Sample records for adrenergic agonists

  1. Use of ß-adrenergic agonists in hybrid catfish (United States)

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  2. The Effects of Inhaled β-Adrenergic Agonists in Transient Tachypnea of the Newborn

    Directory of Open Access Journals (Sweden)

    Esengul Keleş MD


    Full Text Available Aim. To investigate the efficacy of an inhaled β-adrenergic agonists in transient tachypnea of the newborn (TTN. Method. We retrospectively analyzed a cohort of 51 term infants (Group 1 and 37 term infants (Group 2 monitored in the newborn intensive care unit diagnosed with TTN. Infants in Group 1 received humidified oxygen alone, and infants in Group 2 were administered the inhaled β-2 agonist plus humidified oxygen. Results. TTN clinical respiratory assessment, respiratory rate, oxygen saturation values, need for supplemental oxygen therapy, blood gas PH, PO2, and duration of hospitalization were significantly improved in infants in Group 2 as compared with infants in Group 1 (P .05. Conclusion. Inhaled β-adrenergic agonist added to humidified oxygen was found to improve clinical and laboratory parameters. We believe that further studies should be conducted with larger groups to demonstrate the efficacy of β-2 agonists in TTN patients.

  3. Beta-Adrenergic Receptors and Mechanisms in Asthma: The New Long-Acting Beta-Agonists

    Directory of Open Access Journals (Sweden)

    Robert G Townley


    Full Text Available The objective is to review β-adrenergic receptors and mechanisms in the immediate and late bronchial reaction in asthma and the new long-acting β-agonist. This will be discussed in light of the controversy of the potential adverse effect of regular use of long-acting β-agonists. We studied the effect of formoterol on the late asthmatic response (LAR and airway inflammation in guinea-pigs. Formoterol suppressed the LAR, antigen-induced airway inflammation and hyperresponsiveness, although isoproterenol failed to inhibit these parameters. β-Adrenergic hyporesponsiveness, and cholinergic and a- adrenergic hyperresponsiveness have been implicated in the pathogenesis of asthma. A decrease in β-adrenoreceptor function can result either from exogenously administered β-agonist or from exposure to allergens resulting in a late bronchial reaction. There is increasing evidence that eosinophils, macrophages, and lymphocytes which are of primary importance in the late bronchial reaction are also modulated by β2- adrenoreceptors. In functional studies of guinea-pig or human isolated trachea and lung parenchyma, PAF and certain cytokines significantly reduced the potency of isoproterenol to reverse methacholine- or histamine-induced contraction. The effect of glucocorticoids on pulmonary β-adrenergic receptors and responses suggests an important role for glucocorticoids to increase β-adrenergic receptors and responsiveness.

  4. In utero Exposure to beta-2-Adrenergic Receptor Agonist Drugs and Risk for Autism Spectrum Disorders

    DEFF Research Database (Denmark)

    Gidaya, Nicole B.; Lee, Brian K.; Burstyn, Igor


    OBJECTIVES: The purpose of this study was to investigate associations between use of β-2-adrenergic receptor (B2AR) agonist drugs during pregnancy and risk for autism spectrum disorders (ASD). METHODS: A case-control study was conducted by using Denmark’s health and population registers. Among...

  5. The influence of adrenergic agonists and their antagonists on isolated salivary glands of ixodid ticks. (United States)

    Kaufman, W R


    Various drugs elicit fluid secretion by isolated salivary glands of two species of ixodid ticks (Dermacentor andersoni Stiles and Amblyomma hebraeum Koch). Among catecholamines, the following order of potency was observed: dopamine, epinine, noradrenaline = adrenaline and isoprenaline. The following drugs, in order of potency, were also agonists on this preparation: ergonovine, ergotamine, 6-hydroxydopamine, apomorphine, phenylephrine, norphenylephrine, beta-phenylethylamine, tyramine, D, L-dopa and octopamine. Nialamide increased the response to near-threshold concentrations of dopamine but had no intrinsic activity. Dopamine-induced secretion was depressed by phenoxybenzamine, alpha-flupenthixol, phentolamine, propranolol and dichloroisoprenaline, but only at conce,trations 10- to 1000-fold that of the agonist. Pimozide and spiperone (10(-6) M) augmented the maximum response of dopamine. The tick salivary gland, thus appears to contain one or several receptors differing pharmacologically from mammalian alpha-adrenergic, beta-adrenergic and dopamine receptors.

