WorldWideScience

Sample records for ads target design

  1. MEGAPIE spallation target: Design, manufacturing and preliminary tests of the first pro-typical spallation target for future ADS

    International Nuclear Information System (INIS)

    Latge, Ch.; Laffont, G.; Groeschel, F.; Thomsen, K.; Wagner, W.; Agostini, P.; Dierckx, M.; Fazio, C.; Kirchner, T.; Kurata, Y.; Song, T.; Woloshun, K.

    2006-01-01

    Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radiotoxicity. Sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems, and thus their development is a relevant R and D topic in Europe. Following a first phase focused on the understanding of the basic principles of ADS (e.g. the programme MUSE), the R and D has been streamlined and focused on practical demonstration key issues. These demonstrations cover high intensity proton accelerators (beam current in the range 1 to 20 mA), spallation targets of high power and their effective coupling with a subcritical core. Presently there is general consensus that up to 1 MW of beam power solid targets are feasible from a heat removal point of view. For higher power levels liquid metal targets are the option of choice because of their higher heat removal capability, higher spallation material density in the volume and lower specific radioactivity, Therefore, a key experiment in the ADS road map, the Megawatt Pilot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute (PSI). It has to be equipped to provide the largest possible amount of scientific and technical information without jeopardizing its safe operation. The minimum design service life has been fixed at 1 year (6000 mAh). Whereas the interest of the partner institutes is driven by the development needs of ADS, PSI interest lies also in the potential use of a LM target as a SINQ standard target providing a higher neutron flux than the current solid targets. Calculations of the radial distribution of the undisturbed thermal neutron flux for the LBE target in comparison to the former Zircaloy and current steel-clad solid lead target were done with different nuclear codes; nevertheless

  2. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    Science.gov (United States)

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug

  3. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: nauty@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Gao, Lei [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Lu, Wen-qiang [School of Physics, University of Chinese Academy of Sciences, Beijing (China)

    2014-09-15

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target.

  4. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Gao, Lei; Yang, Lei; Lu, Wen-qiang

    2014-01-01

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target

  5. Design and verification experiments for the windowless spallation target of the ADS prototype Myrrha

    International Nuclear Information System (INIS)

    Kantrien Van, Tichelen; Kupschus, P.; Arien, B.; Ait Abderrahim, H.

    2003-01-01

    SCKxCEN, the Belgian Nuclear Research Centre, works on the conceptual design and basic engineering of a multipurpose ADS for R and D, dubbed MYRRHA, a small high-performance irradiation facility with fast neutron fluxes up to 1.10 15 n/cm 2 /s to start operation in about 2010. Specific to the MYRRHA ADS system is the choice for a windowless spallation target at the centre of the subcritical core. Apart from the space limitations and material property short-comings, the current and power density figures would make the design of a solid window for the spallation source next to impossible: the chosen 5 mA at the relative low energy of 350 MeV leads to a current density of order 150 μA/cm 2 (as far as we know at least a factor of 3 higher than any window design that has been attempted to meet). This is the main reason for adopting the windowless design for MYRRHA which has as a consequence that the free surface ultimately has to be compatible with the vacuum requirements of the beam transport system of the accelerator. The total beam energy will be dumped into a volume of ca 0.5 1 leading to a heating power density of ca 3 kW/cm 3 . In order to remove this heat from the LM with an average temperature increase of 100 deg C on top of the temperature of the inlet flow of 240 deg C a total flow rate of 101/s at an average flow speed of 2.5 m/s is required. It is suggested from estimates that the evaporation from 'hot spots' with elevated temperatures beyond the average 340 deg C - close to the free surface in the re-circulation zone - is then still acceptable. The design investigations are therefore directed to assess and minimise the re-circulation zone inherent in the free surface formation under the geometry and flow requirements. This paper will summarize the design programme for the windowless design of the spallation source at the centre of the subcritical core. It will include the main findings reported in (Van Tichelen, 2000) and (Van Tichelen, 2001) and the

  6. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  7. A Secure and Privacy-Preserving Targeted Ad-System

    Science.gov (United States)

    Androulaki, Elli; Bellovin, Steven M.

    Thanks to its low product-promotion cost and its efficiency, targeted online advertising has become very popular. Unfortunately, being profile-based, online advertising methods violate consumers' privacy, which has engendered resistance to the ads. However, protecting privacy through anonymity seems to encourage click-fraud. In this paper, we define consumer's privacy and present a privacy-preserving, targeted ad system (PPOAd) which is resistant towards click fraud. Our scheme is structured to provide financial incentives to all entities involved.

  8. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    International Nuclear Information System (INIS)

    Massaut, V.; Debruyn, D.; Decreton, M.

    2007-01-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  9. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Debruyn, D. [SCK CEN, Mol (Belgium); Decreton, M. [Ghent Univ., Dept. of Applied Physics (Belgium)

    2007-07-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  10. The design of a lead-bismuth target system with a dual injection tube

    International Nuclear Information System (INIS)

    Cho, C.H.; Kim, Y.; Song, T.Y.; Park, W.S.

    2005-01-01

    A spallation target system is a key component to be developed for an accelerator driven system (ADS). It is known that a 15 ∼ 25 MW spallation target is required for a practical 1000 MWth ADS. The design of a 20 MW spallation target is very challenging because more than 60% of the beam power is deposited as heat in a small volume of the target system. In the present work, a numerical design study was performed to obtain the optimal design parameters for a 20 MW spallation target for a 1000 MW ADS. A dual injection tube was proposed for the reduction of the LBE flow rate at the target channel. The results of the present study show that a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of a 20 MW power. When the dual LBE injection tube is employed, the LBE flow rate could be reduced by a factor of 4 without reducing the maximum allowable beam current. (authors)

  11. Numerical model simulation of free surface behavior in spallation target of ADS

    International Nuclear Information System (INIS)

    Chai Xiang; Su Guanyu; Cheng Xu

    2012-01-01

    The spallation target in accelerator driven sub-critical system (ADS) couples the subcritical reactor core with accelerator. The design of a windowless target has to ensure the formation of a stable free surface with desirable shape, to avoid local over- heating of the heavy liquid metal (HLM). To investigate the free surface behavior of the spallation target, OpenFOAM, an opened CFD software platform, was used to simulate the formation and features of the free surface in the windowless target. VOF method was utilized as the interface-capturing methodology. The numerical results were compared to experimental data and numerical results obtained with FLUENT code. The effects of turbulence models were studied and recommendations were made related to application of turbulence models. (authors)

  12. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  13. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  14. MEBT design for C-ADS

    International Nuclear Information System (INIS)

    Geng Huiping; Tang Jingyu; Li Zhihui; Yan Fang; Ouyang Huafu

    2012-01-01

    In proton accelerators, the Medium Energy Beam Transport (MEBT) line is an essential part for transporting and matching the beam from the RFQ to the next type of accelerating structure. The MEBT is also very important in machine commissioning and tuning. The design of the China Accelerator Driven System is making great progress. The C-ADS project is composed of two independent injectors; therefore, two MEBT lines will be designed independently. In this paper, we will give a detailed description of the MEBT design (including parameter selection and beam dynamics calculation) for the injector I of the C-ADS project. (authors)

  15. Neutronic design of the XT-ADS core

    International Nuclear Information System (INIS)

    Van den Eynde, G.

    2007-01-01

    The EUROTRANS project is an integrated project in the 6th European Framework Program in the context of Partitioning and Transmutation. The objective of this project is the step-wise approach to a European Transmutation Demonstration. This project aims to deliver an advanced design of a small-scale Accelerator Driven System (ADS), XT-ADS, as well as the conceptual design of a European Facility for Industrial Transmutation (EFIT). The partners of this project accepted to use the MYRRHA Draft-2 design file as a starting basis for the design of the short-term XT-ADS demonstration machine. Instead of starting from a blank page, this allowed optimising an existing design towards the needs of XT-ADS, and this within the accepted limits of the safety requirements. Many options have been revisited and the framework is now set up. The main two objectives of the XT-ADS machine are the following: to demonstrate the feasibility of the ADS concept and to perform as a multi-purpose irradiation facility. Special attention is paid to the possibility of testing fuel dedicated to transmutation of minor actinides and long-life fission products. During the demonstration phase, the core will be loaded with MOX fuel in a clean core configuration. Since the XT-ADS must be a representative prototype, it has to operate at a reasonable power, a minimum of 50 MWth was set in the objectives. After this phase, the core will house In-Pile-Sections of different types for irradiating material samples, new types of fuel pins. We aim to be able to provide irradiation conditions that are close to EFIT conditions so XT-ADS can be used as a test-bed for EFIT parts

  16. Calculational estimations of neutron yield from ADS target

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Liashenko, O.A.; Yazynin, I.A.; Belyakov-Bodin, V.I.; Blokhin, A.I.

    2002-01-01

    Results of computational studies of high power spallation thick ADS (Accelerator-Driven System) targets with 0.8-1.2 GeV proton beams are given. Comparisons of experiments and calculations of double differential and integral n/p yield are also described. (author)

  17. MYRRHA/XT-ADS primary system design and experimental devices

    International Nuclear Information System (INIS)

    Maes, D.

    2009-01-01

    The EUROTRANS project is an integrated project in the Sixth European Framework Program in the context of Partitioning and Transmutation. The objective of this project is to work towards an ETD (European Transmutation Demonstration) in a step-wise manner. The first step is to carry out an advanced design of a small-scale XT-ADS (eXperimental Transmutation in an Accelerator Driven System) for realisation in a short-term (about 10 years) as well as to accomplish a generic conceptual design of EFIT (European Facility for Industrial Transmutation) for realisation in the long-term. The MYRRHA-2005 design served as a starting basis for the XT-ADS. Many options have been revisited and the framework is now set up. While the MYRRHA-2005 design was still a conceptual design, the intention is to get at the end of the EUROTRANS project (March 2009) an advanced design of the XT-ADS, albeit a first advanced design. While the design work performed during the first years of the project (2005-2006) was mainly devoted to optimise and enhance the primary and secondary system configuration according to the suggestions and contributions of our industrial partners (Ansaldo Nucleare, Areva, Suez-Tractebel) within the DM1 (Domain 1 D ESIGN ) , the last year work objectives mainly consisted of (1) the release of the Remote Handling Design Catalogue for XT-ADS and (2) the formulation of the specification of the experimental devices according to the XT-ADS objectives and adapted to the actual XT-ADS core and core support structure design; (3) the detailed calculations of the main XT-ADS primary and secondary system components

  18. Citalopram for agitation in Alzheimer’s disease (CitAD): design and methods

    Science.gov (United States)

    Drye, Lea T.; Ismail, Zahinoor; Porsteinsson, Anton P.; Rosenberg, Paul B.; Weintraub, Daniel; Marano, Christopher; Pelton, Gregory; Frangakis, Constantine; Rabins, Peter V.; Munro, Cynthia A.; Meinert, Curtis L.; Devanand, D.P.; Yesavage, Jerome; Mintzer, Jacobo E.; Schneider, Lon S.; Pollock, Bruce G.; Lyketsos, Constantine G.

    2012-01-01

    Background Agitation is one of the most common neuropsychiatric symptoms of Alzheimer’s disease (AD), and is associated with serious adverse consequences for patients and caregivers. Evidence-supported treatment options for agitation are limited. The citalopram for agitation in Alzheimer’s disease (CitAD) study was designed to evaluate the potential of citalopram to ameliorate these symptoms. Methods CitAD is a randomized, double-masked, placebo-controlled multicenter clinical trial with two parallel treatment groups assigned in a 1:1 ratio and randomization stratified by clinical center. The study has eight recruiting clinical centers, a chair’s office and a coordinating center located in university settings in the United States and Canada. 200 people having probable Alzheimer’s disease with clinically significant agitation and without major depression are being recruited. Patients are randomized to receive citalopram (target dose of 30 mg/day) or matching placebo. Caregivers of patients in both treatment groups receive a structured psychosocial therapy. Agitation will be compared between treatment groups using the NeuroBehavioral Rating Scale and the AD Cooperative Study- Clinical Global Impression of Change which are the primary outcomes. Functional performance, cognition, caregiver distress and rates of adverse and serious adverse events will also be measured. Conclusion The authors believe the design elements in CitAD are important features to be included in trials assessing the safety and efficacy of psychotropic medications for clinically significant agitation in Alzheimer’s disease. PMID:22301195

  19. Thermal experiments in the model of ADS target

    International Nuclear Information System (INIS)

    Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li

    2002-01-01

    The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)

  20. Broadcast design in cognitive radio ad hoc networks

    CERN Document Server

    Song, Yi

    2014-01-01

    This SpringerBrief investigates the special challenges of broadcast design in cognitive radio (CR) ad hoc networks. It introduces two broadcast protocols in CR ad hoc networks: a quality-of-service based broadcast protocol under blind information and a fully-distributed broadcast protocol with collision avoidance. A novel unified analytical model is also presented to analyze the performance of the broadcast protocols. This is the first book dedicated to the unique broadcast design challenges in CR ad hoc networks. The authors also discuss the recent research on the performance analysis of broa

  1. Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence

    CERN Document Server

    Marquet, C.; Wallon, S.

    2010-01-01

    We perform a study of the doubly virtual Compton scattering off a spinless target gamma* P -> gamma* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests, and presumably exclude results based on the AdS/QCD correspondence in its minimal version.

  2. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  3. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2007-02-01

    Full Text Available Recombinant adenoviral (rAd vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5 vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs was independent of the coxsackievirus and adenovirus receptor (CAR, its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.

  4. Neutronic design of an ADS

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J.I

    2009-01-01

    We present a LEU-ADS design based on an existing Argentine experimental facility, the RA-8 pool type zero power reactor. The versatility of this reactor allows measurement of different core configurations using different fuel enrichment, burnable poison rods, water perturbations and different control rods types in critical or subcritical configurations with an external source. To assess the feasibility of the LEU-ADS, multiplication factors, kinetic parameters, spectra, and time flux evolution were computed. Two external sources were considered: an isotopic 252 C f source, and a D-D pulsed neutron source. Parameters for different core configurations were calculated, and the feasibility of using continuous and pulsed neutron sources was verified. [es

  5. Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang

    2015-01-01

    Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters

  6. Accuracy of geographically targeted internet advertisements on Google AdWords for recruitment in a randomized trial.

    Science.gov (United States)

    Jones, Ray B; Goldsmith, Lesley; Williams, Christopher J; Kamel Boulos, Maged N

    2012-06-20

    Google AdWords are increasingly used to recruit people into research studies and clinical services. They offer the potential to recruit from targeted control areas in cluster randomized controlled trials (RCTs), but little is known about the feasibility of accurately targeting ads by location and comparing with control areas. To examine the accuracy and contamination of control areas by a location-targeted online intervention using Google AdWords in a pilot cluster RCT. Based on previous use of online cognitive behavioral therapy for depression and population size, we purposively selected 16 of the 121 British postcode areas and randomized them to three intervention and one (do-nothing) control arms. Two intervention arms included use of location-targeted AdWords, and we compared these with the do-nothing control arm. We did not raise the visibility of our research website to normal Web searches. Users who clicked on the ad were directed to our project website, which collected the computer Internet protocol (IP) address, date, and time. Visitors were asked for their postcode area and to complete the Patient Health Questionnaire (depression). They were then offered links to several online depression resources. Google Analytics largely uses IP methods to estimate location, but AdWords uses additional information. We compared locations assessed by (1) Analytics, and (2) as self-identified by users. Ads were shown 300,523 times with 4207 click-throughs. There were few site visits except through AdWord click-throughs. Both methods of location assessment agreed there was little contamination of control areas. According to Analytics, 69.75% (2617/3752) of participants were in intervention areas, only 0% (8/3752) in control areas, but 30.04% (1127/3752) in other areas. However, according to user-stated postcodes, only 20.7% (463/2237) were in intervention areas, 1% (22/2236) in control areas, but 78.31% (1751/2236) in other areas. Both location assessments suggested most

  7. Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); Marquet, Cyrille [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Roiesnel, Claude [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)

    2010-07-01

    We study the doubly virtual Compton scattering off a spinless target {gamma}* P {yields} {gamma}* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests. (author)

  8. Fusion target design

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1978-01-01

    Most detailed fusion target design is done by numerical simulation using large computers. Although numerical simulation is briefly discussed, this lecture deals primarily with the way in which basic physical arguments, driver technology considerations and economical power production requirements are used to guide and augment the simulations. Physics topics discussed include target energetics, preheat, stability and symmetry. A specific design example is discussed

  9. The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area

    CERN Document Server

    Calviani, M

    2014-01-01

    In this paper we present Monte Carlo FLUKA simulations [1, 2] carried out to investigate the secondary particles fluence emerging from the antiproton production target and their spatial distribution in the AD target area. The detailed quantitative analysis has been performed for different positions along the magnet dog-leg as well as after the main collimator. These results allow tuning the position of the new beam current transformers (BCT) in the target area, in order to have a precise pulse-by-pulse evaluation of the intensity of negative particles injected in the AD-ring before the deceleration phase.

  10. ADS with HEU in the Vinca Institute

    International Nuclear Information System (INIS)

    Pesic, M.; Sobolevsky, N.

    2000-01-01

    The 'Conceptual design of ADS' is a new project proposed in the Vin.a Institute for the next three years. In this paper, an option in the project - an idea of high-enriched uranium (HEU) - H 2 O low-flux ADS is shown. Preliminary results of design study and calculations of the beam-target interaction and neutronics of proposed sub-critical system are given. (author)

  11. Study of steady-state heat transfer with various large beam intensities in ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Gao, Lei; Tong, Jian-fei; Mehmood, Irfan; Lu, Wen-qiang

    2015-01-01

    Thermal hydraulics of spallation target, which is regarded as the ‘heart’ of the accelerator driven system (ADS), is very complicated due to the flow of the heavy liquid metal, spallation reaction and the coupling. In this paper, the steady-state temperature distribution, based on the flow pattern and the heat deposition, in the windowless spallation target with various large beam intensities from 10 mA to 40 mA is obtained to be in line with the development of ADS in China. The results show that the shape of temperature distribution is the same as broken wing of the butterfly but the temperature gradient and the maximum temperature vary in proportion with beam intensity. The variation of temperature gradient in different zones is also used to figure out the effect of large beam intensity. It has been found that large radial and axial temperature gradient leads to large temperature gradient on the wall. This may cause extremely large thermal stresses which leads to structural material damage. The results may be applied to the future design and optimization of ADS in China. - Highlights: • Shape of temperature distribution is the same but temperature gradient and maximum temperature vary with intensity. • The variation of temperature gradient in different zones reveals the effect of large beam intensity. • Large radial and axial temperature gradient leads to large temperature gradient on the wall

  12. Design of the FMIT lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Annese, C.E.; Greenwell, R.K.; Ingham, J.G.; Miles, R.R.; Miller, W.C.

    1981-01-01

    Development of the liquid lithium target for the Fusion Materials Irradiation Test (FMIT) Facility is described. The target concept, major design goals and design requirements are presented. Progress made in the research and development areas leading to detailed design of the target is discussed. This progress, including experimental and analytic results, demonstrates that the FMIT target design is capable of meeting its major design goals and requirements

  13. Application of a controlled swirl in the XT-ADS spallation target

    International Nuclear Information System (INIS)

    Roelofs, F.; Siccama, N. B.; Jeanmart, H.; Tichelen, K. V.; Dierckx, M.; Schuurmans, P.

    2008-01-01

    Within the EUROTRANS project, a windowless spallation target is designed and assessed in which there is direct contact between the proton beamline vacuum from the accelerator and a lead-bismuth free surface flow. Windowless spallation targets, which are designed by SCK.CEN, based on their experience for the MYRRHA concept, are experimentally examined in a well instrumented water-loop at UCL. The design work and the experimental campaign are supported by numerical simulations which are performed at NRG. In the current paper, the application of a mild swirl in the windowless spallation target is assessed. For this purpose, SCK.CEN has designed and fabricate, a spallation target in which a controlled swirl is introduced in the annular feeder of the target nozzle. An experimental programme is performed at UCL in their water-loop to evaluate various swirl strengths in one specific target nozzle design. Prior to the experimental programme, numerical simulations were performed at NRG assessing the influence of various swirl strengths on the free surface behaviour. Experimental and numerical results show that a mild swirl stabilizes the free surface and also indicate that applying a stronger swirl leads to undesired free surface behaviour, ultimately leading to a strong vortex in the central downcomer. (authors)

  14. Design of a molten heavy-metal coolant and target for fast-thermal accelerator driven sub-critical system (ADS)

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Degwekar, S.B.; Nema, P.K.

    2001-01-01

    Accelerator Driven sub-critical Systems (ADS) have evoked considerable interest in recent years. The Energy Amplifier concept developed by C. Rubbia and others at CERN incorporates a buoyancy driven, lead-coolant primary system for extracting the heat generated in the fast reactor as well as that in neutron spallation target. In earlier publications, our BARC group has proposed a one-way coupled booster reactor system which could be operated at proton beam currents as low as 1-2 mA for a power output of 750 MW th . Here, the basic idea is to have a fast booster reactor zone of low power (- 100 MW th ) which is separated by a large gap from the main thermal reactor zone. In this arrangement, the spallation neutron source feeds neutrons to the fast reactor zone where neutrons are further multiplied. Further in this system, the neutrons from the booster region enter the main reactor but very few neutrons from main reactor return to booster, thus ensuring one-way coupling. In earlier work, several possible configurations of the booster and thermal regions were presented. In the present work, we describe an engineering design particularly with respect to thermal hydraulics of lead/lead-bismuth eutectic coolant also acting as spallation neutron source. This hybrid ADS reactor consists of fast and thermal reactor zones producing about 100 MW th and 650 MW th respectively. The scheme of the system is shown. The fast core consists of 48 hexagonal fuel bundles each containing 169 fuel pins of 8.2 mm diameter arranged in 11.4 mm triangular array pitch. The average thermal power per fuel pin is about 13.46 kw. However, due to neutron flux peaking effect, the maximum fuel pin power can be up to 2.5 times this average power. The thermal reactor consists of heavy water as moderator and coolant similar to a typical CANDU type Indian PHWR except for fuel composition. Though the gap between fast and thermal zones essentially provides one way coupling of neutron flux, a thermal

  15. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  16. Mechanical design of the small-scale experimental ADS: MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Dirk [SCKCEN, Reactor Physics and MYRRHA Department, Boeretang 200, B-2400 Mol (Belgium)

    2006-10-15

    Since 1998, SCK*CEN, in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose Accelerator Driven System (ADS) - MYRRHA - and is conducting an associated R and D support programme. MYRRHA aims to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. Besides an overall configuration of the MYRRHA reactor internals, the description in this paper is limited to the mechanical design of the main components of the Primary System and Associated Equipment (vessel and cover, diaphragm, spallation loop, sub-critical core, primary cooling system, emergency cooling system, in-vessel fuel storage and fuel transfer machine), the conceptual design of the robotics for In-Service Inspection and Repair (ISIR), together with the remote handling for operation and maintenance (O and M). (author)

  17. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  18. Implementing Target Value Design.

    Science.gov (United States)

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  19. Designing to target cost: one approach to design/construction integration

    DEFF Research Database (Denmark)

    Jørgensen, Bo

    2005-01-01

    One approach to a more integrated construction delivery process is the concept of ‘designing to target cost’ of which the first examples of application within a lean construction framework have recently been seen. This paper introduces the main principles of the design to target cost method...... and discusses the applicability of this approach to construction. The low degree of organizational and technical continuity from one construction project to the next limits the applicability of the design for target cost approach when compared to its origin in product development of mass manufactured artefacts....... It can be argued that design to target cost may also provide a frame for developing the supply chain towards better coordination and collaboration. Thus methods of design to target cost may serve to facilitate the development of a more integrated supply chain....

  20. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  1. Designing products with added emotional value : development and application of an approach for research through design

    NARCIS (Netherlands)

    Desmet, P.M.A.; Overbeeke, C.J.; Tax, S.J.E.T.

    2001-01-01

    In this paper, a design approach is introduced for designing products with added emotional value. First, the approach was established, based on a theoretical framework and a non-verbal instrument to measure emotional responses. Second, the value of the design approach was assessed by applying it to

  2. Experimental and numerical study on the flow pattern of the ADS windowless spallation target with a second free surface downstream using model fluid water

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Gong, Shenjie

    2015-01-01

    Highlights: • A windowless spallation target with a buffer tank is tested. • Shape of the main free surface is recorded. • Streamline is obtained with the planar laser induced fluorescence method. • Stability of free surface is improved by the buffer tank. • Flow structure is simulated using RNG k-e turbulence model and VOF model. - Abstract: The windowless spallation targets are a promising design solution for accelerator driven system (ADS) due to their extended life compared to the spallation targets with a window. Keeping the stability of the free surface and reducing the recirculation zone is one of the key tasks for the design of a windowless spallation target. A windowless spallation target with a second free surface downstream (which is a buffer used to stabilize the main free surface of the flow) is studied experimentally and numerically using water at atmospheric pressure. By using planar laser induced fluorescence technique (LIF), the flow pattern inside the target zone is visualized for Reynolds numbers varying between 3.5 × 10 4 and 7.0 × 10 4 and pressure differences from 100 to 804 Pa. The experimental results reveal that the stability of the free surface is improved by adding a buffer in the downstream thus making it easier to control the height of the surface. The effect of the pressure difference between the void above the second free surface (high pressure side) and beam pipe (low pressure side) on the flow pattern is analyzed, as well as the inlet flow rate. The height of the surface length decreases with an increase in the pressure difference. The formation of the spallation zone is simulated with Fluent using the LES turbulence model and VOF model. The interface predicted agrees well with the experimental results

  3. Cross-Layer Design Approach for Power Control in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    A. Sarfaraz Ahmed

    2015-03-01

    Full Text Available In mobile ad hoc networks, communication among mobile nodes occurs through wireless medium The design of ad hoc network protocol, generally based on a traditional “layered approach”, has been found ineffective to deal with receiving signal strength (RSS-related problems, affecting the physical layer, the network layer and transport layer. This paper proposes a design approach, deviating from the traditional network design, toward enhancing the cross-layer interaction among different layers, namely physical, MAC and network. The Cross-Layer design approach for Power control (CLPC would help to enhance the transmission power by averaging the RSS values and to find an effective route between the source and the destination. This cross-layer design approach was tested by simulation (NS2 simulator and its performance over AODV was found to be better.

  4. Building for a better hospital. Value-adding management & design of healthcare real estate

    Directory of Open Access Journals (Sweden)

    Johan van der Zwart

    2014-09-01

    been developed that links nine types of added value (Table 2
to the interests and needs of the stakeholders by four perspectives on real estate: strategic, financial, functional and physical. The value-impact-matrix was developed to support the alignment between the organisation’s key issues for success, the
added values of real estate and stakeholders different perspectives of real estate. This instrument makes it possible to highlight the added values of real estate from different perspectives on real estate (strategic, financial, functional and physical. Table 4 shows an example of possible connections between one of the values – patient satisfaction and healing environment – to four different perspectives. Hospital real estate design assessment Only those design decisions that are incorporated into the final design contribute
to achieving the objectives set, so the translation of accommodation targets into
the architectural design is a crucial step in achieving added value by real estate. In addition to defining these values in advance, applying added value as a framework also requires an assessment to measure these values in the design and use phase. Different analytical drawing techniques used in this part of the research show how the attainment of these values in the architectural design can be tested for different aspects of patient satisfaction. Pre-set values are visualised and different design solutions compared. In particular techniques that come from space syntax provide opportunities to study aspects of user-value in the architectural design drawings. The results are promising, despite the fact that PART 4 of the study is a first exploration of the possibilities of design-assessment. The graphs that can be produced seem to give good insight into the consequences of spatial design, although the analyses are still indicative and as yet unvalidated. More validating research is needed to examine the extent to which the results of the analyses

  5. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan

    2017-01-01

    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Neutronics and shielding issues of ADS

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Aoust, T.; Haeck, W.; Malambu, E.; Van den Eynde, G.; Gonzalez, E.; Vicente, C.; Martinez-Val, J. M.; Romanets, Y.; Vaz, P.

    2007-01-01

    Accelerator Driven Systems (ADS) are hybrid systems consisting of a high-intensity proton accelerator with beam energy in the hundreds of MeV range impinging in a target of a heavy element and coupled to a sub-critical core. The intense (of the order of 10 1 5 n/cm 2 /s) and fast neutron fluxes produced by the spallation reactions triggered by the impinging protons in the target can be used to induce fission reactions in the actinides and capture reactions in the longlived fission products in the fuel assemblies in the core of the system. ADS have been considered during the last fifteen years as one of the promising technological solutions for the transmutation of nuclear waste, reducing the radiotoxicity of the high-level nuclear waste and reducing the burden to the geological repositories. The European Commission's Green Paper entitled 'Towards a European Strategy for the Security of Energy Supply' clearly pointed out the importance of nuclear energy in Europe. With 145 operating reactors producing a total power of 125 GWe, the resulting energy generation of 850 TWh per year provides 35% of the electricity consumption of the European Union. The Green Paper also points out that the nuclear industry has mastered the entire nuclear fuel cycle with the exception of waste management and for this reason, 'focusing on waste management has to be continued'. Amongst the several solutions being studied in recent years, MYRRHA (concept developed at SCK-CEN, Belgium), XADS (design studies co-funded by the European Union in the framework of the 5th Framework Programme) and XT-ADS and EFIT (acronyms standing for an experimental machine and for the long term transmuter to be deployed on an industrial scale, both in the EUROTRANS project of the 6th Framework Programme) have deserved the attention of different communities of specialists in the field of Nuclear Technology and Radioactive Waste Management. Although these machines have been designed with different parameters, their

  7. Customer Focused Product Design Using Integrated Model of Target Costing, Quality Function Deployment and Value Engineering

    Directory of Open Access Journals (Sweden)

    Hossein Rezaei Dolatabadi

    2013-01-01

    Full Text Available Target costing by integrating customer requirements, technical attributes and cost information into the product design phase and eliminating the non-value added functions, plays a vital role in different phases of the product life cycle. Quality Function Deployment (QFD and Value Engineering (VE are two techniques which can be used for applying target costing, successfully. The purpose of this paper is to propose an integrated model of target costing, QFD and VE to explore the role of target costing in managing product costs while promoting quality specifications meeting customers’ needs. F indings indicate that the integration of target costing, QFD and VE is an essential technique in managing the costs of production process. Findings also imply that integration of the three techniques provides a competitive cost advantage to companies.

  8. Synthesis of studies for ADS development

    International Nuclear Information System (INIS)

    Alamo, A.; Balbaud, F.; Beauvais, P.Y.; Courouau, J.L.; Debu, P.; Granget, G.; Latge, Ch.; Leray, S.; Mellier, F.; Pillon, S.; Richard, P.; Rimbault, G.; Salvatores, M.; Terlain, A.; Varaine, F.; Warin, D.; Brissot, R.; Doubre, H.; Flocard, H.; Kirchner, Th.; Mueller, A.; Steckmeyer, J.C.; Carluec, B.; Giraud, B.

    2005-01-01

    One goal of the December 1991 law is the exploration of the separation-transmutation means to reduce the impact of minor actinides in high-level radioactive wastes. By 2040, the fourth generation of fast neutron reactors would be capable to entirely recycle their wastes and those previously generated. In the case of a delayed implementation of this type of reactor, a 'double-stratum' scenario foresees the recycling of plutonium in PWR-Mox reactors and the recycling of minor actinides in reactors dedicated to transmutation. The accelerator-driven systems (ADS) are well-adapted for this task and the share of such systems in the nuclear park would represent only 5 to 10% of the overall power. In this note, the technical data of this scenario and the physics of ADS are recalled first. Then, the status of researches in progress, the technological advances and the researches to carry on in the different domains are presented: nuclear data, in particular those linked with spallation phenomena; power accelerators, in particular the works in progress to warrant their reliability and maneuverability; spallation targets, in particular the Megapie experiment with a liquid lead-bismuth target submitted to a powerful proton beam and researches on the related materials technology; the fuels specific to transmutation with no uranium (replaced by an inert support); the project of subcritical facilities studied in the framework of the PDS-XADS European project (first design schemes of gas or lead-bismuth cooled subcritical reactors); the subcritical reactor physics, in particular the joint CNRS-CEA Muse program which has led to the construction of the very first ADS for the testing of measurement and reactivity control methods. Thanks to these studies carried out since about a decade, the design and part of the qualification of the elementary parts (accelerator, target, core) of ADS have made lot of progress. The PDS-XADS studies did not show any incompatibility of ADS principle for

  9. Solvent extraction of no-carrier-added 103Pd from irradiated rhodium target with α-furyldioxime

    International Nuclear Information System (INIS)

    Mahdi Sadeghi; Behrouz Shirazi; Nami Shadanpour

    2006-01-01

    Solvent extraction of no-carrier-added 103 Pd was investigated from irradiated rhodium target with a-furyldioxime in chloroform from diluted hydrochloric acid. Extraction yield was 85.3% for a single extraction from 0.37M HCl and 103 Pd purity was better than 99%. (author)

  10. Nuclear data sensitivity/uncertainty analysis for XT-ADS

    International Nuclear Information System (INIS)

    Sugawara, Takanori; Sarotto, Massimo; Stankovskiy, Alexey; Van den Eynde, Gert

    2011-01-01

    Highlights: → The sensitivity and uncertainty analyses were performed to comprehend the reliability of the XT-ADS neutronic design. → The uncertainties deduced from the covariance data for the XT-ADS criticality were 0.94%, 1.9% and 1.1% by the SCALE 44-group, TENDL-2009 and JENDL-3.3 data, respectively. → When the target accuracy of 0.3%Δk for the criticality was considered, the uncertainties did not satisfy it. → To achieve this accuracy, the uncertainties should be improved by experiments under an adequate condition. - Abstract: The XT-ADS, an accelerator-driven system for an experimental demonstration, has been investigated in the framework of IP EUROTRANS FP6 project. In this study, the sensitivity and uncertainty analyses were performed to comprehend the reliability of the XT-ADS neutronic design. For the sensitivity analysis, it was found that the sensitivity coefficients were significantly different by changing the geometry models and calculation codes. For the uncertainty analysis, it was confirmed that the uncertainties deduced from the covariance data varied significantly by changing them. The uncertainties deduced from the covariance data for the XT-ADS criticality were 0.94%, 1.9% and 1.1% by the SCALE 44-group, TENDL-2009 and JENDL-3.3 data, respectively. When the target accuracy of 0.3%Δk for the criticality was considered, the uncertainties did not satisfy it. To achieve this accuracy, the uncertainties should be improved by experiments under an adequate condition.

