrium in 2 h. Red soils retain more Cd than Zn, which is opposite to the result in simultaneous adsorption. The addition sequences of heavy metals affect their adsorbed amounts in red soils to a certain extent. The joint distribution coefficients of metals in simultaneous adsorption are slightly higher than those in sequential adsorption.

  6. Adsorption potential of mercury(II) from aqueous solutions onto Romanian peat moss.

    Science.gov (United States)

    Bulgariu, Laura; Ratoi, Mioara; Bulgariu, Dumitru; Macoveanu, Matei

    2009-06-01

    This study was undertaken to evaluate the adsorption potential of Romanian peat moss for the removal of mercury(II) from aqueous solutions. The batch system experiments carried out showed that this natural material was effective in removing mercury(II). The analysis of FT-IR spectra indicated that the mechanism involved in the adsorption can be mainly attributed to the binding of mercury(II) with the carboxylic groups of Romanian peat moss. Adsorption equilibrium approached within 60 min. The adsorption data fitted well the Langmuir isotherm model. The maximum adsorption capacity (qmax) was 98.94 mg g(-1). Pseudo-second-order kinetic model was applicable to the adsorption data. The thermodynamic parameters indicate that the adsorption process was spontaneous as the Gibbs free energy values were found to be negative (between -17.58 and -27.25 kJ mol(-1)) at the temperature range of 6-54 degrees C.

  7. Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs.

    Science.gov (United States)

    Zhang, Fan; He, Shengfu; Zhang, Chen; Peng, Zhiyuan

    2015-01-01

    Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

  8. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    Science.gov (United States)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  9. Adsorption of phenolic compounds from aqueous solutions by aminated hypercrosslinked polymers

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhen-mao; LI Ai-min; CAI Jian-guo; WANG Chun; ZHANG Quan-xin

    2007-01-01

    Two novel polymers (NJ- 1 and NJ-2) were synthesized by chemically modified a hypercrosslinked polymer NJ-0 with dimethylamine and trimethylamine, respectively. The comparison of the adsorption properties of the three polymers toward phenol, resorcin and phloroglucin was made. The study focused on the static equilibrium adsorption behaviors and the adsorption thermodynamics.Freundlich equation was found to fit the adsorption results well. The effect of amino groups introduced onto the surface of the resin and the structure of phenolic compounds on the adsorption were also studied. The hydrogen-bonding interaction and electrostatic interaction could happen between the amino groups and the adsorbates. The adsorption impetus increased as quantity of hydroxyl groups increased, but the adsorption capacity decreased due to the drop of the matching degree of the aperture of resins and the diameter of adsorbate molecules.

  10. Fast and considerable adsorption of methylene blue dye onto graphene oxide.

    Science.gov (United States)

    Zhang, Wenjie; Zhou, Chunjiao; Zhou, Weichang; Lei, Aihua; Zhang, Qinglin; Wan, Qiang; Zou, Bingsuo

    2011-07-01

    The quite efficient adsorption of methylene blue dye from an aqueous solution by graphene oxide was studied. The favorable electrostatic attraction is the main interaction between methylene blue and graphene oxide. As graphene oxide has the special nanostructural properties and negatively charged surface, the positively charged methylene blue molecules can be easily adsorbed on it. In the aqueous solution of methylene blue at 293 K, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 1.939 mg/mg and a Langmuir adsorption equilibrium constant of 18.486 mL/mg. The adsorption amount increased with the increase of the solution pH (3-11), was not affected significantly by KCl under the examined condition and the adsorption process was exothermic in nature. The fast and considerable adsorption of graphene oxide could be regarded as a potential adsorbent for cationic dye removal in wastewater treatment process.

  11. ADSORPTION OF 2,4-DICHLOROBENZOXYACETIC ACID ONTO HYPERCROSSLINKED RESIN MODIFIED BY PHENOLIC HYDROXYL GROUP(AM-1)

    Institute of Scientific and Technical Information of China (English)

    Zheng-hao Fei; Jin-long Chen; Jian-guo Cai; Yu-ping Qiu; Ai-min Li; Quan-xing Zhang

    2004-01-01

    An experimental comparison of the adsorption properties of hypercrosslinked resin AM-1 modified by phenolic hydroxyl group with Amberlite XAD-4 toward 2,4-dichlorobenzoxyacetic acid was performed. This paper focuses on the static equilibrium adsorption behaviors and the adsorption thermodynamics. Two isotherm models were used to explain the results. It is seen that the Langmuir equation can give a perfect fit. The adsorption capacities from the different ranges of temperature, the adsorption enthalpy change value and the comparison of desorption conditions lead to the same conclusion that the adsorption of 2,4-dichlorobenzoxyacetic acid from water onto AM-1 is a type of physical and chemical transition.

  12. Adsorption of Basic Brown and Chrysophenine from Water Solution by Magnesium Silicate Gel

    Directory of Open Access Journals (Sweden)

    Zhun Zhao

    2015-01-01

    Full Text Available Noncrystalline, high surface area magnesium silicate gel was successfully prepared by hydrothermal method. Such product was characterized by BET and XRD to determine surface area 576.4 m2·g−1, average pore width 2.76 nm, and amorphous surface. The adsorption behaviors of Basic Brown and Chrysophenine on magnesium silicate gel were investigated through changing initial concentration, adsorbent dosage, solution pH, contact time, and temperature. The experimental data was analyzed by the adsorption isotherms and kinetics. The results showed the adsorption progress was fast for Basic Brown, and the adsorption equilibrium was finished in 2 h, while the adsorption equilibrium of Chrysophenine was finished in 7 h. Freundlich isotherm model and second-order kinetic models described the adsorption process very well.

  13. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  14. Polychelated cryogels: hemoglobin adsorption from human blood.

    Science.gov (United States)

    Erol, Kadir

    2017-02-01

    The separation and purification methods are extremely important for the hemoglobin (Hb) which is a crucial biomolecule. The adsorption technique is popular among these methods and the cryogels have been used quite much due to their macropores and interconnected flow channels. In this study, the Hb adsorption onto the Cu(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA)-Cu(II), cryogels was investigated under different conditions (pH, interaction time, initial Hb concentration, temperature and ionic strength) to optimize adsorption conditions. The swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), surface area (BET), elemental and ICP-OES analysis were performed for the characterization of cryogels. Polyethyleneimine (PEI) molecule was used as a Cu(II)-chelating ligand. The Hb adsorption capacity of cryogels was determined as 193.8 mg Hb/g cryogel. The isolation of Hb from human blood was also studied under optimum adsorption conditions determined and the Hb (124.5 mg/g cryogel) was isolated. The adsorption model was investigated in the light of Langmuir and Freundlich adsorption isotherm models and it was determined to be more appropriate to the Langmuir adsorption isotherm model.

  15. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.

    2010-01-01

    in context of substrate geometry and compared with the ones of other copper planes. There are no indications of dissociative adsorption of CO, only residual carbon and oxygen were found after adsorbate desorption around 220 K. CO molecules show a strong tendency to "on top" adsorption in sites far from...

  16. Kinetics of polymer adsorption, desorption and exchange.

    NARCIS (Netherlands)

    Dijt, J.C.

    1993-01-01

    The aim of the study in this thesis was to gain more insight in the kinetics of polymer adsorption. To this end some well-characterised polymers have been systematically investigated.In the process of polymer adsorption one may distinguish three kinetic contributions: transport to the surface, attac

  17. ADSORPTION OF DYES ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    ChenShuixia; WuChangqing; 等

    1998-01-01

    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  18. Adsorption and desorption of reversible supramolecular polymers

    NARCIS (Netherlands)

    Zweistra, H.J.A.; Besseling, N.A.M.

    2006-01-01

    We report numerical mean-field results on the quasichemical level of approximation that describe adsorption of reversible supramolecular polymers at a flat interface. Emphasis is laid on the regime of strong adsorption from a dilute solution. There are two differences with respect to macromolecular

  19. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  20. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  1. Robust design of binary countercurrent adsorption separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Storti, G. (Univ. degli Studi di Padova (Italy)); Mazzotti, M.; Morbidelli, M.; Carra, S. (Piazza Leonardo da Vinci, Milano (Italy))

    1993-03-01

    The separation of a binary mixture, using a third component having intermediate adsorptivity as desorbent, in a four section countercurrent adsorption separation unit is considered. A procedure for the optimal and robust design of the unit is developed in the frame of Equilibrium Theory, using a model where the adsorption equilibria are described through the constant selectivity stoichiometric model, while mass-transfer resistances and axial mixing are neglected. By requiring that the unit achieves complete separation, it is possible to identify a set of implicity constraints on the operating parameters, that is, the flow rate ratios in the four sections of the unit. From these constraints explicit bounds on the operating parameters are obtained, thus yielding a region in the operating parameters space, which can be drawn a priori in terms of the adsorption equilibrium constants and the feed composition. This result provides a very convenient tool to determine both optimal and robust operating conditions. The latter issue is addressed by first analyzing the various possible sources of disturbances, as well as their effect on the separation performance. Next, the criteria for the robust design of the unit are discussed. Finally, these theoretical findings are compared with a set of experimental results obtained in a six port simulated moving bed adsorption separation unit operated in the vapor phase.

  2. Study of Adsorptive Ethylene/Ethane Separation with Ag+—Exchanged Resins via π—Complexation

    Institute of Scientific and Technical Information of China (English)

    WUZhongbiao; LIUYue

    2002-01-01

    Ag+-exchanged resins are prepared and studied for ethylene/ethane separation by adsorption.On Ag+-exchanged S9,at 25℃ and 0.1013MPa,the equilibrium adsorbed amount for C2H4 is 0.992mmol·g-1,and the adsorption ratio for C2H4/C2H6 is 3.56.The adsorption capacity can be restored almost completely at 25℃ and 75℃,and the desorption residual amount is less than 0.01mmol·g-1.For the adsorption consisting of physical adsorption and π-complexation with energy heterogeneity,the equilibrium data are correlated with Langmuir-Freundlich isotherm equation.Furthermore,the heat of adsorption and the overall diffusion time constants are calculated from the experimental datal.Considering all the adsorption characteristics,the application potential for industrial adsorption process is discussed.

  3. Heterogeneity of Adsorption Sites and Adsorption Kinetics of n-Hexane on Metal-Organic Framework MIL-101(Cr)

    Institute of Scientific and Technical Information of China (English)

    Xuejiao Sun; Jinpeng Miao; Jing Xiao; Qibin Xia⁎; Zhenxia Zhao

    2014-01-01

    abstract The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-101(Cr) were studied by gravimetric method and temperature-programmed de-sorption (TPD) experiments. The MIL-101 crystals were synthesized by microwave irradiation method. The ad-sorption isotherms and kinetic curves of n-hexane on the MIL-101 were measured. Desorption activation energies of n-hexane from the MIL-101 were estimated by TPD experiments. The results showed that equilibrium amount of n-hexane adsorbed on the MIL-101 was up to 5.62 mmol·g-1 at 298 K and 1.6 × 104 Pa, much higher than that of some activated carbons, zeolites and so on. The isotherms of n-hexane on the MIL-101 could be wel fitted with Langmuir-Freundlich model. TPD spectra exhibit two types of adsorption sites on the MIL-101 with desorption activation energies of 39.41 and 86.69 kJ·mol-1. It reflects the surface energy heterogeneity on the MIL-101 frameworks for n-hexane adsorption. The diffusion coefficients of n-hexane are in the range of (1.35-2.35) × 10-10 cm2·s-1 with adsorption activation energy of 16.33 kJ·mol-1. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  4. Factors affecting drug adsorption on beta zeolites.

    Science.gov (United States)

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa

    2013-05-01

    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity.

  5. Adsorption kinetics of methyl violet onto perlite.

    Science.gov (United States)

    Doğan, Mehmet; Alkan, Mahir

    2003-01-01

    This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.

  6. The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

    OpenAIRE

    Cortes, P; S. Deng; Smith, G. B.

    2009-01-01

    An adsorption equilibrium and a kinetic study of Bacillus atrophaeus on Single-Wall Carbon Nanotubes (SWCNTs) were here performed to provide the basis for developing biosensor devices for detecting threatening micro-organisms in water supply systems. B. atrophaeus spores and carbon nanotubes were subjected to a batch adsorption process to document their equilibria and kinetics. Here, commercial nanotubes were either studied as received or were acid-purified before adsorption experiments. The ...

  7. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2

    OpenAIRE

    Ingrid Johanna Puentes-Cárdenas; Griselda Ma. Chávez-Camarillo; César Mateo Flores-Ortiz; María del Carmen Cristiani-Urbina; Alma Rosa Netzahuatl-Muñoz; Juan Carlos Salcedo-Reyes; Aura Marina Pedroza-Rodríguez; Eliseo Cristiani-Urbina

    2016-01-01

    The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adso...