  6. β2 adrenergic agonists in acute lung injury? The heart of the matter


    Lee, Jae W


    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of β2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to in...

  7. Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats. (United States)

    Frank, J A; Wang, Y; Osorio, O; Matthay, M A


    To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.

  8. Relaxing action of adrenergic β2-agonists on guinea-pig skinned tracheal muscle

    Directory of Open Access Journals (Sweden)

    Kayo Nemoto


    Full Text Available Although adrenergic β2-agonist-induced smooth muscle relaxation has been attributed to increased intracellular cyclic AMP (cAMP, a relaxation response has been observed at low β2-agonist concentrations that do not cause increased cAMP To elucidate the mechanism of tracheal muscle relaxation induced by low concentrations of β2-agonists, we used a guinea-pig skinned tracheal smooth muscle preparation to examine the effects on the contractile protein system. The isotonic contraction of β-escin-treated skinned tracheal muscle from guinea-pig was measured. When the intracellular Ca2+ concentration was maintained at 1 μmol/L in the presence of guanosine 5′-triphosphate (GTP; 100 μmol/L, neither isoproterenol (10nmol/L nor salbutamol (60 nmol/L affected Ca2+ sensitivity, but a significant decrease in Ca2+ sensitivity was observed in the presence of okadaic acid (1 μmol/L. The decrease in Ca2+ sensitivity was a slow response and was blocked by pretreatment with propranolol (1 μmol/L. Forskolin (1 μmol/L did not affect Ca2+ sensitivity. These results suggest that adrenergic b 2-agonists may activate protein phosphatase through an unknown pathway involving the β2-receptor, which enhances dephosphorylation of the myosin light chain and/or thin filament proteins, resulting in relaxation of the tracheal smooth muscle.

  9. Heterocyclic acetamide and benzamide derivatives as potent and selective beta3-adrenergic receptor agonists with improved rodent pharmacokinetic profiles. (United States)

    Goble, Stephen D; Wang, Liping; Howell, K Lulu; Bansal, Alka; Berger, Richard; Brockunier, Linda; DiSalvo, Jerry; Feighner, Scott; Harper, Bart; He, Jiafang; Hurley, Amanda; Hreniuk, Donna; Parmee, Emma; Robbins, Michael; Salituro, Gino; Sanfiz, Anthony; Streckfuss, Eric; Watkins, Eloisa; Weber, Ann E; Struthers, Mary; Edmondson, Scott D


    A series of amide derived beta(3)-adrenergic receptor (AR) agonists is described. The discovery and optimization of several series of compounds derived from 1, is used to lay the SAR foundation for second generation beta(3)-AR agonists for the treatment of overactive bladder.

  10. beta2 adrenergic agonists in acute lung injury? The heart of the matter. (United States)

    Lee, Jae W


    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of beta2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to increase the resolution of pulmonary edema. However, the results of clinical trials of beta agonist therapy for ALI/ARDS have been conflicting in terms of benefit. In the previous issue of Critical Care, Briot and colleagues present evidence that may help clarify the inconsistent results. The authors demonstrate that, in oleic acid lung injury in dogs, the inotropic effect of beta agonists may recruit damaged pulmonary capillaries, leading to increased lung endothelial permeability.

  11. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice (United States)

    Montgomery, Megan D.; Chan, Trevor; Swigart, Philip M.; Myagmar, Bat-erdene; Dash, Rajesh; Simpson, Paul C.