  11. OMEGA polar-drive target designs

    International Nuclear Information System (INIS)

    Radha, P. B.; Marozas, J. A.; Marshall, F. J.; Shvydky, A.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Sangster, T. C.; Skupsky, S.; McCrory, R. L.; Meyerhofer, D. D.

    2012-01-01

    Low-adiabat polar-drive (PD) [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] implosion designs for the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. These designs for cryogenic deuterium–tritium and warm plastic shells use a temporal laser pulse shape with three pickets followed by a main pulse [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)]. The designs are at two different on-target laser intensities, with different in-flight aspect ratios (IFARs). These designs permit studies of implosion energetics and target performance closer to ignition-relevant intensities (∼7 × 10 14 W/cm 2 at the quarter-critical surface, where nonlocal heat conduction and laser–plasma interactions can play an important role) but at lower values of IFAR ∼ 22 or at lower intensity (∼3 × 10 14 W/cm 2 ) but at a higher IFAR (IFAR ∼ 32, where shell instability can play an important role). PD geometry requires repointing of laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent, compensating for the reduced equatorial drive by increasing the energies of the repointed beams. They also use custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These latter designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the custom beam profiles, are obtained.

  12. Status of Cea spallation modules for ads

    International Nuclear Information System (INIS)

    Enderle, R.; Poitevin, Y.; Deffain, J.P.; Bergeron, J.

    2001-01-01

    In the framework of CEA studies on ADS dedicated to waste transmutation, a liquid metal reference concept and an alternative solid target have been evaluated to produce neutrons inside the spallation module. This work examines the design (neutronic, thermohydraulic and mechanical aspects) and the performances of both options. It is shown that a liquid Pb-Bi target offers more possibilities regarding to high protons current densities (possible industrial extrapolation) but that a solid target made with tungsten particles offers also interesting ability to create a neutrons flux appropriated (strong spectrum and flat axial distribution) to an sub-critical core dedicated to incineration. (author)

  13. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    Science.gov (United States)

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  14. Added value of second biopsy target in screen-detected widespread suspicious breast calcifications.

    Science.gov (United States)

    Falkner, Nathalie M; Hince, Dana; Porter, Gareth; Dessauvagie, Ben; Jeganathan, Sanjay; Bulsara, Max; Lo, Glen

    2018-06-01

    There is controversy on the optimal work-up of screen-detected widespread breast calcifications: whether to biopsy a single target or multiple targets. This study evaluates agreement between multiple biopsy targets within the same screen-detected widespread (≥25 mm) breast calcification to determine if the second biopsy adds value. Retrospective observational study of women screened in a statewide general population risk breast cancer mammographic screening program from 2009 to 2016. Screening episodes recalled for widespread calcifications where further views indicated biopsy, and two or more separate target areas were sampled within the same lesion were included. Percentage agreement and Cohen's Kappa were calculated. A total of 293317 women were screened during 761124 separate episodes with recalls for widespread calcifications in 2355 episodes. In 171 women, a second target was biopsied within the same lesion. In 149 (86%) cases, the second target biopsy result agreed with the first biopsy (κ = 0.6768). Agreement increased with increasing mammography score (85%, 86% and 92% for score 3, 4 and 5 lesions). Same day multiple biopsied lesions were three times more likely to yield concordant results compared to post-hoc second target biopsy cases. While a single target biopsy is sufficient to discriminate a benign vs. malignant diagnosis in most cases, in 14% there is added value in performing a second target biopsy. Biopsies performed prospectively are more likely to yield concordant results compared to post-hoc second target biopsy cases, suggesting a single prospective biopsy may be sufficient when results are radiological-pathological concordant; discordance still requires repeat sampling. © 2018 The Royal Australian and New Zealand College of Radiologists.

  15. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  16. Status and future application of pilot lead-bismuth target circuit TC-1 for ADS

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, S.; Leonchuk, M.; Orlov, Y.; Pankratov, D.; Reshetnikova, O.; Suvorov, G.; Zabudko, A. [Institute for Physics and Power Engineering, Obninsk (Russian Federation); Stepanov, V.; Klimov, N. [Experimental and Design Organization, Gidropress, Podolsk (Russian Federation); Hechanova, A.; Ma, J. [Nevada Univ., Las Vegas, NV (United States); Li, N. [Los Alamos National Lab., NM (United States); Gudowski, W. [International Science and Technology Center, Moscow (Russian Federation)

    2007-07-01

    A complicated evolution, status and future application of the pilot molten lead-bismuth target circuit of 1 MW proton beam power (TC-1) as an important part of a target-blanket accelerator driven system (ADS), that has been developed, created and twice tested under the auspice of the International Science and Technology Center (ISTC), is analyzed. The target complex TC-1 is a circulation lead-bismuth loop whose beam window is made of ferritic steel EP-823 (this steel was used in the past as material of fuel rods cladding in reactors cooled with lead-bismuth). At present TC-1 is operating at coolant temperature up to 300 C degrees and will be used to study different issues linked to the use of lead-bismuth: -) interaction with air, water and hydrogen, -) different regimes of flow, -) corrosion, -) filtering, or -) slag formation.

  17. CFD aspects of ADSS target design

    International Nuclear Information System (INIS)

    Shashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2004-03-01

    The preliminary studies on CFD aspects of Accelerator Driven Sub-critical System (ADSS) target design has been presented in this report. The studies involve the thermal hydraulic analysis of the Liquid Metal Spallation Target (LMST) using Lead Bismuth Eutectic (LBE) as the target material. Apart from acting as Spallation medium LBE is used to remove the heat deposited by High Energy Proton Beam. Window of the target ( one side vacuum and other side LBE) has been reported in literature to be the most critical zone where high temperatures are reached. Numerical Simulations are carried out with Artificial Neural Network coupled Computational Fluid Dynamics (CFD) code, Various studies were carried out after the verification and validation of the initial results. Window being, the main parameter to be optimised, various designs of window were tried, along with change in the window material. The best possible combination has been proposed. The thermal hydraulic studies were carried out to arrive at the acceptable operating conditions for the target. (author)

  18. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    International Nuclear Information System (INIS)

    Rimpault, G.; Sunderland, R.; Mueller, A.C.

    2006-01-01

    objective of accelerator driven systems (ADS) is for nuclear waste transmutation in order to reduce the radio-toxicity of the spent fuel in final storage disposal. Achieving this goal requires other technologies associated with an advanced fuel cycle with uranium-free fuel heavily loaded with minor actinides and associated fabrication and reprocessing capabilities. The primary or reference option for the advanced fuels for the ADS is based on the (Pu,MA)-O 2 material: a composite with Mo92 (CERMET) or MgO (CERCER). The size of the plant for a given fuel technology is of significant importance to achieve net MA consumption. The larger the size, the smaller amount of Plutonium is needed to achieve the requested reactivity level, and the greater amount of Minor Actinide (MA) can be provided and will, in the end, be burnt. A good compromise for a Helium cooled ADT core with roughened steel pin cladding leads to a volume power of 44 W/cm 3 and an installed power of 400 MWth. The design of this core takes advantage of previous studies by keeping the pressure drop over the core height below 0.5 bar hence preserving the decay removal capabilities and decreasing the pin diameter (7.71 mm) in order to keep the linear power below 152 W/cm. The 6. EUROTRANS Integrated Project will be targeting an European Transmutation Demonstrator (ETD) primarily with lead coolant but also with helium coolant (ETD/EFIT of several hundred MWth, EFIT for European Facility on Industrial scale Transmuter) able to transmute Nuclear Waste on a industrial scale with the full set of constraints taken into account. (authors)

  19. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism

    International Nuclear Information System (INIS)

    Takayama, Koichi; Reynolds, Paul N.; Short, Joshua J.; Kawakami, Yosuke; Adachi, Yasuo; Glasgow, Joel N.; Rots, Marianne G.; Krasnykh, Victor; Douglas, Joanne T.; Curiel, David T.

    2003-01-01

    The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR deficiency, Ad vectors have been retargeted by utilizing chimeric fibers possessing knob domains of alternate Ad serotypes. We have reported that ovarian cancer cells possess a primary receptor for Ad3 to which the Ad3 knob binds independently of the CAR-Ad5 knob interaction. Furthermore, an Ad5-based chimeric vector, designated Ad5/3, containing a chimeric fiber proteins possessing the Ad3 knob, demonstrates CAR-independent tropism by virtue of targeting the Ad3 receptor. Based on these findings, we hypothesized that a mosaic virus possessing both the Ad5 knob and the Ad3 knob on the same virion could utilize either primary receptor, resulting in expanded tropism. In this study, we generated a dual-knob mosaic virus by coinfection of 293 cells with Ad5-based and Ad5/3-based vectors. Characterization of the resultant virions confirmed the incorporation of both Ad5 and Ad3 knobs in the same particle. Furthermore, this mosaic virus was able to utilize either receptor, CAR and the Ad3 receptor, for virus attachment to cells. Enhanced Ad infectivity with the mosaic virus was shown in a panel of cell lines, with receptor profiles ranging from CAR-dominant to Ad3 receptor-dominant. Thus, this mosaic virus strategy may offer the potential to improve Ad-based gene therapy approaches by infectivity enhancement and tropism expansion

  20. Delta-Sigma AD-Converters Practical Design for Communication Systems

    CERN Document Server

    Gaggl, Richard

    2013-01-01

    The emphasis of this book is on practical design aspects for broadband A/D converters for communication systems. The embedded designs are employed for transceivers in the field of ADSL solutions and WLAN applications. An area- and power-efficient realization of a converter is mandatory to remain competitive in the market. The right choice for the converter topology and architecture needs to be done very carefully to result in a competitive FOM. The book begins with a brief overview of basic concepts about ADSL and WLAN to understand the ADC requirements. At architectural level, issues on different modulator topologies are discussed employing the provided technology node. The design issues are pointed out in detail for modern digital CMOS technologies, beginning with 180nm followed by 130nm and going down to 65nm feature size. Beside practical aspects, challenges to mixed-signal design level are addressed to optimize the converters in terms of consumed chip area, power consumption and design for high yield in ...

  1. Separation of no-carrier-added 107,109Cd from proton induced silver target. Classical chemistry still relevant

    International Nuclear Information System (INIS)

    Moumita Maiti; Susanta Lahiri; Tomar, B.S.

    2011-01-01

    The classical chemistry like precipitation technique is relevant even in modern days trans-disciplinary research from the view point of green chemistry. A definite demand of no-carrier-added (nca) cadmium tracers, namely, 107,109 Cd, has been realized for diverse applications. Development of efficient separation technique is therefore important to address the purity of the tracers for various applications. No-carrier-added 107,109 Cd radionuclides were produced by bombarding natural silver target matrix with 13 MeV protons, which gave ∼15 MBq/μA h yield for nca 107 Cd. The nca cadmium radionuclides were separated from the natural silver target matrix by precipitating Ag as AgCl. The developed method is an example wherein green chemistry is used in trans-disciplinary research. The method is also simple, fast, cost effective and environmentally benign. (author)

  2. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  3. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  4. Design of a covert RFID tag network for target discovery and target information routing.

    Science.gov (United States)

    Pan, Qihe; Narayanan, Ram M

    2011-01-01

    Radio frequency identification (RFID) tags are small electronic devices working in the radio frequency range. They use wireless radio communications to automatically identify objects or people without the need for line-of-sight or contact, and are widely used in inventory tracking, object location, environmental monitoring. This paper presents a design of a covert RFID tag network for target discovery and target information routing. In the design, a static or very slowly moving target in the field of RFID tags transmits a distinct pseudo-noise signal, and the RFID tags in the network collect the target information and route it to the command center. A map of each RFID tag's location is saved at command center, which can determine where a RFID tag is located based on each RFID tag's ID. We propose the target information collection method with target association and clustering, and we also propose the information routing algorithm within the RFID tag network. The design and operation of the proposed algorithms are illustrated through examples. Simulation results demonstrate the effectiveness of the design.

  5. Google Advertising Tools Cashing in with AdSense and AdWords

    CERN Document Server

    Davis, Harold

    2010-01-01

    With this book, you'll learn how to take full advantage of Google AdWords and AdSense, the sophisticated online advertising tools used by thousands of large and small businesses. This new edition provides a substantially updated guide to advertising on the Web, including how it works in general, and how Google's advertising programs in particular help you make money. You'll find everything you need to work with AdWords, which lets you generate text ads to accompany specific search term results, and AdSense, which automatically delivers precisely targeted text and image ads to your website.

  6. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  7. WEBEXPIR: Windowless target electron beam experimental irradiation

    International Nuclear Information System (INIS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait

    2008-01-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications

  8. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  9. A Design Methodology for Power-efficient Continuous-time Sigma-Delta A/D Converters

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2003-01-01

    In this paper we present a design methodology for optimizing the power consumption of continuous-time (CT) ΣΔ A/D converters. A method for performance prediction for ΣΔ A/D converters is presented. Estimation of analog and digital power consumption is derived and employed to predict the most power...... bits performance. Expected power consumption for the prototype is approx. 170 μW....

  10. New separation method of no-carrier-added {sup 47}Sc from titanium targets

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, B.; Majkowska, A.; Kasperek, A.; Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warszawa (Poland). Nuclear Chemistry and Radiochemistry Center

    2012-07-01

    Radionuclides with medium energy beta emission and a several day half-life are attractive candidates for radioimmunotherapy. Among the most promising in this category is {sup 47}Sc produced by fast neutron irradiation (E{sub n} > 1 MeV) of titanium target with high energy neutrons in {sup 47}Ti(n,p){sup 47}Sc nuclear reaction. In the previously reported production scheme the dissolution of the TiO{sub 2} target in hot concentrated H{sub 2}SO{sub 4} and evaporation of the resulting solution were the most time-consuming steps. The present paper describes new, simple and efficient production method of {sup 47}Sc, where the slow dissolution of the target is avoided. After irradiation in fast neutron flux {sup 47}TiO{sub 2} and Li{sub 2}{sup 47}TiF{sub 6} targets were dissolved in HF solutions. Next {sup 47}Sc was separated from the target using anion exchange resin Dowex 1 with 0.4 M HF + 0.06 M HNO{sub 3} solution as eluent. The eluted {sup 47}Sc was adsorbed on cation exchange resin and eluted with 0.5 M of ammonium acetate. The 47Sc separation yield in the proposed procedure is about 90% with the separation time less than 2 h. The obtained no-carrier-added {sup 47}Sc was used to label DOTATATE conjugate with 96% labeling yield. (orig.)

  11. Using a 'value-added' approach for contextual design of geographic information.

    Science.gov (United States)

    May, Andrew J

    2013-11-01

    The aim of this article is to demonstrate how a 'value-added' approach can be used for user-centred design of geographic information. An information science perspective was used, with value being the difference in outcomes arising from alternative information sets. Sixteen drivers navigated a complex, unfamiliar urban route, using visual and verbal instructions representing the distance-to-turn and junction layout information presented by typical satellite navigation systems. Data measuring driving errors, navigation errors and driver confidence were collected throughout the trial. The results show how driver performance varied considerably according to the geographic context at specific locations, and that there are specific opportunities to add value with enhanced geographical information. The conclusions are that a value-added approach facilitates a more explicit focus on 'desired' (and feasible) levels of end user performance with different information sets, and is a potentially effective approach to user-centred design of geographic information. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  13. AD HOC TEAMWORK BEHAVIORS FOR INFLUENCING A FLOCK

    Directory of Open Access Journals (Sweden)

    Katie Genter

    2016-02-01

    Full Text Available Ad hoc teamwork refers to the challenge of designing agents that can influence the behavior of a team, without prior coordination with its teammates. This paper considers influencing a flock of simple robotic agents to adopt a desired behavior within the context of ad hoc teamwork. Specifically, we examine how the ad hoc agents should behave in order to orient a flock towards a target heading as quickly as possible when given knowledge of, but no direct control over, the behavior of the flock. We introduce three algorithms which the ad hoc agents can use to influence the flock, and we examine the relative importance of coordinating the ad hoc agents versus planning farther ahead when given fixed computational resources. We present detailed experimental results for each of these algorithms, concluding that in this setting, inter-agent coordination and deeper lookahead planning are no more beneficial than short-term lookahead planning.

  14. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  15. JAERI/KEK target material program overview

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Kogawa, Hiroyuki; Sasa, Toshinobu

    2001-01-01

    Mercury target was designed for megawatt neutron scattering facility in JAERI/KEK spallation neutron source. The incident proton energy and current are 3 GeV and 333 μA, respectively: the total proton energy is 1 MW in short pulses at a frequency of 25 Hz. Under the guide rule the mercury target was designed: the maximum temperature of target window is 170degC and induced stresses for the type 316 stainless steel are within limits of design guide. In order to demonstrate ADS (Accelerator Driven Systems) transmutation critical and engineering facilities have been designed conceptually. In engineering facility lead-bismuth spallation target station is to be planned. Objective to build the facility is to demonstrate material irradiation. According to neutronics calculation irradiation damage of the target vessel window will be 5 dpa per year. (author)

  16. Technical Design Report, Second Target Station

    International Nuclear Information System (INIS)

    Galambos, John D.; Anderson, David E.; Bethea, Katie L.; Carden, W. F.; Chae, Steven M.; Bechtol, D.; Brown, N.; Clark, A.

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  17. Shortening User Interface Design Iterations through Realtime Visualisation of Design Actions on the Target Device

    OpenAIRE

    MESKENS, Jan; LUYTEN, Kris; CONINX, Karin

    2009-01-01

    In current mobile user interface design tools, it is time consuming to export a design to the target device. This makes it hard for designers to iterate over the user interfaces they are creating. We propose Gummy-live, a GUI builder for mobile devices allowing designers to test and observe immediately on the target device each step they take in the GUI builder. This way, designers are stimulated to iteratively test and refine user interface prototypes in order to take the target device charac...

  18. IP EUROTRANS: from MYRRHA towards XT-ADS

    International Nuclear Information System (INIS)

    Debruyn, D.

    2006-01-01

    The integrated project (IP) EUROTRANS (EUROpean Research Programme for the TRANSmutation of High-Level Nuclear Waste in an Accelerator Driven System) has been launched in the Euratom Sixth Framework Programme (FP6) and has officially started in April 2005 for a duration of four years. This project is the logical continuation of several activities worked out within the previous Framework Programme (FP5), namely the ADOPT network, the FUETRA, BASTRA and TESTRA clusters and the PDS-XADS project. The project is divided into five main sub-projects or domains (DMs). SCK-CEN coordinates the DM1 DESIGN described hereafter. The aim of DM2 ECATS is to provide validated experimental input from relevant coupling experiments of an accelerator, a spallation target and a sub-critical blanket, while the development and demonstration of the associated technologies is devoted to the remaining DMs, DM3 AFTRA (fuels), DM4 DEMETRA (heavy liquid metal technologies) and DM5 NUDATRA (nuclear data). The objective of the DM1 DESIGN of IP EUROTRANS is to proceed by a significant jump towards the demonstration of the industrial transmutation through the ADS route. The strategy of European Transmutation Demonstration (ETD) is carried out with two interconnected activities: (1) the first activity is to develop an advanced design file leading to a short-term (i.e. realisation within the next 10 years) experimental demonstration of the technical feasibility of Transmutation (at 50 to 100 MWth) in an Accelerator Driven System (XT-ADS). Liquid lead-bismuth eutectic (LBE) is used as primary coolant and material for the spallation target and the core is designed with standard MOX fuel; (2) the second activity is to carry out in parallel a reference conceptual design for a modular EFIT (European Facility for Industrial Transmutation) machine with a power of up to several 100 MWth, as a basis for a cost estimate and safety studies for an ADS-based transmutation system. For the EFIT, liquid lead is used

  19. Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target

    International Nuclear Information System (INIS)

    Moumita Maiti; Kaustab Ghosh; Susanta Lahiri

    2015-01-01

    A nat Co target was irradiated with 47 MeV 7 Li beam to produce no-carrier-added 61 Cu, 62 Zn in the target matrix. Two new green radiochemical methods were developed for separation of 61 Cu and 62 Zn from the target matrix, (i) liquid-liquid extraction (LLX) technique using room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) and ammonium pyrrolidinedithiocarbamate (APDC) (ii) adsorption on calcium alginate beads. (author)

  20. Improvement of intelligibility of ideal binary-masked noisy speech by adding background noise.

    Science.gov (United States)

    Cao, Shuyang; Li, Liang; Wu, Xihong

    2011-04-01

    When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions.

  1. Designing high power targets with computational fluid dynamics (CFD)

    International Nuclear Information System (INIS)

    Covrig, S. D.

    2013-01-01

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets

  2. Designing high power targets with computational fluid dynamics (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)

    2013-11-07

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  3. Design of free patterns of nanocrystals with ad hoc features via templated dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Aouassa, M.; Berbezier, I.; Favre, L.; Ronda, A. [IM2NP, CNRS, AMU, Marseille (France); Bollani, M.; Sordan, R. [LNES, Como (Italy); Delobbe, A.; Sudraud, P. [Orsay Physics, Fuveau (France)

    2012-07-02

    Design of monodisperse ultra-small nanocrystals (NCs) into large scale patterns with ad hoc features is demonstrated. The process makes use of solid state dewetting of a thin film templated through alloy liquid metal ion source focused ion beam (LMIS-FIB) nanopatterning. The solid state dewetting initiated at the edges of the patterns controllably creates the ordering of NCs with ad hoc placement and periodicity. The NC size is tuned by varying the nominal thickness of the film while their position results from the association of film retraction from the edges of the lay out and Rayleigh-like instability. The use of ultra-high resolution LMIS-FIB enables to produce monocrystalline NCs with size, periodicity, and placement tunable as well. It provides routes for the free design of nanostructures for generic applications in nanoelectronics.

  4. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  5. From Single Target to Multitarget/Network Therapeutics in Alzheimer’s Therapy

    Directory of Open Access Journals (Sweden)

    Hailin Zheng

    2014-01-01

    Full Text Available Brain network dysfunction in Alzheimer’s disease (AD involves many proteins (enzymes, processes and pathways, which overlap and influence one another in AD pathogenesis. This complexity challenges the dominant paradigm in drug discovery or a single-target drug for a single mechanism. Although this paradigm has achieved considerable success in some particular diseases, it has failed to provide effective approaches to AD therapy. Network medicines may offer alternative hope for effective treatment of AD and other complex diseases. In contrast to the single-target drug approach, network medicines employ a holistic approach to restore network dysfunction by simultaneously targeting key components in disease networks. In this paper, we explore several drugs either in the clinic or under development for AD therapy in term of their design strategies, diverse mechanisms of action and disease-modifying potential. These drugs act as multi-target ligands and may serve as leads for further development as network medicines.

  6. Current and novel therapeutic molecules and targets in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.

  7. What margins should be added to the clinical target volume in radiotherapy treatment planning of lung cancer?

    International Nuclear Information System (INIS)

    Ekberg, L.; Wittgren, L.; Holmberg, O.

    1995-01-01

    When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV

  8. Optimum nuclear design of target fuel rod for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee University, Seoul (Korea)

    1998-04-01

    Nuclear target design for Mo-99 production in HANARO was performed, KAERI proposed target design was analyzed and its feasibility was shown. Three commercial target designs of Cintichem, ANL and KAERI were tested for the HANARO irradiation an d they all satisfied with design specification. A parametric study was done for target design options and Mo-99 yields ratio and surface heat flux were compared. Tested parameters were target fuel thickness, irradiation location, target axial length, packing density of powder fuel, size of target radius, target geometry, fuel enrichment, fuel composition, and cladding material. Optimized target fuel was designed for both LEU and HEU options. (author). 17 refs., 33 figs., 42 tabs.

  9. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  10. Fostering a Durable Relationship between a Radioactive Waste Management Facility and its Host Community. Adding Value through Design and Process. 2015 Edition

    International Nuclear Information System (INIS)

    2015-01-01

    In the field of long-term radioactive waste management, repository projects last from decades to centuries. Such projects will inevitably have an effect on the host community from the planning stage to the end of construction and beyond. The key to a long-lasting and positive relationship between a facility and its host community is ensuring that solutions are reached together throughout the entire process. The sustainability of radioactive waste management solutions can potentially be achieved through design and implementation of a facility that provides added cultural and amenity value, as well as economic opportunities, to the local community. This edition of Fostering a Durable Relationship between a Waste Management Facility and its Host Community: Adding Value through Design and Process highlights new innovations in siting processes and in facility design - functional, cultural and physical - from different countries, which could be of added value to host communities and their sites in the short to long term. These new features are examined from the perspective of sustainability, with a focus on increasing the likelihood that people will both understand the facility and its functions, and remember over very long timescales what is located at the site. This 2015 update by the NEA Forum on Stakeholder Confidence will be beneficial in designing paths forward for local or regional communities, as well as for national radioactive waste management programmes. Section 2 of this report summarises the value of developing a sustainable relationship between a community and a radioactive waste management facility through added cultural and amenity value. In Section 3, the report identifies design considerations - functional, cultural and physical - that may help facilities to fit into the community in a sustainable manner. Each design feature is illustrated with examples. Section 4 discusses the benefits that may be gained from the very process of planning radioactive

  11. Water-cooled target-box design at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.; Lambert, J.

    1983-01-01

    The target boxes in the main experimental beam line (Line A) at the Clinton P. Anderson Meson Physics Facility (LAMPF) have operated since 1976. A program of replacing the boxes is underway. This paper will present past history, design considerations, calculational results and the final box design

  12. Multi-target directed donepezil-like ligands for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Mercedes eUnzeta

    2016-05-01

    Full Text Available Alzheimer's disease (AD, the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept® but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL based on the one molecule, multiple targets paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine or 8-hydroxyquinoline with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.

  13. Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    The reliability of ad-hoc networks is gaining popularity in two areas: as a topic of academic interest and as a key performance parameter for defense systems employing this type of network. The ad-hoc network is dynamic and scalable and these descriptions are what attract its users. However, these descriptions are also synonymous for undefined and unpredictable when considering the impacts to the reliability of the system. The configuration of an ad-hoc network changes continuously and this fact implies that no single mathematical expression or graphical depiction can describe the system reliability-wise. Previous research has used mobility and stochastic models to address this challenge successfully. In this paper, the authors leverage the stochastic approach and build upon it a probabilistic solution discovery (PSD) algorithm to optimize the topology for a cluster-based mobile ad-hoc wireless network (MAWN). Specifically, the membership of nodes within the back-bone network or networks will be assigned in such as way as to maximize reliability subject to a constraint on cost. The constraint may also be considered as a non-monetary cost, such as weight, volume, power, or the like. When a cost is assigned to each component, a maximum cost threshold is assigned to the network, and the method is run; the result is an optimized allocation of the radios enabling back-bone network(s) to provide the most reliable network possible without exceeding the allowable cost. The method is intended for use directly as part of the architectural design process of a cluster-based MAWN to efficiently determine an optimal or near-optimal design solution. It is capable of optimizing the topology based upon all-terminal reliability (ATR), all-operating terminal reliability (AoTR), or two-terminal reliability (2TR)

  14. Review of laser mega joule target area: Design and processes

    International Nuclear Information System (INIS)

    Geitzholz, M.; Lanternier, C.

    2006-01-01

    The Laser Mega Joule (LMJ) target area is currently designed to achieve ignition and significant fusion gain in laboratory. LMJ will be composed of 240 identical large 370 mm * 370 mm square laser beams. These beams will focus 2 mega-joules of energy at the wavelength of 351 nm on the center of an experiment chamber. Design studies for target equipment are well advanced, target chamber and target holder (concrete) works have already begun. A detailed overview of the target area equipment is presented: target chamber, frame, diagnostic inserter manipulator, final optic assembly, dual diagnostic and laser reference, non cryogenic target positioner. Recent technical and architectural choices are detailed including safety transfers and alignment processes (target, laser and diagnostic). All this target equipment allows us to optimize shot chrono-gram, from target metrology to the shot, including calibration process. (authors)

  15. Quantifying design trade-offs of beryllium targets on NIF

    Science.gov (United States)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  16. European DEMO divertor target: Operational requirements and material-design interface

    Directory of Open Access Journals (Sweden)

    J.H. You

    2016-12-01

    Full Text Available Recently, an integrated program of conceptual design activities for the European DEMO reactor was launched in the framework of the EUROfusion Consortium, where reliable power handling capability was identified as one of the most critical scientific as well as technological challenges for a DEMO reactor. The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. The DEMO divertor target will have to withstand extreme thermal loads where the local peak heat flux is expected to reach up to 20 MW/m2 during slow transient events in DEMO. To assure sufficient heat removal capability of the divertor target against normal and transient operational scenarios under expected cumulative neutron dose of up to 13 dpa is one of the fundamental engineering challenges imposed on target design. To develop the design of the DEMO divertor and related technologies, an R&D work package ‘Divertor’ has been set up in this consortium. The subproject ‘Target Development’ is devoted to the development of the conceptual design and the core technologies of the plasma-facing target. Devising and implementing novel structural heat sink materials (e.g. W/Cu composites to advanced target design concepts is one of the major objectives of this subproject. In this paper, the underlying design requirements imposed by the envisaged power exhaust goal and the prominent material-design interface issues are discussed. In addition, the candidate design concepts being currently considered are presented together with the related material issues. Finally, the first results achieved so far are presented.

  17. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  18. On Energy-Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2007-01-01

    Full Text Available A hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  19. On Energy-Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Cristina Comaniciu

    2007-03-01

    Full Text Available A hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  20. Optimum design of exploding pusher target to produce maximum neutrons

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Miyanaga, N.; Kato, Y.; Nakatsuka, M.; Nishiguchi, A.; Yabe, T.; Yamanaka, C.

    1985-03-01

    Exploding pusher target experiments have been conducted with the 1.052-μm GEKKO MII two-beam glass laser system to design an optimum target, which couples to the incident laser light most effectively to produce the maximum neutrons. Since hot electrons preheat the shell entirely in spite of strongly nonuniform irradiation, a simple model can design the optimum target, of which the shell/fuel interface is accelerated to 0.5 to 0.7 times the initial radius within a laser pulse. A 2-dimensional computer simulation supports this target design. The scaling of the neutron yield N with the laser power P is N ∝ P 2.4±0.4 . (author)

  1. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  2. Benchmarking CRISPR on-target sgRNA design.

    Science.gov (United States)

    Yan, Jifang; Chuai, Guohui; Zhou, Chi; Zhu, Chenyu; Yang, Jing; Zhang, Chao; Gu, Feng; Xu, Han; Wei, Jia; Liu, Qi

    2017-02-15

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based gene editing has been widely implemented in various cell types and organisms. A major challenge in the effective application of the CRISPR system is the need to design highly efficient single-guide RNA (sgRNA) with minimal off-target cleavage. Several tools are available for sgRNA design, while limited tools were compared. In our opinion, benchmarking the performance of the available tools and indicating their applicable scenarios are important issues. Moreover, whether the reported sgRNA design rules are reproducible across different sgRNA libraries, cell types and organisms remains unclear. In our study, a systematic and unbiased benchmark of the sgRNA predicting efficacy was performed on nine representative on-target design tools, based on six benchmark data sets covering five different cell types. The benchmark study presented here provides novel quantitative insights into the available CRISPR tools. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Targeting and design of chilled water network

    International Nuclear Information System (INIS)

    Foo, Dominic C.Y.; Ng, Denny K.S.; Leong, Malwynn K.Y.; Chew, Irene M.L.; Subramaniam, Mahendran; Aziz, Ramlan; Lee, Jui-Yuan

    2014-01-01

    Highlights: • Minimum flowrate targeting for chilled water network. • Mixed series/parallel configuration of chilled water-using units. • Integrated cooling and chilled water networks. - Abstract: Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches

  4. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  5. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  6. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  7. MYRRHA, a multipurpose european ADS for R and D

    International Nuclear Information System (INIS)

    Abderrahim, Hamid Ait

    2003-01-01

    Since 1997 SCKCEN is developing MYRRHA in collaboration with various European laboratories as a multipurpose Accelerator Driven System (ADS) for R and D applications. In its present status, the MYRRHA project is based on the coupling of a (350 MeV 5 mA) LINAC proton accelerator with a liquid Pb-Bi windowless spallation target and a neutron multiplying sub-critical core (SC) cooled by Pb-Bi in a pool type configuration. The spallation target circuit is fully separated from the core coolant as a vacuum tight unit whose internal heat production is removed to the SC pool. For achieving high performance core characteristics, we had to cope with a drastic geometrical constraint during the spallation target design. Indeed, the available central hole in the core four housing the spallation source is limited to roughly 10 cm diameter and that leads to a current density of 130 μA/cm 2 on the hypothetical window target. Therefore, we decided to design the MYRRHA spallation target as a windowless target. The choice of using a 350 MeV protons is also puts a constraint in terms of heat deposition in the target. Indeed, the proton penetration in the Pb-Bi is limited to 13 cm leading to a heat deposition of 1.4 MW in a volume of 0.5 liter. This led us to choose the solution of a liquid Pb-Bi target. The SC has fast neutron spectrum properties and the capability of housing several islands with thermal spectrum regions located in In-Pile Sections (IPS) in or at the periphery of the fast core. The fast core is fuelled with typical fast reactor fuel pins arranged in hexagonal assemblies with an active length of 600 mm. The three central hexagons are housing the spallation module. The MOX fuel has Pu contents of 30% and 20%. The Pu isotopic vector is the one typical resulting from the UO2 LWR reprocessing. The facility is designed to be operated to a large extent thanks to remote handling. Therefore, the design called for a dedicated building containment arrangement. A remote handling

  8. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  9. Nyquist AD Converters, Sensor Interfaces, and Robustness Advances in Analog Circuit Design, 2012

    CERN Document Server

    Baschirotto, Andrea; Steyaert, Michiel

    2013-01-01

    This book is based on the presentations during the 21st workshop on Advances in Analog Circuit Design.  Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.  Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of Nyquist A/D converters, capacitive sensor interfaces, reliability, variability, and connectivity.

  10. Present status of the conceptual design of IFMIF target facility

    International Nuclear Information System (INIS)

    Katsuta, H.; Kato, Y.; Konishi, S.; Miyauchi, Y.; Smith, D.; Hua, T.; Green, L.; Benamati, G.; Cevolani, S.; Roehrig, H.; Schutz, W.