  8. K+ Adsorption Kinetics of Fluvo-Aquic and Cinnamon Soil Under DifferentTemperature

    Institute of Scientific and Technical Information of China (English)

    LONGHuai-yu; LIYun-zhu; ZHANGWei-li; JIANGYi-chao

    2004-01-01

    The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatures were studied. The results showed: 1) The first order equations were the most suitable for fitting the adsorption under various temperature levels with constant K+ concentration in displacing fluid. With temperature increasing, the fitness of Elovich equation increased,while those of power equation and parabolic diffusion equation decreased; 2)the apparent adsorption rate constant ka and the product of ka multiplied by the apparent equilibrium adsorption q∞ increased when temperature increased, while the apparent equilibrium adsorption q∞reduced; 3)temperature influenced hardly the reaction order, the order of concentration and adsorpton site were always 1 under various temperatures, if they were taken into account simultaneously, the adsorption should be a two-order reaction process; 4)the Gibbs free energy change A G of potassium adsorption were negative, ranged from -4 444.56to -2 450.63 Jmol-1,and increased with temperature increasing, while enthalpy change A H,entropy change A S, apparent adsorption activation Ea, adsorption activation energy E2 and desorption activation energy E2 were temperature-independent; 5)the adsorption was spontaneous process with heat releasing and entropy dropping, fluvo-aquic soil released more heat than cinnamon soil.

  9. K+ Adsorption Kinetics of Fluvo-Aquic and Cinnamon Soil Under Different Temperature

    Institute of Scientific and Technical Information of China (English)

    LONG Huai-yu; LI Yun-zhu; ZHANG Wei-li; JIANG Yi-chao

    2004-01-01

    The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatures were studied. The results showed: 1) The first order equations were the most suitable for fitting the adsorption under various temperature levels with constant K+ concentration in displacing fluid. With temperature increasing, the fitness of Elovich equation increased,while those of power equation and parabolic diffusion equation decreased; 2)the apparent adsorption rate constant ka and the product of ka multiplied by the apparent equilibrium adsorption q. increased when temperature increased, while the apparent equilibrium adsorption q∞ reduced; 3)temperature influenced hardly the reaction order, the order of concentration and adsorpton site were always 1 under various temperatures, if they were taken into account simultaneously, the adsorption should be a two-order reaction process; 4)the Gibbs free energy change AG of potassium adsorption were negative, ranged from -4 444.56to -2 450.63 Jmol-1,and increased with temperature increasing, while enthalpy change △H,entropy change △ S, apparent adsorption activation Ea, adsorption activation energy E1and desorption activation energy E2 were temperature-independent; 5)the adsorption was spontaneous process with heat releasing and entropy dropping, fluvo-aquic soil releasedmore heat than cinnamon soil.

  10. ADSORPTION OF PROTEIN ON NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    WU Qi

    1994-01-01

    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  11. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  12. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    Science.gov (United States)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  13. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thanulov

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...... negative ofthe equilibrium potential of YCC, where the protein is electrochemically functional. The MCS data show tensile differential stress signals when YCC is adsorbed on a gold-coate d MCS, with distinguishable adsorption phases in the time range from

  14. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  15. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    Science.gov (United States)

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  16. Lysozyme immobilization via adsorption process using sulphonic acid functionalized silane grafted copolymer.

    Science.gov (United States)

    Anirudhan, T S; Rauf, Tharun A

    2013-07-01

    A unique silane based adsorbent material, [stearyl alcohol (SA)-grafted-epichlorohydrin (E)]-grafted-aminoproypyl silanetriol (APST) was synthesized and functionalized with sulphonyl groups via sulphonation process [(SA-g-E)-g-APST/SO3H]. The adsorbent material characterization was done by FTIR, XRD, and TGA analysis. Immobilization of protein Lysozyme (LYZ) using batch adsorption process was carried out for studying the protein-particle interaction. The most suitable pH for maximum adsorption was found to be 7.0. Pseudo-second-order kinetic model was found to be the best fit and the adsorption equilibrium was attained within 3h. Studies on diffusion parameters explained that the adsorption mechanism was controlled by film diffusion mode. The adsorption process was then evaluated using the various isotherm models and the Sips isotherm model proved to be the best fit with a maximum adsorption capacity of 37.68 mg/g. The isotherm favorability of the adsorption process was calculated by calculating the separation factor (R(L)) and the values confirmed the favorability of the adsorption process. Studies on adsorption percentage with respect to temperature and thermodynamic studies revealed that adsorption process is exothermic, spontaneous with maximum entropy. Batch adsorption/desorption studies in acidic medium, for over six cycles showed the repeatability and regeneration capability of the adsorbent material (SA-g-E)-g-APST/SO3H.

  17. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    Science.gov (United States)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  18. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  19. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  20. Adsorption of Iminodiacetic Acid Resin for Lutetium

    Institute of Scientific and Technical Information of China (English)

    熊春华; 姚彩萍; 王惠君

    2004-01-01

    The adsorption behavior and mechanism of a novel chelate resin,iminodiacetic acid resin(IDAAR) for Lu(Ⅲ) were investigated.The statically saturated adsorption capacity is 210.8 mg·g-1 at 298 K in HAc-NaAc medium.The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L-1 HCl and the elution percentage reaches 96.5%.The resin can be regenerated and reused without obvious decrease in adsorption capacity.The apparent adsorption rate constant is k298=2.0×10-5 s-1.The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm.The thermodynamic adsorption parameters,enthalpy change ΔH,free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol-1,-1.37 kJ·mol-1 and 48.4 J·mol-1·K-1,respectively.The apparent activation energy is Ea=31.3 kJ·mol-1.The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1.The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.

  1. Application of surface complexation models to anion adsorption by natural materials

    Science.gov (United States)

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  2. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang, E-mail: xgao1@zju.edu.cn; Cen, Kefa

    2014-10-30

    Graphical abstract: - Highlights: • Ordered mesoporous carbon (OMC) and Ce-OMC were used for NO adsorption. • The NO adsorption capacity of OMC was two times larger than that of activated carbon. • With the addition of cerium both adsorption capacity and adsorption rate increased. • The pseudo-second-order model was the most suitable model for NO adsorption on OMC. • Intraparticle diffusion was the rate controlling step for NO adsorption. - Abstract: Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N{sub 2} sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  3. Adsorption Behavior of Potassium Ion on Planting Materials

    Institute of Scientific and Technical Information of China (English)

    PAUNPASSANAN,Dechprasitthichoke; SUNANTA,Wangkarn; SAKDIPHON,Thiansem; PONLAYUTH,Sooksamiti; ORN-ANONG,Arquero

    2007-01-01

    Characterization of planting materials used as adsorbent has been studied in order to compare potassium ion adsorption on two types of planting materials, which are a fired planting material (FPM) made from a mixture of 4 kinds of wastes (bottom ash, flue gas desulfurization (FGD) gypsum, paddy soil and sawdust) formed and fired at 850 ℃ and the commercial planting material called "hydroball" (HDB) bought from Jatujak market, Bangkok. The physical characteristics of both types of planting materials indicate that the FPM has a larger specific surface area than the HDB. The factors affecting potassium adsorption on both the planting materials such as an equilibration time and some solid/solution ratios were investigated. The suitable equilibration time for the adsorption to reach an equilibrium on the FPM and HDB is one and two hours, respectively. The highest amounts of potassium ion adhavior on both the planting materials tends to correspond with the Freundlich isotherm.

  4. Adsorption-Induced Deformation of Mesoporous Solids

    CERN Document Server

    Gor, Gennady Yu

    2010-01-01

    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  5. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  6. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  7. Adsorptive desulfurization of diesel with mesoporous aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    TANG Huang; LI Wang-Liang; LIU Qing-Fen; GUAN Li-Li; SONG Jia-Qing; XING dian-Min; LIU Hui-Zhou

    2009-01-01

    Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MASMCM-41NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.

  8. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  9. Adsorption of amylase enzyme on ultrafiltration membranes.

    Science.gov (United States)

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar

    2007-08-28

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 m2.h.bar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 m2.h.bar/L. The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  10. Adsorptive Removal of Copper by Using Surfactant Modified Laterite Soil

    Directory of Open Access Journals (Sweden)

    Tien Duc Pham

    2017-01-01

    Full Text Available Removal of copper ion (Cu2+ by using surfactant modified laterite (SML was investigated in the present study. Characterizations of laterite were examined by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, inductively coupled plasma mass spectrometry (ICP-MS, and total carbon analysis. The optimum conditions for removal of Cu2+ by adsorption using SML were systematically studied and found as pH 6, contact time 90 min, adsorbent dosage 5 mg/mL, and ionic strength 10 mM NaCl. The equilibrium concentration of copper ions was measured by flame atomic absorption spectrometry (F-AAS. Surface modification of laterite by anionic surfactant sodium dodecyl sulfate (SDS induced a significant increase of the removal efficiency of Cu2+. The surface modifications of laterite by preadsorption of SDS and sequential adsorption of Cu2+ were also evaluated by XRD and FT-IR. The adsorption of Cu2+ onto SML increases with increasing NaCl concentration from 1 to 10 mM, but at high salt concentration this trend is reversed because desorption of SDS from laterite surface was enhanced by increasing salt concentration. Experimental results of Cu2+/SML adsorption isotherms at different ionic strengths can be represented well by a two-step adsorption model. Based on adsorption isotherms, surface charge effects, and surface modification, we suggest that the adsorption mechanism of Cu2+ onto SML was induced by electrostatic attraction between Cu2+ and the negatively charged SML surface and nonelectrostatic interactions between Cu2+ and organic substances in the laterite.

  11. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  12. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  13. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S [Nuclear Materials Authority, P. O. Box 530 El Maadi, Cairo (Egypt)

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  14. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  15. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials.

    Science.gov (United States)

    Sotelo, José L; Rodríguez, Araceli R; Mateos, María M; Hernández, Sergio D; Torrellas, Silvia A; Rodríguez, Juan G

    2012-01-01

    Adsorption has been used to study the removal of atenolol, caffeine, diclofenac and isoproturon, pharmaceutical compounds as emerging contaminants and an endocrine disruptor from ultrapure water and a municipal wastewater treatment plant effluent with three carbonaceous materials: activated carbon, multiwalled carbon nanotubes and carbon nanofibers. The adsorption capacities were studied in the temperature range of 25-65°C and pH range from 3 to 9. Several model isotherms were used to model the adsorption equilibrium data. Also, the competitive adsorption was evaluated.

  16. CO_2 isothermal adsorption models of coal in the Haishiwan Coalfield

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressu...

  17. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    Science.gov (United States)

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  18. Removal of heavy metals from aqueous solution by sawdust adsorption

    Institute of Scientific and Technical Information of China (English)

    BULUT Yasemin; TEZ Zeki

    2007-01-01

    The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time,initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(Ⅱ)≈Cd(Ⅱ)>Ni(Ⅱ). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.

  19. Adsorption of chromium ion (VI by acid activated carbon

    Directory of Open Access Journals (Sweden)

    A. A. Attia

    2010-03-01

    Full Text Available The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S, and utilized as an adsorbent for the removal of Cr(VI from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S were compared with the acid-treated commercial activated carbon (CAC-S. The optimum efficiency shows that the Cr(VI uptake being attained at pH 1.5. The equilibrium adsorption data was better fitted to the Langmuir adsorption model. The results of kinetic models showed that the pseudo-first-order kinetic model was found to correlate the experimental data well. It was concluded that activated carbon produced from olive stones (OS-S has an efficient adsorption capacity compared to (CAC-S sample.

  20. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Science.gov (United States)

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.

  1. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Qinxue [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Chen, Zhiqiang, E-mail: czq0521@tom.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China)

    2012-03-30

    . Thermodynamic calculations indicated that the adsorption of nitrobenzene on LAM was spontaneous and was an exothermic reaction. With an initial nitrobenzene concentration of 200 {mu}g l{sup -1}, an equilibrium concentration was reached within 8 h using LAM as an adsorbent and the average removal efficiency was 94.3%. For GAC, the adsorption equilibrium was achieved after 12 h with a 91.9% nitrobenzene removal efficiency.

  2. Kinetic and Thermodynamic Studies of the Adsorption of Crystal Violet onto Used Black Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mohammad Abul Hossain

    2013-11-01

    Full Text Available This study presents the kinetic and thermodynamic investigation of the adsorption of crystal violet (CV on used black tea leaves (UBTL from aqueous solution to evaluate the feasibility of the process. The effects of concentration, solution pH and temperature on adsorption kinetics were carried out in batch process. Kinetic studies have shown that the adsorption data partially follow simple first order, second order and pseudo second order kinetic equations for different initial concentrations at pH 2.0. The equilibrium amount adsorbed, equilibrium concentration and rate constant were calculated from better fitted pseudo second order kinetic plots for different initial concentrations. The equilibrium amount adsorbed (200 mg/g at 30 oC increased with the increase of temperature, indicated endothermic nature of the adsorption. The apparent activation energy of adsorption was determined from Arrhenius plot using pseudo second order rate constant and the value, Ea = 83.1 kJ/mol, revealed the process is chemisorption. Thermodynamic parameters: DHo, DGo and DSo, were determined from the equilibrium adsorption constant and the results obtained confirmed that the adsorption process was feasible, less spontaneous and endothermic. The equilibrium amount adsorbed was found to be increased with increase of solution pH from 2.0 to 6.0 indicating electrostatic interaction between cationic CV with anionic surface of UBTL dominated at higher pH due to the low zero point charge of pH of UBTL.

  3. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants.