    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35–40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies. PMID:28081170

  12. The role of adrenergic agonists on glycogenolysis in rat hepatocyte cultures and possible involvement of NO. (United States)

    Hodis, J; Kutinová-Canová, N; Potmesil, P; Kameníková, L; Kmonícková, E; Zídek, Z; Farghali, H


    Certain liver metabolic diseases point to the presence of disturbances in glycogen deposition. Epinephrine raises the cAMP level that activates protein kinase A leading to the activation of phosphorylase and glycogen breakdown. In the present report, we sought to investigate whether NO is produced during adrenoceptor agonist-induced glycogenolysis in rat hepatocytes in cultures. Isolated glycogen rich rat hepatocytes in cultures were used. NO production (NO(2)(-)) was assessed under the effect of adrenergic agonists and adrenergic agonist/antagonist pairs, dibutyryl cyclic AMP sodium-potassium salt (db-cAMP), NO synthase (NOS) inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP). The inducible NO synthase (iNOS) mRNA was examined by the reverse transcription-polymerase chain reaction (RT-PCR). Glycogenolysis was quantified by glucose levels released into medium. The amount of glucose and NO(2)(-) released by hepatocytes was increased as a result of epinephrine, phenylephrine or db-cAMP treatments. The increase in glucose and NO(2)(-) released by epinephrine or phenylephrine was blocked or reduced by prazosin pretreatment and by NOS inhibitors aminoguanidine and L-NAME. iNOS gene expression was up-regulated by epinephrine. It can be concluded that glycogenolysis occurs through -adrenoceptor stimulation and a signaling cascade may involve NO production.

  13. Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis. (United States)

    Fairbanks, Carolyn A; Stone, Laura S; Wilcox, George L


    Endogenous, descending noradrenergic fibers impose analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (alpha(2)ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express alpha(2A)AR and alpha(2C)AR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal alpha(2)ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of the six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal alpha(2)AR agonists featured.

  14. Trafficking of α1B-adrenergic receptor mediated by inverse agonist in living cells

    Institute of Scientific and Technical Information of China (English)

    MingXU; Ying-huaGUAN; NingXU; Zhang-yiLIANG; Shu-yiWang; YaoSONG; Chi-deHAN; Xin-shengZHAO; You-yiZHANG


    AIM The project is aimed at understanding the action of inverse agonist at single molecule level and capturing the real time picture of molecular behavior of α1B-adrenergic receptor (AR) mediated by inverse agonist in living cells by single molecule detection (SMD). METHODS The location and distribution of α1B-AR was detected by laser confocal and whole cell 3H-prazosin binding assay. Dynamic imaging of BODIPY-FL-labeled prazosin (Praz), specific antagonist of (1-AR, was observed in α1B-AR stably expressed human embryonic kidney 293 (HEK293) living cells. The detection of real-time dynamic behaviors of AR was achieved by using fluorescence-labeled AR and its ligand combined with SMD techniques. RESULTS α1B-AR was predominantly distributed on the cell surface and 8.2% of the total receptors were located in cytosol.

  15. Long-acting β2-adrenergic receptor agonist in pediatric asthma

    Directory of Open Access Journals (Sweden)

    Shigemi Yoshihara


    Full Text Available Long-acting β2-adrenergic receptor agonists (LABA, a class of agents for the long-term management of childhood bronchial asthma, are recommended for use in combination with steroid inhalation for the treatment of the morning dip in severe childhood asthma. In the present review, salmeterol (SM, a LABA inhalant with a long-acting bronchodilator effect, was compared with the recently introduced tulobuterol patch (TBP in terms of safety and efficacy, based on their respective clinical effects on childhood asthma. From a clinical perspective, both drugs had a preventive effect by suppressing the morning dip and exercise-induced asthma when used concomitantly with an inhaled corticosteroid, and both agents were associated with a lower incidence of adverse effects on the cardiovascular system than oral β2-adrenergic receptor agonists. Based on these findings, both SM and TBP are concluded to be highly efficacious and safe bronchodilator agents that are appropriate for the long-term management of childhood asthma.

  16. Effect Of α2-Adrenergic Agonists And Antagonists On Cytokine Release From Human Lung Macrophages Cultured In Vitro (United States)

    Piazza, O.; Staiano, R.I.; De Robertis, E.; Conti, G.; Di Crescenzo, V.; Loffredo, S.; Marone, G.; Marinosci, G. Zito; Cataldi, M. M.