    1998-01-01

    The conceptual design activity (CDA) for the international fusion materials irradiation facility (IFMIF) has been conducted. For the IFMIF target facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly: The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm 2 lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the-high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 l/s and the total lithium inventory is about 21 m 3 . The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive waste generated by the target facilities is estimated. (orig.)

  11. Super liquid density target designs

    International Nuclear Information System (INIS)

    Pan, Y.L.; Bailey, D.S.

    1976-01-01

    The success of laser fusion depends on obtaining near isentropic compression of fuel to very high densities and igniting this fuel. To date, the results of laser fusion experiments have been based mainly on the exploding pusher implosion of fusion capsules consisting of thin glass microballoons (wall thickness of less than 1 micron) filled with low density DT gas (initial density of a few mg/cc). Maximum DT densities of a few tenths of g/cc and temperatures of a few keV have been achieved in these experiments. We will discuss the results of LASNEX target design calculations for targets which: (a) can compress fuel to much higher densities using the capabilities of existing Nd-glass systems at LLL; (b) allow experimental measurement of the peak fuel density achieved

  12. Elemental Technologies for Lead-Bismuth Spallation Target System in J-PARC

    International Nuclear Information System (INIS)

    Obayashi, H.; Yamaguchi, K.; Saito, S.; Sugawara, T.; Takei, H.; Sasa, T.

    2015-01-01

    Japan Atomic Energy Agency (JAEA) has been researching and developing an Accelerator-Driven System (ADS) as a dedicated system for the transmutation of long-lived radioactive nuclides. The ADS proposed by JAEA uses the lead-bismuth eutectic (LBE) alloy as a spallation target material and a coolant. In the various R and D for ADS, construction of the Transmutation Experimental Facility (TEF) is planned under the framework of the J-PARC project as a preceding step before the construction of demonstrative ADS. In this R and D, TEF is considered for the experimental investigation of the feasibility of the beam window, the structural materials, and to investigate the operation properties of the target system by using 400 MeV-250 kW proton beam. This target system is consisted of various elements and must be able to operate without troubles during an operation period of TEF facility. Furthermore, in the maintenance period after the operation, because the inside of a hot cell storing a target is exposed to strong radiations, all elements must be designed as remote control devices. In this study, the present conditions of the design and the result of performance test of each important elements were confirmed in the realisation of the LBE target system, such as the monitoring system of flow rate by using the ultrasonic method, the heater system with the metallic heat insulator joined to a flow channel of LBE, and the operability of remote handing. (authors)

  13. IFMIF target and test cell - design and integration

    International Nuclear Information System (INIS)

    Heinzel, V.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) aims at the qualification of appropriate materials for a Demonstration Fusion Power Plant (DEMO) to a fluence of up to 150 dpa (displacement per atom) at a DEMO typical neutron spectrum. It comprises two accelerators each providing a deuteron beam with 125 mA and 40 MeV. The deuterons strike a lithium target and create via stripping reactions neutrons. The neutrons are mainly forward directed into the High-Flux-Test-Module (HFTM). The Medium Flux-Test-Modules (MFTM) and the Low-Flux-Test-Modules (LFTM) are arranged in beam direction behind. In the HFTM a damage rate in steel of more than 20 dpa/fpy (displacement per atome per full power year) will be provide in a volume of 0.5 litre. The neutron spectrum is prone to produce helium and tritium in steel like in the first wall of a DEMO reactor. The Medium- Flux-Test-Modules are designed for creep fatigues in situ and tritium release test. The test modules are cooled with helium. The target is a lithium jet with a free surface towards the deuteron beams. The jet follows a concave curved so called back wall. Centrifugal forces increase the static pressure, which prevents lithium boiling at the beam tube pressure and the power release of 10 MW due to the deuteron beams. The target and Test Cell (TTC) houses the target and the test modules as well as the lithium supply tubes and a quench tank into which the lithium splashes after the target. The lithium containing components have a temperature of 250 to 350 C. Nuclear reactions mainly in beam direction contribute to heat releases in TTC components. The TTC is filled with a noble gas with almost atmospheric pressure. Natural convection transfers heat to the walls but also mitigates temperature peaks. The Forschungszentrum Karlsruhe (FZK) has developed or validated tools for: - The extended Monte Carlo Code McDeLicious for calculations of the neutron source term, dpa rates in the material specimens, activation

  14. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    Science.gov (United States)

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Thermalhydraulic and material specific investigations into the realization of an Accelerator Driven System (ADS) to transmute minor actinides. 1999 Status report

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Mueller, G.; Schumacher, G.; Konys, J.; Wedemeyer, O.; Groetzbach, G.; Carteciano, L.

    2000-10-01

    At Forschungszentrum Karlsruhe an HGF Strategy Fund Project entitled ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator-driven system (ADS) to Transmute Minor Actinides'' is performed which is funded by the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) in the section ''Energy Research and Energy Technology'' over a time period from 07/1999 to 06/2002 with a financial support of 7.0 million DM (35 man years). The objective of this HGF Strategy Fund Project is the development of new methods and technologies to design and manufacture thin-walled thermally highly-loaded surfaces (e.g. beam window) which are cooled by a corrosive heavy liquid metal (lead-bismuth eutectic). The beam window is a vital component of an ADS spallation target. The results of this project will provide the scientific-technical basis which allows the conception and the design of an ADS spallation target and later on a European Demonstrator of an ADS system. The work performed at Forschungszentrum Karlsruhe is embedded in a broad European research and development programme on ADS systems. (orig.)

  16. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  17. In silico design of targeted SRM-based experiments

    Directory of Open Access Journals (Sweden)

    Nahnsen Sven

    2012-11-01

    Full Text Available Abstract Selected reaction monitoring (SRM-based proteomics approaches enable highly sensitive and reproducible assays for profiling of thousands of peptides in one experiment. The development of such assays involves the determination of retention time, detectability and fragmentation properties of peptides, followed by an optimal selection of transitions. If those properties have to be identified experimentally, the assay development becomes a time-consuming task. We introduce a computational framework for the optimal selection of transitions for a given set of proteins based on their sequence information alone or in conjunction with already existing transition databases. The presented method enables the rapid and fully automated initial development of assays for targeted proteomics. We introduce the relevant methods, report and discuss a step-wise and generic protocol and we also show that we can reach an ad hoc coverage of 80 % of the targeted proteins. The presented algorithmic procedure is implemented in the open-source software package OpenMS/TOPP.

  18. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron

    2017-09-26

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  19. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Ferná ndez-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  20. Massively parallel de novo protein design for targeted therapeutics

    Science.gov (United States)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  1. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  2. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  3. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  4. Thermal experiments in the ADS target model

    International Nuclear Information System (INIS)

    Efanov, A.D.; Orlov, Yu.I.; Sorokin, A.P.; Ivanov, E.F.; Bogoslovskaya, G.P.; Li, N.

    2002-01-01

    Experiments on the development of the target heat model project and method of investigation into heat exchange in target were conducted with the aim of analysis of thermomechanical and strength characteristics of device; experimental data on the temperature distribution in coolant and membrane were obtained. Obtained data demonstrate that the temperature heterogeneity of membrane and coolant are connected with the temperature distribution variability near the membrane. Peculiarities of the experiment are noted: maximal temperature of oscillations at high point of the membrane, and power bearing temperature oscillations in the range 0 - 1 Hz [ru

  5. Impact of nuclear data uncertainties on neutronics parameters of MYRRHA/XT-ADS

    International Nuclear Information System (INIS)

    Sugawara, T.; Stankovskiy, A.; Van den Eynde, G.; Sarotto, M.

    2011-01-01

    A flexible fast spectrum research reactor MYRRHA able to operate in subcritical (driven by a proton accelerator) and critical modes is being developed in SCK-CEN. In the framework of IP EUROTRANS programme the XT-ADS model has been investigated for MYRRHA. This paper reports the comparison of the sensitivity coefficients calculated for different calculation models and the uncertainties deduced from various covariance data for the discussion on the reliability of XT-ADS neutronics design. Sensitivity analysis is based on the comparison of three-dimensional heterogeneous and two-dimensional RZ calculation models. Three covariance data sets were employed to perform uncertainty analysis. The obtained sensitivity coefficients differ substantially between the 3D heterogeneous and RZ homogenized calculation models. The uncertainties deduced from the covariance data strongly depend on the covariance data variation. The covariance data of the nuclear data libraries is an open issue to discuss the reliability of the neutronics design. The uncertainties deduced from the covariance data for XT-ADS are 0.94% and 1.9% by the SCALE-6 44-group and TENDL-2009 covariance data, accordingly. The uncertainties exceed the 0.3% Δk (confidence level 1σ) target accuracy level. To achieve this target accuracy, the uncertainties should be improved by experiments under adequate conditions such as LBE or Pb moderated environment with MOX or Uranium fuel

  6. MYRRHA. An experimental ADS Facility for Research and Development

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2006-01-01

    Full text of publication follows: Since 1998, SCK-CEN in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose ADS for R and D applications MYRRHA - and is conducting an associated R and D support programme. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. It consists of a proton accelerator delivering a 350 MeV * 5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In a first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects and on sub-critical reactor physics. Subsequently, it will be used as fast spectrum irradiation facility and as radioisotope production facility. Along the above design features, the MYRRHA project team is developing the MYRRHA project as a multipurpose irradiation facility for R and D applications on the basis of an Accelerator Driven System (ADS). The project is intended to fit into the European strategy towards an ADS Demo facility for nuclear waste transmutation as described in the PDS-XADS FP5 Project. As such it should serve the following task catalogue: ADS concept demonstration, Safety studies for ADS, MA transmutation studies, LLFP transmutation studies, Medical radioisotopes, Material research, Fuel research. A first preliminary conceptual design file of MYRRHA was completed by the end of 2001 and has been reviewed by an International Technical Guidance Committee that concluded that there are no show stoppers in the project even thought some topics such as the safety studies and the fuel qualification need to be addressed

  7. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  8. Content analysis of targeted food and beverage advertisements in a Chinese-American neighbourhood

    Science.gov (United States)

    Bragg, Marie A; Pageot, Yrvane K; Hernández-Villarreal, Olivia; Kaplan, Sue A; Kwon, Simona C

    2017-01-01

    Objectives The current descriptive study aimed to: (i) quantify the number and type of advertisements (ads) located in a Chinese-American neighbourhood in a large, urban city; and (ii) catalogue the targeted marketing themes used in the food/beverage ads. Design Ten pairs of trained research assistants photographed all outdoor ads in a 0.6 mile2 (1.6 km2) area where more than 60.0 % of residents identify as Chinese American. We used content analysis to assess the marketing themes of ads, including references to: Asian cultures; health; various languages; children; food or beverage type (e.g. sugar-sweetened soda). Setting Lower East Side, a neighbourhood located in the borough of Manhattan in New York City, USA. Subjects Ads (n 1366) in the designated neighbourhood. Results Food/beverage ads were the largest ad category (29.7 %, n 407), followed by services (e.g. mobile phone services; 21.0 %, n 288). Sixty-seven per cent (66.9 %) of beverages featured were sugar-sweetened, and 50.8 % of food ads promoted fast food. Fifty-five per cent (54.9 %) of food/beverage ads targeted Asian Americans through language, ethnicity of person(s) in the ad or inclusion of culturally relevant images. Fifty per cent (50.2 %) of ads were associated with local/small brands. Conclusions Food/beverage marketing practices are known to promote unhealthy food and beverage products. Research shows that increased exposure leads to excessive short-term consumption among consumers and influences children’s food preferences and purchase requests. Given the frequency of racially targeted ads for unhealthy products in the current study and increasing rates of obesity-related diseases among Asian Americans, research and policies should address the implications of food and beverage ads on health. PMID:28587693

  9. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  10. Changing attitudes toward smoking and smoking susceptibility through peer crowd targeting: more evidence from a controlled study.

    Science.gov (United States)

    Moran, Meghan Bridgid; Sussman, Steve

    2015-01-01

    Peer crowd identification consistently predicts an adolescent's smoking behavior. As such, several interventions have targeted adolescents and young adults based on their identification with a specific crowd (e.g., Hipsters). This study uses a controlled experimental design to isolate and test the effect of peer crowd targeting in an antismoking ad on antismoking attitudes and smoking susceptibility. Two hundred and thirty-nine adolescents, age 13-15 years, completed a baseline survey and then viewed an antismoking ad targeting one of eight crowds; 1 week later they completed a posttest. Participants were assessed on antismoking attitudes and smoking susceptibility. Adolescents who strongly identified with the crowd targeted by the ad reported stronger antismoking attitudes and lower levels of smoking susceptibility. Those who disidentified with the crowd targeted in the ad exhibited not statistically significant increases in smoking susceptibility and weaker antismoking attitudes at posttest. These findings indicate that targeting youths based on their peer crowd is a useful strategy for antismoking interventions. Additional research should further examine whether youths who disidentify with the targeted crowd in an ad exhibit reactance against the message.

  11. Flat cladding and pellets in the design of an irradiation target

    International Nuclear Information System (INIS)

    Yorio, Daniel; Denis, Alicia C.; Soba, Alejandro; Beuter, Oscar; Marajofsky, Adolfo

    2003-01-01

    The design of an enriched uranium irradiation target made of flat pellets and cladding is proposed in order to improve the fission Mo 99 production. The variation range of each one of the parameters is studied and the basic design of the target is given

  12. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  13. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  14. Preliminary conceptual design of target system. Pt. 1. System configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Haga, Katsuhiro; Kaminaga, Masanori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-07-01

    In the 21st century, neutron is expected to play a very important role in the fields of structural biology, nuclear physics, material science if a very high-intensity neutron source will be built because of its superior nature as an probe to investigate material structure and its function. The Japan Atomic Energy Research Institute has launched the Neutron Science Project for construction and utilization of a high-intensity spallation neutron source coupled with a proton accelerator. In the project, a neutron scattering facility is planned to be constructed in an early stage. Development of a 5MW spallation neutron source is one of the most difficult technical challenges in this project. A two-step development plan of the target was established to construct a 5MW-target station In the 1st step, a 1.5MW target will be constructed to develop 5MW target technology. The preliminary conceptual design was conducted to clarify the specifications of the target system of 1.5MW and 5MW including system layout, scale etc. This report describes (1) a design policy, (2) a layout of system consisting of the target, remote-handling devices, bio-shieldings etc., (3) specifications of components and facilities such as cooling systems for target and moderators, beam-port shutter and air conditioning system, (4) overhaul procedures by remote-handling devices, (5) safety assessment, and (6) necessary R and D items derived from the design activity. (author)

  15. Automated music selection of video ads

    Directory of Open Access Journals (Sweden)

    Wiesener Oliver

    2017-07-01

    Full Text Available The importance of video ads on social media platforms can be measured by views. For instance, Samsung’s commercial ad for one of its new smartphones reached more than 46 million viewers at Youtube. A video ad addresses the visual as well as the auditive sense of users. Often the visual sense is busy in the sense that users focus other screens than the screen with the video ad. This is called the second screen syndrome. Therefore, the importance of the audio channel seems to grow. To get back the visual attention of users that are deflected from other visual impulses it appears reasonable to adapt the music to the target group. Additionally, it appears useful to adapt the music to content of the video. Thus, the overall success of a video ad could by increased by increasing the attention of the users. Humans typically make the decision about the music of a video ad. If there is a correlation between music, products and target groups, a digitization of the music selection process seems to be possible. Since the digitization progress in the music sector is mainly focused on music composing this article strives for making a first step towards the digitization of the music selection.

  16. Realizing "value-added" metrology

    Science.gov (United States)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  17. Conceptual design considerations and neutronics of lithium fall laser target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  18. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  19. The design, construction and performance of the MICE target

    International Nuclear Information System (INIS)

    Booth, C N; Hodgson, P; Howlett, L; Nicholson, R; Overton, E; Robinson, M; Smith, P J; Apollonio, M; Barber, G; Dobbs, A; Leaver, J; Long, K R; Shepherd, B; Adams, D; Capocci, E; McCarron, E; Tarrant, J

    2013-01-01

    The pion-production target that serves the MICE Muon Beam consists of a titanium cylinder that is dipped into the halo of the ISIS proton beam. The design and construction of the MICE target system are described along with the quality-assurance procedures, electromagnetic drive and control systems, the readout electronics, and the data-acquisition system. The performance of the target is presented together with the particle rates delivered to the MICE Muon Beam. Finally, the beam loss in ISIS generated by the operation of the target is evaluated as a function of the particle rate, and the operating parameters of the target are derived.

  20. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  1. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  2. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  3. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    Science.gov (United States)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  4. Dynamic studies of multiple configurations of CERN's Antiproton Decelerator Target core under proton beam impact

    CERN Document Server

    AUTHOR|(CDS)2248381

    Antiprotons, like many other exotic particles, are produced by impacting high energy proton beams onto fixed targets. At the European Organization for Nuclear Research (CERN), this is done in the Antiproton Decelerator (AD) Facility. The engineering challenges related to the design of an optimal configuration of the AD-Target system derive from the extremely high energy depositions reached in the very thin target core as a consequence of each proton beam impact. A new target design is foreseen for operation after 2021, triggering multiple R&D activities since 2013 for this purpose. The goal of the present Master Thesis is to complement these activities with analytical and numerical calculations, delving into the phenomena associated to the dynamic response of the target core. In this context, two main studies have been carried out. First, the experimental data observed in targets subjected to low intensity proton pulses was cross-checked with analytical and computational methods for modal analysis, applie...

  5. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  6. Translating genetic research into preventive intervention: The baseline target moderated mediator design

    Directory of Open Access Journals (Sweden)

    George W. Howe

    2016-01-01

    Full Text Available In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We end with a discussion of some of the advantages and limitations of this approach.

  7. RobOKoD: microbial strain design for (over)production of target compounds.

    Science.gov (United States)

    Stanford, Natalie J; Millard, Pierre; Swainston, Neil

    2015-01-01

    Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design.

  8. Conceptual design study of IFMIF target system

    International Nuclear Information System (INIS)

    Kato, Y.; Nakamura, H.; Ida, M.; Maekawa, H.; Katsuta, H.; Hua, T.; Cevolani, S.

    1997-01-01

    IFMIF-CDA (International Fusion Materials Irradiation Facility - Conceptual Design Activity) had been carried out during 1995 and 1996, under the auspices of the IEA. The mission of this facility is to provide an accelerator based deuterium-lithium (D-Li) neutron source to test the candidate materials of radiation - resistant and low - activation materials up to about a full lifetime of anticipated use in fusion energy reactors. The neutrons of about 14 MeV are obtained by the stripping reaction of the deuteron of Max. 40 MeV with target lithium. Total deuteron beam current is about 250 mA and beam footprint is 20 cm x 5 cm on the free surface of lithium jet. In this report general characteristics of the target lithium system and the results of thermal and flow analysis for the target lithium jet are described. (author)

  9. Design of the new couplers for C-ADS RFQ

    Science.gov (United States)

    Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin

    2015-04-01

    A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)

  10. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  11. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  12. Comments on the symmetry of AdS6 solutions in string/M-theory and Killing spinor equations

    Directory of Open Access Journals (Sweden)

    Hyojoong Kim

    2016-09-01

    Full Text Available It was recently pointed out in [1] that AdS6 solutions in IIB theory enjoy an extended symmetry structure and the consistent truncation to D=4 internal space leads to a nonlinear sigma model with target SL(3,R/SO(2,1. We continue to study the purely bosonic D=4 effective action, and elucidate how the addition of scalar potential term still allows Killing spinor equations in the absence of gauge fields. In particular, the potential turns out to be a single diagonal component of the coset representative. Furthermore, we perform a general analysis of the integrability conditions of Killing spinor equations and establish that the effective action can be in fact generalized to arbitrary sizes and signatures, e.g. with target SL(n,R/SO(p,n−p and the scalar potential expressible by a single diagonal component of the coset representative. We also comment on a similar construction and its generalizations of effective D=5 purely bosonic non-linear sigma model action related to AdS6 in M-theory.

  13. Methods to enable the design of bioactive small molecules targeting RNA.

    Science.gov (United States)

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  14. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    Science.gov (United States)

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  15. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    Science.gov (United States)

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  16. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  17. Introduction to spallation physics and spallation-target design

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incident particle type and energy, and target material and geometry.

  18. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    Science.gov (United States)

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  19. Dead-blow hammer design applied to a calibration target mechanism to dampen excessive rebound

    Science.gov (United States)

    Lim, Brian Y.

    1991-01-01

    An existing rotary electromagnetic driver was specified to be used to deploy and restow a blackbody calibration target inside of a spacecraft infrared science instrument. However, this target was much more massive than any other previously inherited design applications. The target experienced unacceptable bounce when reaching its stops. Without any design modification, the momentum generated by the driver caused the target to bounce back to its starting position. Initially, elastomeric dampers were used between the driver and the target. However, this design could not prevent the bounce, and it compromised the positional accuracy of the calibration target. A design that successfully met all the requirements incorporated a sealed pocket 85 percent full of 0.75 mm diameter stainless steel balls in the back of the target to provide the effect of a dead-blow hammer. The energy dissipation resulting from the collision of balls in the pocket successfully dampened the excess momentum generated during the target deployment. The disastrous effects of new requirements on a design with a successful flight history, the modifications that were necessary to make the device work, and the tests performed to verify its functionality are described.

  20. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  1. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  2. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  3. Supersymmetric AdS3, AdS2 and bubble solutions

    International Nuclear Information System (INIS)

    Gauntlett, Jerome P.; Waldram, Daniel; Kim, Nakwoo

    2007-01-01

    We present new supersymmetric AdS 3 solutions of type IIB supergravity and AdS 2 solutions of D = 11 supergravity. The former are dual to conformal field theories in two dimensions with N = (0, 2) supersymmetry while the latter are dual to conformal quantum mechanics with two supercharges. Our construction also includes AdS 2 solutions of D = 11 supergravity that have non-compact internal spaces which are dual to three-dimensional N = 2 superconformal field theories coupled to point-like defects. We also present some new bubble-type solutions, corresponding to BPS states in conformal theories, that preserve four supersymmetries

  4. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    Science.gov (United States)

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  5. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  6. National Ignition Facility subsystem design requirements target positioning subsystem SSDR 1.8.2

    International Nuclear Information System (INIS)

    Pittenger, L.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development and test requirements for the target positioner subsystem (WBS 1.8.2) of the NIF Target Experimental System (WBS 1.8)

  7. Design choices and issues in fixed-target B experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1993-01-01

    The main priority of any experiment on B physics in the years to come will be an endeavour to observe CP violation in the B sector. Such measurements imply the following requirements of the experiment. Trigger: a muon trigger will be sensitive to J/ψ reactions and muon tags; an electron trigger will double the number of lepton events; in order to include kaon tags and self-tagging reactions, the experiment must not rely entirely on lepton triggers. Secondary Vertex triggers and hadron p T triggers should be included in order to have the maximum flexibility. Detector: vertex detector; particle identification; good momentum resolution; electromagnetic and hadronic calorimeters; muon detector. In addition the following issues have to be addressed: Collider or fixed-target mode? If fixed target, extracted beam or internal target? If internal target, gas jet or wire target? If a gas jet, hydrogen or a heavy gas? Beam pipe design. Silicon microvertex design and radiation damage. K s 0 decay path. Particle identification. Momentum resolution. Order of detectors. No single method stands out as the open-quotes obvious one.close quotes An extracted beam yields better vertex resolution and an internal target easier triggering. A flexible and diverse triggering scheme is of prime importance in order to be sensitive to as many reactions as possible, the experiment should not be limited to lepton triggers only. Proposed experiments (P867, HERA B) at existing machines will be invaluable for testing new devices and strategies for the LHC and SSC experiments

  8. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  9. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  10. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  11. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  12. Design and implementation of location-based wireless targeted advertising

    Science.gov (United States)

    Li, Benjamin; Xu, Deyin

    2001-10-01

    As advertisements are time and location sensitive, a challenge for wireless marketing is to have advertisements delivered when and where they are most convenient. In this paper we introduce a two-stage auction model for location-based wireless targeted advertising. This system extends the notion of location-based service by using location information to target advertising, and does so specifically by enabling advertisers to specify their preferences and bid for advertisement delivery, where those preferences are then used in a subsequent automated auction of actual deliveries to wireless data users. The automated auction in the second stage is especially effective because it can use information about the individual user profile data, including customer relationship management system contents as well as location from the wireless system's location management service, including potentially location history such as current trajectory from recent history and longer-term historical trip records for that user. Through two-stage auction, real-time bidding by advertisers and matching ads contents to mobile users help advertising information reach maximal value.

  13. Validation of a new design of tellurium dioide-irradiated target

    Energy Technology Data Exchange (ETDEWEB)

    Fllaoui, Aziz; Ghamad, Younes; Zoubir, Brahim; Ayaz, Zinel Abidine; El Morabiti, Aissam; Amayoud, Hafid [Centre National de l' Energie des Sciences et des Techniques Nucleaires, Rabat (Morocco); Chakir, El Mahjoub [Nuclear Physics Department, University Ibn Toufail, Kenitra (Morocco)

    2016-10-15

    Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO{sub 2}) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10 - 4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600 .deg. C with the appearance of deformations on lids beyond 450 .deg. C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week) at 1.5 MW. The results show that the irradiated targets are

  14. Validation of a New Design of Tellurium Dioxide-Irradiated Target

    Directory of Open Access Journals (Sweden)

    Aziz Fllaoui

    2016-10-01

    Full Text Available Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO2 material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10−4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics. To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600°C with the appearance of deformations on lids beyond 450°C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes—convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week at 1.5 MW. The results show that the irradiated targets are

  15. Analysis of an XADS Target with the System Code TRACE

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor H.; Feng, Bo

    2008-01-01

    Accelerator-driven systems (ADS) present an option to reduce the radioactive waste of the nuclear industry. The experimental Accelerator-Driven System (XADS) has been designed to investigate the feasibility of using ADS on an industrial scale to burn minor actinides. The target section lies in the middle of the subcritical core and is bombarded by a proton beam to produce spallation neutrons. The thermal energy produced from this reaction requires a heat removal system for the target section. The target is cooled by liquid lead-bismuth-eutectics (LBE) in the primary system which in turn transfers the heat via a heat exchanger (HX) to the secondary coolant, Diphyl THT (DTHT), a synthetic diathermic fluid. Since this design is still in development, a detailed investigation of the system is necessary to evaluate the behavior during normal and transient operations. Due to the lack of experimental facilities and data for ADS, the analyses are mostly done using thermal hydraulic codes. In addition to evaluating the thermal hydraulics of the XADS, this paper also benchmarks a new code developed by the NRC, TRACE, against other established codes. The events used in this study are beam power switch-on/off transients and a loss of heat sink accident. The obtained results from TRACE were in good agreement with the results of various other codes. (authors)

  16. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  17. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  18. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  19. ADS based on NaF-PbF2 molten salt

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Kwaratzkheli, A.Yu.; Konev, V.N.; Kochurov, B.P.; Shvedov, O.V.

    1999-01-01

    The neutron-physical parameters of an accelerator driven system (ADS) with a proton accelerator feeding a sub-critical molten salt blanket are investigated. The installation is designed for the production of electric power, involving thorium in a fuel cycle, transmutation of fission products and actinides. It is supposed to use fluoride salt composition 66PbF 2 -34NaF with addition of heavy elements (Th, Np, Pu and minor actinides) as the material of fuel, coolant and target. The thermal power of this ADS is 2000 MW. The current of the 1 GeV proton beam is 29 mA. The investigations are carried out for the following fuel cycles: the plutonium one, the burning of Np and minor actinides and the plutonium-thorium cycle. The balances of nuclides systems under supposition of its continuous operation during 20 years are presented [ru

  20. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  1. High gain direct drive target designs and supporting experiments with KrF

    International Nuclear Information System (INIS)

    Karasik, Max; Bates, Jason W.; Aglitskiy, Yefim

    2013-01-01

    Krypton-fluoride laser is an attractive inertial fusion energy driver from the standpoint of target physics. Target designs taking advantage of zooming, shock ignition, and favorable physics with KrF reach energy gains of 200 with sub-MJ laser energy. The designs are robust under 2D simulations. Experiments on the Nike KrF laser support the physics basis. (author)

  2. Private-by-Design Advertising and Analytics: From Theory to Practice

    OpenAIRE

    Reznichenko, Alexey

    2015-01-01

    There are a number of designs for an online advertising system that allow for behavioral targeting without revealing user online behavior or user interest profiles to the ad network. Although these designs purport to be practical solutions, none of them adequately consider the role of ad auctions, which today are central to the operation of online advertising systems. Moreover, none of the proposed designs have been deployed in real-life settings. In this thesis, we present an effort to fill ...

  3. Adapting the MYRRHA concept to meet the XT-ADS objectives

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2007-01-01

    The EUROTRANS project is an integrated project in the Sixth European Framework Program in the context of Partitioning and Transmutation. The objective of this project is the step-wise approach to a European Transmutation Demonstration. This project aims to deliver an advanced design of a small-scale Accelerator Driven System (ADS), XT-ADS, as well as the conceptual design of a European Facility for Industrial Transmutation, EFIT. The partners of this project accepted to use the MYRRHA Draft-2 design file as a starting basis for the design of the short-term XT-ADS demonstration machine. Instead of starting from a blank page, this allowed optimising an existing design towards the needs of XT-ADS, and within the limits of safety requirements. Many options have been revisited and the framework is now set up. While our MYRRHA Draft-2 design file was still a conceptual design, our intention is to get at the end of the EUROTRANS project (March 2009) an advanced design of the XT-ADS machine, albeit a first advanced design. Moreover, industrial partners (Ansaldo Nucleare, Areva) will contribute to this XT-ADS design

  4. Adding Users to the Website Design Process

    Science.gov (United States)

    Tomeo, Megan L.

    2012-01-01

    Alden Library began redesigning its website over a year ago. Throughout the redesign process the students, faculty, and staff that make up the user base were added to the conversation by utilizing several usability test methods. This article focuses on the usability testing conducted at Alden Library and delves into future usability testing, which…

  5. Complete determination of neutron yield from 62 MeV protons on 9Be for the design of a low – power ADS

    Directory of Open Access Journals (Sweden)

    Schillaci Maria

    2014-03-01

    Full Text Available Within the European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics of future fast neutron-based reactors are very important. In this respect, an Accelerator Driven System low-power prototype, based on a 70 MeV proton beam impinging on a thick Beryllium converter, was recently proposed and designed within the INFN-E project. The world data on neutron yield from Be target are scarce in this proton energy range. This lack of data calls for a dedicated measurement which was performed at INFN Laboratori Nazionali del Sud, covering a wide angular range, from 0 to 150 degrees, and an almost complete neutron energy interval, from thermal up to the beam energy. In this contribution the results are discussed together with the description of the proposed ADS facility.

  6. Testing music selection automation possibilities for video ads

    Directory of Open Access Journals (Sweden)

    Wiesener Oliver

    2017-09-01

    Full Text Available The importance of video ads on social media platforms can be measured by the number of views. For instance, Samsung’s commercial ad for one of its new smartphones reached more than 46 million viewers at Youtube. Video ads address users both visually and aurally. Often, the visual sense is engaged by users focusing on other screens, rather than on the screen with the video ad, which is referred to as the second screen syndrome. Therefore, the importance of the audio channel seems to gain more importance. To get back the visual attention of users that are deflected from other visual impulses it appears reasonable to adapt the music to the target group. Additionally, it appears useful to adapt the music to the content of the video. Thus, the overall success of a video ad could be improved by increasing the attention of the users. Humans typically decide which music is to be used in a video ad. If there is a correlation between music, products and target groups, a digitization of the music selection process appears to be possible. Since the digitization progress in the music sector is currently mainly focused on music composing this article strives for taking a first step towards the digitization of the music selection.

  7. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  8. Design of a tripartite network for the prediction of drug targets

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2018-02-01

    Drug-target networks have aided in many target prediction studies aiming at drug repurposing or the analysis of side effects. Conventional drug-target networks are bipartite. They contain two different types of nodes representing drugs and targets, respectively, and edges indicating pairwise drug-target interactions. In this work, we introduce a tripartite network consisting of drugs, other bioactive compounds, and targets from different sources. On the basis of analog relationships captured in the network and so-called neighbor targets of drugs, new drug targets can be inferred. The tripartite network was found to have a stable structure and simulated network growth was accompanied by a steady increase in assortativity, reflecting increasing correlation between degrees of connected nodes leading to even network connectivity. Local drug environments in the tripartite network typically contained neighbor targets and revealed interesting drug-compound-target relationships for further analysis. Candidate targets were prioritized. The tripartite network design extends standard drug-target networks and provides additional opportunities for drug target prediction.

  9. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  10. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  11. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  12. New designs of LMJ targets for early ignition experiments

    International Nuclear Information System (INIS)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P

    2008-01-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress

  13. New designs of LMJ targets for early ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P [Commissariat a l' Energie Atomique, DAM-Ile de France, BP 12 91680 Bruyeres-le-Chatel (France)], E-mail: catherine.cherfils@cea.fr

    2008-05-15

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  14. Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Desheng Cheng

    2016-04-01

    Full Text Available A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead–bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is 60 ± 1 mm, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

  15. An ad-hoc fretting wear tribotester design for thin steel wires

    Directory of Open Access Journals (Sweden)

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  16. Dental students' preferences and performance in crown design: conventional wax-added versus CAD.

    Science.gov (United States)

    Douglas, R Duane; Hopp, Christa D; Augustin, Marcus A

    2014-12-01

    The purpose of this study was to evaluate dental students' perceptions of traditional waxing vs. computer-aided crown design and to determine the effectiveness of either technique through comparative grading of the final products. On one of twoidentical tooth preparations, second-year students at one dental school fabricated a wax pattern for a full contour crown; on the second tooth preparation, the same students designed and fabricated an all-ceramic crown using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology. Projects were graded for occlusion and anatomic form by three faculty members. On completion of the projects, 100 percent of the students (n=50) completed an eight-question, five-point Likert scalesurvey, designed to assess their perceptions of and learning associated with the two design techniques. The average grades for the crown design projects were 78.3 (CAD) and 79.1 (wax design). The mean numbers of occlusal contacts were 3.8 (CAD) and 2.9(wax design), which was significantly higher for CAD (p=0.02). The survey results indicated that students enjoyed designing afull contour crown using CAD as compared to using conventional wax techniques and spent less time designing the crown using CAD. From a learning perspective, students felt that they learned more about position and the size/strength of occlusal contacts using CAD. However, students recognized that CAD technology has limits in terms of representing anatomic contours and excursive occlusion compared to conventional wax techniques. The results suggest that crown design using CAD could be considered as an adjunct to conventional wax-added techniques in preclinical fixed prosthodontic curricula.