  4. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics

    Institute of Scientific and Technical Information of China (English)

    Qinghai Hu; Zhongjin Xiao; Xinmei Xiong; Gongming Zhou; Xiaohong Guan

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals,few studies have verified the feasibility of modeling the adsorption kinetics,edge,and isotherm data with one pH-independent parameter.A close inspection of the derivation process of Langrnuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model,Ks-kinetic,is theoretically equivalent to the adsorption constant in Langrnuir isotherm,Ks-Langmuir.The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed.The MLK model was employed to simulate the adsorption kinetics of Cu(Ⅱ),Co(Ⅱ),Cd(Ⅱ),Zn(Ⅱ) and Ni(Ⅱ) on MnO2 at pH 3.2 or 3.3 to get the values of Ks-kinetic.The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model),and the values of Ks-Langrnuir were obtained.The values of Ks-kinetic and Ks-Langrnuir are very close to each other,validating that the constants obtained by these two methods are basically the same.The MMP model with Ks-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations.Moreover,the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the Ks-kinetic constants.

  5. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    Science.gov (United States)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  6. Adsorption behaviors of acetaminophen onto sediment in the Weihe River, Shaanxi, China

    Institute of Scientific and Technical Information of China (English)

    Yue Zhao; Shengke Yang; Huihui Li; Di Wang

    2015-01-01

    abstract Adsorption behaviors of acetaminophen onto sediment in the Weihe River were described. The impact factors in the processes of adsorption, such as contact time, solution pH, temperature, and ionic strength, were determined by experiments. The experimental results were analyzed by kinetic and isotherm models. The adsorption kinetics was found to follow a pseudo-first-order model. The equilibrium adsorption data fitted well with the Langmuir and Freundlich isotherm models. However, the Langmuir isotherm was more suitable to describe the adsorption. Thermodynamics parameters such as Gibbs-free energy change (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) were calculated. Results showed that the adsorption was feasible, spontaneous, entropy increasing, and endothermic in nature, which reached equilibrium in about 24 hours. The adsorption capacity did not cause obvious change at solution pH 3.0–9.0, and decreased in solution pH 9.0–11.0. The presence of electrolytes such as NaCl in aqueous solution had a significant negative effect on the adsorption. The mechanisms controlling the adsorption were supposed to be chemisorption.

  7. Selective adsorption of tannins onto hide collagen fibres

    Institute of Scientific and Technical Information of China (English)

    LIAO; Xuepin(廖学品); LU; Zhongbing(陆忠兵); SHI; Bi(石碧)

    2003-01-01

    Hide collagen of animals is used to prepare adsorbent material and its adsorption properties to tannins are investigated. It is indicated that the collagen fibres has excellent adsorption selectivity and high adsorption capacity to tannins. The adsorption rate of tannins is more than 90% whilst less than 10% of functional components are retained by the adsorbent. The adsorption mechanism of tannins onto hide collagen fibres is hydrogen-bonding association. Freundlich model can be used to describe the adsorption isotherms, and the pseudo-second-order rate model can be used to describe adsorption kinetics.

  8. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  9. Adsorption of nisin and pediocin on nanoclays.

    Science.gov (United States)

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption.

  10. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  11. Toward Accurate Adsorption Energetics on Clay Surfaces

    CERN Document Server

    Zen, Andrea; Cox, Stephen J; Hu, Xiao L; Sorella, Sandro; Alfè, Dario; Michaelides, Angelos

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields...

  12. Adsorption performances and refrigeration application of adsorption working pair of CaCl2-NH3

    Institute of Scientific and Technical Information of China (English)

    WANG Liwei; WANG Ruzhu; WU Jingyi; WANG Kai

    2004-01-01

    The adsorption performance of CaCl2-NH3 is studied under the condition of different expansion spaces for adsorbent, andthe relationships between adsorption performance of CaCl2-NH3 and the phenomena of swelling and agglomeration during adsorption are researched. It is found that the performance stability is related to the ratio of expansion space to the volume of adsorbent ras, and the performance attenuation is serious in the case of large ras. Severe adsorption hysteresis exists in the process of adsorption and desorption at the same evaporating and condensing temperatures, which is related to the stability constant of chemical reaction. This phenomenon cannot be explained by the theory of physical adsorption. Moderate agglomeration will be beneficial to the formation of ammoniate complex; the magnitude of expansion space will affect adsorption performance. Analysis shows that the activated energy needed in the process of adsorption for the sample with ras of 2:1 is less than that for the sample with ras of 3:1.The refrigeration performance of CaCl2-NH3 is predicted from experiments. The cooling capacity of one adsorption cycle is about 945.4 kJ/kg for the adsorbent with an ras of 2:1 at the evaporating temperature of 0℃.

  13. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  14. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres.

    Science.gov (United States)

    Vieira, Rodrigo S; Beppu, Marisa M

    2006-05-01

    The adsorption and desorption of Hg(II) ions was studied using static and dynamic methods, employing membranes and spheres of chitosan as the adsorbent. The quantity of adsorption was influenced by chitosan crosslinking and by the adsorbent shape. The Langmuir model was applied to fit the experimental equilibrium data. Glutaraldehyde-crosslinked membranes presented a lower desorption capacity, when compared to natural membranes, but could be regenerated for use in successive cycles. Dynamic adsorption experiments suggested that the adsorption capacity depended mainly on adsorbent geometry, due to differences between surface area to mass ratio and initial concentration of Hg(II) ions. The adsorption capacity determined by the dynamic method was 65% and 77% for membranes and spheres, respectively of the value obtained static method results. A process combining dynamic adsorption and static desorption can be used to concentrate the Hg(II) ions by a factor of nearly seven (7x), when compared to the initially treated volume.

  15. Adsorption mechanism of malachite green onto activated phosphate rock: a kinetics and theoretical study

    Directory of Open Access Journals (Sweden)

    LABIDI Nouar Sofiane

    2016-08-01

    Full Text Available Adsorption kinetics of malachite green onto Algerian activated phosphate rock was studied for better removal of the dye from wastewater. The prepared sorbent displayed à good surface area of 42.2 m²/g. The adsorption process appeared to be of physisorption nature and it took less than 60 min to get equilibrium whereas the kinetics indicated that the adsorption is likely a second order reaction which is further proved with the high R2 value. The intraparticle diffusion model confirms an adsorption mechanism limited on two steps, i.e., (1 surface adsorption, and (2 pore diffusion with a diffusion parameter of Di=10-18 cm2 s-1. Besides, semi-empirical theoretical calculations provide a new insight into adsorption mechanism as a principle of hydrogen bonding and ionic interaction.

  16. Adsorption properties of nitrobenzene in wastewater with silica aerogels

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The adsorption properties of nitrobenzene from wastewater by hydrophobic silica aerogels were investigated.The effects of adsorption intensity by pH value,adsorption temperature,adsorption time and the amount of the silica aerogels were studied.The adsorption principle and mechanism of silica aerogels adsorbing nitrobenzene were discussed along with the Freundlich equation.The results showed that the adsorption intensity of the hydrophobic silica aerogels could reach 68.76% at better adsorption conditions of adsorption temperature 25°C,pH value 8.35,the amount of SiO2 aerogels dosage 3.33 g/L,and adsorption time of 30 min,and that the adsorption properties were related to the hydrophobility of aerogels,surface area of organic solution,structure of aerogels.

  17. Relationship between breakthrough curve and adsorption isotherm of Ca(II) imprinted chitosan microspheres for metal adsorption

    Institute of Scientific and Technical Information of China (English)

    Yangcheng Lu; Jing He; Longwen Wu; Guangsheng Luo

    2016-01-01

    In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(II) imprinted chitosan (Ca(II)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(II)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(II)-CS microspheres from breakthrough curve was fulfilled by model ing calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with smal/uniform size and fast adsorption kinetics like Ca(II)-CS microspheres to cut down the gap between lab and industry.

  18. ADSORPTION OF LDL ON THE MODIFIED CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    LIUManying; ZHAOLirui; 等

    2000-01-01

    In this paper,the selective adsorption of LDL on chitosan modified with PEG and Asp.was studied.The adsorption rate of LDL and HDL on the double modified chitosan was 57% and 12% respoectively,The results shown that the double modified chitosan can be used a adsorbent for selective binding to LDL,this work may help to develop functional columns for hemoperfusion.

  19. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics

    Science.gov (United States)

    Yang, Bi-Yi; Cao, Yang; Qi, Fei-Fei; Li, Xiao-Qing; Xu, Qian

    2015-05-01

    A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.

  20. Adsorption Characteristics of Pb(2+) onto Wine Lees-Derived Biochar.

    Science.gov (United States)

    Zhu, Qihong; Wu, Jun; Wang, Lilin; Yang, Gang; Zhang, Xiaohong

    2016-08-01

    Biochar has great advantages in soil amendment and polluted soil remediation. Herein, the pore and adsorption properties of wine lees-derived biochar were explored. Specifically, the adsorption isotherm and kinetics of Pb(2+) onto wine lees-derived biochar were examined. Experimental results revealed that wine lees-derived biochar featured large specific surface area and total pore volume, and high contents of -COOH and -OH on its surface. Adsorption of Pb(2+) onto wine lees-derived biochar proceeded via a multilayer adsorption mechanism, as described by the Freundlich adsorption model. Adsorption kinetics followed the Lagergren pseudo-second-order kinetics model; adsorption equilibrium was achieved within 30-60 min. Furthermore, the effect of solution pH on the adsorption of Pb(2+) was investigated. Within the studied pH range of 3-6, the adsorption capacity increased with increasing pH. Under established optimized conditions, wine lees-derived biochar achieved a Pb(2+) adsorption capacity of 79.12 mg/g.

  1. Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; WANG Lian-jun; LI Jian-sheng; SUN Xiu-yun; HAN Wei-qing

    2009-01-01

    The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.

  2. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Science.gov (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  3. AgII doped MIL-101 and its adsorption of iodine with high speed in solution

    Science.gov (United States)

    Mao, Ping; Qi, Bingbing; Liu, Ying; Zhao, Lei; Jiao, Yan; Zhang, Yi; Jiang, Zheng; Li, Qiang; Wang, Jinfeng; Chen, Shouwen; Yang, Yi

    2016-05-01

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m2/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of AgII (generally, AgII cation is not stable). However, after the adsorption of I- anions, AgII stay in the cages of MIL-101 in the form of AgI/AgI3. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions.

  4. Partition and water/oil adsorption of some surfactants.

    Science.gov (United States)

    Tadmouri, Rawad; Zedde, Chantal; Routaboul, Corinne; Micheau, Jean-Claude; Pimienta, Véronique

    2008-10-02

    Adsorption isotherms have been determined at the water/oil interface for five biphasic systems involving surfactants (non-ionic and ionic) present in both phases at partition equilibrium. The systems studied were polyoxyethylene(23)lauryl ether (Brij35) in water/hexane and four ionic surfactants, hexadecyltrimethylammonium bromide (CTAB), and a series of three tetraalkylammonium dodecylsulfate (TEADS, TPADS, and TBADS) in water/CH 2Cl 2. Interfacial tension measurements performed at the water/air and water/oil interfaces provided all the necessary information for the determination of the adsorption parameters by taking partition into account. These measurements also allowed the comparison of the adsorption properties at both interfaces which showed an increase of the adsorption equilibrium constant and a decrease of the maximum surface concentration at the water/oil interface compared to water/air. The values of the critical aggregation concentration showed, in all cases, that only the surfactant dissolved in the aqueous phase contribute to the decrease of the water/oil interfacial tension. In the case of the four ionic surfactants, the critical aggregation concentration obtained in biphasic conditions were lowered because of the formation of mixed surfactant-CH 2Cl 2 aggregates.

  5. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil.

    Science.gov (United States)

    Jiang, Yu Feng; Sun, Hang; Yves, Uwamungu J; Li, Hong; Hu, Xue Fei

    2016-02-01

    The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  6. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    Science.gov (United States)

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater.

  7. THERMODYNAMICS ADSORPTION OF MANGANESE ION ON 1-(2-PYRIDYLAZO)-2-NAPHTHOL-6-SULPHONIC ACID IMPREGNATED RESIN

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An ion-exchange resin of type 201×7 was impregnated with the reagent 1-(2-Pyridylazo)-2-naphthol-6-sulphonic Acid (PAN-S). The adsorption characteristics of PAN-S resin for manganese ion were studied on the static equilibrium adsorption. Within temperature range of 288K~313K and the concentration range investigated, equilibrium data for the adsorption of manganese ions from aqueous solutions by PAN-S resin were obtained and correlated with Freundlich and Langmuir equation. The results showed that the process of the adsorption of manganese ions from aqueous solution by PAN-S was an exothermic process. Estimations of the isothermic enthalpy change of adsorption,free energy change and entropy of adsorption are reported,and the adsorption behaviors are reasonably interpreted.