    The most trusted hypothesis to explain how α2-adrenergic agonists may preserve pulmonary functions in critically ill patients is that they directly act on macrophages by interfering with an autocrine/paracrine adrenergic system that controls cytokine release through locally synthetized noradrenaline and α1- and α2-adrenoreceptors. We tested this hypothesis in primary cultures of resident macrophages from human lung (HLMs). HLMs were isolated by centrifugation on percoll gradients from macroscopically healthy human lung tissue obtained from four different patients at the time of lung resection for cancer. HLMs from these patients showed a significant expression of α2A, α2B and α2C adrenoreceptors both at the mRNA and at the protein level. To evaluate whether α2 adrenoreceptors controlled cytokine release from HMLs, we measured IL-6, IL-8 and TNF-α concentrations in the culture medium in basal conditions and after preincubation with several α2-adrenergic agonists or antagonists. Neither the pretreatment with the α2-adrenergic agonists clonidine, medetomidine or dexdemetomidine or with the α2-adrenergic antagonist yohimbine caused significant changes in the response of any of these cytokines to LPS. These results show that, different from what reported in rodents, clonidine and dexdemetomidine do not directly suppress cytokine release from human pulmonary macrophages. This suggests that alternative mechanisms such as effects on immune cells activation or the modulation of autonomic neurotransmission could be responsible for the beneficial effects of these drugs on lung function in critical patients. PMID:27896229

  17. How Can 1+1=3? beta(2)-Adrenergic and Glucocorticoid Receptor Agonist Synergism in Obstructive Airway Diseases

    NARCIS (Netherlands)

    Schmidt, Martina; Michel, Martin C.


    For a long time it was believed that beta(2)-adrenergic receptor agonists used in the treatment of obstructive airway diseases worked primarily on airway smooth muscle cells, causing relaxation, whereas glucocorticoids primarily improved airway function via their anti-inflammatory action, indicating

  18. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis. (United States)

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M


    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, pCFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.

  19. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte


    in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  20. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  1. Cardiovascular effects of the novel histamine H2 receptor agonist amthamine: interaction with the adrenergic system. (United States)

    Coruzzi, G; Gambarelli, E; Bertaccini, G; Timmerman, H


    The cardiovascular effects of the new histamine H2 receptor agonist amthamine were studied in the anaesthetized rat, with particular reference to a possible interaction with the adrenergic system. Amthamine (0.03-3 mumol/kg i.v.) caused vasodepressor responses which were antagonized by famotidine (3 mumol/kg i.v.). At higher doses (30-100 mumol/kg i.v.), amthamine induced a modest increase in the mean arterial pressure, which was significantly enhanced by the blockade of H2 receptors and significantly reduced by the alpha 2 adrenoceptor antagonist yohimbine (1 mumol/kg i.v.). The vasopressor response to amthamine was not modified in rats pre-treated with reserpine or 6-hydroxydopamine, and was only minimally modified in adrenalectomized animals, thus suggesting a predominant interaction with postjunctional alpha 2 adrenoceptors in the vascular muscle. The H2 receptor agonist dimaprit (0.3-100 mumol/kg i.v.) caused a reduction in arterial pressure, which was antagonized by famotidine, no pressor response being unmasked. Dimaprit (0.1-30 mumol/kg i.v.) did not modify heart rate but caused a modest bradycardia at 100 mumol/kg i.v. Amthamine (1-100 mumol/kg i.v.) induced a dose-dependent tachycardia, which was only partially (approximately 20%) reduced by famotidine and was totally blocked by propranolol (0.3 mg/kg i.v.). This effect was significantly reduced in rats pre-treated with reserpine or 6-hydroxydopamine and was further reduced by cocaine, thus suggesting a tyramine-like action of amthamine. In conclusion, these data demonstrate that the H2 receptor agonist amthamine can also interact with the adrenergic system when used at doses higher than those necessary to activate H2 receptors. Whereas the increase in blood pressure induced by amthamine seems to be mainly mediated by a direct activation of postjunctional alpha 2 adrenoceptors, the increase in heart rate is predominantly due to neuronal release of catecholamines. These effects should be considered when

  2. Interactions between an alpha2-adrenergic antagonist and a beta3-adrenergic agonist on the expression of UCP2 and UCP3 in rats.



    This experimental trial was devised to assess whether selective β3-adrenergic receptor (AR) stimulation and simultaneous blockade of α2-AR would affect thermoregulation. With this purpose, the individual and combined administration of a β3-AR agonist, trecadrine, and an α2-AR antagonist, yohimbine, were evaluated. Yohimbine produced a marked decrease (p < 0.001) in body temperature one hour after administration (5 mg kg−1, i.p.) and blocked the thermogenic effect of trecadrine (1 mg kg−1, i.p...