  17. Content analysis of targeted food and beverage advertisements in a Chinese-American neighbourhood.

    Science.gov (United States)

    Bragg, Marie A; Pageot, Yrvane K; Hernández-Villarreal, Olivia; Kaplan, Sue A; Kwon, Simona C

    2017-08-01

    The current descriptive study aimed to: (i) quantify the number and type of advertisements (ads) located in a Chinese-American neighbourhood in a large, urban city; and (ii) catalogue the targeted marketing themes used in the food/beverage ads. Ten pairs of trained research assistants photographed all outdoor ads in a 0·6 mile2 (1·6 km2) area where more than 60·0 % of residents identify as Chinese American. We used content analysis to assess the marketing themes of ads, including references to: Asian cultures; health; various languages; children; food or beverage type (e.g. sugar-sweetened soda). Lower East Side, a neighbourhood located in the borough of Manhattan in New York City, USA. Ads (n 1366) in the designated neighbourhood. Food/beverage ads were the largest ad category (29·7 %, n 407), followed by services (e.g. mobile phone services; 21·0 %, n 288). Sixty-seven per cent (66·9 %) of beverages featured were sugar-sweetened, and 50·8 % of food ads promoted fast food. Fifty-five per cent (54·9 %) of food/beverage ads targeted Asian Americans through language, ethnicity of person(s) in the ad or inclusion of culturally relevant images. Fifty per cent (50·2 %) of ads were associated with local/small brands. Food/beverage marketing practices are known to promote unhealthy food and beverage products. Research shows that increased exposure leads to excessive short-term consumption among consumers and influences children's food preferences and purchase requests. Given the frequency of racially targeted ads for unhealthy products in the current study and increasing rates of obesity-related diseases among Asian Americans, research and policies should address the implications of food and beverage ads on health.

  18. RNAblueprint: flexible multiple target nucleic acid sequence design.

    Science.gov (United States)

    Hammer, Stefan; Tschiatschek, Birgit; Flamm, Christoph; Hofacker, Ivo L; Findeiß, Sven

    2017-09-15

    Realizing the value of synthetic biology in biotechnology and medicine requires the design of molecules with specialized functions. Due to its close structure to function relationship, and the availability of good structure prediction methods and energy models, RNA is perfectly suited to be synthetically engineered with predefined properties. However, currently available RNA design tools cannot be easily adapted to accommodate new design specifications. Furthermore, complicated sampling and optimization methods are often developed to suit a specific RNA design goal, adding to their inflexibility. We developed a C ++  library implementing a graph coloring approach to stochastically sample sequences compatible with structural and sequence constraints from the typically very large solution space. The approach allows to specify and explore the solution space in a well defined way. Our library also guarantees uniform sampling, which makes optimization runs performant by not only avoiding re-evaluation of already found solutions, but also by raising the probability of finding better solutions for long optimization runs. We show that our software can be combined with any other software package to allow diverse RNA design applications. Scripting interfaces allow the easy adaption of existing code to accommodate new scenarios, making the whole design process very flexible. We implemented example design approaches written in Python to demonstrate these advantages. RNAblueprint , Python implementations and benchmark datasets are available at github: https://github.com/ViennaRNA . s.hammer@univie.ac.at, ivo@tbi.univie.ac.at or sven@tbi.univie.ac.at. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  19. Some Aspects on Filter Design for Target Tracking

    Directory of Open Access Journals (Sweden)

    Bertil Ekstrand

    2012-01-01

    Full Text Available Tracking filter design is discussed. It is argued that the basis of the present stochastic paradigm is questionable. White process noise is not adequate as a model for target manoeuvring, stochastic least-square optimality is not relevant or required in practice, the fact that requirements are necessary for design is ignored, and root mean square (RMS errors are insufficient as performance measure. It is argued that there is no process noise and that the covariance of the assumed process noise contains the design parameters. Focus is on the basic tracking filter, the Kalman filter, which is convenient for clarity and simplicity, but the arguments and conclusions are relevant in general. For design the possibility of an observer transfer function approach is pointed out. The issues can also be considered as a consequence of the fact that there is a difference between estimation and design. The - filter is used for illustration.

  20. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  1. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  2. Targeted proteins for diabetes drug design

    International Nuclear Information System (INIS)

    Trang Nguyen, Ngoc Doan; Le, Ly Thi

    2012-01-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people. (review)

  3. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  4. EURISOL-DS Overall Design of the Multi-MW Target Station

    CERN Document Server

    Olivier Choisnet, Cyril Kharoua, Yacine Kadi, Karel Samec (CERN)

    The EURISOL Design Study investigated the feasibility of a complex instrument to push back the boundaries of current physics knowledge amidst today’s ever-increasing need for realism due to constraints imposed by safety, performance and, not least, budgetary responsibility.In order to attend to these concerns, the EURISOL Multi-Megawatt converter target, its associated fission targets and the three 100 kW direct targets are all integrated into a single facility housing the ancillary equipment as well. The overall layout of the facility, its functional break-down and the main modes of operation are presented in the current report.

  5. Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion

    Science.gov (United States)

    DSouza, Christopher; Weeks, Michael

    2010-01-01

    The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these

  6. Conceptual design of a high current ISOL target area at TRIUMF

    International Nuclear Information System (INIS)

    Beveridge, J.L.; Buchmann, L.; Clark, G.S.; Sprenger, H.; Thorson, I.; Vincent, J.; D'Auria, J.M.; Dombsky, M.

    1993-05-01

    Two similar conceptual designs for the handling of highly activated components at the target area of a high current radioactive beam facility have been investigated. The proposed designs are sufficiently flexible that practical detailed designs could be realized. Personnel exposure to radiation during the handling procedures is expected to be minimal. (author) 3 refs., 4 figs

  7. Modern design of far-field target motion simulators

    Science.gov (United States)

    Hauser, Robin; Swamp, Michael; Havlicsek, Howard

    2006-05-01

    Target Motion Simulators (TMS) are often used in conjunction with Flight Motion Simulators (FMS) to provide a realistic simulation of tracking and target engagement. For near-field applications, the TMS has typically been implemented with two additional gimbals around the FMS. For far-field applications, such as a radar, the TMS has traditionally been implemented with curvilinear X-Y Frames. A curvilinear frame placed at the proper distance from the FMS has the benefit of always pointing the Target back to the FMS intersection of axes. In most cases the curvilinear TMS provides good results. However, the curvilinear TMS lacks the possibility to change the distance between Target and Seeker, which is needed for operation with different radar wavelengths. Acutronic has developed a new approach using a flat frame (X-Y) TMS coupled with a gimballed payload mount that has the possibility of being used at various distances without losing the functionality of continuous pointing back to the seeker. This paper describes the electro-mechanical design and gives an overview of the Computer and Controllers used. It further addresses the problem of coordination transformation that is needed to obtain the correct pointing.

  8. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  9. Design and Characterization of High Power Targets for RIB Generation

    International Nuclear Information System (INIS)

    Zhang, Y.

    2001-01-01

    In this article, thermal modeling techniques are used to simulate ISOL targets irradiated with high power proton beams. Beam scattering effects, nuclear reactions and beam power deposition distributions in the target were computed with the Monte Carlo simulation code, GEANT4. The power density information was subsequently used as input to the finite element thermal analysis code, ANSYS, for extracting temperature distribution information for a variety of target materials. The principal objective of the studies was to evaluate techniques for more uniformly distributing beam deposited heat over the volumes of targets to levels compatible with their irradiation with the highest practical primary-beam power, and to use the preferred technique to design high power ISOL targets. The results suggest that radiation cooling, in combination, with primary beam manipulation, can be used to control temperatures in practically sized targets, to levels commensurate with irradiation with 1 GeV, 100 kW proton beams

  10. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  11. Ligand design for riboswitches, an emerging target class for novel antibiotics.

    Science.gov (United States)

    Rekand, Illimar Hugo; Brenk, Ruth

    2017-09-01

    Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.

  12. Racial/Ethnic and Income Disparities in Child and Adolescent Exposure to Food and Beverage Television Ads across U.S. Media Markets

    Science.gov (United States)

    Powell, Lisa M.; Wada, Roy; Kumanyika, Shiriki K.

    2015-01-01

    Obesity prevalence and related health burdens are greater among U.S. racial/ethnic minority and low-income populations. Targeted advertising may contribute to disparities. Designated market area (DMA) spot television ratings were used to assess geographic differences in child/adolescent exposure to food-related advertisements based on DMA-level racial/ethnic and income characteristics. Controlling for unobserved DMA-level factors and time trends, child/adolescent exposure to food-related ads, particularly for sugar-sweetened beverages and fast-food restaurants, was significantly higher in areas with higher proportions of black children/adolescents and lower-income households. Geographically targeted TV ads are important to consider when assessing obesity-promoting influences in black and low-income neighborhoods. PMID:25086271

  13. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  14. Preclinical Evaluation of miR-15/107 Family Members as Multifactorial Drug Targets for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Sepideh Parsi

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a multifactorial, fatal neurodegenerative disorder characterized by the abnormal accumulation of Aβ and Tau deposits in the brain. There is no cure for AD, and failure at different clinical trials emphasizes the need for new treatments. In recent years, significant progress has been made toward the development of miRNA-based therapeutics for human disorders. This study was designed to evaluate the efficiency and potential safety of miRNA replacement therapy in AD, using miR-15/107 paralogues as candidate drug targets. We identified miR-16 as a potent inhibitor of amyloid precursor protein (APP and BACE1 expression, Aβ peptide production, and Tau phosphorylation in cells. Brain delivery of miR-16 mimics in mice resulted in a reduction of AD-related genes APP, BACE1, and Tau in a region-dependent manner. We further identified Nicastrin, a γ-secretase component involved in Aβ generation, as a target of miR-16. Proteomics analysis identified a number of additional putative miR-16 targets in vivo, including α-Synuclein and Transferrin receptor 1. Top-ranking biological networks associated with miR-16 delivery included AD and oxidative stress. Collectively, our data suggest that miR-16 is a good candidate for future drug development by targeting simultaneously endogenous regulators of AD biomarkers (i.e., Aβ and Tau, inflammation, and oxidative stress.

  15. Supergravity one-loop corrections on AdS7 and AdS3, higher spins and AdS/CFT

    Directory of Open Access Journals (Sweden)

    Matteo Beccaria

    2015-03-01

    Full Text Available As was shown earlier, the one-loop correction in 10d supergravity on AdS5×S5 corresponds to the contributions to the vacuum energy and 4d boundary conformal anomaly which are minus the values for one N=4 Maxwell supermultiplet, thus reproducing the subleading term in the N2−1 coefficient in the dual SU(N SYM theory. We perform similar one-loop computations in 11d supergravity on AdS7×S4 and 10d supergravity on AdS3×S3×T4. In the AdS7 case we find that the corrections to the 6d conformal anomaly a-coefficient and the vacuum energy are again minus the ones for one (2,0 tensor multiplet, suggesting that the total a-anomaly coefficient for the dual (2,0 theory is 4N3−9/4N−7/4 and thus vanishes for N=1. In the AdS3 case the one-loop correction to the vacuum energy or 2d central charge turns out to be equal to that of one free (4,4 scalar multiplet, i.e. is c=+6. This reproduces the subleading term in the central charge c=6(Q1Q5+1 of the dual 2d CFT describing decoupling limit of D5–D1 system. We also present the expressions for the 6d a-anomaly coefficient and vacuum energy contributions of general-symmetry higher spin field in AdS7 and consider their application to tests of vectorial AdS/CFT with the boundary conformal 6d theory represented by free scalars, spinors or rank-2 antisymmetric tensors.

  16. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  17. Preliminary design implications of SSC fixed-target operation

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered

  18. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System's Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system

  19. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  20. CFD Analysis of the Active Part of the HYPER Spallation Target

    International Nuclear Information System (INIS)

    Nam-il Tak; Chungho Cho; Tae-Yung Song

    2006-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target having a beam power of 15∼25 MW. The present paper focuses on the thermal-hydraulic performance of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results show the significant impact of the turbulence model on the window temperature. It is concluded that experimental verifications are very important for the design of the HYPER target. (authors)

  1. Study of nuclear energy systems and double strata scenarios for minor actinides transmutation in ADS

    International Nuclear Information System (INIS)

    Clavel, J.B.

    2012-01-01

    The French law of 28 June 2006 regarding advanced nuclear waste management requires a scientific assessment to define future industrial strategies. The present PhD thesis was carried in this framework and concerns specifically the research axis of minor actinides transmutation. A high power Accelerator Driven System (ADS) concept is developed at SUBATECH for this purpose. A 1 GeV proton beam feeds three liquid lead-bismuth spallation targets. The Multiple Spallation Target (MUST) ADS reaches the thermal powers up to 1 GW with a high specific power. A nuclear reactor dimensioning method has been developed and applied to different double strata scenarios. In these scenarios, SFR (Sodium Fast Reactors) or PWR (Pressurized Water Reactors) power reactors produce minor actinides that will be transmuted into ADS. In each core (SFR and ADS), the plutonium multi-reprocessing strategy is performed while ADS subcritical core also multi-reprocesses minor actinides. To limit the core reactivity and improve the fuel thermal conductivity, the minor actinides fuel is mixed with MgO inert matrix. Nuclear branches with lead and sodium coolants for the ADS, have been studied for different irradiation times and two transmutation strategies have been assessed: whether whole minor actinides, whether americium only is transmuted. The thesis presents precisely the MUST ADS design methodology and the calculations to get a fuel composition at equilibrium. Then a one cycle evolution is performed and analysed for the fuel and the multiplication factor. Radiotoxicity and thermal power of the waste produced are then compared. Finally, the study of double strata scenarios is performed to analyse the plutonium and minor actinides inventories in cycle and also the waste produced according to the transmutation strategies applied and the first stratum evolution. (author)

  2. Protein structures in Alzheimer's disease: The basis for rationale therapeutic design.

    Science.gov (United States)

    Montoliu-Gaya, Laia; Villegas, Sandra

    2015-12-15

    Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory, behavior, thinking and emotion. Current therapies to treat AD patients are only capable for temporarily slowing-down the cognitive decline, as they are focused on ameliorating symptoms instead of targeting its underlying causes. The aim of this review is to describe what is known about the protein structures implicated in AD pathogenesis, amyloid cascade members, as well as those structures involved in Aβ clearance. Thus, structural information available for APP, α- β- and γ-secretases, CTFβ and derived Aβ peptides, AICDs, apoE and apoJ, LRP-1 and RAGE, and neprilysin and insulin-degrading enzyme is provided. The recently solved structure for the γ-secretase complex opens the rational design of a new generation of inhibitors, whereas that for Aβ oligomers offers a putative mechanism explaining why monoclonal antibodies targeted to the N-terminus are effective. Then, an overview on therapies targeting some of these molecules presents their benefits and drawbacks. As a general conclusion our knowledge on the protein structures involved in AD has recently substantially advanced, allowing for the rational design of different therapeutic approaches. Hopefully, we are getting closer to finding a strong disease-modifying drug to cure this devastating disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. ADS-B in space

    DEFF Research Database (Denmark)

    Knudsen, Bjarke Gosvig; Jensen, Morten; Birklykke, Alex

    2014-01-01

    ADS-B is increasingly used for air traffic control in areas covered by terrestrial receivers; however, its limited range makes it unsuitable for other areas such as the oceans. To overcome this limitation, it has been proposed to receive ADS-B signals from low earth orbit nano-satellites and relay...... them to the terrestrial receivers. This paper gives an overview of the GATOSS mission and of its highly-sensitive ADS-B software-defined radio receiver payload. Details of the design and implementation of the receiver's decoder are introduced. The first real-life, space-based results show that ADS......-B signals are indeed successfully received in space and retransmitted to a terrestrial station by the GATOSS nano-satellite orbiting at 700+ km altitudes, thus showing that GATOSS is capable of tracking flights, including transoceanic ones, from space....

  4. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  5. Generic study on the design and operation of high power targets

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2014-02-01

    Full Text Available With the move towards beam power in the range of 1–10 MW, a thorough understanding of the response of target materials and auxiliary systems to high power densities and intense radiation fields is required. This paper provides insight into three major aspects related to the design and operation of high power solid targets: thermal stresses, coolant performance, and radiation damage. Where appropriate, a figure-of-merit approach is followed to facilitate the comparison between different target or coolant candidates. The section on radiation damage reports total and spatial variations of displacement-per-atom and helium production levels in different target materials.

  6. The Fourth Element Targeting hypothesis of Alzheimer’s disease pathogenesis and pathophysiology

    Directory of Open Access Journals (Sweden)

    Rodrigo O Kuljiš

    2010-11-01

    Full Text Available Despite well over a century of research on all forms of the disorder known as Alzheimer’s disease (AD, it is still not known whether the condition targets initially neurons, glial cells, other cellular elements in the brain, or components of cells, such as synapses, or molecules independently of their cellular compartmentalization, or otherwise (e.g. specific neuronal circuits. Multiple lines of highly suggestive but as yet insufficient experimental evidence are discussed here to formulate the hypothesis that AD results from primary (i.e. direct and initial or secondary targeting of what we designate as the Fourth Element Cell (4EC: a relatively recently identified type of brain cell that exhibits features in common with neurons (e.g. synapses, participation in glutamatergic and GABAergic neurotransmission, astrocytes, oligodendrocytes and their precursors, but is in other respects clearly distinct from all of them. The 4EC is proposed to be the main target of both: (1 converging insults (i.e. not true causes that over time cause sporadic forms of AD as postulated by the Danger Signal Hypothesis — which was not formulated with 4EC in mind — as well as (2 the causes of inherited (i.e. familial forms of neurodegeneration that resemble certain aspects of the clinical manifestations of sporadic AD.

  7. Hairy AdS solitons

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-01-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  8. Hairy AdS solitons

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2016-11-10

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  9. Development of a PF fired high efficiency power plant (AD700)

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R.; Kjaer, S.; Bugge, J. [DONG Energy Generation, Fredericia (Denmark)

    2007-05-15

    European efforts to start substantial improvements of the performance of well established supercritical coal-fired power technology named the AD700 project began in 1998. Major targets were development of austenitic materials and nickel-based superalloys for the hottest sections of boilers, steam lines and turbines. Other targets were development of boiler and turbine designs for the more advanced conditions and finally economic viability of the AD700 technology has been investigated. The project has been very successful and 40 partners from the European power industry have worked together in several projects co-funded by the European Commission for nearly years. Procurement of mature and commercially optimised AD700 plant could take place around 2015. The investigated nickel-based materials have shown very high creep strengths but they have also shown to be very hard to manufacture, and more efforts to define new machining lines are being started. Ongoing tests indicate that the developed austenitic material will fulfil its creep strength target and is now ready for commercialisation. Development works on boiler and turbine designs for the advanced steam conditions have also been successfully completed but they also clearly indicate that further development work on improved ferritic steel for furnace walls is important. Conventional development of the steam cycles is based on new improved materials, which open for higher steam temperatures and efficiencies whereas other thermodynamic tools are only slowly being accepted. However, in the present paper a proposal for steam cycle improvements not based on higher steam temperatures is presented. The improved cycle is named the Master Cycle (MC) and it is based on a revision of the double reheat steam cycle where the bleeds of the IP turbines have been moved to a feed pump turbine bleeding on the first cold reheat line. Elsam has established protection of a patent for the MC in a number of countries. At constant main

  10. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    Science.gov (United States)

    Laffite, S.; Loiseau, P.

    2010-10-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  12. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  13. Intrinsic atopic dermatitis (AD) shows similar Th2 and higher Th17 immune activation compared to extrinsic AD

    Science.gov (United States)

    Suárez-Fariñas, M; Dhingra, N; Gittler, J; Shemer, A; Cardinale, I; de Guzman Strong, C; Krueger, JG; Guttman-Yassky, E

    2013-01-01

    Background Atopic dermatitis (AD) is classified as extrinsic (ADe) and intrinsic (ADi), representing approximately 80% and 20% of patients, respectively. While sharing a similar clinical phenotype, only ADe is characterized by high serum IgE. Since most AD patients exhibit high IgE, an “allergic”/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly Th2/Th22 polarization, and epidermal barrier defects. Objective To define if both variants share a common pathogenesis. Methods We stratified 51 severe AD patients as ADe (42) and ADi (9) (with similar mean disease activity/SCORAD), and analyzed the molecular and cellular skin pathology of lesional and non-lesional ADi and ADe using gene-expression (RT-PCR) and immunohistochemistry. Results A significant correlation between IgE levels and SCORAD (r=0.76, pextrinsic and intrinsic AD variants might be treated with T-cell targeted therapeutics or agents that modify keratinocyte responses. PMID:23777851

  14. AdS solutions through transgression

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Kim, Nakwoo

    2008-01-01

    We present new classes of explicit supersymmetric AdS 3 solutions of type IIB supergravity with non-vanishing five-form flux and AdS 2 solutions of D = 11 supergravity with electric four-form flux. The former are dual to two-dimensional SCFTs with (0,2) supersymmetry and the latter to supersymmetric quantum mechanics with two supercharges. We also investigate more general classes of AdS 3 solutions of type IIB supergravity and AdS 2 solutions of D = 11 supergravity which in addition have non-vanishing three-form flux and magnetic four-form flux, respectively. The construction of these more general solutions makes essential use of the Chern-Simons or 'transgression' terms in the Bianchi identity or the equation of motion of the field strengths in the supergravity theories. We construct infinite new classes of explicit examples and for some of the type IIB solutions determine the central charge of the dual SCFTs. The type IIB solutions with non-vanishing three-form flux that we construct include a two-torus, and after two T-dualities and an S-duality, we obtain new AdS 3 solutions with only the NS fields being non-trivial.

  15. VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls

    Science.gov (United States)

    Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa

    2015-01-01

    In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. PMID:26193275

  16. VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls.

    Science.gov (United States)

    Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa

    2015-07-16

    In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.

  17. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  18. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  19. GLRS-R 2-colour retroreflector target design and predicted performance

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  20. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    Science.gov (United States)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  1. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    Science.gov (United States)

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  3. Warped AdS3 black holes

    International Nuclear Information System (INIS)

    Anninos, Dionysios; Li Wei; Padi, Megha; Song Wei; Strominger, Andrew

    2009-01-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l -2 and positive Newton constant G admits an AdS 3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,R) x U(1)-invariant warped AdS 3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS 3 . We show that these black holes are discrete quotients of warped AdS 3 just as BTZ black holes are discrete quotients of ordinary AdS 3 . Moreover new solutions of this type, relevant to any theory with warped AdS 3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS 3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c R -formula and c L -formula.

  4. Racial/ethnic and income disparities in child and adolescent exposure to food and beverage television ads across the U.S. media markets.

    Science.gov (United States)

    Powell, Lisa M; Wada, Roy; Kumanyika, Shiriki K

    2014-09-01

    Obesity prevalence and related health burdens are greater among U.S. racial/ethnic minority and low-income populations. Targeted advertising may contribute to disparities. Designated market area (DMA) spot television ratings were used to assess geographic differences in child/adolescent exposure to food-related advertisements based on DMA-level racial/ethnic and income characteristics. Controlling for unobserved DMA-level factors and time trends, child/adolescent exposure to food-related ads, particularly for sugar-sweetened beverages and fast-food restaurants, was significantly higher in areas with higher proportions of black children/adolescents and lower-income households. Geographically targeted TV ads are important to consider when assessing obesity-promoting influences in black and low-income neighborhoods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Developing plan and pre-conceptual design of target system for JAERI`s high intensity neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Kaminaga, Masanori; Haga, Katsuhiro; Ishikura, Syuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Fumito; Uchida, Shoji

    1997-11-01

    This paper presents an outline of developing plan of a target system and topics obtained by a pre-conceptual design, which aims to establish a technology base of the target system and to make clear a system concept. In the plan, two types of target - solid and mercury targets - are to be developed for a neutron scattering facility. Information obtained through the development shall be applied to designs of an irradiation and a transmutation facilities. Through the pre-conceptual design, system arrangement, scale etc. were made clear: total weight will be 12000 ton, and 26 beam lines with beam shutters will be equipped for 4 moderators. Engineering problems were also made clear through the design; high flux heat removal, dynamic stress caused by thermal shock and pressure wave, loop technology for the mercury target and a slurry moderator consisting of methane pellets and liquefied hydrogen. We are now constructing new test apparatuses and arranging computer codes for solving these problems. (author)

  6. Automated Experiments on Ad Privacy Settings

    Directory of Open Access Journals (Sweden)

    Datta Amit

    2015-04-01

    Full Text Available To partly address people’s concerns over web tracking, Google has created the Ad Settings webpage to provide information about and some choice over the profiles Google creates on users. We present AdFisher, an automated tool that explores how user behaviors, Google’s ads, and Ad Settings interact. AdFisher can run browser-based experiments and analyze data using machine learning and significance tests. Our tool uses a rigorous experimental design and statistical analysis to ensure the statistical soundness of our results. We use AdFisher to find that the Ad Settings was opaque about some features of a user’s profile, that it does provide some choice on ads, and that these choices can lead to seemingly discriminatory ads. In particular, we found that visiting webpages associated with substance abuse changed the ads shown but not the settings page. We also found that setting the gender to female resulted in getting fewer instances of an ad related to high paying jobs than setting it to male. We cannot determine who caused these findings due to our limited visibility into the ad ecosystem, which includes Google, advertisers, websites, and users. Nevertheless, these results can form the starting point for deeper investigations by either the companies themselves or by regulatory bodies.

  7. Optimization of the reliability of ADS accelerators in the framework of the EUROTRANS project; Optimisation de la fiabilite des accelerateurs ADS dans le cadre du projet EUROTRANS

    Energy Technology Data Exchange (ETDEWEB)

    Lucija, Lukovac

    2007-07-01

    In order to limit the number of thermal shocks in the spallation targets and in the core of an ADS (Accelerator Driven System), it is necessary to limit the number of failures of the beam accelerating system. This article presents the improvements in terms of reliability for 2 sub-systems of the ADS: the control system that is in charge of the RF power equipment that delivers the energy necessary to the accelerating system and the power coupler whose purpose is to transfer energy from RF generator to the accelerating cavities. The digitalization of the control system has allowed the application of a compensation method: if one of the cavities fails, the neighbouring cavities are regulated to limit the consequences of the failure on the beam. As for the power coupler, the ceramic window has been designed with great care. The improvements will be tested on 2 prototypes that are being built. (A.C.)

  8. Hawking radiation from AdS black holes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E; Rangamani, Mukund; Marolf, Donald

    2010-01-01

    We study Hartle-Hawking-like states of quantum field theories on asymptotically AdS black hole backgrounds, with particular regard to the phase structure of interacting theories. By a suitable analytic continuation we show that the equilibrium dynamics of field theories on large asymptotically AdS black holes can be related to the low-temperature states of the same field theory on the AdS soliton (or pure AdS) background. This allows us to gain insight into Hartle-Hawking-like states on large-radius Schwarzschild- or rotating-AdS black holes. Furthermore, we exploit the AdS/CFT correspondence to explore the physics of strongly coupled large N theories on asymptotically AdS black holes. In particular, we exhibit a plausibly complete set of phases for the M2-brane world-volume superconformal field theory on a BTZ black hole background. Our analysis partially resolves puzzles previously raised in connection with Hawking radiation on large AdS black holes.

  9. CERN Enters the Second Year AD

    CERN Document Server

    2001-01-01

    2001 is the year that physics at CERN's new Antiproton Decelerator (AD) really gets up to speed. Changes to the AD since 2000 mean that this year the three experiments, ASACUSA, ATHENA, and ATRAP have had more intense antiproton beams to work with since physics started on 7 May. CERN's Antiproton Decelerator - major improvements for 2001. The AD is a unique machine. Its job is to decelerate not accelerate particle beams, and it has to handle beam energies that vary by an unprecedented factor of 35 from injection to ejection. Since the machine was designed to operate at fixed energy in its first incarnation as a collector of antiprotons for CERN's 1980s proton antiproton collider, this factor of 35 presented a big challenge to the AD team. The team's design goal was to hang onto a quarter of the injected antiprotons through their vertiginous fall in energy, and to repeat the deceleration cycle once per minute. Improvements to the machine over the winter shutdown and through the first four weeks of 2001 run...

  10. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  11. Polarised Black Holes in AdS

    CERN Document Server

    Costa, Miguel S.; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-05-03

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global $AdS_{4}$ with conformal boundary $S^{2}\\times\\mathbb{R}_{t}$. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic $AdS$ behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an $AdS$ soliton that includes the full backreaction of the electric field on the $AdS$ geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both $AdS$ soliton and black hole phases. The corresponding phase diagram generalizes the Hawkin...

  12. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer's Disease.

    Science.gov (United States)

    Darvesh, Sultan

    2016-01-01

    The serine hydrolase butyrylcholinesterase (BChE), like the related enzyme acetylcholinesterase (AChE), co-regulates metabolism of the neurotransmitter acetylcholine. In the human brain BChE is mainly expressed in white matter and glia and in distinct populations of neurons in regions that are important in cognition and behavior, functions compromised in Alzheimer's disease (AD). AD is a neurodegenerative disorder causing dementia with no cure nor means for definitive diagnosis during life. In AD, BChE is found in association with pathology, such as β-amyloid (Aβ) plaques, particularly in the cerebral cortex where BChE is not normally found in quantity. Up to 30% of cognitively normal older adults have abundant Aβ deposition in the brain. We have designed an imaging agent that can detect, through autoradiography, BChE-associated Aβ plaques in the cerebral cortex of AD brains, but does not visualize Aβ plaques in brains of cognitively normal individuals. Furthermore, in an AD mouse model with BChE gene knocked out, there are up to 70% fewer fibrillar Aβ brain plaques, suggesting diminished BChE activity could prove beneficial as a curative approach to AD. To that end, we have examined numerous N-10-carbonyl phenothiazines that are specific inhibitors of human BChE, revealing important details of the enzyme's active site gorge. These phenothiazines can be designed without potential side effects caused by neurotransmitter receptor interactions. In conclusion, BChE is potentially an important target for diagnosis and treatment of AD.

  13. MYRRHA. A European experimental ADS for R and D applications status at mid-2005 and prospective towards future

    International Nuclear Information System (INIS)

    Aiet Abderrahim, Hamid; D'hondt, Pierre

    2005-01-01

    Since 1998, SCK/CEN in partnership with many European research laboratories, is designing a multipurpose ADS for R and D applications - MYRRHA - and is conducting an associated R and D support program. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. It consists of a linac proton accelerator delivering a 350 MeV*5 mA proton beam to a windowless liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core of 50 MWth. In this paper we report on the status of the MYRRHA project at mid-2005 and prospective towards the future. (author)

  14. Optimum design of beam window's diameter and thickness of Hyper target system

    International Nuclear Information System (INIS)

    Cho, C. H.; Tak, N. I.; Song, T. Y.; Park, W. S.

    2002-01-01

    HYPER is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. Pb-Bi is used as the coolant and spallation target material at the same time. HYPER is expected to need about 20mA proton beam to sustain a 1000MW th power level. The cylindrical beam tube and spherical window is adopted as the basic window shape of HYPER. The window diameter and the window thickness are varied to find the maximum allowable current based on the design criteria : Pb-Bi temperature < 500 .deg. C, window temperature < 600 .deg. C, Pb-Bi velocity < 2m/s and window stress < 160MPa. The LAHET code is used to simulate heat generation. CFX is also used for the thermal-hydraulics calculation. Based on our design criteria, the maximum allowable current is calculated to be about 9.2mA, which is smaller than the required current. Therefore, an upgrade of the target system design is required

  15. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  16. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    Science.gov (United States)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  17. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    Science.gov (United States)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  18. Preliminary studi on neutronic aspect of a conceptual design of the Kartini reactor base ADS facility

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2012-01-01

    A preliminary study on neutronic aspect of a conceptual design of ADS facility with the basis of Kartini Reaktor, has been performed. The study was intended to see the feasibility from neutronic point of view of Kartini reactor, to be used as a small scale of NPP’s waste transmutation experimental facility. A SRAC code was used as the basis of calculations. The results indicate that the presence of minor actinides (MA) will give a positive reactivity, which tends to increase with the increase of MA concentrations. Based on the defined criteria of subcriticality and by considering the core power distributions and the level of reactivity contribution of MA element, it is concluded that Kartini reactor is potential enough to be used as an ADS experimental facility, mainly for MA concentration between 30 to 50 % of the assumed mixture of C-MA matrix. (author)

  19. VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls

    Directory of Open Access Journals (Sweden)

    Byoungjip Kim

    2015-07-01

    Full Text Available In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.

  20. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  1. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    Science.gov (United States)

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  2. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly.

    Science.gov (United States)

    Ohnishi, Takayuki; Yanazawa, Masako; Sasahara, Tomoya; Kitamura, Yasuki; Hiroaki, Hidekazu; Fukazawa, Yugo; Kii, Isao; Nishiyama, Takashi; Kakita, Akiyoshi; Takeda, Hiroyuki; Takeuchi, Akihide; Arai, Yoshie; Ito, Akane; Komura, Hitomi; Hirao, Hajime; Satomura, Kaori; Inoue, Masafumi; Muramatsu, Shin-ichi; Matsui, Ko; Tada, Mari; Sato, Michio; Saijo, Eri; Shigemitsu, Yoshiki; Sakai, Satoko; Umetsu, Yoshitaka; Goda, Natsuko; Takino, Naomi; Takahashi, Hitoshi; Hagiwara, Masatoshi; Sawasaki, Tatsuya; Iwasaki, Genji; Nakamura, Yu; Nabeshima, Yo-ichi; Teplow, David B; Hoshi, Minako

    2015-08-11

    Neurodegeneration correlates with Alzheimer's disease (AD) symptoms, but the molecular identities of pathogenic amyloid β-protein (Aβ) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10- to 15-nm spherical Aβ oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuron-specific Na(+)/K(+)-ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aβ-derived "thorns" responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn(879) and Trp(880) is essential for ASPD-NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 interaction.

  3. The targeted transduction of MMP-overexpressing tumor cells by ACPP-HPMA copolymer-coated adenovirus conjugates.

    Directory of Open Access Journals (Sweden)

    Shuhua Li

    Full Text Available We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5 particles into matrix metalloproteinase (MMP-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N. ACPPs are activatable cell penetrating peptides (CPPs with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery.