  8. THERMODYNAMICS ADSORPTION OF MANGANESE ION ON 1-(2-PYRIDYLAZO)-2-NAPHTHOL-6-SULPHONIC ACID IMPREGNATED RESIN

    Institute of Scientific and Technical Information of China (English)

    TANG Shuhe; WANG Jingping; CHEN Jian

    2008-01-01

    An ion-exchange resin of type 201×7 was impregnated with the reagent 1-(2-Pyridylazo)-2-naphthol-6-sulphonic Acid (PAN-S).The adsorption characteristics of PANS resin for manganese ion were studied on the static equilibrium adsorption.Within temperature range of 288K~313K and the concentration range investigated, equilibrium data for the adsorption of manganese ions from aqueous solutions by PANS resin were obtained and correlated with Freundlich and Langmuir equation.The results showed that the process of the adsorption of manganese ions from aqueous solution by PAN-S was an exothermic process.Estimations of the isothermic enthalpy change of adsorption, free energy change and entropy of adsorption are reported, and the adsorption behaviors are reasonably interpreted.

  9. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  10. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  11. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  12. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  13. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    OpenAIRE

    Belas, M R; Colwell, R.R.

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral fl...

  14. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    Science.gov (United States)

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  15. Adsorption of U(VI from Aqueous Solution onto Hydrotalcite-Like Compounds

    Directory of Open Access Journals (Sweden)

    Nguyen Van Suc

    2012-01-01

    Full Text Available Uranium adsorption by the synthesized compound of magnesium aluminum hydroxide hydrate – layered double hydrotalcite (STH-like compounds was studied. The calcinated STH was proven to be a highly effective in U(VI adsorption in pH range from 6.5 to 7. The time dependent experimental data were found to be fit to the pseudo-second-oder model. The equilibrium data have been modeled using Langmuir and Freundlich isotherms. The results showed that both model provide the best correlation with equilibrium data. The highest adsorption capacity, approximated 62.5 mg/g, was observed in the calcinated STH at 500 °C. The positive value of enthalpy change indicated that adsorption reaction of U(VI on STH was endothermic process. The regeneration experiments of STH using 0.1M Na2CO3 solution was successfully demonstrated multiple times without any significant effect on the initial adsorption capacity.

  16. Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff☆

    Institute of Scientific and Technical Information of China (English)

    Jianlong Wang; Pingping Zhang; Liqiong Yang; Tao Huang

    2015-01-01

    Stormwater runoff has become an important source of surface water pollution. Bioretention, a low impact devel-opment measure in urban stormwater management, has been proven to be effective in the removal of pol utants from stormwater runoff, with appropriate bioretention media. In this study, construction wastes were selected as bioretention media to remove heavy metals from stormwater runoff. Static and dynamic adsorption batch exper-iments were carried out to investigate the adsorption of heavy metals in simulated stormwater runoff system with construction wastes in different particle sizes. The experimental results show that the pseudo-second-order kinetic model characterizes the adsorption process and the adsorption equilibrium data are wel described by Freundlich isotherm model. The construction wastes used can remove heavy metals from stormwater runoff effectively, with their average removal rates al more than 90%. The particle size of construction wastes greatly influences the equilibrium time, rate and adsorption capacity for heavy metals.

  17. Adsorption of lanthanum to goethite in the presence of gluconate

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Laurence C.; Sarah Pepper; Sue Clark

    2005-05-01

    Adsorption of Lanthanum to Goethite in the Presence of Gluconic Acid L. C. HULL,1 S. E. PEPPER2 AND S. B. CLARK2 1Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (hulllc@inel.gov) 2Washington State University, Pullman, WA (spepper@wsu.edu), (s_clark@wsu.edu) Lanthanide and trivalent-actinide elements in radioactive waste can pose risks to humans and ecological systems for many years. Organic complexing agents, from natural organic matter or the degradation of waste package components, can alter the mobility of these elements. We studied the effect of gluconic acid, as an analogue for cellulose degradation products, on the adsorption of lanthanum, representing lanthanide and trivalent-actinide elments, to goethite, representing natural iron minearals and degradation products of waste packages. Batch pH adsorption edge experiments were conducted with lanthanum alone, and with lanthanum and gluconate at a 1:1 mole ratio. Lanthanum concentrations studied were 0.1, 1, and 10 mM, covering a range from 10% to 1000% of the calculated available adsorption sites on goethite. In the absence of gluconate, lanthanum was primarily present in solution as free lanthanum ion. With gluconate present, free lanthanum concentration in solution decreased with increasing pH as step-wise deprotonation of the gluconate molecule increased the fraction lanthanum complexed with gluconate. Adsorption to the goethite surface was represented with the diffuse double-layer model. The number of adsorption sites and the intrinsic binding constants for the surface complexes were estimated from the pH adsorption edge data using the computer code FITEQL 4.0. Two surface reactions were used to fit the adsorption data in the absence of gluconate. A strong binding site with no proton release and a much higher concentration of weak binding sites with release of two protons per lanthanum adsorbed. The adsorption of lanthanum was not measurably affected by the presence of gluconate

  18. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    Science.gov (United States)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  19. Study on Gas Adsorption Equilibrium and Thermodynamics in High/low Temperature Environment%高低温环境下煤对瓦斯的吸附平衡及热力学研究

    Institute of Scientific and Technical Information of China (English)

    岳基伟; 岳高伟; 谢策

    2015-01-01

    The gas adsorption isotherms of three kinds of coal with different metamorphic degree were measured in the high and low temperature environment, the measured data were fitted by Sips model, and the thermodynamic parameters of gas adsorption were calculated and analyzed, including the enthalpy change, the adsorption free energy, entropy change and so on. The research results showed the value γ that represents the coal surface adsorption uniformity decreased linearly with the decrease of the ambient temperature, i. e. the adsorption heterogeneity enhanced; the negative enthalpy change (ΔH) of gas adsorption indicated that the adsorption was exothermic, and with the temperature decrease, the enthalpy change reduced linearly;the curves of the enthalpy change and temperature of the coal with different metamorphic degree intersected at the point where the temperature was 0 ℃( 273. 15 K ); the negative value of the adsorption free energy (ΔG ) indicated that the gas adsorption on coal was a spontaneous process;with the decrease of ambient temperature, the greater the entropy change (ΔS) , the easier the gas adsorption and the larger the gas adsorption amount.%在高低温环境下测定了3种变质程度煤的瓦斯吸附等温线,并通过 Sips 模型进行拟合,同时对瓦斯吸附的焓变、吸附自由能和熵变等热力学参数进行计算分析,研究结果表明:随环境温度降低,煤表面吸附均一性的γ值线性减小,即吸附不均一性增强;吸附焓变(ΔH)为负值,表明吸附是放热的,且焓变随着温度降低线性减小;不同变质程度煤的焓变—温度线交于温度为0 ℃(273. 15 K)的点;吸附自由能(ΔG)为负值,表明甲烷在煤上的吸附过程为自发过程;随环境温度降低,熵变(ΔS)越大,吸附过程越容易进行,瓦斯吸附量也越大.

  20. Adsorption of chlorine on Ag(111): No subsurface Cl at low coverage

    Science.gov (United States)

    Gava, Paola; Kokalj, Anton; de Gironcoli, Stefano; Baroni, Stefano

    2008-10-01

    The adsorption of molecular and atomic chlorine on perfect Ag(111) surface has been studied and characterized by means of extensive density-functional-theory calculations. For the molecular adsorption, we find that the dissociation of Cl2 proceeds with an almost vanishing barrier. As for the adsorption of atomic Cl, on-surface, subsurface, and substitutional adsorptions are considered as a function of the coverage. At coverage lower than 1/2 ML, the on-surface adsorption displays the most exothermic chemisorption energies, whereas the mixed on-surface+subsurface and on-surface+substitutional adsorption modes become competitive with pure on-surface adsorption at about 1/2 ML of coverage and at higher coverages even preferred. The analysis of the adsorption free energy as a function of chlorine chemical potential reveals that the on-surface (3×3)R30° adsorption phase is thermodynamically the most stable over a very broad range of Cl chemical potential. The mixed adsorption modes become thermodynamically more stable at high coverage for values of the Cl chemical potential that are substantially larger than those needed to form silver chloride. This finding seems to indicate that the formation of mixed adsorption phases, if they would ever occur, cannot be due to thermodynamic equilibrium but can only result from kinetic effects. We also find that the presence of open surface steps does not stabilize the subsurface Cl adsorption at low coverage. However due to the stronger Cl-surface interaction near steps, the mixed on-surface+subsurface adsorption on Ag(210) at high coverage becomes thermodynamically the most stable phase at Cl chemical potential close to that needed for the formation of bulk AgCl.

  1. THERMODYNAMIC STUDY OF HIGH-PRESSURE ADSORPTION OF METHANE AND HEATS OF METHANE ADSORPTION ON MICROPOROUS CARBONS

    Institute of Scientific and Technical Information of China (English)

    杨晓东; 林文胜; 郑青榕; 顾安忠; 鲁雪生; 宋燕

    2002-01-01

    The study was done for high-pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius-Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.

  2. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  3. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2

    Directory of Open Access Journals (Sweden)

    Ingrid Johanna Puentes-Cárdenas

    2016-01-01

    Full Text Available The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80 dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2 adsorbs AB80 by a chemical sorption reaction.

  4. Comparative adsorption of Fe(III and Cd(II ions on glutaraldehyde crosslinked chitosan–coated cristobalite

    Directory of Open Access Journals (Sweden)

    Rahmi

    2015-12-01

    Full Text Available In this study, chitosan was crosslinked with glutaraldehyde and coated on the surface of cristobalite through a dip and phase inversion process. The adsorbent was used in batch experiments to evaluate the adsorption of Fe(III and Cd(II ions. A maximum adsorption capacity was observed at a glutaraldehyde concentration in sorbent preparation of 1% (w/w. The equilibrium adsorption quantity was determined to be a function of the solution pH, initial concentration and agitation period. Langmuir and Freundlich adsorption models were used to describe adsorption isotherms.

  5. Adsorption of phenol onto rice straw biowaste for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M.N.; Mustafa, A.I.; Khalil, M.I.; Rahman, M.; Nahid, I. [University of Dhaka, Dhaka, Faculty of Engineering and Technology, Department of Applied Chemistry and Chemical Engineering, Dhaka (Bangladesh)

    2012-10-15

    The adsorption technique has been studied using waste rice straw to adsorb phenol from aqueous solutions at room temperature. Batch adsorption studies were carried out under varying experimental conditions of contact time, operational temperature, pH of phenol solution, initial phenol concentration, adsorbent dose, and particle size. The time to reach equilibrium was found to be 3 h. Results showed that the equilibrium data for phenol-sorbent systems fitted the Freundlich model and Langmuir model within the concentration range studied. Adsorbed phenol could be regenerated by desorption with the help of 1M NaOH. The studies showed that the rice straw can be used as an efficient adsorbent material for removal of phenol and phenolic compounds from water and wastewater. (orig.)

  6. Kinetics and thermodynamics of adsorption of cadusafos on soils

    Energy Technology Data Exchange (ETDEWEB)

    ElShafei, Gamal S., E-mail: elshafei_gamal@yahoo.com [Chem. Dpt., Fac. of Sci., Ain Shams University, Abbassia, Cairo (Egypt); Nasr, I.N.; Hassan, Ayman S.M.; Mohammad, S.G.M. [Central Agricultural Pesticide Laboratory, Dokki, Giza (Egypt)

    2009-12-30

    Laboratory batch experiments were designed to study the adsorption of cadusafos on two types of soils: clay loamy and sandy, collected from two regions around the Nile Delta in Egypt. The adsorption process is fast reaching equilibrium in 60 min, decreases with increasing soil mass and independent on pH in the range 3-11. The experimental results were well fitted to linear partition model, and to a lesser extent to Freundlich non-linear model, Temkin and Dubinin-Radushkevich models. However, the 1/n parameter of Freundlich relation being of value around one supported the linear partition model. The K{sub d} values obtained from the linear model were 4.20 and 2.74 L/g for sandy and clay soils, respectively. The energy of adsorption calculated from D-R equation was 4.36 and 5.04 kJ/mol for clay and sandy soils, respectively, in the range assigned to physical forces. This kind of weak interaction, together with pH-independence implies that for the studied soils the organic content (that is higher in the clay soil) is not a major parameter in the adsorption of cadusafos. Water movement taking place more readily in sandy soil caused increased uptake relative to the case of clay soil. The higher uptake in sandy soil denotes that cadusafos may be mobile with a potential to leach and eventually pollutes ground water and surface water. The kinetics of adsorption was well fitted by the pseudo-second order equation. The intraparticles diffusion is of lower significance in case of sandy soil than in clay soil. Thermodynamic parameters indicated that the adsorption is spontaneous, endothermic accompanied by increase in entropy.

  7. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady...... of adsorption is discussed. Hydrophobic and reversed phase chromatography are useful techniques for measuring solute activity coefficients at infinite dilution....