  3. β-Adrenergic receptor agonist increases voltage-gated Na(+) currents in medial prefrontal cortex pyramidal neurons. (United States)

    Szulczyk, Bartlomiej


    The prefrontal cortex does not function properly in neuropsychiatric diseases and during chronic stress. The aim of this study was to test the effects of isoproterenol, a β-adrenergic receptor agonist, on the voltage-dependent fast-inactivating Na(+) currents in medial prefrontal cortex (mPFC) pyramidal neurons obtained from young rats. The recordings were performed in the cell-attached configuration. Isoproterenol (2μM) did not change the peak Na(+) current amplitude but shifted the IV curve of the Na(+) currents toward hyperpolarization. Pretreatment of the cells with the β-adrenergic antagonists propranolol and metoprolol abolished the effect of isoproterenol on the Na(+) currents, suggesting the involvement of β1-adrenergic receptors. The effect of β-adrenergic receptor stimulation on the sodium currents was dependent on kinase A and kinase C; the effect was diminished in the presence of the kinase A antagonist H-89 and the kinase C antagonist chelerythrine and abolished when the antagonists were coapplied. Moreover, isoproterenol depolarized the membrane potential recorded using the perforated-patch method, and this depolarization was abolished by cesium ions. Thus, in mPFC pyramidal neurons, stimulation of β-adrenergic receptors up-regulates the fast-inactivating voltage-gated Na(+) currents evoked by suprathreshold depolarizations.

  4. Ischemia- and agonist-induced changes in. alpha. - and. beta. -adrenergic receptor traffic in guinea pig hearts

    Energy Technology Data Exchange (ETDEWEB)

    Maisel, A.S.; Motulsky, H.J.; Ziegler, M.G.; Insel, P.A. (Univ. of California, La Jolla (USA))


    The authors have used radioligand binding techniques and subcellular fraction to assess whether changes in expression of myocardial {alpha}{sub 1}- and {beta}-adrenergic receptors are mediated by a redistribution of receptors between various membrane fractions. Three fractions were prepared from the left ventricles of guinea pigs that underwent either 1 h of ischemia or injection of epinephrine a crude membrane, a purified sarcolemma, and a light vesicle fraction. In control animals {alpha}{sub 1}-adrenergic receptors (({sup 3}H)prazosin binding) in light vesicles was only 25% of the total {alpha}{sub 1}-receptor density found in sarcolemmal and light vesicle fractions as compared with 50% for {beta}-adrenergic receptors (({sup 125}I)iodocyanopindolol binding sites). Although ischemia was associated with a 53% decrease in the number of light vesicle {beta}-adrenergic receptors and a 42% increase in the number of sarcolemma {beta}-receptors there was no change in the number of light vesicle {alpha}{sub 1}-receptors, even though the number of sarcolemmal {alpha}{sub 1}-receptors increased 34%. Epinephrine treatment promoted internalization of {beta}-adrenergic receptors. These results indicate that {alpha}{sub 1} and {beta}{sub 1}-adrenergic receptors may undergo a different cellular itinerary in guinea pig myocardium. Agonist and ischemia-induced changes in surface {beta}-receptors, but not {alpha}{sub 1}-receptors, appear to result from entry and exit of receptors from an intracellular pool that can be isolated in a light vesicle fraction. Changes in expression of {alpha}{sub 1}-adrenergic receptors may represent changes in the properties of receptors found in the sarcolemma or in a membrane fraction other than the light vesicle fraction that they have isolated.

  5. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture (United States)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)


    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  6. p-( sup 125 I)iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.M.; Siegel, B.W. (Merrell Dow Research Institute, Cincinnati, OH (USA))