  4. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    International Nuclear Information System (INIS)

    Tabak, M.; Callahan-Miller, D.

    1997-01-01

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies

  5. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  6. Analysis of the thermomechanical behavior of the IFMIF bayonet target assembly under design loading scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, D., E-mail: davide.bernardi@enea.it [ENEA Brasimone, Camugnano, BO (Italy); Arena, P.; Bongiovì, G.; Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Frisoni, M. [ENEA Bologna, Via Martiri di Monte Sole 4, Bologna (Italy); Miccichè, G.; Serra, M. [ENEA Brasimone, Camugnano, BO (Italy)

    2015-10-15

    In the framework of the IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (the so-called bayonet backplate concept). In this work, the results of the steady state thermomechanical analysis of the IFMIF bayonet target assembly under two different design loading scenarios (a “hot” scenario and a “cold” scenario) are briefly reported highlighting the relevant indications obtained with respect to the fulfillment of the design requirements. In particular, the analyses have shown that in the hot scenario the temperatures reached in the target assembly are within the material acceptable limits while in the cold scenario transition below the ductile to brittle transition temperature (DBTT) cannot be excluded. Moreover, results indicate that the contact between backplate and high flux test module is avoided and that the overall structural integrity of the system is assured in both scenarios. However, stress linearization analysis reveals that ITER Structural Design Criteria for In-vessel Components (SDC-IC) design rules are not always met along the selected paths at backplate middle plane section in the hot scenario, thus suggesting the need of a revision of the backplate design or a change of the operating conditions.

  7. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  8. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2000-01-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10 1 '5 n/cm 2 .s with neutron energies exceeding 0.75 MeV and about 3.10 15 n/cm 2 .s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed

  9. Primary design of Si cooling arm structure in ICF cryogenic target

    International Nuclear Information System (INIS)

    Zhang Yong; Yi Yong; Tang Changhuan; Zhang Jicheng

    2013-01-01

    According to the requirement of the cryogenic target system to the Si cooling arm structure, the Si cooling arm was primarily designed based on the USA National Ignition Facility (NIF) target. A new three-dimensional model of Si cooling arm was developed by SolidWorks software, and the simulation and analysis of Si cooling arm in aspect of mechanical property, thermal response and assembly were made based on the model. A law about the effect of the arm length of Si cooling arm and the width and the length of bifurcation on Si cooling arm was achieved. The research may provide the theoretical foundation and reference for the further improvement of cryogenic target. (authors)

  10. Creating Flash advertising from concept to tracking-microsites, video ads and more

    CERN Document Server

    Fincanon, Jason

    2007-01-01

    Create awe-inspiring, mind-blowing Flash ads and microsites that engage consumers and demonstrate their worth to clients. The Hands-On Guide to Creating Flash Advertising delivers the nuts and bolts of the development process from initial design conception to ad completion. You'll learn the best practices for:* Mastering the myriad of ad specs, deadlines, quality and version control issues* Creating ads that balance campaign goals with design constraints* Preparing and building ads with team and QC standards* Using forms and data in ads without file bloat* File optimization techniques for swf

  11. Open strings on AdS2 branes

    International Nuclear Information System (INIS)

    Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan

    2001-01-01

    We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2

  12. SU-E-T-244: Designing Low-Z Targets To Enhance Surface Dose: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R [Nova Scotia Cancer Centre, Halifax, NS (Canada); Robar, J [Capital District Health Authority, Halifax, NS (Canada); Parsons, D [Dalhousie University, Halifax, Nova Scotia (Canada)

    2015-06-15

    Purpose: Recent developments in The Varian Truebeam linac platform allows for the introduction of low-Z targets into the beam line for the imaging purposes. We have proposed using a low-Z target for radiation therapy purposes to enhance the surface dose during radiation treatment. The target arm of the Varian Truebeam accelerator consists of multiple targets with are linearly translated into the beam line. We have designed two Low-Z targets made of carbon: 1) a step target consisting of three steps of 15%, 30% and 60% CSDA range for 2.5 MeV electrons Figure 1a; 2) and a ramp target, an incline plane 2cm long with thicknesses ranging from 0% to 60% CSDA range, Figure 1b. The purpose of this work will determine the spectral characteristics of these target designs and determine if they have practical clinical applications for enhancing surface dose. Methods: To calculate the spectral characteristics of these targets, a standard Monte Carlo model of a Varian Clinac accelerator was used. Simulations were performed with a carbon step target, and a carbon ramp target, located at the same position as the electron foil in the rotating carousel. Simulations were carried out using a 2.5 MeV electron beam. Results: The step target design produced spectral characteristics which were similar to spectral model using a single disk target of the same thickness. The ramp target provides a means to have positional variation of the spectral components of the beam, however, the electron component as 60% CSDA us much broader than the step target. Conclusion: The carbon step-target provides a spectral distribution which is similar to a carbon disk of comparable thickness. The spectral distribution from the ramp-target can be modified as a function of position to provide a wide range of low energy electrons for surface dose enhancement.

  13. Conical singularities in AdS space time

    International Nuclear Information System (INIS)

    Ferreira, Cristine Nunes

    2011-01-01

    Full text: In recent years, the study of conformal gauge theories from 10-D has been motivated by the AdS d+1 /CFT d correspondence, first conjectured by J. Maldacena. The aim of this work is to consider the d = 4 case by analysing the configuration of the N coincident D3 branes. In this context, the work shows that there is a duality between type IIB string theory in AdS 5 x S 5 and N = 4 SU(N) Super Yang-Mills Theory in the IR. The AdS 5 /CFT 4 correspondence brought also new approaches to the strong coupling problem in QCD. Nowadays, there is a whole line of works that focus on the low dimensional correspondence AdS 4 /CFT 3 , like the application to graphene and topological insulators, and the AdS 3 /CFT 2 correspondence, related with the entanglement entropy. In this work, we consider the vortex configuration solution to the AdS 4 and AdS 3 space-time. The most important motivation is to discuss the boundary theory resulting from these solutions. We have examined a straightforward approach to a holographic computation of the graphene and entanglement entropy in the presence of the conical singularity. After this analysis, we consider the scalar field in the bulk in the presence of this metrics and work out the compactification modes. Taking the holographic point of view, we study and discuss the resulting Green function. (author)

  14. Recycling issues facing target and RTL materials of inertial fusion designs

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-01-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a 'must' requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a 'must' requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs

  15. Mechanical design and development of a high power target system for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.; Mansour, D.; Porter, T.; Sax, W.; Szumillo, A.

    1991-12-01

    In order to bring the SLC Positron Source luminosity up to design specifications, the previous (stationary) positron target had to be replaced with a version which could reliably dissipate the higher power levels and cyclic pulsed thermal stresses of the high intensity 33GeV electron beam. In addition to this basic requirement, the new target system had to meet SLAC's specifications for Ultra High Vacuum, be remotely controllable, ''radiation hard,'' and designed in such a way that it could be removed and replaced quickly and easily with minimum personnel exposure to radiation. It was also desirable to integrate the target and collection components into a compact, easily manufacturable, and easily maintainable module. This paper briefly summarize the mechanical design and development of the new modular target system, its associated controls and software, alignment, and the quick removal system. Operational experience gained with the new system over the first running cycle is also summarized

  16. Design and implementation of typical target image database system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  17. Globally regular instability of AdS_3

    OpenAIRE

    Bizon, P.; Jałmużna, J.

    2013-01-01

    We consider three-dimensional AdS gravity minimally coupled to a massless scalar field and study numerically the evolution of small smooth circularly symmetric perturbations of the $AdS_3$ spacetime. As in higher dimensions, for a large class of perturbations, we observe a turbulent cascade of energy to high frequencies which entails instability of $AdS_3$. However, in contrast to higher dimensions, the cascade cannot be terminated by black hole formation because small perturbations have ener...

  18. CFD analysis of the HYPER spallation target

    International Nuclear Information System (INIS)

    Cho, Chungho; Tak, Nam-il; Choi, Jae-Hyuk; Lee, Yong-Bum

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15-25 MW. The paper focuses on a thermal-hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the k-ε model predicts the lowest window temperature among the five investigated turbulence models

  19. Manifestly T-dual formulation of AdS space

    International Nuclear Information System (INIS)

    Hatsuda, Machiko; Kamimura, Kiyoshi; Siegel, Warren

    2017-01-01

    We present a manifestly T-dual formulation of curved spaces such as an AdS space. For group manifolds related by the orthogonal vielbein fields the three form H=dB in the doubled space is universal at least locally. We construct an affine nondegenerate doubled bosonic AdS algebra to define the AdS space with the Ramond-Ramond flux. The non-zero commutator of the left and right momenta leads to that the left momentum is in an AdS space while the right momentum is in a dS space. Dimensional reduction constraints and the physical AdS algebra are shown to preserve all the doubled coordinates.

  20. Manifestly T-dual formulation of AdS space

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Machiko [Physics Division, Faculty of Medicine, Juntendo University,Chiba 270-1695 (Japan); KEK Theory Center, High Energy Accelerator Research Organization,Tsukuba, Ibaraki 305-0801 (Japan); Kamimura, Kiyoshi [Physics Division, Faculty of Medicine, Juntendo University,Chiba 270-1695 (Japan); Siegel, Warren [C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States)

    2017-05-12

    We present a manifestly T-dual formulation of curved spaces such as an AdS space. For group manifolds related by the orthogonal vielbein fields the three form H=dB in the doubled space is universal at least locally. We construct an affine nondegenerate doubled bosonic AdS algebra to define the AdS space with the Ramond-Ramond flux. The non-zero commutator of the left and right momenta leads to that the left momentum is in an AdS space while the right momentum is in a dS space. Dimensional reduction constraints and the physical AdS algebra are shown to preserve all the doubled coordinates.

  1. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Fiona Kerr

    2017-03-01

    Full Text Available Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD. Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo.

  2. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H

    2000-07-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10{sup 1}'5 n/cm{sup 2}.s with neutron energies exceeding 0.75 MeV and about 3.10{sup 15} n/cm{sup 2}.s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed.

  3. Assistant in design of tissue targeting leads with radio-combinatorial screening vivo

    International Nuclear Information System (INIS)

    Liu Ciyi; Zeng Jun; Xie Wenhui; Hu Silong; Jin Muxiu

    2004-01-01

    The diagnostic and therapeutic efficiency of drug depends highly on the drug distribution in target tissues (tumor for example) both specifically and accumulatively. We report here a powerful approach in design of tissue targeting leads with the assistant of radio-combinatorial screening technique developed in our laboratory. Methods: The C-terminal amide tripeptide libraries were synthesized on Rink Amide-MBHA resin in the OXX aO1OXaO1O2O positional scanning format and iterative protoco. A technetium (V) oxo core[(TcO)3+] was bound to the N4-triligands of tripeptide libraries via four deprotonated anfide nitrogen atoms to form a structure of 99Tcm-tripeptoid libraries. The radio-combinatorial screening (RCS) in vivo was then carried out after SD rats and A549 tumor bearing mice received i.v. with 99Tcm-tripeptoid libraries. Results: Signals of tissue distribution and metabolism of libraries were recorded by g counting or imaging. From library of 8,000 99Tcm-tripeptoid members, the tissue targeting leads had been identified by RCS. Those included 99Tcm-DSG (RES), 99Tcm-VAA, and 99Tcm-VIG that had specific tissue targeting in kidney, stomach, and liver respectively. The percent injected dose per gram tissue (%ID/g) of 99Tcm labeled leads in their target tissues was highly structure-dependent The discovery of 99Tcm-VAA and 99Tcm-VIG indicates that side chain methyl at positionl and 2 are crucial for stomach and liver accumulating 99Tcm-tripeptoids. In the case of kidney targeting, Ser in the position 2 and 3 is crucial for 99Tcm-tripeptoids renal excretion and accumulation characteristics respectively. Conclusion: RCS in vivo is a powerful tool for design of tissue targeting leads. (authors)

  4. Shock ignition: a brief overview and progress in the design of robust targets

    International Nuclear Information System (INIS)

    Atzeni, S; Marocchino, A; Schiavi, A

    2015-01-01

    Shock ignition is a laser direct-drive inertial confinement fusion (ICF) scheme in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF, reducing the threats due to Rayleigh–Taylor instability. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. This paper starts with a brief overview of the theoretical studies, target design and experimental results on shock ignition. The second part of the paper illustrates original work aiming at the design of robust targets and computation of the relevant gain curves. Following Chang et al (2010 Phys. Rev. Lett. 104 135002) a safety factor for high gain, ITF* (analogous to the ignition threshold factor ITF introduced by Clark et al (2008 Phys. Plasmas 15 056305)), is evaluated by means of parametric 1D simulations with artificially reduced reactivity. SI designs scaled as in Atzeni et al (2013 New J. Phys. 15 045004) are found to have nearly the same ITF*. For a given target, such ITF* increases with implosion velocity and laser spike power. A gain curve with a prescribed ITF* can then be simply generated by upscaling a reference target with that value of ITF*. An interesting option is scaling in size by reducing the implosion velocity to keep the ratio of implosion velocity to self-ignition velocity constant. At a given total laser energy, targets with higher ITF* are driven to higher implosion velocity and achieve a somewhat lower gain. However, a 1D gain higher than 100 is achieved at an (incident) energy below 1 MJ, an implosion velocity below 300 km s −1 and a peak incident power below 400 TW. 2D simulations of mispositioned targets show that targets with a higher ITF* indeed tolerate larger displacements. (paper)

  5. Research on Information-Based Teaching in Reform and Practice of Architectural Design

    Science.gov (United States)

    Hao, Li-Jun; Xiao, Zhe-Tao

    2017-01-01

    In China, with the development of the era, the Architectural Design (AD) education has been given the requirement that students should master creative thinking mode and design method. The teaching target of integrating the Information-Based Teaching (IBT) into Creative Thinking (CT) mode is analyzed, and the Teaching Mode (TM) of integrating the…

  6. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-01-15

    Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.

  7. Multiple Target Laser Designator (MTLD)

    Science.gov (United States)

    2007-03-01

    Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In

  8. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  9. Increasing the Structural Coverage of Tuberculosis Drug Targets

    Science.gov (United States)

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David; Dieterich, Shellie H.; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W.; Stacy, Robin; Stewart, Lance J.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.

    2015-01-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD 85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. PMID:25613812

  10. Lorentzian AdS, Wormholes and Holography

    CERN Document Server

    Arias, Raul E; Silva, Guillermo A

    2011-01-01

    We investigate the structure of two point functions for the QFT dual to an asymptotically Lorentzian AdS-wormhole. The bulk geometry is a solution of 5-dimensional second order Einstein Gauss Bonnet gravity and causally connects two asymptotically AdS space times. We revisit the GKPW prescription for computing two-point correlation functions for dual QFT operators O in Lorentzian signature and we propose to express the bulk fields in terms of the independent boundary values phi_0^\\pm at each of the two asymptotic AdS regions, along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final states, show up in the computations. The independent boundary values are interpreted as sources for dual operators O^\\pm and we argue that, apart from the possibility of entanglement, there exists a coupling between the degrees of freedom leaving at each boundary. The AdS_(1+1) geometry is also discussed in view of its similar boundary structure. Based on the analysis, we propose a ...

  11. Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target

    Science.gov (United States)

    Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei

    2018-02-01

    The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.

  12. Nonlinear realization of supersymmetric AdS space isometries

    International Nuclear Information System (INIS)

    Clark, T. E.; Love, S. T.

    2006-01-01

    The isometries of AdS 5 space and supersymmetric AdS 5 xS 1 space are nonlinearly realized on four-dimensional Minkowski space. The resultant effective actions in terms of the Nambu-Goldstone modes are constructed. The dilatonic mode governing the motion of the Minkowski space probe brane into the covolume of supersymmetric AdS 5 space is found to be unstable and the bulk of the AdS 5 space is unable to sustain the brane. No such instability appears in the nonsupersymmetric case

  13. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  14. Mechanism Design for Multi-slot Ads Auction in Sponsored Search Markets

    Science.gov (United States)

    Deng, Xiaotie; Sun, Yang; Yin, Ming; Zhou, Yunhong

    In this paper, we study pricing models for multi-slot advertisements, where advertisers can bid to place links to their sales webpages at one or multiple slots on a webpage, called the multi-slot AD auction problem. We develop and analyze several important mechanisms, including the VCG mechanism for multi-slot ads auction, the optimal social welfare solution, as well as two weighted GSP-like protocols (mixed and hybrid). Furthermore, we consider that forward-looking Nash equilibrium and prove its existence in the weighted GSP-like pricing protocols.

  15. Design upgrade of the ISOLDE target unit for HIE-ISOLDE

    CERN Document Server

    Montano, J; Gottberg, A

    2013-01-01

    The High Intensity and Energy HIE-ISOLDE project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities with the objective of increasing the energy and the intensity of the delivered radioactive ion beams (RIB) {[}1]. In order to accommodate the future increase of primary beam intensity delivered by the new LINAC4 H- driver to the Proton Synchrotron Booster (PSB) {[}2] and from this to ISOLDE, a major study is being carried out to upgrade the existing designs of the ISOLDE target and its supporting infrastructure. In particular, the extraction optics plays an important role in the initial beam transport and the quality of the beam supplied to the mass separators. Important factors include the emittance of the beam and the beam profile to avoid beam losses. A new double electrode extraction system has been developed for simplifying and improving the interface between the target unit and the frontend (target coupling table). Numerical and experimental studies have been performed in order to define ...

  16. Non-relativistic AdS branes and Newton-Hooke superalgebra

    International Nuclear Information System (INIS)

    Sakaguchi, Makoto; Yoshida, Kentaroh

    2006-01-01

    We examine a non-relativistic limit of D-branes in AdS 5 x S 5 and M-branes in AdS 4/7 x S 7/4 . First, Newton-Hooke superalgebras for the AdS branes are derived from AdS x S superalgebras as Inoenue-Wigner contractions. It is shown that the directions along which the AdS-brane worldvolume extends are restricted by requiring that the isometry on the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally extend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes and show that the directions along which a brane worldvolume extends are restricted. Then the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg cohomology on the super-AdS x S algebra, and the non-relativistic limit of the AdS-brane actions is considered. We show that the consistent limit is possible for the following branes: Dp (even,even) for p = 1 mod 4 and Dp (odd,odd) for p = 3 mod 4 in AdS 5 x S 5 , and M2 (0,3), M2 (2,1), M5 (1,5) and M5 (3,3) in AdS 4 x S 7 and S 4 x AdS 7 . We furthermore present non-relativistic actions for the AdS branes

  17. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  18. Design and features of the target tracker of the Opera's target: study of the electron channel events

    International Nuclear Information System (INIS)

    Chon-Sen, N.

    2009-01-01

    Neutrino oscillations are now well acknowledged, the purpose of the Opera experiment is to show how ν τ appear in a ν μ beam. The ν μ beam is produced at CERN and crosses the earth crust on a distance of 732 km before being detected in the Gran-Sasso underground laboratory. The Opera experiment uses the technique of the photographic emulsion. The detector target is a series of walls of lead bricks, each brick being made of photographic emulsions intercalated with lead sheets. A target tracker enables the localization of the brick in which the neutrino interaction has happened. As soon as the brick is found, the brick is removed from the detector and the emulsion is developed and analysed. the target tracker is made up of plastic scintillator bars on which optic fibers are stuck to collect photons and send them to photomultipliers. The main purpose of this work is the calibration of the target tracker. The first chapter introduces the standard model, the neutrino and the neutrino oscillation phenomenon. The second chapter reviews the neutrino experiments worldwide. The third chapter describes the Opera experiment while chapter 4 and 5 are dedicated to the design and operation of the target tracker. The last chapter studies through simulation the behaviour of the target tracker when submitted to an electron beam in order to use it as a complementary tool for the identification of the τ → e channel. (A.C.)

  19. Added Sugars and Cardiovascular Disease Risk in Children

    Science.gov (United States)

    Vos, Miriam B.; Kaar, Jill L.; Welsh, Jean A.; Van Horn, Linda V.; Feig, Daniel I.; Anderson, Cheryl A.M.; Patel, Mahesh J.; Munos, Jessica Cruz; Krebs, Nancy F.; Xanthakos, Stavra A.; Johnson, Rachel K.

    2017-01-01

    BACKGROUND Poor lifestyle behaviors are leading causes of preventable diseases globally. Added sugars contribute to a diet that is energy dense but nutrient poor and increase risk of developing obesity, cardiovascular disease, hypertension, obesity-related cancers, and dental caries. METHODS AND RESULTS For this American Heart Association scientific statement, the writing group reviewed and graded the current scientific evidence for studies examining the cardiovascular health effects of added sugars on children. The available literature was subdivided into 5 broad subareas: effects on blood pressure, lipids, insulin resistance and diabetes mellitus, nonalcoholic fatty liver disease, and obesity. CONCLUSIONS Associations between added sugars and increased cardiovascular disease risk factors among US children are present at levels far below current consumption levels. Strong evidence supports the association of added sugars with increased cardiovascular disease risk in children through increased energy intake, increased adiposity, and dyslipidemia. The committee found that it is reasonable to recommend that children consume ≤25 g (100 cal or ≈6 teaspoons) of added sugars per day and to avoid added sugars for children added sugars most likely can be safely consumed in low amounts as part of a healthy diet, few children achieve such levels, making this an important public health target. PMID:27550974

  20. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  1. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  2. A closer look at two AdS4 branes in an AdS5 bulk

    International Nuclear Information System (INIS)

    Thambyahpillai, Shiyamala

    2005-01-01

    We investigate a scenario with two AdS 4 branes in an AdS 5 bulk. In this scenario there are two gravitons and we investigate the role played by each of them for different positions of the second brane. We show that both gravitons play a significant role only when the turn-around point in the warp factor is approximately equidistant from both branes. We find that the ultralight mode becomes heavy as the second brane approaches the turn-around point, and the physics begins to resemble that of the RS model. Thus we demonstrate the crucial role played by the turn-around in the warp factor in enabling the presence of both gravitons. (author)

  3. Applications of electron linacs to ADS: one potential path forward

    International Nuclear Information System (INIS)

    Wells, D.P.; Harmon, J.F.

    2011-01-01

    The application of electron linac accelerators to ADS systems offers a number of advantages for ADS applications. We propose a path forward with electron linac-driven ADS that takes advantage of those important ADS applications that are most easily achieved at relatively low cost, and then building on those successes to enable the more difficult applications with larger impact. We argue that the applications that are most easily achieved are medical isotope production, materials irradiation and environmental applications. The accelerator and target demands for each of these applications are essentially the same as for the ADS needs in energy production and the transmutation of waste. The successful demonstration of these important and highly-visible applications will, in turn, lead to greater visibility and funding to further major advances of ADS systems in energy production, nuclear waste transmutation, and applications to the thorium fuel cycle. (author)

  4. CFD Study of the Active Part of the HYPER LBE Spallation Target System

    International Nuclear Information System (INIS)

    Cho, Chung-ho; Tak, Nam-il; Lee, Yong-bum; Choi, Jae-Hyuk

    2007-01-01

    In an accelerator driven system (ADS), a high-energy proton beam impinges on a heavy metal target to produce spallation neutrons that are multiplied in a subcritical blanket. Therefore, the spallation target is one of the most important units of an ADS. A beam power of 15-25 MW is required for an operation of the HYPER system. But, the design of a 20 MW spallation target is very challenging because more than 60% of a beam power is deposited as heat in a small volume of a target system. LBE is preferred as the target material due to its high neutron production rate, effective heat removal, low melting point and vapor pressure, low neutron absorption and good radiation damage properties. In addition, it can be used simultaneously as a reactor coolant. Single hemi-spherical beam window is considered for the HYPER target. The beam window is a thin physical barrier to separate the vacuum space from the LBE. It is exposed to high thermal and irradiation loads, which affect its life time. The integrity of the beam window is crucial for a safe operation of the HYPER, for preventing the penetration of the radioactive spallation products into the accelerator island. Therefore, a sufficient cooling capability of the beam window is one of the key issues of the target design. In the previous study, a series of parametric thermal and mechanical studies were made for the optimization of the HYPER target. The optimized target has a 0.2 cm thick beam window with a diameter of 35 cm. Also, a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of the HYPER. A dual injection tube is adopted to economize the LBE flow in the primary system. This paper presents the numerical studies on the optimized spallation target system. Several advanced turbulence models with different grid structures are investigated by using a commercial computational fluid dynamics (CFD) code CFX 5.7.1

  5. Target design for materials processing very far from equilibrium

    Science.gov (United States)

    Barnard, John J.; Schenkel, Thomas

    2016-10-01

    Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.

  6. Evaporation of large black holes in AdS

    International Nuclear Information System (INIS)

    Rocha, Jorge V

    2010-01-01

    The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.

  7. MicroRNAs as Therapeutic Targets for Alzheimer's Disease.

    Science.gov (United States)

    Di Meco, Antonio; Praticò, Domenico

    2016-05-07

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. Given this public health challenge, and that the current approved therapy for AD is limited to symptomatic treatment (i.e., cholinesterase inhibitors and NMDA receptor antagonists), exploration of new molecular pathways as novel therapeutic targets remains an attractive option for disease modifying drug development. microRNAs (miRNAs) are short non-coding RNA that control gene expression at the post-translational level by inhibiting translation of specific mRNAs or degrading them. Dysregulation of several miRNAs has been described in AD brains. Interestingly, their molecular targets are pathways that are well-established functional players in the onset and development of AD pathogenesis. Today several molecular tools have been developed to modulate miRNA levels in vitro and in vivo. These scientific advancements are affording us for the first time with the real possibility of targeting in vivo these dysregulated miRNAs as a novel therapeutic approach against AD.

  8. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  9. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  10. Adalimumab added to a treat-to-target strategy with methotrexate and intra-articular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The OPERA Study

    DEFF Research Database (Denmark)

    Hørslev-Petersen, Kim; Hetland, Merete Lund; Junker, Peter

    2014-01-01

    OBJECTIVES: An investigator-initiated, double-blinded, placebo-controlled, treat-to-target protocol (Clinical Trials:NCT00660647) studied whether adalimumab added to methotrexate and intra-articular triamcinolone as first-line treatment in early rheumatoid arthritis (ERA) increased the frequency......-label biologics after 6-9 months. Efficacy was assessed primarily on the proportion of patients who reached treatment target (DAS28CRP... not increase the proportion of patients who reached the DAS28CRPtarget, but improved DAS28CRP, remission rates, function and quality of life in DMARD-naïve ERA....

  11. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

    DEFF Research Database (Denmark)

    Narayanan, Dilip; Gani, Osman ABSM; Gruber, Franz XE

    2017-01-01

    encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan......Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however...... consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug...

  12. Design principles for target stations and methods of remote handling at PSI

    International Nuclear Information System (INIS)

    Steiner, E.W.

    1992-01-01

    Two design concepts for target stations used at Paul Scherrer Institute (PSI) are shown. The method of the remote handling of activated elements is described and some conclusions with respect to a radioactive beam facility are given

  13. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    Science.gov (United States)

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  14. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  15. Design of a control system for HIRFL-CSRe internal target facility in Lanzhou

    International Nuclear Information System (INIS)

    Wang Yanyu; Liu Wufeng; Shao Caojie; Lin Feiyu; Zhang Jianchuan; Xiao Wenjun

    2010-01-01

    It is described in this paper the design of the control system for HIRFL-CSRe internal target facility, in which there are many different kinds of units need to be monitored and controlled. The control system is composed of several subsystems which are designed to control the gas-jet temperature, chamber vacuum, valves and molecular pumps. A human-computer interaction interface is also realized to do the data acquisition, data processing and display. The whole system has been working stably and safely, it fully meets the requirements of physical experiments in the internal target facility. In January of 2010, the first physics experiment of the radioactive electron capture was finished successfully with the aids of this control system. (authors)

  16. AdS Black Hole with Phantom Scalar Field

    Directory of Open Access Journals (Sweden)

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  17. Universal regularization prescription for Lovelock AdS gravity

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Olea, Rodrigo

    2007-01-01

    A definite form for the boundary term that produces the finiteness of both the conserved quantities and Euclidean action for any Lovelock gravity with AdS asymptotics is presented. This prescription merely tells even from odd bulk dimensions, regardless the particular theory considered, what is valid even for Einstein-Hilbert and Einstein-Gauss-Bonnet AdS gravity. The boundary term is a given polynomial of the boundary extrinsic and intrinsic curvatures (also referred to as Kounterterms series). Only the coupling constant of the boundary term changes accordingly, such that it always preserves a well-posed variational principle for boundary conditions suitable for asymptotically AdS spaces. The background-independent conserved charges associated to asymptotic symmetries are found. In odd bulk dimensions, this regularization produces a generalized formula for the vacuum energy in Lovelock AdS gravity. The standard entropy for asymptotically AdS black holes is recovered directly from the regularization of the Euclidean action, and not only from the first law of thermodynamics associated to the conserved quantities

  18. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  19. AdS Branes from Partial Breaking of Superconformal Symmetries

    International Nuclear Information System (INIS)

    Ivanov, E.A.

    2005-01-01

    It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS d+1 superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS 4 supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS 5 and scalar 3-brane on AdS 5 x S 1 , which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS d+1 (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d

  20. AdS2 models in an embedding superspace

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2003-01-01

    An embedding superspace, whose bosonic part is the flat (2+1)-dimensional embedding space for AdS 2 , is introduced. Superfields and several supersymmetric models are examined in the embedded AdS 2 superspace

  1. Increasing the structural coverage of tuberculosis drug targets.

    Science.gov (United States)

    Baugh, Loren; Phan, Isabelle; Begley, Darren W; Clifton, Matthew C; Armour, Brianna; Dranow, David M; Taylor, Brandy M; Muruthi, Marvin M; Abendroth, Jan; Fairman, James W; Fox, David; Dieterich, Shellie H; Staker, Bart L; Gardberg, Anna S; Choi, Ryan; Hewitt, Stephen N; Napuli, Alberto J; Myers, Janette; Barrett, Lynn K; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W; Stacy, Robin; Stewart, Lance J; Edwards, Thomas E; Van Voorhis, Wesley C; Myler, Peter J

    2015-03-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD 85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. AdS. Klein-Gordon equation

    OpenAIRE

    Bel, Ll.

    2014-01-01

    I propose a generalization of the Klein-Gordon equation in the framework of AdS space-time and exhibit a four parameter family of solutions among which there is a two parameter family of time-dependent bound states.

  3. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  4. Baby Skyrmions in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot-Ripley, Matthew; Winyard, Thomas [Department of Mathematical Sciences, Durham University,South Rd, Durham (United Kingdom)

    2015-09-01

    We study the baby Skyrme model in a pure AdS background without a mass term. The tail decays and scalings of massless radial solutions are demonstrated to take a similar form to those of the massive flat space model, with the AdS curvature playing a similar role to the flat space pion mass. We also numerically find minimal energy solutions for a range of higher topological charges and find that they form concentric ring-like solutions. Popcorn transitions (named in analogy with studies of toy models of holographic QCD) from an n layer to an n+1-layer configuration are observed at topological charges 9 and 27 and further popcorn transitions for higher charges are predicted. Finally, a point-particle approximation for the model is derived and used to successfully predict the ring structures and popcorn transitions for higher charge solitons.

  5. Conceptual design of the handling and storage system of the spent target vessel for neutron scattering facility 2

    International Nuclear Information System (INIS)

    Adachi, Junichi; Kaminaga, Masanori; Sasaki, Shinobu; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Hino, Ryutaro

    2002-01-01

    In designing the neutron scattering facility, a spent target vessel should be replaced with remote handling devices in order to protect radioactive exposure, since it would be highly activated through the high energy neutron irradiation caused by the spallation reaction between mercury of the target material and the MW-class proton beam. In the storage of the spent target vessel, it is necessary to consider decay heat of the target vessel and mercury contamination caused by vaporization of the residual mercury in the vessel. A conceptual design has been carried out to establish basic concept and to clarify its specification of main equipments on handling and storage systems for the spent target vessel. This report presents the basic concept and a system plot plan based on latest design works of remote handling devices such as a spent target vessel storage cask and a target vessel exchange trolley, which aim at reasonability and simplification. In addition, storage systems for the spent moderator vessel, the spent proton beam window and the spent reflector vessel are also investigated based on the plot plan. (author)

  6. Heterogeneity in head and neck IMRT target design and clinical practice

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2012-01-01

    Purpose: To assess patterns of H and N IMRT practice with particular emphasis on elective target delineation. Materials and methods: Twenty institutions with established H and N IMRT expertise were solicited to design clinical target volumes for the identical H and N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results: All 20 institutions responded. Remarkable heterogeneity in H and N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm 3 (range 37–676 cm 3 ). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H and N target volume contouring time was 102.5 min (range 60–210 min). Conclusion: This study identifies substantial heterogeneity in H and N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H and N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H and N IMRT process are desirable for the safe and effective global advancement of H and N IMRT practice.

  7. An investigative approach to explore optimum assembly process design for annular targets carrying LEU foil

    Science.gov (United States)

    Hoyer, Annemarie

    Technetium-99m is the most widely used nuclear isotope in the medical field, with nearly 80 to 85% of all diagnostic imaging procedures. The daughter isotope of molybdenum-99 is currently produced using weapons-grade uranium. A suggested design for aluminum targets carrying low-enriched uranium (LEU) foil is presented for the fulfillment of eliminating highly enriched uranium (HEU) for medical isotope production. The assembly process that this research focuses on is the conventional draw-plug process which is currently used and lastly the sealing process. The research is unique in that it is a systematic approach to explore the optimal target assembly process to produce those targets with the required quality and integrity. Conducting 9 parametric experiments, aluminum tubes with a nickel foil fission-barrier and a surrogate stainless steel foil are assembled, welded and then examined to find defects, to determine residual stresses, and to find the best cost-effective target dimensions. The experimental design consists of 9 assembly combinations that were found through orthogonal arrays in order to explore the significance of each factor. Using probabilistic modeling, the parametric study is investigated using the Taguchi method of robust analysis. Depending on the situation, optimal conditions may be a nominal, a minimized or occasionally a maximized condition. The results will provide the best target design and will give optimal quality with little or no assembly defects.