  8. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    Science.gov (United States)

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  9. Charcoal Regeneration - Part 3. Mechanism of RDX Adsorption

    Science.gov (United States)

    1982-04-01

    larger pore volume, increased numbers of pore body diameters in the mesopore range, and an increase in the ratio of pore opening to pore body diameter...openings due to irreversible adsorption, the shape and widcene~s of trh, hysteresis loop will give a semiquantitatlye picture of the narrdwingw. A...tion side of the hysteresis loop is in equilibrium with menisci in the body of the pores, and therefore gives information about the pore body

  10. Adsorption of Copper from Aqueous Solution Using Mango Seed Powder

    OpenAIRE

    Samiksha V. Ashtikar; Amruta D. Parkhi

    2014-01-01

    The objective of the study was the removal of copper metal ions from aqueous solution using mango seed powder as low cost adsorbent. The influences of contact time, adsorbent doses & temperature were studied in batch experiments at room temperature. The results showed that with increase in the contact time percent removal of copper increases. The adsorption was rapid during first 45 minutes & equilibrium was reached in 90 minutes. The results also showed that with increase in ...

  11. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  12. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  13. Adsorption of phenolic compound by aged-refuse

    Energy Technology Data Exchange (ETDEWEB)

    Chai Xiaoli [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: xlchai@mail.tongji.edu.cn; Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  14. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    Institute of Scientific and Technical Information of China (English)

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário

    2007-01-01

    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  15. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  16. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.

    Science.gov (United States)

    Zhao, Xiulan; Jiang, Tao; Du, Bin

    2014-03-01

    Batch experiments and sequential extraction analysis were employed to investigate the effects of soil organic matter and CaCO3 on the adsorption and desorption of cadmium (Cd(2+)) onto and from two purple paddy soils, an acidic purple paddy soil (APPS) and a calcareous purple paddy soil (CPPS). The Cd(2+) adsorption isotherms on both soils could be well-described by the Langmuir and Freundlich equations. CPPS had a higher capacity and a stronger affinity for Cd(2+) adsorption compared with APPS. The adsorption process of Cd(2+) on APPS was dominated by electrostatic attractions, whereas the adsorption mechanism varied depending on the Cd(2+) concentrations in equilibrium solutions on CPPS. At low equilibrium concentrations, the adsorption process was primarily specific adsorption, but nonspecific adsorption dominated at high equilibrium concentrations. Removal of organic matter decreased the amount of Cd(2+) adsorption on both of the soils, slightly affected the Cd(2+) desorption rate and exchangeable Cd (EXC-Cd) in APPS and increased the desorption rate and EXC-Cd in CPPS, suggesting that the effect of organic matter on Cd(2+) adsorption-desorption depends on the soils. CPPS and APPS containing CaCO3 exhibited higher adsorption amounts but lower desorption rates and lower proportions of EXC-Cd than those of their corresponding soils without CaCO3, demonstrating that CaCO3 played an important role in Cd(2+) specific adsorption on soil. The changes in the thermodynamic parameters, including free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)), as evaluated by the Van't Hoff equations, indicated that the adsorption was a spontaneous and endothermic process with the primary interaction forces of dipole interactions and hydrogen bonds on APPS, whereas both physical and chemical interactions dominated the adsorption on CPPS.

  17. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon.

    Science.gov (United States)

    Yi, Zheng-ji; Yao, Jun; Kuang, Yun-fei; Chen, Hui-lun; Wang, Fei; Yuan, Zhi-min

    2015-01-01

    The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.

  18. The Removal of Phenol and Its Derivatives from Aqueous Solutions by Adsorption on Petroleum Asphaltene

    Directory of Open Access Journals (Sweden)

    Omer El-Amin Ahmed Adam

    2013-01-01

    Full Text Available This research describes the adsorption of phenol and o-substituted phenols and xylenol isomers on petroleum asphaltenes from aqueous solution. The results revealed that the adsorption equilibrium data were best fitted with the generalized and Freundlich isotherms. For o-substituted phenols, it was found that electron-withdrawing groups increase the adsorption capacity. The uptake of these phenols decreases in the order: o-nitrophenol > o-chlorophenol > o-aminophenol > o-cresol > phenol, while the adsorption of xylenol isomers decreases in the order: 2,6-xylenol > 2,5-xylenol > 3,5-xylenol > 3,4-xylenol. Batch equilibrium results at different temperatures suggest that the adsorption of 2,6-xylenol and 3,5-xylenol onto asphaltene is an endothermic process, values obtained were positive indicating a nonspontaneous process with increasing randomness at the solid-solution interface. The influence of solution pH on the adsorption of 3,5-xylenol on asphaltenes was also investigated. The adsorption process was found to be independent on the solution pH. The adsorption capacity of 3,5-xylenol was found to increase with the decrease in particle size of the adsorbent.

  19. Adsorption of Wine Constituents on Functionalized Surfaces.

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  20. Adsorption of Wine Constituents on Functionalized Surfaces

    Directory of Open Access Journals (Sweden)

    Agnieszka Mierczynska-Vasilev

    2016-10-01

    Full Text Available The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  1. Adsorption of gases on carbon molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. (Indian Inst. of Technology, Bombay (India). Dept. of Chemical Engineering); Ganesh, K.S. (Hindustan Petroleum Corp. Ltd., Bombay (India))

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  2. Electron-induced ammonia adsorption on iron

    CERN Document Server

    Narkiewicz, U; Trybuchowicz, A; Arabczyk, W

    2003-01-01

    The adsorption of ammonia on an iron surface at ambient temperature has been investigated using Auger electron spectroscopy (AES). The effect of the electron beam on the process of the ammonia adsorption has been studied. The polycrystalline iron samples precovered with different amounts of oxygen (0.15-1 ML) or sulphur (1 ML) were used. The initial sticking coefficient of ammonia to oxygen precovered iron surface was estimated as s sub 0 approx 5x10 sup - sup 4 (independently on the oxygen coverage) for the adsorption experiments without the effect of the electron beam. The strong inhibiting effect of sulphur precoverage on the ammonia adsorption has been found (s sub 0 approx 6.5x10 sup - sup 6). The electron beam has favourable effect on the adsorption of ammonia, and this effect increases with the oxygen coverage (one monolayer of adsorbed nitrogen atoms at the saturation state and s sub 0 approx 1 for the iron surface precovered with one monolayer of oxygen). The proposed explanation is the favourable ef...

  3. Adsorption behavior of heavy metals on biomaterials.

    Science.gov (United States)

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-08

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples.

  4. A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.H. [Department of Petrochemical Engineering, Hanlyo University, Chonnam (Korea)

    1999-02-01

    Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from crab shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion (Cu{sup 2+}, Co{sup 2+}, Ni{sup 2+}) on chitosan bead. Adsorption strength of metal ions decreased in the order of Cu{sup 2+}>Co{sup 2+}>Ni{sup 2+} ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation. 22 refs., 10 figs., 2 tabs.

  5. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    Science.gov (United States)

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction.

  6. Characteristic Evaluation of Graphene Oxide for Bisphenol A Adsorption in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thatchaphong Phatthanakittiphong

    2016-07-01

    Full Text Available This paper investigates the characteristics of graphene oxide (GO for Bisphenol A (BPA adsorption in water. Batch experiments on the influence of significant parameters were performed. While an improvement of the adsorption capacity of BPA was obtained by the increment of contact time and the initial BPA concentration, the increment of pH above 8, GO dosage, and temperature showed the reverse results. The thermodynamic study suggested that BPA adsorption on GO was an exothermic and spontaneous process. The kinetics was explained by the pseudo-second-order model which covers all steps of adsorption. The fit of the results with the Langmuir isotherm indicated the monolayer adsorption. At 298 K, the adsorption reached equilibrium within 30 min with the maximum adsorption capacity of 49.26 mg/g. The low BPA adsorption capacity of GO can be interpreted by the occurrence of oxygen-containing functional groups (OCFGs that are able to form hydrogen bonds with the surrounding OCFGs and water molecules. This effect inhibited the role of π–π interactions that are mainly responsible for the adsorption of BPA.

  7. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr(VI).

    Science.gov (United States)

    Luo, Lei; Cai, Weiquan; Zhou, Jiabin; Li, Yuanzhi

    2016-11-15

    A novel boehmite/PVA composite membrane (BPCM) with remarkably enhanced adsorption performance towards Cr(VI) was successfully synthesized from Al(NO3)3·9H2O using HAc as the peptizing agent via a facile sol-gel method. The physicochemical properties of the BPCM, the boehmite powder (BP) without PVA and a commercial boehmite powder (CBP) were comparatively characterized by XRD, TGA-DSC, FT-IR and XPS. Batch adsorption experiments showed that the adsorption performance of the BPCM is much better than those of BP and CBP. Its adsorption process was well described by the pseudo-second-order kinetic model, and its equilibrium data fit the Langmuir isotherm well with a maximum adsorption capacity of 36.41mgg(-1). Its interference adsorption experiment in presence of coexisting anions showed that SO4(2-) and HPO4(2-) have greater effect than those of the Cl(-), F(-), C2O4(2-) and HCO3(-). A three step action mechanism including adsorption of Cr(VI) anions, complexation between Cr(VI) anions and the functional groups on the surface of BPCM, and the reduction of Cr(VI) to Cr(III) was proposed to illustrate the adsorption process. This efficient film could be easily separated after adsorption, exhibiting great potential for the removal of Cr(VI) from aqueous solution, and other fields of environmental remediation.

  8. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  9. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC.

    Science.gov (United States)

    Campinas, Margarida; Rosa, Maria João

    2006-07-15

    This work aims to contribute to a better understanding of the ionic strength effect on microcystin and natural organic matter (NOM) surrogate adsorption by analyzing the importance of adsorbate molecular size, and surface concentration. Adsorption kinetics and/or isotherms were performed on PAC Norit SA-UF for four microcystin variants (MC-LR, MC-LY, MC-LW, MC-LF), and three NOM surrogates (salicylic acid (SA), tannic acid (TA), Aldrich humic acid (AHA)) at different solution ionic strengths. Results showed that the ionic strength effect depends upon the adsorbate surface concentration, cation charge (mono or divalent), and adsorbate molecular size. Potassium seemed not to affect the MC-LR adsorption, while calcium enhanced MC-LR kinetics and adsorption capacity. K+ and, particularly, Ca2+ improved the adsorption kinetics of the other microcystin variants. For identical surface concentration and ionic strength, the impact of K+ and Ca2+ on NOM surrogates depended on the adsorbate molecular size: K+ effect was only observed for AHA, whereas Ca2+ caused no effect on SA adsorption, slightly enhanced TA adsorption, and greatly enhanced AHA adsorption. MC-LR isotherms with two salt concentrations (KCl or CaCl2) indicated that, for the studied range of equilibrium surface concentration (5.3-18.7 mg/g), an enhanced adsorption regime prevails, and no transition regime was observed.

  10. Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives

    Institute of Scientific and Technical Information of China (English)

    JIAO YanPeng; ZHOU ChangRen; LI LiHua; DING Shan; LU Lu; LUO BingHong; LI Hong

    2009-01-01

    Surface modification of biomaterials has been adopted over the years to improve their biocompatibility.In this study,aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films,chitosan and its derivatives,carboxymethyl chitosan(CMC) and N-methylene phosphonic chitosan (NPC),were used to modify the surface of PLLA films by an entrapment method. Radiolabeled (12SI) proteins were used to measure the amount of protein adsorbed to PLLA surfaces. Fibronectin (Fn) was used to study the protein adsorption on the modified PLLA surfaces,including isotherm adsorption and adsorption kinetics of single protein,competitive adsorption of binary proteins system and serum multi-proteins and the desorption behavior in serum solution. The results showed that in the isotherm adsorption,Fn had a larger adsorption capacity on the CS-modified surface at lower concentrations,but had a high adsorption capacity at CMC-modified surface at higher concentrations. In the study of absorption kinetics,Fn had a fastest adsorption equilibrium and a highest equilibrium adsorption capacity at the CS-modified surface,while it was opposite at the PCS-modified surface. When BSA and serum were added,it had the greatest effect on the adsorption of Fn on the PCS-modified surface. After 6 hours soaking in the desorption study,Fn had reached desorption equilibrium on all the modified surfaces,which had different effects on the desorption rate and the remaining percentage of Fn.