    Unlabeled p-iodoclonidine was efficacious in attenuating forskolin-stimulated cAMP accumulation in SK-N-SH neuroblastoma cells. Maximal attenuation was 76 +/- 3%, with an EC50 of 347 +/- 60 nM. Comparable values of epinephrine were 72 +/- 3% and 122 +/- 22 nM. Responses to both agonists were abolished by 10 microM phentolamine. Therefore, p-iodoclonidine is an agonist in a cell culture model system of the neuronal alpha 2-adrenergic receptor. p-(125I)Iodoclonidine binding to membranes were measured using various regions of the rat brain. The agonist labeled a single population of sites present on cerebral cortical membranes, which was saturable (Bmax = 230 fmol/mg of protein) and possessed high affinity for the ligand (Kd = 0.6 nM). Binding was largely specific (93% at 0.6 nM). A variety of alpha 2-adrenergic agonists and antagonists were shown to compete for the binding of the radioligand. The binding of p-(125I)iodoclonidine was much less sensitive to agents that interact with alpha 1-adrenergic, serotonergic, and dopaminergic receptors. Approximately 65% of the binding was sensitive to guanine nucleotides. Association kinetics using 0.4 nM radioligand were biphasic (37% associate rapidly, with kobs = 0.96 min-1, with the remainder binding more slowly, with kobs = 0.031 min-1) and reached a plateau by 90 min at 25 degrees. Dissociation kinetics were also biphasic, with 30% of the binding dissociating rapidly (k1 = 0.32 min-1) and the remainder dissociating 50-fold more slowly (k2 = 0.006 min-1). Agonist binding is, therefore, uniquely complex and probably reflects the conformational changes that accompany receptor activation.

  7. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R. (Univ. of Michigan Medical School, Ann Arbor (USA))


    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.

  8. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells (United States)

    Young, R. B.; Bridge, K. Y.


    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  9. beta-Adrenergic agonist activity of a monoclonal anti-idiotypic antibody. (United States)

    Guillet, J G; Kaveri, S V; Durieu, O; Delavier, C; Hoebeke, J; Strosberg, A D


    Hybridoma cells bearing monoclonal antibody against the beta-adrenergic ligand alprenolol were used as an immunogen to raise monoclonal anti-idiotypic antibodies. Of six anti-idiotypic antibodies, which inhibit ligand binding, three were able to recognize beta-adrenergic receptors. One of them, mAb2B4, an IgM that could be amplified into ascites, binds to the beta-adrenergic catecholamine receptors of intact epidermoid A431 cells and precipitates receptors solubilized from plasma membranes by digitonin. This antibody identifies the beta 2-adrenergic receptor of A431 cells as a single 55-kDa protein and stimulates adenylate cyclase activity. This stimulation is inhibited by the beta-adrenergic antagonist propranolol.

  10. Pharmacological evaluation of selective α2c-adrenergic agonists in experimental animal models of nasal congestion. (United States)

    Jia, Yanlin; Mingo, Garfield G; Hunter, John C; Lieber, Gissela B; Palamanda, Jairam R; Mei, Hong; Boyce, Christopher W; Koss, Michael C; Yu, Yongxin; Cicmil, Milenko; Hey, John A; McLeod, Robbie L


    Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.

  11. Time sequence of changes in the responsiveness of glycogen breakdown to adrenergic agonists in perfused liver of rats with insulin-induced hypoglycemia

    Directory of Open Access Journals (Sweden)

    Vardanega-Peicher M.


    Full Text Available The time-course changes of the responsiveness of glycogen breakdown to a- and ß-adrenergic agonists during insulin-induced hypoglycemia (IIH were investigated. Blood glucose levels were decreased prior to the alteration in the hepatic responsiveness to adrenergic agonists. The activation of hepatic glucose production and glycogenolysis by phenylephrine (2 µM and isoproterenol (20 µM was decreased in IIH. The changes in the responsiveness of glycogen catabolism were first observed for isoproterenol and later for phenylephrine. Hepatic ß-adrenergic receptors showed a higher degree of adrenergic desensitization than did a-receptors. Liver glycogen synthase activity, glycogen content and the catabolic effect of dibutyryl cyclic AMP (the ß-receptor second messenger were not affected by IIH.

  12. Renal content and output of epidermal growth factor in long-term adrenergic agonist-treated rats

    DEFF Research Database (Denmark)

    Thulesen, J; Nexø, Ebba; Poulsen, Steen Seier


    fractional kidney weight, but initially the urinary excretion of EGF was reduced. The data add further evidence to the suggestion that activity of the sympathetic nervous system influences renal homeostasis of EGF, either directly or indirectly through renal histopathological changes....... used for immunohistochemistry and in situ hybridization. Fractional kidney weight was increased in the alpha-adrenergic agonist-treated group by 35% when compared with controls. Histological examination of the kidney revealed well-defined wedge-shaped areas of tubular dilatations and luminal amorphous...