  8. Wess-Zumino terms for AdS D-branes

    International Nuclear Information System (INIS)

    Hatsuda, Machiko; Kamimura, Kiyoshi

    2004-01-01

    We show that Wess-Zumino terms for Dp branes with p>0 in the anti-de Sitter (AdS) space are given in terms of 'left-invariant' currents on the super-AdS group or the 'expanded' super-AdS group. As a result there is no topological extension of the super-AdS algebra. In the flat limit the global Lorentz rotational charges of the AdS space turn out to be brane charges of the supertranslation algebra representing the BPS mass. We also show that a D-instanton is described by the GL(1) degree of freedom in the Roiban-Siegel formalism based on the GL(4 vertical bar 4)/[Sp(4)xGL(1)]2 coset

  9. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D.C.; Song, P.M.; Latkowski, J.F.; Reyes, S.; O' Brien, D.W.; Lee, F.D.; Young, B.K.; Koch, J.A.; Moran, M.J.; Watts, P.W.; Kimbrough, J.R.; Ng, E.W.; Landen, O.L.; MacGowan, B.J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2006-06-15

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3-dimensional Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (about 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields. (authors)

  10. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Science.gov (United States)

    Eder, D. C.; Song, P. M.; Latkowski, J. F.; Reyes, S.; O'Brien, D. W.; Lee, F. D.; Young, B. K.; Koch, J. A.; Moran, M. J.; Watts, P. W.; Kimbrough, J. R.; Ng, E. W.; Landen, O. L.; MacGowan, B. J.

    2006-06-01

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (˜ 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.

  11. Precoding Design and Power Allocation in Two-User MU-MIMO Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Haole Chen

    2017-10-01

    Full Text Available In this paper, we consider the precoding design and power allocation problem for multi-user multiple-input multiple-output (MU-MIMO wireless ad hoc networks. In the first timeslot, the source node (SN transmits energy and information to a relay node (RN simultaneously within the simultaneous wireless information and power transfer (SWIPT framework. Then, in the second timeslot, based on the decoder and the forwarding (DF protocol, after reassembling the received signal and its own signal, the RN forwards the information to the main user (U1 and simultaneously sends its own information to the secondary user (U2. In this paper, when the transmission rate of the U1 is restricted, the precoding, beamforming, and power splitting (PS transmission ratio are jointly considered to maximize the transmission rate of U2. To maximize the system rate, we design an optimal beamforming matrix and solve the optimization problem by semi-definite relaxation (SDR, considering the high complexity of implementing the optimal solution. Two sub-optimal precoding programs are also discussed: singular value decomposition and block diagonalization. Finally, the performance of the optimization and sub-optimization schemes are compared using a simulation.

  12. System design and as-built MCNP model comparison for the Lujan Center target moderator reflector system

    International Nuclear Information System (INIS)

    Muhrer, G.; Ferguson, P.D.; Russell, G.J.; Pitcher, E.J.

    2000-01-01

    During the design of the Manuel Lujan, Jr., Neutron Scattering Center target, a simplified Monte Carlo model was used to estimate target system performance and to aid engineers as decisions were made regarding the construction of the target system. Although the simplified model ideally would perfectly reflect the as-built system performance, assumptions were made in the model during the design process that may result in deviations between the model predictions and the as-built system performance. Now that the Lujan Center target system has been completed, a more detailed, as-built, model of the target system has been completed. The purpose of this work is to investigate differences between the predicted target system performance of the simplified model and the as-built model from the standpoint of time-averaged moderator brightness. Calculated discrepancies between the two models have been isolated to a few key issues. Figure 1 shows MCNP geometric plots of the simplified and as-built models. Major differences between these two models include details in the moderator designs (plena) and piping, full versus partial moderator canisters (only in the direction of the extracted neutron beam for the simplified model), and reflector details including cooling pipes and engineering tolerance gaps. In addition, Fig. 1 demonstrates that the detailed model includes shielding and additional material beyond that which was modeled by the original simplified model

  13. Trends in added sugars from packaged beverages available and purchased by US households, 2007-2012.

    Science.gov (United States)

    Ng, Shu Wen; Ostrowski, Jessica D; Li, Kuo-Ping

    2017-07-01

    Background: The US Food and Drug Administration's updated nutrition labeling requirements will include added sugars starting in July 2018, but no measure currently exists to identify the added sugar content of products and what it represents among purchases. Beverages are one of the first targets for reducing added sugar consumption, and hence are the focus here. Objective: Our goal was to estimate trends in added sugars in nonalcoholic packaged beverage products available in the United States and to estimate amounts of added sugars obtained from these beverages given the purchases of US households overall and by subpopulations. Design: On the basis of nutrition label data from multiple sources, we used a stepwise approach to derive the added sugar content of 160,713 beverage products recorded as purchased by US households in 2007-2012 (345,193 observations from 110,539 unique households). We estimated the amounts of added sugars obtained from packaged beverages US households reported buying in 2007-2008, 2009-2010, and 2011-2012, overall and by subpopulations based on household composition, race/ethnicity, and income. The key outcomes are added sugars in terms of per capita grams per day and the percentage of calories from packaged beverages. Results: Packaged beverages alone account for per capita consumption of 12 g/d of added sugars purchased by US households in 2007-2012, representing 32-48% of calories from packaged beverages. Whereas the absolute amount of added sugars from beverages has not changed meaningfully over time, the relative contribution of added sugars to calories from beverages has increased. Non-Hispanic black households and low-income households obtain both higher absolute and relative amounts of added sugars from beverages than non-Hispanic white households and high-income households (all P beverages at both the product level and the population level in the United States and can be used for comparisons after the revised nutrition labels are

  14. Lujan Center Mark-IV Target Neutronics Design Internal Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Paul W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallmeier, Franz [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guber, Klaus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-02-26

    The 1L Target Moderator Reflector System (TMRS) at the Lujan Center will need to be replaced before the CY 2020 operating cycle. A Physics Division design team investigated options for improving the overall target performance for nuclear science research with minimal reduction in performance for materials science. This review concluded that devoting an optimized arrangement of the Lujan TMRS upper tier to nuclear science and using the lower tier for materials science can achieve those goals. This would open the opportunity for enhanced nuclear science research in an important neutron energy range for NNSA. There will be no other facility in the US that will compete in the keV energy range provided flight paths and instrumentation are developed to take advantage of the neutron flux and resolution.

  15. A novel graphical technique for Pinch Analysis applications: Energy Targets and grassroots design

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Graphical abstract: A new HEN graphical design. - Highlights: • A new graphical technique for heat exchanger networks design. • Pinch Analysis principles and design rules are better interpreted. • Graphical guidelines for optimum heat integration. • New temperature-based graphs provide user-interactive features. - Abstract: Pinch Analysis is for decades a leading tool to energy integration for retrofit and design. This paper presents a new graphical technique, based on Pinch Analysis, for the grassroots design of heat exchanger networks. In the new graph, the temperatures of hot streams are plotted versus those of the cold streams. The temperature–temperature based graph is constructed to include temperatures of hot and cold streams as straight lines, horizontal lines for hot streams, and vertical lines for cold streams. The graph is applied to determine the pinch temperatures and Energy Targets. It is then used to synthesise graphically a complete exchanger network, achieving the Energy Targets. Within the new graph, exchangers are represented by inclined straight lines, whose slopes are proportional to the ratio of heat capacities and flows. Pinch Analysis principles for design are easily interpreted using this new graphical technique to design a complete exchanger network. Network designs achieved by the new technique can guarantee maximum heat recovery. The new technique can also be employed to simulate basic designs of heat exchanger networks. The strengths of the new tool are that it is simply applied using computers, requires no commercial software, and can be used for academic purposes/engineering education

  16. The group approach to AdS space propagators

    International Nuclear Information System (INIS)

    Leonhardt, Thorsten; Manvelyan, Ruben; Ruehl, Werner

    2003-01-01

    We show that AdS two-point functions can be obtained by connecting two points in the interior of AdS space with one point on its boundary by a dual pair of Dobrev's boundary-to-bulk intertwiners and integrating over the boundary point

  17. Racial/Ethnic and Income Disparities in Child and Adolescent Exposure to Food and Beverage Television Ads across U.S. Media Markets

    OpenAIRE

    Powell, Lisa M.; Wada, Roy; Kumanyika, Shiriki K.

    2014-01-01

    Obesity prevalence and related health burdens are greater among U.S. racial/ethnic minority and low-income populations. Targeted advertising may contribute to disparities. Designated market area (DMA) spot television ratings were used to assess geographic differences in child/adolescent exposure to food-related advertisements based on DMA-level racial/ethnic and income characteristics. Controlling for unobserved DMA-level factors and time trends, child/adolescent exposure to food-related ads,...

  18. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  19. Experimental and theoretical study of the residual nuclide production in 40-2600 MeV proton-irradiated thin targets of ads structure materials

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Batyaev, V.F.; Belonozhenko, A.A.; Borovlev, S.P.; Butko, M.A.; Florya, S.N.; Pavlov, K.V.; Rogov, V.I.; Tikhonov, R.S.; Titarenko, A.Yu.; Zhivun, V.M.

    2011-10-01

    The Project is aimed at experimental and theoretical studying the independent and cumulative yields of residual radioactive nuclei produced in high-energy proton-irradiated structure materials intended for constructing the high-power Accelerator-Driven Systems (ADS) with a high-current proton accelerator. The Project is an extension of the researches carried out earlier under the ISTC Projects #017, #839, and #2002 which provided more 10000 residual nuclide production cross sections mainly in materials intended to use as target materials of the ADS. This Project includes 57 measurement runs carried out using the 97 targets made only of the ADS structural materials of both monoisotopic ( 56 Fe, 93 Nb, 181 Ta) and natural ( nat Cr, nat Ni, nat W) compositions within minutely fractionated proton energy range, namely, at 0.04, 0.07, 0.1, 0.15, 0.25, 0.4, 0.6, 0.8, 1.2, 1.6 and 2.6GeV. All the targets were irradiated using the ITEP U-10 proton synchrotron. The experimental nuclide yields are determined by the direct γ-spectrometry and α-spectrometry methods. As a result, 3839 cumulative and independent yields of residual β-radioactive product nuclei with lifetimes range from 6 minutes to 10 years as well as 12 cumulative yields of α- radioactive 148 Gd whose lifetime is 74.6 years have been measured. Besides, the cross sections for the 27 Al(p,x) 22 Na , 27 Al(p,x) 24 Na and 27 Al(p,x) 7 Be monitor reactions have been measured at the same proton energies with the use of the current transformer technique. The γ-spectrometer resolution is 1.8 keV in the 1332 keV 60 Co γ-line. The experimental γ-spectra were processed by the GENIE2000 code. The γ-lines were identified, and the cross sections calculated, by the ITEP-developed SIGMA code using the PCNUDAT database. The proton fluence was monitored by the 27 Al(p,x) 22 Na reaction. Measurement data have been compared with the calculation results of the BERTINI and ISABEL models of MCNPX code, CEM03.02, INCL 4.2, INCL4

  20. Chemical processing for production of no-carrier-added selenium-73 from germanium and arsenic targets and synthesis of L-2-amino-4-([73Se]methylseleno) butyric acid (L-[73Se]selenomethionine)

    International Nuclear Information System (INIS)

    Plenevaux, A.; Guillaume, M.; Brihaye, C.; Lemaire, C.; Cantineau, R.

    1990-01-01

    The Ge( 4 He,xn) and 75 As(p,3n) reactions were compared as the best potential routes for routine production of selenium-73 ( 73 Se) for medical applications. With 26 MeV α particles, available with compact cyclotrons, the first reaction required an enriched 70 Ge target of sodium metagermanate to give a production yield of 1 mCi/μAh (0.037 GBq/μAh) in a 105 mg/cm 2 target. With 55 MeV protons the As(p,3n) reaction on natural arsenic yielded 20 mCi/μAh (0.74 GBq/μAh) in a 685 mg/cm 2 target. A simple method was developed and optimized for both targets in order to isolate and purify the no-carrier-added selenium in the elemental form with a radiochemical yield greater than 75% in less than 90 min. An automated radiochemical processing unit has been designed for the routine production of 100-150 mCi(3.7-5.5 GBq) batches of carrier-free 73 Se ready for radiopharmaceutical labeling. 30 mCi (1.11 GBq) (EOS) of L-2-amino-4-([ 73 Se]methylseleno) butyric acid (L-[ 73 Se]selenomethionine) ready for injection with a specific activity of 5 Ci/mmol (185 GBq/mmol) (EOS) were obtained through a fast chemical synthesis. Radiation absorbed dose estimates for L-[ 73 Se ]selenomethionine have been determined. A value of 0.70 rem/mCi (0.19 mSv/MBq) administered was calculated for the risk from irradiation in man. The first human PET investigation with [ 73 Se]selenomethionine showed a very good delineation between liver and pancreas. (author)

  1. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy

    Directory of Open Access Journals (Sweden)

    Siegal Gene P

    2007-10-01

    Full Text Available Abstract Background Human adenovirus serotype 5 (Ad5 has been widely explored as a gene delivery vector for a variety of diseases. Many target cells, however, express low levels of Ad5 native receptor, the Coxsackie-Adenovirus Receptor (CAR, and thus are resistant to Ad5 infection. The Protein Transduction Domain of the HIV Tat protein, namely PTDtat, has been shown to mediate protein transduction in a wide range of cells. We hypothesize that re-targeting Ad5 vector via the PTDtat motif would improve the efficacy of Ad5-mediated gene delivery. Results In this study, we genetically incorporated the PTDtat motif into the knob domain of Ad5 fiber, and rescued the resultant viral vector, Ad5.PTDtat. Our data showed the modification did not interfere with Ad5 binding to its native receptor CAR, suggesting Ad5 infection via the CAR pathway is retained. In addition, we found that Ad5.PTDtat exhibited enhanced gene transfer efficacy in all of the cell lines that we have tested, which included both low-CAR and high-CAR decorated cells. Competitive inhibition assays suggested the enhanced infectivity of Ad5.PTDtat was mediated by binding of the positively charged PTDtat peptide to the negatively charged epitopes on the cells' surface. Furthermore, we investigated in vivo gene delivery efficacy of Ad5.PTDtat using subcutaneous tumor models established with U118MG glioma cells, and found that Ad5.PTDtat exhibited enhanced gene transfer efficacy compared to unmodified Ad5 vector as analyzed by a non-invasive fluorescence imaging technique. Conclusion Genetic incorporation of the PTDtat motif into Ad5 fiber allowed Ad5 vectors to infect cells via an alternative PTDtat targeting motif while retaining the native CAR-mediated infection pathway. The enhanced infectivity was demonstrated in both cultured cells and in in vivo tumor models. Taken together, our study identifies a novel tropism expanded Ad5 vector that may be useful for clinical gene therapy

  2. Comparisons of the simulation results using different codes for ADS spallation target

    International Nuclear Information System (INIS)

    Yu Hongwei; Fan Sheng; Shen Qingbiao; Zhao Zhixiang; Wan Junsheng

    2002-01-01

    The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra

  3. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes

    Science.gov (United States)

    Andreoli, Federico; Del Rio, Alberto

    2015-01-01

    Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds. PMID:26082827

  4. Holographic description of AdS2 black holes

    International Nuclear Information System (INIS)

    Castro, Alejandra; Larsen, Finn; Grumiller, Daniel; McNees, Robert

    2008-01-01

    We develop the holographic renormalization of AdS 2 gravity systematically. We find that a bulk Maxwell term necessitates a boundary mass term for the gauge field and verify that this unusual term is invariant under gauge transformations that preserve the boundary conditions. We determine the energy-momentum tensor and the central charge, recovering recent results by Hartman and Strominger. We show that our expressions are consistent with dimensional reduction of the AdS 3 energy-momentum tensor and the Brown-Henneaux central charge. As an application of our results we interpret the entropy of AdS 2 black holes as the ground state entropy of a dual CFT.

  5. Smart AD and DA Converters

    NARCIS (Netherlands)

    Roermund, van A.H.M.; Hegt, J.A.; Harpe, P.J.A.; Radulov, G.I.; Zanikopoulos, A.; Doris, K.; Quinn, P.J.

    2005-01-01

    In this paper, a concept is proposed to solve the problems related to the embedding of AD and DA converters in system-on-chips, FPGAs or other VLSI solutions. Problems like embedded testing, yield, reliability and reduced design space become crucial bottlenecks in the integration of high-performance

  6. Design improvement of the target elements of Wendelstein 7-X divertor

    International Nuclear Information System (INIS)

    Boscary, J.; Peacock, A.; Friedrich, T.; Greuner, H.; Böswirth, B.; Tittes, H.; Schulmeyer, W.; Hurd, F.

    2012-01-01

    Highlights: ► Improvement of the cooling structure design. ► Improvement of the CFC tile arrangement at the element end. ► Design and fabrication validated with high heat flux testing. ► Selected solution removes stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side facing the pumping gap of the element, respectively. - Abstract: The actively cooled high-heat flux divertor of the Wendelstein 7-X stellarator consists of individual target elements made of a water-cooled CuCrZr copper alloy heat sink armored with CFC tiles. The so-called “bi-layer” technology developed in collaboration with the company Plansee for the bonding of the tiles onto the heat sink has reliably demonstrated the removal of the specified heat load of 10 MW/m 2 in the central area of the divertor. However, due to geometrical constraints, the loading performance at the ends of the elements is reduced compared to the central part. Design modifications compatible with industrial processes have been made to improve the cooling capabilities at this location. These changes have been validated during test campaigns of full-scale prototypes carried out in the neutral beam test facility GLADIS. The tested solution can remove reliably the stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side of the element, respectively. The results of the testing allowed the release of the design and fabrication processes for the next manufacturing phase of the target elements.

  7. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-10-16

    Light-cone gauge formulation of fields in AdS space and conformal field theory in flat space adapted for the study of AdS/CFT correspondence is developed. Arbitrary spin mixed-symmetry fields in AdS space and arbitrary spin mixed-symmetry currents, shadows, and conformal fields in flat space are considered on an equal footing. For the massless and massive fields in AdS and the conformal fields in flat space, simple light-cone gauge actions leading to decoupled equations of motion are found. For the currents and shadows, simple expressions for all 2-point functions are also found. We demonstrate that representation of conformal algebra generators on space of currents, shadows, and conformal fields can be built in terms of spin operators entering the light-cone gauge formulation of AdS fields. This considerably simplifies the study of AdS/CFT correspondence. Light-cone gauge actions for totally symmetric arbitrary spin long conformal fields in flat space are presented. We apply our approach to the study of totally antisymmetric (one-column) and mixed-symmetry (two-column) fields in AdS space and currents, shadows, and conformal fields in flat space.

  8. Preconceptual engineering design for the APT 3He Target/Blanket concept

    International Nuclear Information System (INIS)

    Mensink, D.L.

    1994-01-01

    A preconceptual engineering design has been developed for the 3 He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and 3 He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the 3 He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of 3 He, D 2 O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system

  9. Large N elliptic genus and AdS/CFT Correspondence

    International Nuclear Information System (INIS)

    Boer, Jan de

    1998-01-01

    According to one of Maldacena's dualities, type IIB string theory on AdS 3 x S 3 x K3 is equivalent to a certain N = (4, 4) superconformal field theory. In this note we compute the elliptic genus of the boundary theory in the supergravity approximation. A finite quantity is obtained once we introduce a particular exclusion principle. In the regime where the supergravity approximation is reliable, we find exact agreement with the elliptic genus of a sigma model with target space K3 N /S N

  10. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  11. ADS-HE: Evaluated Nuclear Data Library up to 1 GeV for 202Hg, 208Pb, 209Bi, 232Th, 235U, 238U, 237Np, 239Pu, 242Am and 245Cm

    International Nuclear Information System (INIS)

    Lopez Aldama, Daniel

    2013-12-01

    Accelerator Driven Systems (ADS) are being developed for power generation and the transmutation of actinide and fission product waste, and well-defined cross-section libraries suitable for their transport calculations are required. Transport of high energy neutrons and protons near the target assembly requires an extension of the library for incident energies up to 1 GeV. An ADS-HE library for incident neutrons on selected target elements has been developed to meet this request, and assist benchmarking studies linked to ADS experiments and design concepts. New evaluations of high-energy data from 20 MeV up to 1 GeV have been carried out by S.G. Yavshits and O.T. Grudzevich (see INDC(NDS)-0615). The ADS- HE library has been prepared from these high-energy evaluations combined with evaluations below 20 MeV selected from the ENDF/B-VII.1, the JEFF-3.1.2 and the JENDL-4u2 libraries. The ADS-HE library was processed in suitable forms for Monte Carlo transport codes used in the analysis of ADS. ADS-HE is freely available from the IAEA Nuclear Data Section, and is readily accessible on the web site: http://www-nds.iaea.org/ads/adshe.html. (author)

  12. Central charge for AdS2 quantum gravity

    International Nuclear Information System (INIS)

    Hartman, Thomas; Strominger, Andrew

    2009-01-01

    Two-dimensional Maxwell-dilaton quantum gravity on AdS 2 with radius l and a constant electric field E is studied. In conformal gauge, this is equivalent to a CFT on a strip. In order to maintain consistent boundary conditions, the usual conformal diffeomorphisms must be accompanied by a certain U(1) gauge transformation. The resulting conformal transformations are generated by a twisted stress tensor, which has a central charge c = 3kE 2 l 4 /4 where k is the level of the U(1) current. This is an AdS 2 analog of the Brown-Henneaux formula c = 3l/2G for the central charge of quantum gravity on AdS 3 .

  13. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer's disease therapy

    Directory of Open Access Journals (Sweden)

    Asha Hiremathad

    2017-01-01

    Full Text Available Nowadays, Alzheimer's disease (AD is widely recognized as a real social problem. In fact, only five drugs are FDA approved for the therapy of this widespread neurodegenerative disease, but with low results so far. Three of them (rivastigmine, donepezil and galantamine are acetylcholinesterase inhibitors, memantine is a N-methyl-D-aspartate receptor antagonist, whereas the fifth formulation is a combination of donepezil with memantine. The prevention and treatment of AD is the new challenge for pharmaceutical industry, as well as for public institutions, physicians, patients, and their families. The discovery of a new and safe way to cure this neurodegenerative disease is urgent and should not be delayed further. Because of the multiple origin of this pathology, a multi-target strategy is currently strongly pursued by researchers. In this review, we have discussed new structures designed to better the activity on the classical AD targets. We have also examined old and new potential drugs that could prove useful future for the therapy of the pathology by acting on innovative, not usual, and not yet fully explored targets like peroxisome proliferator-activated receptor (PPARs.

  14. AdS5 black holes with fermionic hair

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Sabra, W. A.

    2005-01-01

    The study of new Bogomol'nyi-Prasad-Sommerfield (BPS) objects in AdS 5 has led to a deeper understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this paper we construct superpartners of the 1/2 BPS black hole in AdS 5 using a natural set of fermion zero modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of the new system, as well as the mass and angular momentum, defined through the boundary stress tensor. The complete set of superpartners fits nicely into a chiral representation of AdS 5 supersymmetry, and the spinning solutions have the expected gyromagnetic ratio, g=1

  15. Phases of global AdS black holes

    International Nuclear Information System (INIS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P.N. Bala

    2016-01-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime (AdS_4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  16. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    Science.gov (United States)

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2018-04-01

    What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  18. Design and Certification of Targets for Drop Tests at the NTRC Packaging Research Facility

    International Nuclear Information System (INIS)

    Ludwig, S.B.

    2003-01-01

    This report provides documentation of the design and certification of drop pad (targets) at the National Transportation Research Center (NTRC) Packaging Research Facility(PRF). Based on the evaluation performed, it has been demonstrated that the small (interior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 3,150 lb (1,432 kg). The large (exterior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 28,184 lb (12,811 kg)

  19. Development of ADS virtual accelerator based on XAL

    International Nuclear Information System (INIS)

    Wang Pengfei; Cao Jianshe; Ye Qiang

    2014-01-01

    XAL is a high level accelerator application framework that was originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. It has an advanced design concept and has been adopted by many international accelerator laboratories. Adopting XAL for ADS is a key subject in the long term. This paper will present the modifications to the original XAL applications for ADS. The work includes a proper relational database schema modification in order to better suit the requirements of ADS configuration data, redesigning and re-implementing db2xal application, and modifying the virtual accelerator application. In addition, the new device types and new device attributes for ADS online modeling purpose are also described here. (authors)

  20. Design study on large-scale mercury loop for engineering test of target of high-intensity proton accelerator

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Sudo, Yukio; Koiso, Kohji; Kaminaga, Masanori; Takahashi, Hiromichi.

    1997-03-01

    A heavy liquid-metal target has been proposed as a representative target of a 5MW-scale neutron source for a neutron scattering facility coupled with a high-intensity proton accelerator. In the report, about mercury considered to be the best material of the heavy liquid-metal target, its properties needed for the design were formulated, and results of research on mercury treatment and of evaluation of heat removal performance on the basis of generating heat obtained by a numerical calculation of a spallation reaction were presented. From these results, a 1.5MW-scale mercury loop which equals to that for the first stage operation of the neutron science program of JAERI was designed conceptually for obtaining design data of the mercury target, and basic flow diagram of the loop and specifications of components were decided: diameter of pipelines flowing mercury at the velocity below 1m/s, power of an electro-magnet pump and structure of a cooler. Through the design, engineering problems were made clear such as selection and development of mercury-resistant materials and optimization of the loop and components for decreasing mercury inventory. (author)

  1. Modern Prodrug Design for Targeted Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Arik Dahan

    2014-10-01

    Full Text Available The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  2. New Massive Gravity and AdS4 Counterterms

    International Nuclear Information System (INIS)

    Jatkar, Dileep P.; Sinha, Aninda

    2011-01-01

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS 4 ). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS 4 Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS 3 gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  3. Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    OpenAIRE

    Tripp Barba, Carolina

    2013-01-01

    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some spec...

  4. Antismoking Ads at the Point of Sale: The Influence of Ad Type and Context on Ad Reactions.

    Science.gov (United States)

    Kim, Annice; Nonnemaker, James; Guillory, Jamie; Shafer, Paul; Parvanta, Sarah; Holloway, John; Farrelly, Matthew

    2017-06-01

    Efforts are underway to educate consumers about the dangers of smoking at the point of sale (POS). Research is limited about the efficacy of POS antismoking ads to guide campaign development. This study experimentally tests whether the type of antismoking ad and the context in which ads are viewed influence people's reactions to the ads. A national convenience sample of 7,812 adult current smokers and recent quitters was randomized to 1 of 39 conditions. Participants viewed one of the four types of antismoking ads (negative health consequences-graphic, negative social consequences-intended emotive, benefits of quitting-informational, benefits of quitting-graphic) in one of the three contexts (alone, next to a cigarette ad, POS tobacco display). We assessed participants' reactions to the ads, including perceived effectiveness, negative emotion, affective dissonance, and motivational reaction. Graphic ads elicited more negative emotion and affective dissonance than benefits of quitting ads. Graphic ads elicited higher perceived effectiveness and more affective dissonance than intended emotive ads. Antismoking ads fared best when viewed alone, and graphic ads were least influenced by the context in which they were viewed. These results suggest that in developing POS campaigns, it is important to consider the competitive pro-tobacco context in which antismoking ads will be viewed.

  5. A Closer Look at Revealed Comparative Advantage: Gross-versus Value Added Trade Flows

    OpenAIRE

    Brakman, Steven; van Marrewijk, Charles

    2015-01-01

    With the availability of international value added trade data it has become evident that gross export data and value added data do not provide the same information. Although gross exports crosses national borders and is the target of trade policy, value added data tell us what fragment in the production chain is internationally competitive in a particular country. With respect to comparative advantage the differences between the two types of data are often illustrated by means of examples usi...

  6. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-01-01

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ''3/8 Goal'' quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed

  7. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-09-30

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

  8. Quantum load balancing in ad hoc networks

    Science.gov (United States)

    Hasanpour, M.; Shariat, S.; Barnaghi, P.; Hoseinitabatabaei, S. A.; Vahid, S.; Tafazolli, R.

    2017-06-01

    This paper presents a novel approach in targeting load balancing in ad hoc networks utilizing the properties of quantum game theory. This approach benefits from the instantaneous and information-less capability of entangled particles to synchronize the load balancing strategies in ad hoc networks. The quantum load balancing (QLB) algorithm proposed by this work is implemented on top of OLSR as the baseline routing protocol; its performance is analyzed against the baseline OLSR, and considerable gain is reported regarding some of the main QoS metrics such as delay and jitter. Furthermore, it is shown that QLB algorithm supports a solid stability gain in terms of throughput which stands a proof of concept for the load balancing properties of the proposed theory.

  9. Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target

    International Nuclear Information System (INIS)

    Mandal, A.; Lahiri, S.

    2012-01-01

    This work reports for the first time 7 Li-induced accelerator based production of 71,72,73,74 As, 75,76,77 Br and 73,75 Se radionuclides in their no-carrier-added (nca) state. After the decay of all short-lived radionuclides 75 Se and 73 As were only existing radionuclides in germanium oxide target, which were subsequently separated by liquid-liquid extraction (LLX) using trioctylamine (TOA) dissolved in cyclohexane as liquid ion exchanger. The presence of stable germanium in various fractions was examined by Inductively Coupled Plasma Optical Spectrometry (ICP-OES). At 0.1 M TOA and 10 M HCl concentration, 75 Se and stable Ge were extracted into the organic phase leaving 73 As in the aqueous phase. The bulk Ge was stripped back to the aqueous phase by 1 M NaOH, keeping 75 Se in the organic phase. Therefore complete separation between 73 As, 75 Se and bulk Ge was achieved. (orig.)

  10. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  11. Ad-Me: A Context-Sensitive Advertising System

    OpenAIRE

    Hristova, Nataliya; O'Hare, G. M. P. (Greg M. P.)

    2001-01-01

    The mobile commerce sector and in particular the context sensitive advertising will represent a high yield revenue stream. This paper introduces the Ad-me (Advertising for the Mobile E-commerce user) system. The Ad-me is a mobile tourist guide that proactively delivers advertisements to users based upon perceived individual user needs together with their location. A Multi-Agent Systems (MAS) design philosophy is adopted. In order to achieve maximum content diffusion a range of presentation...

  12. Stability of phenolic compounds in dry fermented sausages added with cocoa and grape seed extracts

    OpenAIRE

    Ribas-Agusti, Albert; Gratacós-Cubarsí, Marta; Sárraga, Carmen; Guàrdia, M. Dolors; García-Regueiro, José-Antonio

    2014-01-01

    The level of eleven target phenolic compounds was evaluated in dry fermented sausages added with vegetable extracts. Grape seed (GSE1 and GSE2) and cocoa extracts, rich in phenolic compounds, were added in the formulation of dry fermented sausages (“salchichón” and “fuet”). Evolution of the major monomeric and oligomeric phenolic compounds of these extracts was evaluated during sausage shelf life by UHPLC-MS/MS. Kind of sausage did not affect significantly overall stability of the target comp...

  13. Significance of Demographic Variables for Targeting of Internet Advertisements

    Directory of Open Access Journals (Sweden)

    Václav Stříteský

    2016-06-01

    Full Text Available Broad ad targeting options belong among the major advantages of internet advertising. Demographic targeting has become a standard option in most of on-line advertising systems. There are more ways how to target on-line advertisements by using demographic variables. In some cases, e.g., social media, we can use data from user registrations. Modern technologies enable to estimate the demographic profile of internet users using on behavioural data. The traditional approach to the demographic targeting of advertisements based on affinity targeting assumes the existence of internet servers with sufficient homogeneity of visits. The aim of this article is to identify the differences in the internet content consumption habits of Czech internet users based on gender and age. The analysis is based on the data from the extensive research which was carried out by the Netmonitor project, and which was provided for the purposes of this study by the Association for Internet Development (SPIR. The research results show that the traditional affinity-based method of targeting according to gender and age is still suitable on the Czech internet. On the other hand, in some cases, the traditional approach of ad targeting based on affinity leads to wasted ad impressions that miss defined target group.

  14. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

    Science.gov (United States)

    Zhang, Jian; Lai, Weijie; Li, Qiang; Yu, Yang; Jin, Jin; Guo, Wan; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2017-09-16

    Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Child-targeted fast-food television advertising exposure is linked with fast-food intake among pre-school children

    Science.gov (United States)

    Dalton, Madeline A; Longacre, Meghan R; Drake, Keith M; Cleveland, Lauren P; Harris, Jennifer L; Hendricks, Kristy; Titus, Linda J

    2017-01-01

    Objective To determine whether exposure to child-targeted fast-food (FF) television (TV) advertising is associated with children’s FF intake in a non-experimental setting. Design Cross-sectional survey conducted April–December 2013. Parents reported their pre-school child’s TV viewing time, channels watched and past-week FF consumption. Responses were combined with a list of FF commercials (ads) aired on children’s TV channels during the same period to calculate children’s exposure to child-targeted TV ads for the following chain FF restaurants: McDonald’s, Subway and Wendy’s (MSW). Setting Paediatric and Women, Infants, and Children (WIC) clinics in New Hampshire, USA. Subjects Parents (n 548) with a child of pre-school age. Results Children’s mean age was 4·4 years; 43·2 % ate MSW in the past week. Among the 40·8 % exposed to MSW ads, 23·3 % had low, 34·2 % moderate and 42·5 % high exposure. McDonald’s accounted for over 70 % of children’s MSW ad exposure and consumption. Children’s MSW consumption was significantly associated with their ad exposure, but not overall TV viewing time. After adjusting for demographics, socio-economic status and other screen time, moderate MSW ad exposure was associated with a 31 % (95 % CI 1·12, 1·53) increase and high MSW ad exposure with a 26 % (95 % CI 1·13, 1·41) increase in the likelihood of consuming MSW in the past week. Further adjustment for parent FF consumption did not change the findings substantially. Conclusions Exposure to child-targeted FF TV advertising is positively associated with FF consumption among children of pre-school age, highlighting the vulnerability of young children to persuasive advertising and supporting recommendations to limit child-directed FF marketing. PMID:28416041

  16. Current status of AdS instability

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    arXiv:1403.6471 and thoroughly developed in arXiv:1407.6273. On the other hand the negative cosmological constant allows for the existence of stable, time-periodic, asymptotically AdS solutions of Einstein equations [arXiv:1303.3186].