  11. In vitro study on fluoxetine adsorption onto charcoal using potentiometry.

    Science.gov (United States)

    Atta-Politou, J; Skopelitis, I; Apatsidis, I; Koupparis, M

    2001-01-01

    This in vitro investigation was performed to study the adsorption rate constant as well as the adsorption characteristics of fluoxetine (F) to activated charcoal and its commercial formulation Carbomix powder in simulated gastric (pH 1.2) fluid environment. Ion-selective electrode (ISE) potentiometry, based on the selective, direct and continuous monitoring of F with an F-ISE constructed in our laboratory was used. The method used in the kinetic experiments consists of the rapid addition of a slurry containing the charcoal into the drug solution under stirring and continuous recording of the F-ISE potential until the establishment of equilibrium. The free ionized drug concentration at appropriate time intervals was calculated from the recorded adsorption curve and the apparent adsorption rate constant was estimated assuming pseudo first order kinetics. Within run R.S.D. of the estimates ranged from 0.24 to 11.5%, while between run R.S.D. (n=3-4) ranged from 0.90 to 13.8%. A linear relationship was found between the apparent adsorption rate constants and the amount of charcoal used with slopes (+/-S.D.) for activated charcoal and Carbomix equal to 1.14(+/-0.21) and 0.146(+/-0.009) s(-1)g(-1), respectively. Successive additions of microvolumes of F solution were made into a charcoal slurry with measurement of the F-ISE potential at equilibrium. The maximum adsorption capacity values (+/-S.D.) of activated charcoal and Carbomix were 254.8+/-1.8 and 405+/-41 mg/g, respectively while the affinity constant values (+/-S.D.) were 45.6+/-2.2 and 55.5+/-2.9 l/g, respectively. The adsorption of F to charcoals was rapid and for amounts of charcoal 10 times greater than the amount of the drug, 95% of F was adsorbed within the first 5 min. Relative to the toxic and lethal doses in cases of F intoxications, both types of charcoals tested adsorbed effectively F at gastric pH. Carbomix can be considered as appropriate charcoal formulation for medical treatment in cases of F

  12. Kinetic modelling of cytochrome c adsorption on SBA-15.

    Science.gov (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  13. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    Science.gov (United States)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  14. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Rajendra Dongre; Minakshi Thakur; Dinesh Ghugal; Jostna Meshram

    2012-10-01

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine pretreatment alters porosity and specific surface area of chitosan by means of physicochemical interaction with cationic sites of chitosan skeleton, besides imparting anionic alteration at amino linkages of chitosan, to remove lead (II) by chemical interactions on superfluous active sites as characterized by FTIR, SEM, DTA and elemental analysis. Lead adsorptions were studied in batch mode by varying parameters viz. pH, bromine loading, sorbent dosage, initial lead concentration, contact time and temperature. The adsorption equilibrium data was well fitted to Freundlich isotherm and maximum sorption capacity of 30% bromine pretreated chitosan sorbent was 1.755 g/kg with 85–90% lead removal efficiency. Though cost and applicability of sorbent is unproven, yet contrast to raw chitosan derivatives, activated carbons and some resins, 30% bromine pretreated chitosan endow benign and efficient lead abatement technique.

  15. Modeling of surfactant transport and adsorption in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.

    1991-04-01

    When surfactant solution is flowing in a reservoir formation, surfactants will be diluted by flow dispersion, retained in dead-end pores, adsorbed on rock surfaces, or precipitated due to ion exchange. The loss of surfactant will be detrimental to the performance of gas foam. Information of surfactant concentration profiles in reservoir formations is essential for gas foaming technique development. The major objective of this research is to investigate with mathematical models the transport and dynamic adsorption of surfactants in porous media. The mathematical models have taken into account the convection, dispersion, capacitance, and adsorption effects on concentrations of surfactants. Numerical methods and computer programs have been developed which can be used to match experimental results and to determine the characterization parameters in the models. The models can be included in foam simulation programs to calculate surfactant concentration profiles in porous media. A flow experimental method was developed to measure the effluent surfactant concentration, which will be used to determine the model parameters. Commercial foaming agent Alipal CD-128 was used in this study. Equilibrium adsorption and surfactant precipitation have been tested. Tracer solutions with a nonadsorbing solute such as dextrose and sucrose were used to determine the dispersion parameters for the experimental sandpack; thus, the adsorption of the surfactant in the test sand can be identified with an adequate model. 49 refs., 21 figs.

  16. Removal of chromium from tannery effluents by adsorption.

    Science.gov (United States)

    Fadali, O A; Magdy, Y H; Daifullah, A A M; Ebrahiem, E E; Nassar, M M

    2004-01-01

    Tannery effluent is characterized not only by heavy loads but also with toxic heavy metals especially chromium ions. Chromium is considered an important source of contamination due to large volume of exhaust liquid discharged and solid sludge produced. Details on adsorption studies were carried out using synthetic chromium salts (chromium chloride) as adsorbate, and cement kiln dust (a waste from white cement industry) as adsorbent. Equilibrium isotherms have been determined for the adsorption of chromium ions on cement kiln dust. Kinetic study provided that the adsorption process is diffusion controlled. The experimental results have been fitted using Freundlich, Langmuir, and Redlich Peterson isotherms. The maximum adsorption capacity of cement kiln dust was found to be 33 mg/g. Industrial tannery effluent (22-mg/L chromium and COD 952 mg/L) was also treated by cement dust. The treated effluent (using 20 g cement dust per 1 L) contains only 0.6 mg/L chromium and COD 200 mg/L.

  17. Entropy generation analysis of an adsorption cooling cycle

    KAUST Repository

    Thu, Kyaw

    2013-05-01

    This paper discusses the analysis of an adsorption (AD) chiller using system entropy generation as a thermodynamic framework for evaluating total dissipative losses that occurred in a batch-operated AD cycle. The study focuses on an adsorption cycle operating at heat source temperatures ranging from 60 to 85 °C, whilst the chilled water inlet temperature is fixed at 12.5 °C,-a temperature of chilled water deemed useful for dehumidification and cooling. The total entropy generation model examines the processes of key components of the AD chiller such as the heat and mass transfer, flushing and de-superheating of liquid refrigerant. The following key findings are observed: (i) The cycle entropy generation increases with the increase in the heat source temperature (10.8 to 46.2 W/K) and the largest share of entropy generation or rate of energy dissipation occurs at the adsorption process, (ii) the second highest energy rate dissipation is the desorption process, (iii) the remaining energy dissipation rates are the evaporation and condensation processes, respectively. Some of the noteworthy highlights from the study are the inevitable but significant dissipative losses found in switching processes of adsorption-desorption and vice versa, as well as the de-superheating of warm condensate that is refluxed at non-thermal equilibrium conditions from the condenser to the evaporator for the completion of the refrigeration cycle. © 2012 Elsevier Ltd. All rights reserved.

  18. Adsorption and desorption of bivalent metals to hematite nanoparticles.

    Science.gov (United States)

    Grover, Valerie A; Hu, Jinxuan; Engates, Karen E; Shipley, Heather J

    2012-01-01

    The use of commercially prepared hematite nanoparticles (37.0 nm) was studied as an adsorbent in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) from aqueous solutions. Single-metal adsorption was studied as a function of metal and adsorbent concentrations, whereas binary metal competition was found to be dependent on the molar ratio between the competing metals. Competitive effects indicated that Pb had strong homogenous affinity to the nanohematite surface, and decreased adsorption of Cd, Cu, and Zn occurred when Pb was present in a binary system. Metal adsorption strength to nanohematite at pH 6.0 increased with metal electronegativity: Pb > Cu > Zn ∼ Cd. Equilibrium modeling revealed that the Langmuir-Freundlich composite isotherm adequately described the adsorption and competitive effects of metals to nanohematite, whereas desorption was best described by the Langmuir isotherm. The desorption of metals from nanohematite was found to be pH dependent, with pH 4.0 > pH 6.0 > pH 8.0, and results showed that greater than 65% desorption was achieved at pH 4.0 within three 24-h cycles for all metals.

  19. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  20. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  1. Adsorption--from theory to practice.

    Science.gov (United States)

    Dabrowski, A

    2001-10-08

    Adsorption at various interfaces has concerned scientists since the beginning of this century. This phenomenon underlies a number of extremely important processes of utilitarian significance. The technological, environmental and biological importance of adsorption can never be in doubt. Its practical applications in industry and environmental protection are of paramount importance. The adsorption of substrates is the first stage in many catalytic processes. The methods for separation of mixtures on a laboratory and on an industrial scale are increasingly based on utilising the change in concentration of components at the interface. Moreover, such vital problems as purification of water, sewages, air and soil are involved here too. On the other hand, many areas in which technological innovation has covered adsorption phenomena have been expanded more through art and craft than through science. A basic understanding of the scientific principles is far behind; in part because the study of interfaces requires extremely careful experimentation if meaningful and reproducible results are to be obtained. In recent years, however, considerable effort has been increasingly directed toward closing the gap between theory and practice. Crucial progress in theoretical description of the adsorption has been achieved, mainly through the development of new theoretical approaches formulated on a molecular level, by means of computer simulation methods and owing to new techniques which examine surface layers or interfacial regions. Moreover, during the last 15 years new classes of solid adsorbents have been developed, such as activated carbon fibres and carbon molecular sieves, fullerenes and heterofullerenes, microporous glasses and nanoporous--both carbonaceous and inorganic--materials. Nanostructured solids are very popular in science and technology and have gained extreme interest due to their sorption, catalytic, magnetic, optical and thermal properties. Although the development

  2. Adsorption on Highly Ordered Porous Alumina

    Science.gov (United States)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-10-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  3. GENERAL: Cluster Growth Through Monomer Adsorption Processes

    Science.gov (United States)

    Ke, Jian-Hong; Lin, Zhen-Quan; Chen, Xiao-Shuang

    2010-02-01

    We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with a special rate kernel. For the system without monomer input, the concentration aj(t) of the Aj clusters (j > 1) asymptotically retains a nonzero quantity, while for the system with monomer input, it decays with time and vanishes finally. We also investigate the kinetics of an interesting model with fixed-rate monomer adsorption. For the case without monomer source, the evolution of the system will halt at a finite time; while the system evolves infinitely in time in the case with monomer source. Finally, we also suggest a connection between the fixed-rate monomer adsorption systems and growing networks.

  4. Hydrophobic nano-carrier for lysozyme adsorption

    Indian Academy of Sciences (India)

    CANAN ALTUNBAS; FULDEN ZEYNEP URAL; MURAT UYGUN; NESIBE AVCIBASI; UGUR AVCIBASI; DENIZ AKTAS UYGUN; SINAN AKGÖL

    2016-04-01

    In this work, poly(HEMA–APH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique.Magnetic behaviour was introduced by simple addition of Fe$_3$O$_4$ into the polymerization medium.Characterization of the nanoparticle was carried out by FTIR, ESR, SEM, AFM and EDX analyses. These synthesized magnetic nanoparticles were used for adsorption of lysozyme. For this purpose, adsorption conditions wereoptimized and maximum lysozyme binding capacity was found to be 278.8 mg g$^{−1}$ polymer in pH 7.0 phosphate buffer at 25$^{\\circ}$C. Desorption and reusability properties of the nanoparticles were investigated and lysozyme adsorption efficiency did not change significantly at the end of the 10 successive reuses.

  5. Novel nano bearings constructed by physical adsorption

    Science.gov (United States)

    Zhang, Yongbin

    2015-09-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film.

  6. Adsorption of Phthalates on Impervious Indoor Surfaces.

    Science.gov (United States)

    Wu, Yaoxing; Eichler, Clara M A; Leng, Weinan; Cox, Steven S; Marr, Linsey C; Little, John C

    2017-02-13

    Sorption of semivolatile organic compounds (SVOCs) onto interior surfaces, often referred to as the "sink effect", and their subsequent re-emission significantly affect the fate and transport of indoor SVOCs and the resulting human exposure. Unfortunately, experimental challenges and the large number of SVOC/surface combinations have impeded progress in understanding sorption of SVOCs on indoor surfaces. An experimental approach based on a diffusion model was thus developed to determine the surface/air partition coefficient K of di-2-ethylhexyl phthalate (DEHP) on typical impervious surfaces including aluminum, steel, glass, and acrylic. The results indicate that surface roughness plays an important role in the adsorption process. Although larger data sets are needed, the ability to predict K could be greatly improved by establishing the nature of the relationship between surface roughness and K for clean indoor surfaces. Furthermore, different surfaces exhibit nearly identical K values after being exposed to kitchen grime with values that are close to those reported for the octanol/air partition coefficient. This strongly supports the idea that interactions between gas-phase DEHP and soiled surfaces have been reduced to interactions with an organic film. Collectively, the results provide an improved understanding of equilibrium partitioning of SVOCs on impervious surfaces.

  7. Mass transfer and adsorption equilibrium study in MFI zeolites: application to the separation of mono and di-branched hydrocarbons in silicalite; Etude et modelisation de l'adsorption et du transfert de matiere dans les zeolithes de structure MFI. Application a la separation des hydrocarbures satures mono et di-branches

    Energy Technology Data Exchange (ETDEWEB)

    Jolimaitre, E.

    1999-11-30

    The aim of this study was to develop a model representing the breakthrough of hydrocarbon mixtures in fixed bed, and to estimate the parameters of this model. Equilibrium isotherms and effective diffusivities of 3-methyl-pentane, isopentane and 2,2-dimethyl-butane in silicalite were measured between 150 and 300 deg. C and for different concentrations, with a linear chromatography technique. Parameter estimation was made by mean of a linear model developed for this work, on which a parameter identifiability study was made. The method used for the parameter identifiability study can be applied to any linear fixed bed model. Experimental single component and mixtures breakthrough curves of 2-methyl-pentane, isopentane and 2,2-dimethyl-butane were then realized at 200 deg. C. Adsorption isotherms and self diffusivities were estimated from single-component curves, using a non linear model of the bed. The non-linear model was also developed and validated during this work. These parameters were injected into the non-linear model to simulate the experimental mixture breakthrough curves. Influence of the velocity variation in the bed and of the diffusion driving-force (Maxwell-Stefan or Fick theory) was studied. Most of the experimental breakthrough curves are correctly predicted by the model, expect for the isopentane-2,2-dimethyl-butane mixture, for which predicted breakthrough time is inferior to experimental values. (author)

  8. Adsorption of Gases on Carbon Nanotubes

    Science.gov (United States)

    Mbaye, Mamadou Thiao

    2014-01-01

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  9. Adsorption of arsenate on untreated dolomite powder.