  17. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  18. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  19. Loops in AdS from conformal field theory

    Science.gov (United States)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  20. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  1. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer’s disease therapy

    Science.gov (United States)

    Hiremathad, Asha; Piemontese, Luca

    2017-01-01

    Nowadays, Alzheimer’s disease (AD) is widely recognized as a real social problem. In fact, only five drugs are FDA approved for the therapy of this widespread neurodegenerative disease, but with low results so far. Three of them (rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors, memantine is a N-methyl-D-aspartate receptor antagonist, whereas the fifth formulation is a combination of donepezil with memantine. The prevention and treatment of AD is the new challenge for pharmaceutical industry, as well as for public institutions, physicians, patients, and their families. The discovery of a new and safe way to cure this neurodegenerative disease is urgent and should not be delayed further. Because of the multiple origin of this pathology, a multi-target strategy is currently strongly pursued by researchers. In this review, we have discussed new structures designed to better the activity on the classical AD targets. We have also examined old and new potential drugs that could prove useful future for the therapy of the pathology by acting on innovative, not usual, and not yet fully explored targets like peroxisome proliferator-activated receptor (PPARs). PMID:28966636

  2. Supersymmetric warped AdS in extended topologically massive supergravity

    International Nuclear Information System (INIS)

    Deger, N.S.; Kaya, A.; Samtleben, H.; Sezgin, E.

    2014-01-01

    We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS 3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS 3 . This occurs when the coefficient of the Lorentz–Chern–Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS 3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves

  3. New supersymmetric AdS4 type II vacua

    International Nuclear Information System (INIS)

    Tsimpis, D.

    2010-01-01

    We review the supersymmetric AdS 4 x w M 6 backgrounds of type IIA/IIB supergravity constructed in[1]. In type IIA the supersymmetry is N=2, and the six-dimensional internal space is locally an S 2 bundle over a four-dimensional Kaehler-Einstein base; in IIB the internal space is the direct product of a circle and a five-dimensional squashed Sasaki-Einstein manifold. These backgrounds do not contain any sources, all fluxes (including the Romans mass in IIA) are generally non-zero, and the dilaton and warp factor are non-constant. The IIA solutions include the massive deformations of the IIA reduction of the eleven-dimensional AdS 4 x Y p,q solutions, and had been predicted to exist on the basis of the AdS 4 /CFT 3 correspondence. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Instantons from geodesics in AdS moduli spaces

    Science.gov (United States)

    Ruggeri, Daniele; Trigiante, Mario; Van Riet, Thomas

    2018-03-01

    We investigate supergravity instantons in Euclidean AdS5 × S5/ℤk. These solutions are expected to be dual to instantons of N = 2 quiver gauge theories. On the supergravity side the (extremal) instanton solutions are neatly described by the (lightlike) geodesics on the AdS moduli space for which we find the explicit expression and compute the on-shell actions in terms of the quantised charges. The lightlike geodesics fall into two categories depending on the degree of nilpotency of the Noether charge matrix carried by the geodesic: for degree 2 the instantons preserve 8 supercharges and for degree 3 they are non-SUSY. We expect that these findings should apply to more general situations in the sense that there is a map between geodesics on moduli-spaces of Euclidean AdS vacua and instantons with holographic counterparts.

  5. Recall of "The Real Cost" Anti-Smoking Campaign Is Specifically Associated With Endorsement of Campaign-Targeted Beliefs.

    Science.gov (United States)

    Kranzler, Elissa C; Gibson, Laura A; Hornik, Robert C

    2017-10-01

    Though previous research suggests the FDA's "The Real Cost" anti-smoking campaign has reduced smoking initiation, the theorized pathway of effects (through targeted beliefs) has not been evaluated. This study assesses the relationship between recall of campaign television advertisements and ad-specific anti-smoking beliefs. Respondents in a nationally representative survey of nonsmoking youths age 13-17 (n = 4,831) reported exposure to four The Real Cost advertisements and a fake ad, smoking-relevant beliefs, and nonsmoking intentions. Analyses separately predicted each targeted belief from specific ad recall, adjusting for potential confounders and survey weights. Parallel analyses with non-targeted beliefs showed smaller effects, strengthening claims of campaign effects. Recall of four campaign ads (but not the fake ad) significantly predicted endorsement of the ad-targeted belief (Mean β = .13). Two-sided sign tests indicated stronger ad recall associations with the targeted belief relative to the non-targeted belief (p < .05). Logistic regression analyses indicated that respondents who endorsed campaign-targeted beliefs were more likely to have no intention to smoke (p < .01). This study is the first to demonstrate a relationship between recall of ads from The Real Cost campaign and the theorized pathway of effects (through targeted beliefs). These analyses also provide a methodological template for showing campaign effects despite limitations of available data.

  6. Beams configuration design in target area with successive quadratic programming method

    International Nuclear Information System (INIS)

    Shi Zhiquan; Tan Jichun; Wei Xiaofeng; Man Jongzai; Zhang Xiaomin; Yuan Jing; Yuan Xiaodong

    1998-01-01

    The author describes the application of successive quadratic programming method (SQP) to design laser beam configuration in target area. Based on the requirement of ICF experiment physics, a math model of indirect-driver beam geometry is given. A 3D wire-frame is plotted, in which support lines represent 60 laser entireties and 240 turning points of support lines' segments stand for the spatial positions of reflectors

  7. Some safety studies of the MEGAPIE spallation source target performed using computational fluid dynamics

    International Nuclear Information System (INIS)

    Smith, B.L.

    2011-01-01

    Such a target forms part of the evolutionary Accelerator-Driven System (ADS) concept in which neutrons are generated in an otherwise sub-critical core by spallation reactions resulting from bombardment by a proton beam. The international project MEGAPIE had the objective of demonstrating the feasibility of the spallation process for a particular target design under strict test conditions. The test was carried over a period of four months at the end of 2006 at the SINQ facility of the Paul Scherrer Institute in Switzerland. The design studies carried out for the MEGAPIE target prior to irradiation using Computational Fluid Dynamics (CFD) resulted in an optimum flow configuration being defined for the coolant circulation. Simultaneously, stresses in the structural components were examined using Finite Element Method (FEM) techniques. To this purpose, an interface program was written which enabled different specialist groups to carry out the thermal hydraulics and structural mechanics analyses within the project with fully consistent model data. Results for steady-state operation of the target show that the critical lower target components are adequately cooled, and that stresses and displacements are well within tolerances. Transient analyses were also performed to demonstrate the robustness of the design in the event of abnormal operation, including pump failure and burn-through of the target casing by the proton beam. In the latter case, the CFD analyses complemented and extended full-scale tests. (author)

  8. Some safety studies of the MEGAPIE spallation source target performed using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L., E-mail: brian.smith@psi.ch [Paul Scherrer Institute, OHSA/C08, 5232 Villigen PSI (Switzerland)

    2011-07-01

    Such a target forms part of the evolutionary Accelerator-Driven System (ADS) concept in which neutrons are generated in an otherwise sub-critical core by spallation reactions resulting from bombardment by a proton beam. The international project MEGAPIE had the objective of demonstrating the feasibility of the spallation process for a particular target design under strict test conditions. The test was carried over a period of four months at the end of 2006 at the SINQ facility of the Paul Scherrer Institute in Switzerland. The design studies carried out for the MEGAPIE target prior to irradiation using Computational Fluid Dynamics (CFD) resulted in an optimum flow configuration being defined for the coolant circulation. Simultaneously, stresses in the structural components were examined using Finite Element Method (FEM) techniques. To this purpose, an interface program was written which enabled different specialist groups to carry out the thermal hydraulics and structural mechanics analyses within the project with fully consistent model data. Results for steady-state operation of the target show that the critical lower target components are adequately cooled, and that stresses and displacements are well within tolerances. Transient analyses were also performed to demonstrate the robustness of the design in the event of abnormal operation, including pump failure and burn-through of the target casing by the proton beam. In the latter case, the CFD analyses complemented and extended full-scale tests. (author)

  9. IFMIF Li target back-plate design integration and thermo-mechanical analysis

    International Nuclear Information System (INIS)

    Riccardi, B.; Roccella, S.; Micciche, G.

    2006-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-driven intense neutron source where fusion reactor candidate materials will be tested. The neutron flux is produced by means of a deuteron beam (current 250 mA, energy 40 MeV) that strikes a liquid lithium target circulating in a lithium loop. The support on which the liquid lithium flows, i.e. the back-plate, is the most heavily exposed component to neutron flux. A '' bayonet '' concept solution for the back-plate was proposed by ENEA with the objectives of improving the back-plate reliability and simplifying the remote handling procedures. On the base of this concept, a back-plate mock-up was fabricated and validated. Starting from the findings of the mock up design, a back-plate design integration exercise was carried out in order to check if the back-plate geometrical features are compatible with the target assembly and the Vertical Test Assemblies (VTA). The work carried out has demonstrated that even with the changes operated for the design integration (increase of in-plane dimensions and reduction of thickness) the bayonet concept is able to guarantee a tight connection to the target assembly. A thermo-mechanical analysis of the back-plate has been carried out by means of ABAQUS code. The thermal load used as input for the calculations, i.e. the neutron heat generation, has been estimated by means of Monte Carlo Mc-Delicious code. The two boundary constraint cases (full and minimum contact with target assembly) considered for each back-plate geometry option represent the extreme cases of the real operating condition of the plate. The influence of the contact heat exchange coefficient and the back-plate thickness has been also evaluated. For all these reasons, the results of the analysis can be considered as the domain of variability of the real working conditions. The results show that AISI 316L steel is not suitable as black-plate material: the stress induced in the plate, in

  10. High-resolution imaging and target designation through clouds or smoke

    Science.gov (United States)

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  11. Ad hoc mobile wireless networks principles, protocols and applications

    CERN Document Server

    Sarkar, Subir Kumar; Puttamadappa, C

    2007-01-01

    Ad hoc mobile wireless networks have seen increased adaptation in a variety of disciplines because they can be deployed with simple infrastructures and virtually no central administration. In particular, the development of ad hoc wireless and sensor networks provides tremendous opportunities in areas including disaster recovery, defense, health care, and industrial environments. Ad Hoc Mobile Wireless Networks: Principles, Protocols and Applications explains the concepts, mechanisms, design, and performance of these systems. It presents in-depth explanations of the latest wireless technologies

  12. Ad hoc mobile wireless networks principles, protocols, and applications

    CERN Document Server

    Sarkar, Subir Kumar

    2013-01-01

    The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of serv

  13. A Content Analysis of Unique Selling Propositions of Tobacco Print Ads.

    Science.gov (United States)

    Johnson Shen, Megan; Banerjee, Smita C; Greene, Kathryn; Carpenter, Amanda; Ostroff, Jamie S

    2017-03-01

    We describe the unique selling propositions (USPs) (propositions used to convince customers to use a particular brand/product by focusing on the unique benefit) of print tobacco ads. A qualitative content analysis was conducted of print tobacco ads (N = 171) selected from August 2012 to August 2013 for cigarettes, moist snuff, e-cigarettes, cigars, and snus to determine the content and themes of USPs for tobacco ads. Cigarette ad USP themes focused on portraying the product as attractive; moist snuff ads focused on portraying product as masculine; cigar ads focused on selling a "high end product;" and new and emerging tobacco products (e-cigarette, snus) focused on directly comparing these products to cigarettes. Whereas traditional tobacco product ads used USPs focused on themes of enjoyment and pleasure (eg, attractive for cigarettes, "high end product" for cigars), new and emerging tobacco product ads offered the unique benefit (USP) of their product being a better and "safer" alternative to traditional tobacco products. Snuff's USPs focused nearly exclusively on the masculinity of their products. Our results provide targets for potential tobacco regulatory actions that could be implemented to reduce demand for tobacco products by reducing their perceived unique benefits.

  14. Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    OpenAIRE

    Tripp Barba, Carolina

    2013-01-01

    La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc ...

  15. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  16. Constrained supermanifolds for AdS M-theory backgrounds

    International Nuclear Information System (INIS)

    Fre, Pietro; Grassi, Pietro Antonio

    2008-01-01

    A long standing problem is the supergauge completion of AdS 4 x ({G/H}) 7 or AdS 5 x ({G/H}) 5 backgrounds which preserve less then maximal supersymmetry. In parallel with the supersolvable realization of the AdS 4 x S 7 background based on κ-symmetry, we develop a technique which amounts to solving the above-mentioned problem in a way useful for pure spinor quantization for supermembranes and superstrings. Instead of gauge fixing some of the superspace coordinates using κ-symmetry, we impose an additional constraint on them reproducing the simplifications of the supersolvable representations. The constraints are quadratic, homogeneous, Sp(4,R)-covariant, and consistent from the quantum point of view in the pure spinor approach. Here we provide the geometrical solution which, in a subsequent work, will be applied to the membrane and the superstring sigma models

  17. Mechanical design of experimental apparatus for FIREX cryo-target cooling

    Science.gov (United States)

    Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-05-01

    Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.

  18. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    Science.gov (United States)

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  19. Seismic Responses of an Added-Story Frame Structure with Viscous Dampers

    OpenAIRE

    Cheng, Xuansheng; Jia, Chuansheng; Zhang, Yue

    2014-01-01

    The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element...

  20. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  1. Noncommutative D-branes from covariant AdS superstring

    International Nuclear Information System (INIS)

    Sakaguchi, Makoto; Yoshida, Kentaroh

    2008-01-01

    We study noncommutative (NC) D-branes on AdS 5 xS 5 from κ-invariance of covariant Green-Schwarz action of an open string with a non-trivial world-volume flux. Finding boundary conditions to ensure the κ-invariance, we can see possible configurations of the NC D-branes. With this method 1/4 BPS NC D-branes are discussed. The resulting NC Dp-branes are 1/4 BPS at arbitrary position other than the p=1 case. The exceptional D-string is 1/2 BPS at the origin and 1/4 BPS outside the origin. Those are reduced to possible 1/4 BPS or 1/2 BPS AdS D-branes in the commutative limit. The same analysis is applied to an open superstring in a pp-wave and leads to 1/4 BPS configurations of NC D-branes. These D-branes are consistently obtained from AdS D-branes via the Penrose limit

  2. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].

    Science.gov (United States)

    Xie, Sheng-song; Zhang, Yi; Zhang, Li-sheng; Li, Guang-lei; Zhao, Chang-zhi; Ni, Pan; Zhao, Shu-hong

    2015-11-01

    The third generation of CRISPR/Cas9-mediated genome editing technology has been successfully applied to genome modification of various species including animals, plants and microorganisms. How to improve the efficiency of CRISPR/Cas9 genome editing and reduce its off-target effects has been extensively explored in this field. Using sgRNA (Small guide RNA) with high efficiency and specificity is one of the critical factors for successful genome editing. Several software have been developed for sgRNA design and/or off-target evaluation, which have advantages and disadvantages respectively. In this review, we summarize characters of 16 kinds online and standalone software for sgRNA design and/or off-target evaluation and conduct a comparative analysis of these different kinds of software through developing 38 evaluation indexes. We also summarize 11 experimental approaches for testing genome editing efficiency and off-target effects as well as how to screen highly efficient and specific sgRNA.

  3. Fixed target flammable gas upgrades

    International Nuclear Information System (INIS)

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only

  4. Statistical inference on censored data for targeted clinical trials under enrichment design.

    Science.gov (United States)

    Chen, Chen-Fang; Lin, Jr-Rung; Liu, Jen-Pei

    2013-01-01

    For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target. To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design, we propose using the expectation-maximization algorithm in conjunction with the bootstrap technique to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision, and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated, additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing function of the positive predictive value. A numerical example illustrates the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd.

  5. ADS 2.0: New Architecture, API and Services

    Science.gov (United States)

    Chyla, R.; Accomazzi, A.; Holachek, A.; Grant, C. S.; Elliott, J.; Henneken, E. A.; Thompson, D. M.; Kurtz, M. J.; Murray, S. S.; Sudilovsky, V.

    2015-09-01

    The ADS platform is undergoing the biggest rewrite of its 20-year history. While several components have been added to its architecture over the past couple of years, this talk will concentrate on the underpinnings of ADS's search layer and its API. To illustrate the design of the components in the new system, we will show how the new ADS user interface is built exclusively on top of the API using RESTful web services. Taking one step further, we will discuss how we plan to expose the treasure trove of information hosted by ADS (10 million records and fulltext for much of the Astronomy and Physics refereed literature) to partners interested in using this API. This will provide you (and your intelligent applications) with access to ADS's underlying data to enable the extraction of new knowledge and the ingestion of these results back into the ADS. Using this framework, researchers could run controlled experiments with content extraction, machine learning, natural language processing, etc. In this talk, we will discuss what is already implemented, what will be available soon, and where we are going next.

  6. Twistor description of spinning particles in AdS

    Science.gov (United States)

    Arvanitakis, Alex S.; Barns-Graham, Alec E.; Townsend, Paul K.

    2018-01-01

    The two-twistor formulation of particle mechanics in D-dimensional anti-de Sitter space for D = 4 , 5 , 7, which linearises invariance under the AdS isometry group Sp(4; K ) for K=R,C,H, is generalized to the massless N -extended "spinning particle". The twistor variables are gauge invariant with respect to the initial N local worldline supersymmetries; this simplifies aspects of the quantum theory such as implications of global gauge anomalies. We also give details of the two-supertwistor form of the superparticle, in particular the massive superparticle on AdS5.

  7. Holography in Lovelock Chern-Simons AdS gravity

    Science.gov (United States)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  8. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  9. Design evaluation of emergency core cooling systems using Axiomatic Design

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2007-01-15

    In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.

  10. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  11. Exploring AdS waves via nonminimal coupling

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2006-01-01

    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity

  12. Routing Protocol for Mobile Ad-hoc Wireless Networks

    Directory of Open Access Journals (Sweden)

    I. M. B. Nogales

    2007-09-01

    Full Text Available Bluetooth is a cutting-edge technology used for implementing wireless ad hoc networks. In order to provide an overall scheme for mobile ad hoc networks, this paper deals with scatternet topology formation and routing algorithm to form larger ad hoc wireless Networks. Scatternet topology starts by forming a robust network, which is less susceptible to the problems posed by node mobility. Mobile topology relies on the presence of free nodes that create multiple connections with the network and on their subsequently rejoining the network. Our routing protocol is a proactive routing protocol, which is tailor made for the Bluetooth ad hoc network. The connection establishment connects nodes in a structure that simplifies packet routing and scheduling. The design allows nodes to arrive and leave arbitrarily, incrementally building the topology and healing partitions when they occur. We present simulation results that show that the algorithm presents low formation latency and also generates an efficient topology for forwarding packets along ad-hoc wireless networks.

  13. An analysis of the 1977 AD/AR TARSLL.

    OpenAIRE

    Hargrove, James Wiley Jr.

    1980-01-01

    Approved for public release; distribution is unlimited The industrial mission of Destroyer Tenders (AD) and Repair Ships (AR) is to provide intermediate level maintenance and repair for supported ships. The Tender and Repair Ship Load List for these ships (AD/AR TARSLL) designates the range (number) and depth (quantity) of repair parts to be carried to support this industrial mission. This thesis details the logical reasoning and mathematical theory used to develop the...

  14. Child-targeted TV advertising and preschoolers' consumption of high-sugar breakfast cereals.

    Science.gov (United States)

    Longacre, Meghan R; Drake, Keith M; Titus, Linda J; Harris, Jennifer; Cleveland, Lauren P; Langeloh, Gail; Hendricks, Kristy; Dalton, Madeline A

    2017-01-01

    Breakfast cereals represent the most highly advertised packaged food on child-targeted television, and most ads are for cereals high in sugar. This study examined whether children's TV exposure to child-targeted, high-sugar breakfast cereal (SBC) ads was associated with their consumption of those SBC brands. Parents of 3- to 5-year-old children were recruited from pediatric and Women, Infants, and Children (WIC) clinics in Southern New Hampshire, USA, and completed a cross-sectional survey between April-December 2013. Parents reported their child's consumption of SBC brands; whether their child had watched any of 11 kids' channels in the past week; their child's TV viewing time; and socio-demographics. Children's exposure to child-targeted SBC TV ads was calculated by combining TV channel and viewing time with advertising data for SBC ads aired on kids' TV channels during the same timeframe. Five hundred forty-eight parents completed surveys; 52.7% had an annual household income of $50,000 or less. Children's mean age was 4.4 years, 51.6% were female, and 72.5% were non-Hispanic white. In the past week, 56.9% (N = 312) of children ate SBCs advertised on kids' channels. Overall, 40.6% of children were exposed to child-targeted SBC TV ads in the past week. In fully adjusted analyses, the number of SBC brands children consumed was positively associated with their exposure to child-targeted SBC ads. Children consumed 14% (RR = 1.14, 95% CI: 1.02, 1.27) more SBC brands for every 10 SBC ads seen in the past 7 days. Exposure to child-targeted SBC TV advertising is positively associated with SBC brand consumption among preschool-aged children. These findings support recommendations to limit the marketing of high-sugar foods to young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Heterotic non-linear sigma models with anti-de Sitter target spaces

    International Nuclear Information System (INIS)

    Michalogiorgakis, Georgios; Gubser, Steven S.

    2006-01-01

    We calculate the beta function of non-linear sigma models with S D+1 and AdS D+1 target spaces in a 1/D expansion up to order 1/D 2 and to all orders in α ' . This beta function encodes partial information about the spacetime effective action for the heterotic string to all orders in α ' . We argue that a zero of the beta function, corresponding to a worldsheet CFT with AdS D+1 target space, arises from competition between the one-loop and higher-loop terms, similarly to the bosonic and supersymmetric cases studied previously in [J.J. Friess, S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B 750 (2006) 111-141]. Various critical exponents of the non-linear sigma model are calculated, and checks of the calculation are presented

  16. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars.

    Science.gov (United States)

    Bailey, Regan L; Fulgoni, Victor L; Cowan, Alexandra E; Gaine, P Courtney

    2018-01-17

    High intake of added sugars is associated with excess energy intake and poorer diet quality. The objective of this cross-sectional study ( n = 16,806) was to estimate usual intakes and the primary food sources of added sugars across the range of intakes (i.e., deciles) among U.S. children (2-8 years), adolescents and teens (9-18 years), and adults (≥19 years) using the National Health and Nutrition Examination (NHANES) data from 2009-2012. The percent energy contributed by added sugars was 14.3 ± 0.2% (2-8 years), 16.2 ± 0.2% (9-18 years), and 13.1 ± 0.2% (≥19 years), suggesting the highest intakes are among adolescents and teens. However, the primary foods/beverages that contribute to added sugars were remarkably consistent across the range of intakes, with the exception of the lowest decile, and include sweetened beverages and sweet bakery products. Interestingly across all age groups, even those in the lowest decile of added sugars exceed the 10% guidelines. Additional foods contributing to high intakes were candy and other desserts (e.g., ice cream) in children and adolescents, and coffee and teas in adults. Tailoring public health messaging to reduce intakes of these identified food groups may be of utility in designing effective strategies to reduce added sugar intake in the U.S.

  17. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

    Directory of Open Access Journals (Sweden)

    Regan L. Bailey

    2018-01-01

    Full Text Available High intake of added sugars is associated with excess energy intake and poorer diet quality. The objective of this cross-sectional study (n = 16,806 was to estimate usual intakes and the primary food sources of added sugars across the range of intakes (i.e., deciles among U.S. children (2–8 years, adolescents and teens (9–18 years, and adults (≥19 years using the National Health and Nutrition Examination (NHANES data from 2009–2012. The percent energy contributed by added sugars was 14.3 ± 0.2% (2–8 years, 16.2 ± 0.2% (9–18 years, and 13.1 ± 0.2% (≥19 years, suggesting the highest intakes are among adolescents and teens. However, the primary foods/beverages that contribute to added sugars were remarkably consistent across the range of intakes, with the exception of the lowest decile, and include sweetened beverages and sweet bakery products. Interestingly across all age groups, even those in the lowest decile of added sugars exceed the 10% guidelines. Additional foods contributing to high intakes were candy and other desserts (e.g., ice cream in children and adolescents, and coffee and teas in adults. Tailoring public health messaging to reduce intakes of these identified food groups may be of utility in designing effective strategies to reduce added sugar intake in the U.S.

  18. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

    Science.gov (United States)

    Fulgoni, Victor L.; Cowan, Alexandra E.; Gaine, P. Courtney

    2018-01-01

    High intake of added sugars is associated with excess energy intake and poorer diet quality. The objective of this cross-sectional study (n = 16,806) was to estimate usual intakes and the primary food sources of added sugars across the range of intakes (i.e., deciles) among U.S. children (2–8 years), adolescents and teens (9–18 years), and adults (≥19 years) using the National Health and Nutrition Examination (NHANES) data from 2009–2012. The percent energy contributed by added sugars was 14.3 ± 0.2% (2–8 years), 16.2 ± 0.2% (9–18 years), and 13.1 ± 0.2% (≥19 years), suggesting the highest intakes are among adolescents and teens. However, the primary foods/beverages that contribute to added sugars were remarkably consistent across the range of intakes, with the exception of the lowest decile, and include sweetened beverages and sweet bakery products. Interestingly across all age groups, even those in the lowest decile of added sugars exceed the 10% guidelines. Additional foods contributing to high intakes were candy and other desserts (e.g., ice cream) in children and adolescents, and coffee and teas in adults. Tailoring public health messaging to reduce intakes of these identified food groups may be of utility in designing effective strategies to reduce added sugar intake in the U.S. PMID:29342109

  19. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  20. A pilot study of combined working memory and inhibition training for children with AD/HD.

    Science.gov (United States)

    Johnstone, Stuart J; Roodenrys, Steven; Phillips, Elise; Watt, Annele J; Mantz, Sharlene

    2010-03-01

    Building on recent favourable outcomes using working memory (WM) training, this study examined the behavioural and physiological effect of concurrent computer-based WM and inhibition training for children with attention-deficit hyperactivity disorder (AD/HD). Using a double-blind active-control design, 29 children with AD/HD completed a 5-week at-home training programme and pre- and post-training sessions which included the assessment of overt behaviour, resting EEG, as well as task performance, skin conductance level and event-related potentials (ERPs) during a Go/Nogo task. Results indicated that after training, children from the high-intensity training condition showed reduced frequency of inattention and hyperactivity symptoms. Although there were trends for improved Go/Nogo performance, increased arousal and specific training effects for the inhibition-related N2 ERP component, they failed to reach standard levels of statistical significance. Both the low- and high-intensity conditions showed resting EEG changes (increased delta, reduced alpha and theta activity) and improved early attention alerting to Go and Nogo stimuli, as indicated by the N1 ERP component, post-training. Despite limitations, this preliminary work indicates the potential for cognitive training that concurrently targets the interrelated processes of WM and inhibition to be used as a treatment for AD/HD.

  1. A Clustering Routing Protocol for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jinke Huang

    2016-01-01

    Full Text Available The dynamic topology of a mobile ad hoc network poses a real challenge in the design of hierarchical routing protocol, which combines proactive with reactive routing protocols and takes advantages of both. And as an essential technique of hierarchical routing protocol, clustering of nodes provides an efficient method of establishing a hierarchical structure in mobile ad hoc networks. In this paper, we designed a novel clustering algorithm and a corresponding hierarchical routing protocol for large-scale mobile ad hoc networks. Each cluster is composed of a cluster head, several cluster gateway nodes, several cluster guest nodes, and other cluster members. The proposed routing protocol uses proactive protocol between nodes within individual clusters and reactive protocol between clusters. Simulation results show that the proposed clustering algorithm and hierarchical routing protocol provide superior performance with several advantages over existing clustering algorithm and routing protocol, respectively.

  2. Confinement, glueballs and strings from deformed AdS

    International Nuclear Information System (INIS)

    Apreda, Riccardo; Crooks, David E.; Evans, Nick; Petrini, Michela

    2004-01-01

    We study aspects of confinement in two deformed versions of the AdS/CFT correspondence - the GPPZ dual of N = 1* Yang Mills, and the Yang Mills* N 0 dual. Both geometries describe discrete glueball spectra which we calculate numerically. The results agree at the 10% level with previous AdS/CFT computations in the Klebanov Strassler background and AdS Schwarzchild respectively. We also calculate the spectra of bound states of the massive fermions in these geometries and show that they are light, so not decoupled from the dynamics. We then study the behaviour of Wilson loops in the 10d lifts of these geometries. We find a transition from AdS-like strings in the UV to strings that interact with the unknown physics of the central singularity of the space in the IR. (author)

  3. A Content Analysis of Unique Selling Propositions of Tobacco Print Ads

    Science.gov (United States)

    Shen, Megan Johnson; Banerjee, Smita C.; Greene, Kathryn; Carpenter, Amanda; Ostroff, Jamie S.

    2017-01-01

    Objectives The present study described the unique selling propositions (USPs) (propositions used to convince customers to use a particular brand/product by focusing on the unique benefit) of print tobacco ads. Methods A qualitative content analysis was conducted of print tobacco ads (N = 171) selected from August 2012-August 2013 for cigarettes, moist snuff, e-cigarettes, cigars, and snus to determine the content and themes of USPs for tobacco ads. Results Cigarette ad USP themes focused on portraying the product as attractive; moist snuff ads focused on portraying product as masculine; cigar ads focused on selling a “high end product;” and new and emerging tobacco products (e-cigarette, snus) focused on directly comparing these products to cigarettes. Conclusions Whereas traditional tobacco product ads used USPs focused on themes of enjoyment and pleasure (eg, attractive for cigarettes, “high end product” for cigars), new and emerging tobacco product ads offered the unique benefit (USP) of their product being a better and “safer” alternative to traditional tobacco products. Snuff’s USPs focused nearly exclusively on the masculinity of their products. Results of this study provide targets for potential tobacco regulatory actions that could be implemented to reduce demand for tobacco products by reducing their perceived unique benefits. PMID:28452697

  4. Secondary decay of espalation in ADS reactors

    International Nuclear Information System (INIS)

    Rodrigues, Marcos Guedes; Santiago, A.J.; Silva, C.E. da

    2013-01-01

    We study the problem of evaporation in the context of nuclear spallation reactions in nuclear reactors ADS. The calculation was developed based on the theory of Weisskopf evaporation and in the model of thermal liquid drop. Evaporation affects the 'economy' of neutrons and the design of a ADS reactor in various aspects. It offers abundant amount of neutrons in the nuclear medium, with a wide energy range. For an excitation energy of 3 MeV/n a typical core evaporates about 10% of its mass in the form of light particles (mostly neutrons)

  5. The added value of Facility management in the educational environment

    NARCIS (Netherlands)

    Kok, H.B.; Mobach, M.; Omta, S.W.F.

    2011-01-01

    Purpose – The purpose of this paper is to define the added value of facility management (FM) in general and to develop a typology of facility services based on their added value in the educational environment. Design/methodology/approach – This paper is based on a literature review and first

  6. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    International Nuclear Information System (INIS)

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  7. On thermodynamics of AdS black holes in M-theory

    International Nuclear Information System (INIS)

    Belhaj, A.; Chabab, M.; Masmar, K.; El Moumni, H.; Sedra, M.B.

    2016-01-01

    Motivated by recent work on asymptotically AdS 4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS p+2 x S 11-p-2 , where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  8. A Grassmann path from AdS3 to flat space

    International Nuclear Information System (INIS)

    Krishnan, Chethan; Raju, Avinash; Roy, Shubho

    2014-01-01

    We show that interpreting the inverse AdS 3 radius 1/l as a Grassmann variable results in a formal map from gravity in AdS 3 to gravity in flat space. The underlying reason for this is the fact that ISO(2,1) is the Inonu-Wigner contraction of SO(2,2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS 3 maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS 3 case. Our results straightforwardly generalize to the higher spin case: the recently constructed flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We conclude with a discussion of singularity resolution in the BMS gauge as an application

  9. Multi-Target Screening and Experimental Validation of Natural Products from Selaginella Plants against Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Yin-Hua Deng

    2017-08-01

    Full Text Available Alzheimer's disease (AD is a progressive and irreversible neurodegenerative disorder which is considered to be the most common cause of dementia. It has a greater impact not only on the learning and memory disturbances but also on social and economy. Currently, there are mainly single-target drugs for AD treatment but the complexity and multiple etiologies of AD make them difficult to obtain desirable therapeutic effects. Therefore, the choice of multi-target drugs will be a potential effective strategy inAD treatment. To find multi-target active ingredients for AD treatment from Selaginella plants, we firstly explored the behaviors effects on AD mice of total extracts (TE from Selaginella doederleinii on by Morris water maze test and found that TE has a remarkable improvement on learning and memory function for AD mice. And then, multi-target SAR models associated with AD-related proteins were built based on Random Forest (RF and different descriptors to preliminarily screen potential active ingredients from Selaginella. Considering the prediction outputs and the quantity of existing compounds in our laboratory, 13 compounds were chosen to carry out the in vitro enzyme inhibitory experiments and 4 compounds with BACE1/MAO-B dual inhibitory activity were determined. Finally, the molecular docking was applied to verify the prediction results and enzyme inhibitory experiments. Based on these study and validation processes, we explored a new strategy to improve the efficiency of active ingredients screening based on trace amount of natural product and numbers of targets and found some multi-target compounds with biological activity for the development of novel drugs for AD treatment.

  10. Interpolating from Bianchi attractors to Lifshitz and AdS spacetimes

    International Nuclear Information System (INIS)

    Kachru, Shamit; Kundu, Nilay; Saha, Arpan; Samanta, Rickmoy; Trivedi, Sandip P.

    2014-01-01

    We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or AdS 2 ×S 3 geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or AdS 2 ×S 3 geometries can in turn be connected to AdS 5 spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to AdS 5 spacetime. The asymptotic AdS 5 spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either spontaneous or due to sources for other fields. Finally, we show that for a large class of flows which connect two Bianchi attractors, a C-function can be defined which is monotonically decreasing from the UV to the IR as long as the null energy condition is satisfied. However, except for special examples of Bianchi attractors (including AdS space), this function does not attain a finite and non-vanishing constant value at the end points

  11. Package design and nutritional profile of foods targeted at children in supermarkets in Montevideo, Uruguay.

    Science.gov (United States)

    Giménez, Ana; Saldamando, Luis de; Curutchet, María Rosa; Ares, Gastón

    2017-06-12

    Marketing of unhealthy products has been identified as one of the main characteristics of the food environment that negatively affects children's eating patterns. Restrictions on advertising of unhealthy foods to children have already been imposed in different countries. However, marketing strategies are not limited to broadcast and digital advertising, but also include package design. In this context, the current study aimed to describe the food products targeted at children and sold in supermarkets in Montevideo, Uruguay, in terms of package design and nutrient profile. Two supermarkets in Montevideo were selected for data collection. In each supermarket, all products targeted at children were identified. Products were analyzed in terms of package design and nutritional profile, considering the Pan American Health Organization Nutrient Profile Model. A total of 180 unique products were identified, which included a wide range of product categories. The great majority of the products corresponded to ultra-processed products with excessive amounts of sodium, free sugars, total fat, saturated fat, and/or trans fat, which are not recommended for frequent consumption. Several marketing strategies were identified in the design of packages to attract children's attention and drive their preferences. The most common strategies were the inclusion of cartoon characters, bright colors, childish lettering, and a wide range of claims related to health and nutrition, as well as the products' sensory and hedonic characteristics. The study's findings provide additional evidence on the need to regulate packaging of products targeted at children.

  12. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure.

    Science.gov (United States)

    Okee, Moses; Bayiyana, Alice; Musubika, Carol; Joloba, Moses L; Ashaba-Katabazi, Fred; Bagaya, Bernard; Wayengera, Misaki

    2018-01-01

    Efficiency of artificial restriction enzymes toward curing HIV has only been separately examined, using differing delivery vehicles. We compared the in vitro transduction and target-mutagenesis efficiency of consortium plasmid and adenoviral vector delivered HIV-1 pol gene targeting zinc finger nuclease (ZFN) with CRISPR/Cas, Custom-ZFN, CRISPR-Cas-9, and plasmids and vectors (murCTSD_pZFN, pGS-U-gRNA, pCMV-Cas-D01A, Ad5-RGD); cell lines (TZM-bl and ACH-2/J-Lat cells); and the latency reversing agents prostratin, suberoylanilide hydroxamic acid, and phorbol myristate acetate. Cell lines were grown in either Dulbecco's modified Eagle's medium or Roswell Park Memorial Institute with the antibiotics kanamycin, zeocin, and efavirenz. Efficiency was assayed by GFP/luciferase activity and/or validated by yeast MEL1 reporter assay, CEL1 restriction fragment assay, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Ad5-RGD vectors had better transduction efficiency than murCTSD and pGS-U-gRNA/pCMV-Cas-D01A plasmids. CRISPR/Cas9 exhibited better target-mutagenesis efficiency relative to ZFN (delivered by either plasmid or Ad5 vector) based on gel electrophoresis of pol gene amplicons within ACH-2 and J-Lat cells. Ad-5-RGD vectors enhanced target mutagenesis of ZFN, relative to murCTSD_pZFN plasmids, to levels of CRISPR/Cas9 plasmids. Similar reduction of luciferase activity among TZM-bl treated with Ad5-ZFN vectors relative to CRISPR/Cas-9 and murCTSD_pZFN plasmids was observed on challenge with HIV-1. qRT-PCR of HIV-1 pol gene transcripts affirmed that Ad5 (RGD) vectors enhanced target mutagenesis of ZFN. Whereas CRISPR/Cas-9 may possess inherent superior target-mutagenesis efficiency; the efficiency of ZFN (off-target toxicity withstanding) can be enhanced by altering delivery vehicle from plasmid to Ad5 (RGD) vectors.

  13. Experimental and numerical study on free surface behavior of windowless target

    International Nuclear Information System (INIS)

    Su Guanyu; Gu Hanyang; Cheng Xu

    2012-01-01

    The formation and control method of coolant free surface is one of the key technologies for the design of windowless target in accelerator driven sub-critical system (ADS). Experimental and CFD investigations on free surface behavior were performed in a scaled windowless target model by using water as test fluid. Laser induced fluorescence was applied for flow field visualization. The free surface and flow field visualization were obtained at Re=30000-50000. Under high Re conditions, an unsteady vortex pair was obtained. By decreasing Re, the structure of the vortex becomes more turbulent. CFD simulation was performed using LES and kω-SST turbulence models, separately. The numerical results show that LES model can qualitatively reproduce the characteristics of flow field and free surface. (authors)

  14. Light Ion Beams for Energy Production in ADS

    Directory of Open Access Journals (Sweden)

    Paraipan Mihaela

    2018-01-01

    Full Text Available A comparative study of the energy efficiency of proton beams with an energy from 0.5 GeV to 4 GeV and light ion beams (7Li, 9Be, 11B, and 12C with energies from 0.25 AGeV to 1 AGeV in natural and enriched quasi-infinite U target is presented. The numerical results on the particle transport and interaction are obtained using the code Geant4. The following target optimization issues are addressed: the beam window dimensions, and the possibility to use a core from low Z materials. The best solution for ADS from the point of view of the energy gain and miniaturization is obtained for 7Li or 9Be beam with an energy of 0.3–0.4 AGeV and a target with Be core.

  15. Vacuum degeneracy and Conformal Mass in Lovelock AdS gravity

    Science.gov (United States)

    Arenas-Henriquez, Gabriel; Miskovic, Olivera; Olea, Rodrigo

    2017-11-01

    It is shown that the notion of Conformal Mass can be defined within a given anti-de Sitter (AdS) branch of a Lovelock gravity theory as long as the corresponding vacuum is not degenerate. Indeed, conserved charges obtained by the addition of Kounterterms to the bulk action turn out to be proportional to the electric part of the Weyl tensor, when the fall-off of a generic solution in that AdS branch is considered. The factor of proportionality is the degeneracy condition for the vacua in the particular Lovelock AdS theory under study. This last feature explains the obstruction to define Conformal Mass in the degenerate case.

  16. Translation and implementation of added sugars consumption recommendations: a conference report from the American Heart Association Added Sugars Conference 2010.

    Science.gov (United States)

    Van Horn, Linda; Johnson, Rachel K; Flickinger, Brent D; Vafiadis, Dorothea K; Yin-Piazza, Shirley

    2010-12-07

    science also reinforces the importance of preventing, rather than simply treating diseases, especially overweight and obesity, diabetes mellitus, high blood pressure, heart disease, and stroke. Reducing added sugars consumption is a good target for addressing obesity, along with other sources of excess calories. However, the potential unintended consequences of substituting added sugars with ingredients that may not reduce calories and of increasing other macronutrients or food groups that may not result in a net health gain must be considered. Although there are many challenges to incorporating added sugars to the food label as was discussed during the conference, disclosure of added sugars content on food and beverage labels is an essential element in consumer education and can provide the information and motivation for making healthier food choices. This conference demonstrated the value of interactive dialogue among multiple sectors and disciplines. More disciplines should be at the table to bring expertise to discuss cross-cutting issues related to public policies and offer diverse insights to finding a solution.

  17. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  18. Perturbative entanglement thermodynamics for AdS spacetime: renormalization

    International Nuclear Information System (INIS)

    Mishra, Rohit; Singh, Harvendra

    2015-01-01

    We study the effect of charged excitations in the AdS spacetime on the first law of entanglement thermodynamics. It is found that ‘boosted’ AdS black holes give rise to a more general form of first law which includes chemical potential and charge density. To obtain this result we have to resort to a second order perturbative calculation of entanglement entropy for small size subsystems. At first order the form of entanglement law remains unchanged even in the presence of charged excitations. But the thermodynamic quantities have to be appropriately ‘renormalized’ at the second order due to the corrections. We work in the perturbative regime where T thermal ≪T E .

  19. Securing DSR with mobile agents in wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Abosamra

    2011-03-01

    Full Text Available Ad hoc wireless network consists of a set of wireless nodes communicating with each other without a pre-defined infrastructure. They communicate by forwarding packets which can reach wireless nodes that do not exist in the range of the direct radio transmission. Designing ad hoc network routing protocols is a challenging task because of its decentralized infrastructure which makes securing ad hoc networks more and more challenging. Dynamic Source Routing (DSR protocol is a popular routing protocol designed for use in wireless ad hoc networks. Mobile agent is a promising technology used in diverse fields of network applications. In this paper, we try to implement DSR using mobile agents for securing this type of wireless network. Hybrid encryption technique (symmetric key encryption/public key encryption is used to improve performance; where symmetric keys are used to encrypt routing data to authenticate and authorize node sending data, while, public keys are used for the exchange of symmetric keys between nodes. We found that DSR may be secured using mobile agents with competitive performance.

  20. Heavy ion collisions in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. Heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

  1. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    Science.gov (United States)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on

  2. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  3. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  4. Supersymmetric giant graviton solutions in AdS3

    International Nuclear Information System (INIS)

    Mandal, Gautam; Raju, Suvrat; Smedbaeck, Mikael

    2008-01-01

    We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed by Lunin and Mathur, and (d) global AdS 3 xS 3 xT 4 /K3. These configurations consist of D1 branes, D5 branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world volume theory may be analyzed in an effective 1+1 dimensional framework that places it on the same footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we describe are ''bound'' to the center of AdS for generic parameters and cannot escape to infinity. We show that these probes only exist on the submanifold of moduli space where the background B NS field and theta angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and obtain the theory of long strings discussed by Seiberg and Witten

  5. Analytical study on holographic superfluid in AdS soliton background

    International Nuclear Information System (INIS)

    Lai, Chuyu; Pan, Qiyuan; Jing, Jiliang; Wang, Yongjiu

    2016-01-01

    We analytically study the holographic superfluid phase transition in the AdS soliton background by using the variational method for the Sturm–Liouville eigenvalue problem. By investigating the holographic s-wave and p-wave superfluid models in the probe limit, we observe that the spatial component of the gauge field will hinder the phase transition. Moreover, we note that, different from the AdS black hole spacetime, in the AdS soliton background the holographic superfluid phase transition always belongs to the second order and the critical exponent of the system takes the mean-field value in both s-wave and p-wave models. Our analytical results are found to be in good agreement with the numerical findings.

  6. Ghettoizing outdoor advertising: disadvantage and ad panel density in black neighborhoods.

    Science.gov (United States)

    Kwate, Naa Oyo A; Lee, Tammy H

    2007-01-01

    This study investigated correlates of outdoor advertising panel density in predominantly African American neighborhoods in New York City. Research shows that black neighborhoods have more outdoor advertising space than white neighborhoods, and these spaces disproportionately market alcohol and tobacco advertisements. Thus, understanding the factors associated with outdoor advertising panel density has important implications for public health. We linked 2000 census data with property data at the census block group level to investigate two neighborhood-level determinants of ad density: income level and physical decay. Results showed that block groups were exposed to an average of four ad spaces per 1,000 residents and that vacant lot square footage was a significant positive predictor of ad density. An inverse relationship between median household income and ad density did not reach significance, suggesting that relative affluence did not protect black neighborhoods from being targeted for outdoor advertisements.

  7. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  8. Joule-Thomson expansion of the charged AdS black holes

    International Nuclear Information System (INIS)

    Oekcue, Oezguer; Aydiner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  9. Joule-Thomson expansion of the charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Vezneciler, Istanbul (Turkey)

    2017-01-15

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  10. Thermal-hydraulic design of cross-flow type mercury target for JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Terada, Atsuhiko; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility. In the facility, 1 MW pulsed proton beam from a high-intensity proton accelerator will be injected into a mercury target in order to produce high-intensity neutrons for use in the fields of life and material sciences. In the spallation mercury target system design, an integrated structure of target vessel with a safety hull was proposed to ensure the safety and to collect mercury in case of mercury leakage caused by the target beam window failure. The inner structure arrangement of the mercury target vessel was determined based on the thermal hydraulic analytical results of 3 GeV, 1 MW proton beam injection. The safety hull consists of vessels for helium and heavy water. The vessels for mercury target, helium and heavy water will be connected each other by reinforcement ribs mounted on the surface of each vessel. From the structural analyses, the structural integrity of the safety hull would be maintained under the static pressure of 0.5 MPa. (author)

  11. Critical gravity on AdS2 spacetimes

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2011-01-01

    We study the critical gravity in two-dimensional anti-de Sitter (AdS 2 ) spacetimes, which was obtained from the cosmological topologically massive gravity (TMG Λ ) in three dimensions by using the Kaluza-Klein dimensional reduction. We perform the perturbation analysis around AdS 2 , which may correspond to the near-horizon geometry of the extremal Banados, Teitelboim, and Zanelli (BTZ) black hole obtained from the TMG Λ with identification upon uplifting three dimensions. A massive propagating scalar mode δF satisfies the second-order differential equation away from the critical point of K=l, whose solution is given by the Bessel functions. On the other hand, δF satisfies the fourth-order equation at the critical point. We exactly solve the fourth-order equation, and compare it with the log gravity in two dimensions. Consequently, the critical gravity in two dimensions could not be described by a massless scalar δF ml and its logarithmic partner δF log 4th .

  12. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    Science.gov (United States)

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  13. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Ad gist : Ad communication in a single eye fixation

    NARCIS (Netherlands)

    Pieters, R.; Wedel, M.

    2012-01-01

    Most ads in practice receive no more than a single eye fixation. This study investigates the limits of what ads can communicate under such adverse exposure conditions. We find that consumers already know at maximum levels of accuracy and with high degree of certainty whether something is an ad or is

  15. Centralized cooperative spectrum sensing for ad-hoc disaster relief network clusters

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    Disaster relief networks have to be highly adaptable and resilient. Cognitive radio enhanced ad-hoc architecture have been put forward as a candidate to enable such networks. Spectrum sensing is the cornerstone of the cognitive radio paradigm, and it has been the target of intensive research....... The main common conclusion was that the achievable spectrum sensing accuracy can be greatly enhanced through the use of cooperative sensing schemes. When considering applying Cognitive Radio to ad-hoc disaster relief networks, spectrum sensing cooperative schemes are paramount. A centralized cluster...

  16. Targeting synaptic dysfunction in Alzheimer's disease by administering a specific nutrient combination.

    Science.gov (United States)

    van Wijk, Nick; Broersen, Laus M; de Wilde, Martijn C; Hageman, Robert J J; Groenendijk, Martine; Sijben, John W C; Kamphuis, Patrick J G H

    2014-01-01

    Synapse loss and synaptic dysfunction are pathological processes already involved in the early stages of Alzheimer's disease (AD). Synapses consist principally of neuronal membranes, and the neuronal and synaptic losses observed in AD have been linked to the degeneration and altered composition and structure of these membranes. Consequently, synapse loss and membrane-related pathology provide viable targets for intervention in AD. The specific nutrient combination Fortasyn Connect (FC) is designed to ameliorate synapse loss and synaptic dysfunction in AD by addressing distinct nutritional needs believed to be present in these patients. This nutrient combination comprises uridine, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium, and is present in Souvenaid, a medical food intended for use in early AD. It has been hypothesized that FC counteracts synaptic loss and reduces membrane-related pathology in AD by providing nutritional precursors and cofactors that act together to support neuronal membrane formation and function. Preclinical studies formed the basis of this hypothesis which is being validated in a broad clinical study program investigating the potential of this nutrient combination in AD. Memory dysfunction is one key early manifestation in AD and is associated with synapse loss. The clinical studies to date show that the FC-containing medical food improves memory function and preserves functional brain network organization in mild AD compared with controls, supporting the hypothesis that this intervention counteracts synaptic dysfunction. This review provides a comprehensive overview of basic scientific studies that led to the creation of FC and of its effects in various preclinical models.

  17. Factorized tree-level scattering in AdS4 x CP3

    International Nuclear Information System (INIS)

    Kalousios, Chrysostomos; Vergu, C.; Volovich, Anastasia

    2009-01-01

    AdS 4 /CFT 3 duality relating IIA string theory on AdS 4 x CP 3 to N = 6 superconformal Chern-Simons theory provides an arena for studying aspects of integrability in a new potentially exactly solvable system. In this paper we explore the tree-level worldsheet scattering for strings on AdS 4 x CP 3 . We compute all bosonic four-, five- and six-point amplitudes in the gauge-fixed action and demonstrate the absence of particle production.

  18. Vehicular ad hoc network security and privacy

    CERN Document Server

    Lin, X

    2015-01-01

    Unlike any other book in this area, this book provides innovative solutions to security issues, making this book a must read for anyone working with or studying security measures. Vehicular Ad Hoc Network Security and Privacy mainly focuses on security and privacy issues related to vehicular communication systems. It begins with a comprehensive introduction to vehicular ad hoc network and its unique security threats and privacy concerns and then illustrates how to address those challenges in highly dynamic and large size wireless network environments from multiple perspectives. This book is richly illustrated with detailed designs and results for approaching security and privacy threats.

  19. Package design and nutritional profile of foods targeted at children in supermarkets in Montevideo, Uruguay

    Directory of Open Access Journals (Sweden)

    Ana Giménez

    Full Text Available Abstract: Marketing of unhealthy products has been identified as one of the main characteristics of the food environment that negatively affects children’s eating patterns. Restrictions on advertising of unhealthy foods to children have already been imposed in different countries. However, marketing strategies are not limited to broadcast and digital advertising, but also include package design. In this context, the current study aimed to describe the food products targeted at children and sold in supermarkets in Montevideo, Uruguay, in terms of package design and nutrient profile. Two supermarkets in Montevideo were selected for data collection. In each supermarket, all products targeted at children were identified. Products were analyzed in terms of package design and nutritional profile, considering the Pan American Health Organization Nutrient Profile Model. A total of 180 unique products were identified, which included a wide range of product categories. The great majority of the products corresponded to ultra-processed products with excessive amounts of sodium, free sugars, total fat, saturated fat, and/or trans fat, which are not recommended for frequent consumption. Several marketing strategies were identified in the design of packages to attract children’s attention and drive their preferences. The most common strategies were the inclusion of cartoon characters, bright colors, childish lettering, and a wide range of claims related to health and nutrition, as well as the products’ sensory and hedonic characteristics. The study’s findings provide additional evidence on the need to regulate packaging of products targeted at children.

  20. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  1. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

    Science.gov (United States)

    Wolfe, Brian R; Pierce, Niles A

    2015-10-16

    We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.

  2. Wilson lines for AdS5 black strings

    International Nuclear Information System (INIS)

    Hristov, Kiril; Katmadas, Stefanos

    2015-01-01

    We describe a simple method of extending AdS 5 black string solutions of 5d gauged supergravity in a supersymmetric way by addition of Wilson lines along a circular direction in space. When this direction is chosen along the string, and due to the specific form of 5d supergravity that features Chern-Simons terms, the existence of magnetic charges automatically generates conserved electric charges in a 5d analogue of the Witten effect. Therefore we find a rather generic, model-independent way of adding electric charges to already existing solutions with no backreaction from the geometry or breaking of any symmetry. We use this method to explicitly write down more general versions of the Benini-Bobev black strings (http://dx.doi.org/10.1103/PhysRevLett.110.061601, http://dx.doi.org/10.1007/JHEP06(2013)005) and comment on the implications for the dual field theory and the similarities with generalizations of the Cacciatori-Klemm black holes (http://dx.doi.org/10.1007/JHEP01(2010)085) in AdS 4 .

  3. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  4. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  5. Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams

  6. Improved Functionality and Curation Support in the ADS

    Science.gov (United States)

    Accomazzi, Alberto; Kurtz, Michael J.; Henneken, Edwin A.; Grant, Carolyn S.; Thompson, Donna; Chyla, Roman; Holachek, Alexandra; Sudilovsky, Vladimir; Murray, Stephen S.

    2015-01-01

    In this poster we describe the developments of the new ADS platform over the past year, focusing on the functionality which improves its discovery and curation capabilities.The ADS Application Programming Interface (API) is being updated to support authenticated access to the entire suite of ADS services, in addition to the search functionality itself. This allows programmatic access to resources which are specific to a user or class of users.A new interface, built directly on top of the API, now provides a more intuitive search experience and takes into account the best practices in web usability and responsive design. The interface now incorporates in-line views of graphics from the AAS Astroexplorer and the ADS All-Sky Survey image collections.The ADS Private Libraries, first introduced over 10 years ago, are now being enhanced to allow the bookmarking, tagging and annotation of records of interest. In addition, libraries can be shared with one or more ADS users, providing an easy way to collaborate in the curation of lists of papers. A library can also be explicitly made public and shared at large via the publishing of its URL.In collaboration with the AAS, the ADS plans to support the adoption of ORCID identifiers by implementing a plugin which will simplify the import of papers in ORCID via a query to the ADS API. Deeper integration between the two systems will depend on available resources and feedback from the community.

  7. Leading Change, Adding Value.

    Science.gov (United States)

    Evans, Nick

    2016-09-12

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View.

  8. Financial and health literacy predict incident AD dementia and AD pathology

    Science.gov (United States)

    Yu, Lei; Wilson, Robert S.; Schneider, Julie A.; Bennett, David A.; Boyle, Patricia A.

    2017-01-01

    Background Domain specific literacy is a multidimensional construct that requires multiple resources including cognitive and non-cognitive factors. Objective We test the hypothesis that domain specific literacy is associated with AD dementia and AD pathology after controlling for cognition. Methods Participants were community based older persons who completed a baseline literacy assessment, underwent annual clinical evaluations for up to 8 years and agreed to organ donation after death. Financial and health literacy was measured using 32 questions and cognition was measured using 19 tests. Annual diagnosis of AD dementia followed standard criteria. AD pathology was examined post-mortem by quantifying plaques and tangles. Cox models examined the association of literacy with incident AD dementia. Performance of model prediction for incident AD dementia was assessed using indices for integrated discrimination improvement and continuous net reclassification improvement. Linear regression models examined the independent association of literacy with AD pathology in autopsied participants. Results All 805 participants were free of dementia at baseline and 102 (12.7%) developed AD dementia during the follow-up. Lower literacy was associated with higher risk for incident AD dementia (pliteracy measure had better predictive performance than the one with demographics and cognition only. Lower literacy also was associated with higher burden of AD pathology after controlling for cognition (β=0.07, p=0.035). Conclusion Literacy predicts incident AD dementia and AD pathology in community-dwelling older persons, and the association is independent of traditional measures of cognition. PMID:28157101

  9. Enthalpy and the mechanics of AdS black holes

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie; Ray, Sourya

    2009-01-01

    We present geometric derivations of the Smarr formula for static AdS black holes and an expanded first law that includes variations in the cosmological constant. These two results are further related by a scaling argument based on Euler's theorem. The key new ingredient in the constructions is a two-form potential for the static Killing field. Surface integrals of the Killing potential determine the coefficient of the variation of Λ in the first law. This coefficient is proportional to a finite, effective volume for the region outside the AdS black hole horizon, which can also be interpreted as minus the volume excluded from a spatial slice by the black hole horizon. This effective volume also contributes to the Smarr formula. Since Λ is naturally thought of as a pressure, the new term in the first law has the form of effective volume times change in pressure that arises in the variation of the enthalpy in classical thermodynamics. This and related arguments suggest that the mass of an AdS black hole should be interpreted as the enthalpy of the spacetime.

  10. A Study on Control System Design Based on ARM Sea Target Search System

    Directory of Open Access Journals (Sweden)

    Lin Xinwei

    2015-01-01

    Full Text Available The infrared detector is used for sea target search, which can assist humans in searching suspicious objects at night and under poor visibility conditions, and improving search efficiency. This paper applies for interrupt and stack technology to solve problems of data losses that may be caused by one-to-many multi-byte protocol communication. Meanwhile, this paper implements hardware and software design of the system based on industrial-grade ARM control chip and uC / OS-II embedded operating system. The control system in the sea target search system is an information exchange and control center of the whole system, which solves the problem of controlling over the shooting angle of the infrared detector in the process of target search. After testing, the control system operates stably and reliably, and realizes rotation and control functions of the pan/tilt platform during automatic search, manual search and track.

  11. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  12. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.

    Science.gov (United States)

    Raman, Marine C C; Rizkallah, Pierre J; Simmons, Ruth; Donnellan, Zoe; Dukes, Joseph; Bossi, Giovanna; Le Provost, Gabrielle S; Todorov, Penio; Baston, Emma; Hickman, Emma; Mahon, Tara; Hassan, Namir; Vuidepot, Annelise; Sami, Malkit; Cole, David K; Jakobsen, Bent K

    2016-01-13

    Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.

  13. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  14. Numerical investigations of free-surface flows in spallation targets for acceleration-driven systems using TransAT - 15019

    International Nuclear Information System (INIS)

    Thomas, S.; Lakehal, D.

    2015-01-01

    Accelerator driven systems (ADS) are increasingly employed for the transmutation of high-level nuclear waste. The first advanced design is the multi-purpose hybrid research reactor for high-tech applications (MYRRHA) developed at SCK-CEN Mol in Belgium. The present study investigates the free-surface flow design of MYRRHA's target. The spallation target material for MYRRHA is a liquid metal, lead bismuth eutectic (LBE) to obtain a high neutron gain and allow forced convective heat removal. The understanding of the free surface behavior is essential in determining a safe design. This study is a qualitative comparison of 2 design geometries for a range of flow rates. Transient from Large-Eddy simulation (LES) is preferred here to steady-state RANS, employing two approaches to predict free surface evolution: Interface Tracking Methods (ITMs) and Phase-Averaged Methods. The CFD results produce a qualitative agreement with the experiments conducted by Batta et al. (authors)

  15. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  16. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Moon, Taeyoon

    2014-01-01

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity

  17. Winding strings and AdS3 black holes

    International Nuclear Information System (INIS)

    Troost, Jan

    2002-01-01

    We start a systematic study of string theory in AdS 3 black hole backgrounds. Firstly, we analyse in detail the geodesic structure of the BTZ black hole, including spacelike geodesics. Secondly, we study the spectrum for massive and massless scalar fields, paying particular attention to the connection between Sl(2,R) subgroups, the theory of special functions and global properties of the BTZ black holes. We construct classical strings that wind the black holes. Finally, we apply the general formalism to the vacuum black hole background, and formulate the boundary spacetime Virasoro algebra in terms of worldsheet operators. We moreover establish the link between a proposal for a ghost free spectrum for Sl(2,R) string propagation and the massless black hole background, thereby claryfing aspects of the AdS 3 /CFT correspondence. (author)

  18. AdS strings with torsion: Noncomplex heterotic compactifications

    International Nuclear Information System (INIS)

    Frey, Andrew R.; Lippert, Matthew

    2005-01-01

    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS 4 compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kaehler. We argue that all moduli are fixed, and we show that the Kaehler potential and superpotential proposed in the literature yield the correct AdS 4 radius. In the nearly Kaehler case, we are able to solve the H Bianchi identity using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate

  19. Contextual advertising using Google AdWords and Google AdSense

    OpenAIRE

    Mihok, Radovan

    2008-01-01

    The thesis introduces contextual advertising on internet using Google AdWords. The paper describes individual steps of an ad campaign (product choosing, ad types, keywords), its management and success evaluation (calculation of ROI and modified ROI).

  20. What Makes Consumers Recall Banner Ads in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Mesut Çiçek

    2017-09-01

    Full Text Available The uses of mobile advertisements are increasing their popularity across the world. Companies can gather information about the mobile users based on their locations, lifestyle, and preferences via GPS, cookies and browsing history and embed highly personalized banner ads in mobile applications. However, in the literature there is hardly any work on the effectiveness of these highly personalized in-app banner ads. The aim of the study is to reveal which factors affect the effectiveness of in-app banner ads. An experimental study was designed and 209 subjects participated. The results of Ordinal Logistic Regression indicated that prior brand attitude and attitude towards application have a positive effect, while brand engagement with self-concept has a negative effect on the recall of in-app banner ads. Moreover, in-app banner ads are recalled more when they are located in landscape applications and positioned at the top part of the screen. This research provides some implications for future studies and practitioners.

  1. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  2. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets

    Directory of Open Access Journals (Sweden)

    Michael J. Wasko

    2015-09-01

    Full Text Available Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacologic screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening, which employs computer models of the target protein to narrow the search for possible leads. A variant of virtual screening is fragment-based drug design, an emerging in silico lead discovery method that introduces low molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for growing the lead candidate. Current efforts in virtual fragment-based drug design within central nervous system (CNS targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor binding pocket using the fragment as a scaffold. This process places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  3. Supersymmetric black holes in AdS4 from very special geometry

    International Nuclear Information System (INIS)

    Gnecchi, Alessandra; Halmagyi, Nick

    2014-01-01

    Supersymmetric black holes in AdS spacetime are inherently interesting for the AdS/CFT correspondence. Within a four dimensional gauged supergravity theory coupled to vector multiplets, the only analytic solutions for regular, supersymmetric, static black holes in AdS 4 are those in the STU-model due to Cacciatori and Klemm. We study a class of U(1)-gauged supergravity theories coupled to vector multiplets which have a cubic prepotential, the scalar manifold is then a very special Kähler manifold. When the resulting very special Kähler manifold is a homogeneous space, we find analytic solutions for static, supersymmetric AdS 4 black holes with vanishing axions. The horizon geometries of our solutions are constant curvature Riemann surfaces of arbitrary genus

  4. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV

    International Nuclear Information System (INIS)

    Tall, Y.

    2008-03-01

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  5. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    Science.gov (United States)

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  6. Seismic Responses of an Added-Story Frame Structure with Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Xuansheng Cheng

    2014-01-01

    Full Text Available The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element software SAP2000. Calculation results show that, after adding the layers, the structure becomes flexible and the shear in the bottom layer decreases. However, the interlaminar shear of the other layers increases. The seismic response of the added layers is very significant and exhibits obvious whiplash effect. The interstory displacement angles of some layers do not meet the requirements. The seismic response of the structure decreases after the adoption of viscous dampers; thereby seismic requirements are satisfied.

  7. Thermodynamic geometry and phase transitions of AdS braneworld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Pankaj, E-mail: cpankaj@iitk.ac.in; Sengupta, Gautam, E-mail: sengupta@iitk.ac.in

    2017-02-10

    The thermodynamics and phase transitions of charged RN–AdS and rotating Kerr–AdS black holes in a generalized Randall–Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.

  8. Designs of contraction nozzle and concave back-wall for IFMIF target

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Mizuho E-mail: ida@ifmif.tokai.jaeri.go.jp; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-02-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s.

  9. Designs of contraction nozzle and concave back-wall for IFMIF target

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-01-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s

  10. Does Attitude toward the Ad Endure? The Moderating Effects of Attention and Delay.

    OpenAIRE

    Chattopadhyay, Amitava; Nedungadi, Prakash

    1992-01-01

    Do the effects of attitude toward the ad on consumer decisions endure beyond the scenarios that characterize previous research? In examining this question, the authors focus on the persistence of ad-attitude effects as a function of the level of attention at encoding and the delay between ad exposure and response. The results of an experiment designed to test their hypotheses suggest that ad-attitude effects do not persist in a number of instances. Over time, as memory for an ad fades, its ef...

  11. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  12. Light-cone gauge formulation for AdS4 x CP3

    International Nuclear Information System (INIS)

    Uvarov, D.V.

    2011-01-01

    We review the Type IIA superstring on the AdS 4 x CP 3 background in the k-symmetry light-cone gauge characterized by the choice of the lightlike directions from the D = 3 Minkowski boundary of AdS 4 both in the Lagrangian and Hamiltonian formulations

  13. Penrose inequality for asymptotically AdS spaces

    International Nuclear Information System (INIS)

    Itkin, Igor; Oz, Yaron

    2012-01-01

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  14. Penrose inequality for asymptotically AdS spaces

    Energy Technology Data Exchange (ETDEWEB)

    Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2012-02-28

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  15. An optimized target-field method for MRI transverse biplanar gradient coil design

    International Nuclear Information System (INIS)

    Zhang, Rui; Xu, Jing; Huang, Kefu; Zhang, Jue; Fang, Jing; Fu, Youyi; Li, Yangjing

    2011-01-01

    Gradient coils are essential components of magnetic resonance imaging (MRI) systems. In this paper, we present an optimized target-field method for designing a transverse biplanar gradient coil with high linearity, low inductance and small resistance, which can well satisfy the requirements of permanent-magnet MRI systems. In this new method, the current density is expressed by trigonometric basis functions with unknown coefficients in polar coordinates. Following the standard procedures, we construct an objective function with respect to the total square errors of the magnetic field at all target-field points with the penalty items associated with the stored magnetic energy and the dissipated power. By adjusting the two penalty factors and minimizing the objective function, the appropriate coefficients of the current density are determined. Applying the stream function method to the current density, the specific winding patterns on the planes can be obtained. A novel biplanar gradient coil has been designed using this method to operate in a permanent-magnet MRI system. In order to verify the validity of the proposed approach, the gradient magnetic field generated by the resulted current density has been calculated via the Biot–Savart law. The results have demonstrated the effectiveness and advantage of this proposed method

  16. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  17. AD codes of practice 'pressure vessels'

    International Nuclear Information System (INIS)

    Schefe, G.

    1978-01-01

    Within the AD-Regelwerk, a manual of regulations, the AD codes of practice HP1 and HP20 have been published for the first time. In contrast to the already existing codes of practice of the series HP, these leaflets do not mainly contain changes in the test details and the course of the procedure, but, in a summarized form, that which has been practiced for years. Comments on the new codes concentrate mainly on those things, which are really new, or which might appear to be new. Furthermore, control lists and proposals for printed forms, addressed to designers and supervisors on the side of the manufacturers, are to contribute to the tests being carried out economically. (orig./RW) [de

  18. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS_5×S"5 spacetime

    International Nuclear Information System (INIS)

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS_5×S"5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  19. Study on usage of low enriched uranium Russian type fuel elements for design of an experimental ADS research reactor

    International Nuclear Information System (INIS)

    Pesic, M.P.

    2005-01-01

    Conceptual design of an accelerator driven sub-critical experimental research reactor (ADSRR) was initiated in 1999 at the Vinca Institute of Nuclear Sciences, Serbia and Montenegro. Initial results of neutronic analyses of the proposed ADSRR-H were carried out by Monte Carlo based codes and available high-enriched uranium dioxide (HEU) dispersed Russian type TVR-S fuel elements (FE) placed in a lead matrix. Beam of charged particles (proton or deuteron) would be extracted from the high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation. In 2002, the Vinca Institute has, in compliance with the Reduced Enrichment for Research and Test Reactors (RERTR) Program, returned fresh HEU TVR-S type FEs back to the Russian Federation. Since usage of HEU FEs in research reactors is not further recommended, a new study of an ADSRR-L conceptual design has initiated in Vinca Institute in last two years, based on assumed availability of low-enriched uranium (LEU) dispersed type TVR-S FEs. Initial results of numerical simulations of this new ADSRR-L, published for the first time in this paper, shows that such a small low neutron flux system can be used as an experimental - 'demonstration' - ADS with neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate neutron spectrum. Neutron spectrum characteristics of the ADSRR-L are compared to ones of the ADSRR-H with the same mass (7.7 g) of 235 U nuclide per TVR-S FE. (author)

  20. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)