    Science.gov (United States)

    Ayoub, G M; Mehawej, M

    2007-09-05

    Raw dolomite powder was evaluated for its efficiency in adsorbing As(V) from water. An experimental setup comprised of a fluidized dolomite powder bed was used to assess the impact of various test variables on the efficiency of removal of As(V). Test influents including distilled water (DW), synthetic groundwater (SGW) and filtered sewage effluent (FSE) were employed to assess the effect of influent parameters on the adsorption process and the quality of the effluent generated. Dolomite exhibited good As(V) removal levels for distilled water (>92%) and synthetic ground water (>84%) influents at all initial As(V) concentrations tested (0.055-0.600 ppm). Breakthrough of dolomite bed occurred after 45 bed volumes for DW and 20 bed volumes for SGW influents with complete breakthrough taking place at more than 300 bed volumes. As(V) removal from FSE influents was relatively unsuccessful as compared to the DW and SGW influents. Partial removal in the order of 32% from filtered sewage effluent at initial concentration of 0.6 mg/L started at 75 bed volumes and gradually stopped at 165 bed volumes. Varying degrees of As(V) adsorption capacities were observed by the different test influents employed, which indicate that the adsorption of As(V) is adversely affected by competing species, mainly sulfates and phosphates present in the influent. The adsorptive behavior of dolomite was described by fitting data generated from the study into the Langmuir and Freundlich isotherm models. Both models described well the adsorption of dolomite. The average isotherm adsorptive capacity was determined at 5.02 mug/g. Regeneration of the dolomite bed can be achieved with the use of caustic soda solution at a pH of 10.5.

  10. Multilayer adsorption mechanism of coal surface adsorption to three oxygen molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; LI Zhi-gang; WANG Xin-yang; SUN Yan-qiu

    2008-01-01

    Compared chemical bonds change situation of coal surface and oxygen mole-cules before and after coal surface adsorption to three oxygen molecules,after adsorption each oxygen molecule's chemical bond got longer,but had not broken,the coal surface's chemical bonds changed a little.It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the optimized geometry structure.The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10 10 m to 1.316 8×10 10 m,which indicates this oxygen molecular to be the liveliest.The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds.The more electrons shift in the atom,the more molecule chemical bond changes.In the adsorption state,which is composed of coal surface and five oxygen molecules,the vibration frequency of oxygen molecules drops off,and the adsorption energy reached by calculation is 202.11 kJ/mol.

  11. Multilayer adsorption mechanism of coal surface adsorption to three oxygen molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; LI Zhi-gang; WANG Xin-yang; SUN Yan-qiu

    2008-01-01

    Compared chemical bonds change situation of coal surface and oxygen mole-cules before and after coal surface adsorption to three oxygen molecules, after adsorption each oxygen molecule's chemical bond got longer, but had not broken, the coal surface's chemical bonds changed a little. It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the op-timized geometry structure. The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10-10 m to 1.316 8×10-10 m, which indi-cates this oxygen molecular to be the liveliest. The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds. The more electrons shift in the atom, the more molecule chemical bond changes. In the adsorption state, which is composed of coal surface and five oxygen molecules, the vibration frequency of oxygen molecules drops off, and the adsorption energy reached by calculation is 202.11 kJ/mol.

  12. STUDY ON THE THERMODYNAMIC PROPERTIES OF ADSORPTION OF ETHYL BENZOATE AND DIETHYL PHTHALATE BY PHENOLIC RESIN ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Zhong Wang; Zuo-qing Shi; Rong-fu Shi; Yun-ge Fan; Yi-zhong Yang

    2004-01-01

    This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsorbent in hexane solutions within the temperature range of 293-313 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of ethyl benzoate and diethyl phthalate on the adsorbent, since all the correlative factors R' are larger than 0.99. The negative values of all the isosteric adsorption enthalpies for ethyl benzoate and diethyl phthalate indicate that they undergo exothermic processes, while their magnitudes (19-28 kJ/mol) manifest a hydrogen bonding sorption process. Other thermodynamic properties: the free energy changes and the entropy change associated with the adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation.

  13. On the use of the dual process Langmuir model for predicting unary and binary isosteric heats of adsorption.

    Science.gov (United States)

    Bhadra, Shubhra J; Ebner, Armin D; Ritter, James A

    2012-05-01

    Analytic expressions for unary and binary isosteric heats of adsorption as a function of the adsorbed phase loading were derived from the dual process Langmuir (DPL) model using the Clausius-Clapeyron equation. Unary isosteric heats of adsorption predicted from these expressions for several adsorbate-adsorbent systems were compared to values in the literature predicted from the well-accepted graphical approach using Toth and unilan models (Adsorption Equilibrium Data Handbook; Prentice Hall: NJ, 1989). Predictions from the DPL model were also compared to rare experimental unary and binary isosteric heats of adsorption in the literature for another adsorbate-adsorbent system. In all cases, very good agreement was obtained, showing that the DPL model can be used in adsorption process modeling for accurately predicting not only ideal and nonideal mixed-gas adsorption equilibria (Langmuir 2011, 27, 4700), but also unary and even binary isosteric heats of adsorption.

  14. Influence of Operating Conditions on the Removal Cd Ions from Aqueous Media by Adsorption Using Chlamydomonas Reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Jiang Yongbin; Zhu Yi; Ji Hongbing

    2010-01-01

    Chlamydomonas reinhardtii(C.reinhardtii)was used to study adsorption of cadmium(Cd)from aqueous media within various experimental conditions.Results showed that the adsorption process was very fast,with most of the adsorption occurring within30 min of contact time and the equilibrium state was reached in about 60 min.The adsorption ability of the algae increases with the increasing adsorptions sites on cells.Maximum adsorption was observed at the initial Cd concentration of 100 mg/L and pH 6.0.The adsorption was markedly inhibited in the presence of calcium and magnesium ions at 10 mM and the Cd removal efficiency was reduced by 16.54% and 14.99% respectively.This study would be a finding of note with regard to practical wastewater treatment.

  15. Adsorption Behavior of Plutonium on Clay

    Institute of Scientific and Technical Information of China (English)

    LONG; Hao-qi; BAO; Liang-jin; SONG; Zhi-xin; WANG; Bo

    2013-01-01

    In this study,the adsorption distribution ratios of Pu in the Longdong clays were measured with batch method under hypoxic conditions,and the influence of the liquid-solid ratio and pH on the adsorption distribution ratio also was discussed.The initial concentration of Pu is about 1×10-10 mol/L,and the solution pH value was adjusted with NaOH or HClO4.The temperature of experiments was(30±

  16. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour....../gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  17. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-mo...... is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects can not be neglected. Therefore stagnant film theory and the osmotic pressure model can describe the dependency between flux and bulk concentration....

  18. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite clays

    Science.gov (United States)

    Hatch, C. D.; Greenaway, A.; Christie, M. J.; Baltrusaitis, J.

    2013-12-01

    Recently, fresh, unprocessed mineral aerosol has been found to contribute to the number of available cloud condensation nuclei (CCN) and cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on montmorillonite and illite clay to determine empirical adsorption parameters for a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) used to calculate CCN activities of clay minerals. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to experimental water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98×22 and 1.79×0.11 for Na-montmorillonite and 75×17 and 1.77×0.11 for illite, respectively. The AFHH and BFHH values obtained for these clays are significantly different from FHH adsorption parameters derived from CCN activation measurements reported previously for similar clay minerals. Differences in FHH adsorption parameters were attributed to the different approaches used, the hydratable nature of the clays and the relative difficulty in measuring CCN activation of hydratable clays due to relatively long adsorption and desorption equilibration times. However, despite these differences, the calculated CCN activities of montmorillonite and illite are quite similar and are in excellent agreement with experimental CCN activation measurements reported previously for similar clays. The different FHH adsorption parameters, however, translate to lower sc-Ddry CCN activation curve exponents (xFHH = -0.61 and -0.64 for montmorillonite and illite, respectively) than have been reported previously. The lower exponent suggests that the CCN activity of hydratable clay aerosol is less sensitive to changes in dry particle diameter (Ddry) and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. This study illustrates that FHH-AT using adsorption

  19. Adsorption of arsenazo (III due by phosphorus-containing polymer sorbent

    Directory of Open Access Journals (Sweden)

    Alosmanov Rasim M.

    2016-01-01

    Full Text Available Phosphorus-containing polymer sorbent was employed for removal hazardous Arsenazo (III dye from water. The adsorption characteristics were determined by the study at different parameters such as effect of solution pH, effect of initial dye concentration, sorbent dose, phase contact time, and temperature. The equilibrium data were analyzed on the basis of various adsorption isotherm models, namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The highest monolayer adsorption capacity has been obtained (24.75 mg g-1 at 55°C. Different thermodynamic parameters such as free energy, enthalpy, and entropy have been calculated and it was concluded that when temperature rises, adsorption increases, indicating the endothermic nature of the process. Kinetic parameters were derived by pseudo-first-order, pseudo-second-order and intraparticle kinetic models. Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy were used to characterize the sorbent and also to validate the adsorption mechanism.

  20. Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment.

    Science.gov (United States)

    Liu, J J; Wang, X C; Fan, B

    2011-05-01

    The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP.

  1. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  2. Predicting the adsorption properties of carbon dioxide corrosion inhibitors using a structure-activity relationship

    Energy Technology Data Exchange (ETDEWEB)

    Kinsella, B.; De Marco, R.; Jefferson, A.; Pejcic, B. [Western Australian Corrosion Research Group, Department of Applied Chemistry, Curtin University of Technology, GPO Box U1987, Perth, 6845, WA (Australia); Durnie, W. [Nalco/Exxon Energy Chemicals Ltd, Hardley, Hythe, Southampton (Australia)

    2004-07-01

    This paper presents a study of the influence of various chemical inhibitors on the corrosion rate of mild steel in brine electrolyte under carbon dioxide conditions. The performances as corrosion inhibitors were fitted to a Temkin adsorption isotherm, and various constants of adsorption (i.e., adsorption equilibrium constants and molecular interaction constants) have been obtained. The inhibitor adsorption mechanism has been discussed in terms of thermodynamics (i.e., {delta}H, {delta}G and {delta}S) and this revealed that some compounds chemisorbed onto the steel electrode. In addition, molecular modelling was undertaken using PCSPARTAN Plus and HyperChem Professional, and the various molecular parameters have been correlated with the thermodynamic adsorption properties of the inhibitors. A four-parameter fit for both negative and positive charged molecules is discussed. (authors)

  3. Phosphorus Removal From Aqueous Solution By Adsorption Onto La-modified Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Tu Can

    2016-01-01

    Full Text Available A La-modified clinoptilolite adsorbent was developed for phosphorus removal from aqueous solution. The effects of operational parameters such as pH, adsorbent dosage, contact time and temperature on phosphorus adsorption were investigated. The results showed that the phosphorus removal ratio of modified clinoptilolite (99.45% was significantly improved, which was over triple than that of natural ones (31.50% under optimum conditions. The adsorption process was well described by the pseudo-second-order kinetic model. Moreover, the adsorption data closely fitted the Freundlich isotherm model. The proper pH for phosphorus removal ranged from 5 to 8. The adsorption process was appeared to be controlled by chemical precipitation. The mechanism might involve ion complexation during subsequent adsorption of phosphorus on lanthanum hydroxides. It cost modified clinoptilolite less time to reach equilibrium. The application of modified clinoptilolite is available in wastewater treatment.

  4. Kinetic model of water vapour adsorption by gluten-free starch

    Science.gov (United States)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  5. THE ADSORPTION BEHAVIORS OF 2,6-DICHLOROPHENOL ONTO HYPERCROSSLINKED RESINS

    Institute of Scientific and Technical Information of China (English)

    WANG Jingping; LI Zhixia; ZHANG Gencheng; FEI Zhenghao; TANG Shuhe

    2006-01-01

    Experimental investigations were conducted on the adsorption characteristics of 2,6-dichlorophenol by two hypercrosslinked resin, ZH-01 and XAD-4. The static adsorption was studied. Within temperature range of 288K~313K, the equilibrium adsorption date was fitted to freundlich adsorption isotherm models to evaluate the model parameters. The enthalpies, free energy,entropy were indicative of an exothermic, a spontaneous and disorder decreasing process. The magnitudes for 2,6-dichlorophenol on ZH-01 showed a chemisorption's transitions while on XAD-4shows a physical adsorption process. The results showed that the ZH-01 adsorbents were better than the Amberlite XAD-4 for removing the 2,6-dichlorophenol in aqueous solutions.

  6. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral.

  7. Assessing the adsorption properties of shales

    Science.gov (United States)

    Pini, Ronny

    2015-04-01

    Physical adsorption refers to the trapping of fluid molecules at near liquid-like densities in the pores of a given adsorbent material. Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity. As a matter of fact, the current ability to extract natural gas that is adsorbed in the rock's matrix is limited, and current technology focuses primarily on the free gas in the fractures (either natural or stimulated), thus leading to recovery efficiencies that are very low. Shales constitute also a great portion of so-called cap-rocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing the impact of leakage on the whole operation. Whether it is an unconventional reservoir or a cap-rock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals (a major component in mudrocks) and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm in heterogeneous materials. The data are analyzed by using thermodynamically rigorous measures of adsorption, such as the net- and excess adsorbed amounts and a recently developed methodology is

  8. Adsorption of zinc on natural sediment of Tafna River (Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Dali-youcef, N. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France)]. E-mail: nacera.dali@caramail.com; Ouddane, B. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France); Derriche, Z. [Universite des Sciences et Technologies de d' Oran, Laboratoire de Physico-chimie des Materiaux, El M' Naouar, BP 1505, 31000 Oran (Algeria)

    2006-10-11

    The environmental impact of metal additions to sediment depends on its sorption ability. The paper presents a study of zinc adsorption using the experiment data on natural sediment of Tafna River in northwest of Algeria. The effect of various operating variables, namely initial concentration, mass of sediment, and contact time, have been studied. The optimum contact time needed to reach equilibrium is of the order of 30 min and is independent of initial concentration and mass of zinc ions. The extent of adsorption increases with increase of concentration, and with decrease of adsorbent mass. The content of carbonate in sediment increases the adsorption indicating the active support material towards zinc ions. A batch sorption model, which assumes the pseudo-second-order mechanism, is developed to predict the rate constant of the sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc ion concentration and sediment dose. Various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}, have been calculated. The thermodynamics of zinc ion/sediment system indicates spontaneous, endothermic and randomness nature of the process.

  9. Adsorption of thorium from aqueous solutions by perlite.

    Science.gov (United States)

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  10. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  11. [Study on adsorption properties of organic vapor on activated carbons].

    Science.gov (United States)

    Cai, Dao-Fei; Huang, Wei-Qiu; Wang, Dan-Li; Zhang, Lin; Yang, Guang

    2013-12-01

    Adsorption technology is widely used in oil vapor recovery, and adsorbents have decisive effect on separation. Three kinds of activated carbon (AC) were chosen to study their adsorption properties and adsorption energy, where n-hexane and n-heptane acted as adsorbate and adsorption experiments were conducted at 293.15 K. At the same time, regression formula of Logistic model was used to fit the throughout curves of active carbons. The results showed that: surface area and pore volume of activated carbon were the main factors affecting its adsorption properties; the adsorption behavior of n-hexane and n-heptane were corresponding to Langmuir adsorption isotherm model; adsorption energy of these three kinds of activated carbon became greater with increasing specific surface area. Fitting curve of Logistic model had high similarity with the experimental results, which could be used in the prediction of breakthrough curves of activated carbons.

  12. Research on the chemical adsorption precursor state of CaCl2-NH3 for adsorption refrigeration

    Institute of Scientific and Technical Information of China (English)

    WANG; Liwei; WANG; Ruzhu; WU; Jingyi; WANG; Kai

    2005-01-01

    As a type of chemical adsorption working pair, the physical adsorption occurs first for CaCl2-NH3 because the effective reaction distance for van der Waals force is longer than that for chemical reaction force, and this physical adsorption state is named the precursor state of chemical adsorption. In order to get the different precursor states of CaCl2-NH3, the different distances between NH3 gas and Ca2+ are realized by the control of different phenomena of swelling and agglomeration in the process of adsorption. When the serious swelling exists while the agglomeration does not exist in the process of adsorption, experimental results show that the activated energy consumed by adsorption reaction increases for the reason of longer distance between Ca2+ and NH3, and at the same time the performance attenuation occurs in the repeated adsorption cycles. When the agglomeration occurs in the process of adsorption, the activated energy for the transition from precursor state to chemical adsorption decreases because the distance between NH3 gas and Ca2+ is shortened by the limited expansion space of adsorbent, and at the same time the performance attenuation does not occur. The adsorption refrigeration isobars are researched by the precursor state of chemical adsorption; results also show that the precursor state is a key factor for isobaric adsorption performance while the distribution of Ca2+ does not influence the permeation of NH3 gas in adsorbent.

  13. Comparative adsorption of Fe(III) and Cd(II) ions on glutaraldehyde crosslinked chitosan–coated cristobalite

    OpenAIRE

    Rahmi; Fathurrahmi; Irwansyah; Arie Purnaratrie

    2015-01-01

    In this study, chitosan was crosslinked with glutaraldehyde and coated on the surface of cristobalite through a dip and phase inversion process. The adsorbent was used in batch experiments to evaluate the adsorption of Fe(III) and Cd(II) ions. A maximum adsorption capacity was observed at a glutaraldehyde concentration in sorbent preparation of 1% (w/w). The equilibrium adsorption quantity was determined to be a function of the solution pH, initial concentration and agitation period. Langmuir...

  14. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    studied by adsorption experiments. The results clearly demonstrate the differences in the adsorption behaviour between probes with different functional groups of varying polarity and acidity. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. The order...... of magnitude of Delta G degrees for the adsorption process implies the formation of a strong bond between the calcite surface and the adsorbate molecules. Copyright (C) 1996 Elsevier Science Ltd....

  15. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  16. Carbon dioxide separation using adsorption with steam regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  17. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods

    OpenAIRE

    Tatjana Momić; Tamara Lazarević Pašti; Una Bogdanović; Vesna Vodnik; Ana Mraković; Zlatko Rakočević; Pavlović, Vladimir B.; Vesna Vasić

    2016-01-01

    Organophosphorus pesticide dimethoate was adsorbed onto gold nanospheres and nanorods in aqueous solution using batch technique. Adsorption of dimethoate onto gold nanoparticles was confirmed by UV-Vis spectrophotometry, TEM, AFM, and FTIR analysis. The adsorption of nanospheres resulted in aggregation which was not the case with nanorods. Nanoparticles adsorption features were characterized using Langmuir and Freundlich isotherm models. The Langmuir adsorption isotherm was found to have the ...

  18. ADSORPTION OF PHENOL AND NITROPHENOLS ON A HYPERCROSSLINKED POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of phenol and nitrophenols on hypercrosslinked polymeric adsorbent wasstudied as a function of the solution concentration and temperature. Adsorption isotherms of phenoland nitrophenols on hypercrosslinked resin were determined. These isotherms were modeledaccording to the Freundlich adsorption isotherm. The isotherms for phenol and nitrophenols onhypercrosslinked resin were assigned as L curves. Thermodynamic parameters were calculated for allphenol and nitrophenols. The kinetics experiment results showed that the adsorption rates were of thefirst-order kinetics. The rate constants at 303K were calculated.

  19. Dubinin’s theory and its contribution to adsorption science

    OpenAIRE

    Stoeckli, Fritz

    2007-01-01

    Dubinin’s theory for the volume filling of micropores (TVFM), originally developed for the adsorption of single vapours by microporous solids such as activated carbons and zeolites, has gradually been extended to other areas. They include immersion calorimetry, the adsorption of water vapour and of mixtures, as well as adsorption from aqueous solutions. Recent studies in the field of adsorption from aqueous solutions, by activated carbons, suggest that the principle of temperature invariance ...

  20. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; MOBEDI, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  1. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  2. The adsorption and mass-transfer process of cationic red X-GRL dye on natural zeolite.

    Science.gov (United States)

    Tian, Jingjing; Guan, Junfang; Gao, Huimin; Wen, Yafei; Ren, Zijie

    2016-01-01

    The adsorption behavior of natural zeolite was studied in order to determine the adsorption capacity and mass-transfer process of cationic red X-GRL (C(18)H(21)BrN(6)) onto the adsorbent. The adsorption tests to determine both the uptake capacity and the mass-transfer process at equilibrium were performed under batch conditions, which showed rapid uptake in general for the initial 5 min, corresponding to 92% total removal. The equilibrium adsorption capacity value (q(e,cal)) in pseudo-second-order kinetics was 13.51 mg/g at 293 K and the whole adsorption process was governed by physical adsorption with an endothermic, endothermic spontaneous nature. Adsorption tests indicated that the zeolite has great potential as an alternative low-cost material in the treatment of X-GRL drainage. However, the mass-transfer process to determine the rate-controlling steps showed that both film diffusion and pore diffusion were important in controlling the adsorption rate. The adsorption process was governed by film diffusion while pore diffusion was poor because the X-GRL molecules could not penetrate into the zeolite easily. The X-GRL molecules were only adsorbed on the external surface of the zeolite. Hence, to improve the adsorption capacity of natural zeolite further, modification to expand its micropores is necessary.

  3. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu{sup 2+} adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianqin; Yu, Baowei [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China); Xue, Fumin [Shandong Provincial Analysis and Tester Center, Shandong Academy of Science, Jinan 250014 (China); Xie, Jingru; Zhang, Xiaoliang; Wu, Ruihan; Wang, Ruijue; Hu, Zhiyan [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China); Yang, Sheng-Tao, E-mail: yangst@pku.edu.cn [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China); Luo, Jianbin, E-mail: luojb1971@163.com [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2015-04-09

    Graphical abstract: S-doped graphene sponge was prepared via hydrothermal treatment, where S-doped graphene sponge had an adsorption capacity of 228 mg/g for Cu{sup 2+}. - Highlights: • S-doped graphene sponge was prepared by hydrothermal treatment for heavy metal adsorption. • S-doped graphene sponge had a huge adsorption capacity for Cu{sup 2+}, which was 40 times higher than that of active carbon. • S-doped graphene sponge could be easily regenerated by washing with acidic thiourea. - Abstract: Graphene sponge (GS) has been widely employed for water purification, but adsorption capacity loss frequently occurs during the formation of spongy structure. In this study, we reported the hydrothermal preparation of S-doped GS for the removal of Cu{sup 2+} with a huge adsorption capacity of 228 mg/g, 40 times higher than that of active carbon. The adsorption isotherm could be well fitted into the Freundlich model with a K{sub F} value of 36.309 (L/mg){sup 1/n}. The equilibrium adsorption could be fully achieved in the first 5 min. In the thermodynamics study, the negative ΔG indicated that the adsorption was spontaneous and physisorption in nature. The positive ΔH implied that the adsorption was endothermic. The changes of both pH and ionic strength had no apparent influence on the adsorption. S-doped GS could be easily regenerated by washing with acidic thiourea. Moreover, S-doped GS could be used for the adsorption of other heavy metal ions, too. The implication to the applications of S-doped GS in water treatment is discussed.

  4. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Cai, Ye; Yang, Guide; Liu, Yuanyuan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2014-09-30

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R{sup 2} = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  5. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  6. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.

    2014-01-01

    and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi...

  7. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...

  8. Adsorption Phenomena at Organic-Inorganic Interfaces

    CERN Document Server

    Bachmann, Michael

    2006-01-01

    The qualitative solvent- and temperature-dependent conformational behavior of a peptide in the proximity of solid substrates with different adsorption properties is investigated by means of a simple lattice model. The resulting pseudophase diagrams exhibit a complex structure, which can be understood by analysing the minima of the free-energy landscape in dependence of appropriate system parameters.

  9. Adsorption modeling for off-gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C. [Georgia Institute of Technology, Atlanta, GA 30332-0459 (United States); De Paoli, D.W. [Oak Ridge National Laboratory: Oak Ridge, TN 37831-6181 (United States)

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  10. Critical analysis of adsorption data statistically

    Science.gov (United States)

    Kaushal, Achla; Singh, S. K.

    2016-09-01

    Experimental data can be presented, computed, and critically analysed in a different way using statistics. A variety of statistical tests are used to make decisions about the significance and validity of the experimental data. In the present study, adsorption was carried out to remove zinc ions from contaminated aqueous solution using mango leaf powder. The experimental data was analysed statistically by hypothesis testing applying t test, paired t test and Chi-square test to (a) test the optimum value of the process pH, (b) verify the success of experiment and (c) study the effect of adsorbent dose in zinc ion removal from aqueous solutions. Comparison of calculated and tabulated values of t and χ 2 showed the results in favour of the data collected from the experiment and this has been shown on probability charts. K value for Langmuir isotherm was 0.8582 and m value for Freundlich adsorption isotherm obtained was 0.725, both are Pearson's correlation coefficient values for Langmuir and Freundlich adsorption isotherms were obtained as 0.99 and 0.95 respectively, which show higher degree of correlation between the variables. This validates the data obtained for adsorption of zinc ions from the contaminated aqueous solution with the help of mango leaf powder.

  11. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg

  12. Fluorocarbon adsorption in hierarchical porous frameworks

    Science.gov (United States)

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  13. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett

  14. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  15. Adsorption of dyes on Sahara desert sand.

    Science.gov (United States)

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures.

  16. Theoretical study of cisplatin adsorption on silica

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Company, A. Diaz; Brizuela, G.; Juan, A. [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2011-11-15

    The adsorption of cisplatin and its complexes, cis-[PtCl(NH{sub 3}){sub 2}]{sup +} and cis-[Pt(NH{sub 3}){sub 2}]{sup 2+}, on a SiO{sub 2}(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl{sub 2}(NH{sub 3}){sub 2}] and cis-[PtCl(NH{sub 3}){sub 2}]{sup +} adsorptions, and the Pt-O interaction for cis-[Pt(NH{sub 3}){sub 2}]{sup 2+} adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.

  17. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  18. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  19. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  20. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    Science.gov (United States)

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…