  13. Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection (United States)

    Nizari, Shereen; Guo, Li; Davis, Benjamin M; Normando, Eduardo M; Galvao, Joana; Turner, Lisa A; Bizrah, Mukhtar; Dehabadi, Mohammad; Tian, Kailin; Francesca Cordeiro, M


    The amyloid beta (Aβ) pathway is strongly implicated in neurodegenerative conditions such as Alzheimer's disease and more recently, glaucoma. Here, we identify the α2 adrenergic receptor agonists (α2ARA) used to lower intraocular pressure can prevent retinal ganglion cell (RGC) death via the non-amyloidogenic Aβ-pathway. Neuroprotective effects were confirmed in vivo and in vitro in different glaucoma-related models using α2ARAs brimonidine (BMD), clonidine (Clo) and dexmedetomidine. α2ARA treatment significantly reduced RGC apoptosis in experimental-glaucoma models by 97.7% and 92.8% (BMD, P<0.01) and 98% and 92.3% (Clo, P<0.01)) at 3 and 8 weeks, respectively. A reduction was seen in an experimental Aβ-induced neurotoxicity model (67% BMD and 88.6% Clo, both P<0.01, respectively), and in vitro, where α2ARAs significantly (P<0.05) prevented cell death, under both hypoxic (CoCl2) and stress (UV) conditions. In experimental-glaucoma, BMD induced ninefold and 25-fold and 36-fold and fourfold reductions in Aβ and amyloid precursor protein (APP) levels at 3 and 8 weeks, respectively, in the RGC layer, with similar results with Clo, and in vitro with all three α2ARAs. BMD significantly increased soluble APPα (sAPPα) levels at 3 and 8 weeks (2.1 and 1.6-fold) in vivo and in vitro with the CoCl2 and UV-light insults. Furthermore, treatment of UV-insulted cells with an sAPPα antibody significantly reduced cell viability compared with BMD-treated control (52%), co-treatment (33%) and untreated control (27%). Finally, we show that α2ARAs modulate levels of laminin and MMP-9 in RGCs, potentially linked to changes in Aβ through APP processing. Together, these results provide new evidence that α2ARAs are neuroprotective through their effects on the Aβ pathway and sAPPα, which to our knowledge, is the first description. Studies have identified the need for α-secretase activators and sAPPα-mimetics in neurodegeneration; α2ARAs, already clinically available

  14. Endothelin-1-induced modulation of contractile responses elicited by an alpha 1-adrenergic agonist on human corpus cavernosum smooth muscle. (United States)

    Kim, D C; Gondré, C M; Christ, G J


    The goal of these studies was to examine endothelin-1 (ET-1)-induced modulation of contractile responses elicited by the selective alpha 1-adrenergic agonist, phenylephrine (PE), on isolated human corporal tissue strips. Pharmacological studies were conducted on human corporal tissue strips obtained from 22 patients undergoing implantation of penile prostheses for erectile dysfunction. For the purposes of statistical analysis, the patients were stratified into two age groups: A, age or = 60 y (n = 12). The patients were further sub-divided into two diagnostic categories, diabetics (DM, n = 9) and nondiabetics (ND, n = 13). Cumulative concentration-response curves (CRCs) were constructed to the alpha 1-adrenergic agonist, PE, prior to constructing a CRC to a single mixture of PE and ET-1 on the same tissue. A previously described fixed molar ratio (FMR) protocol was used to generate CRCs to mixtures of PE and ET-1. In all cases, for the PE:ET-1 FMRs of 90:10, 80:20 and 70:30, the partial substitution of PE with ET-1 resulted in an approx 3-fold leftward shift in the EC50 of the PE alone CRC with an approx 4% concomitant increase in Emax and a decrease in the slope factor value. There were no significant age- or disease-related differences in any of the logistic parameter estimates that describe the FMR CRC, indicating that there are no detectable age- or disease-related alterations in ET-1-induced amplification of alpha 1-adrenergic-mediated contractions in these studies. In addition, the location of the FMR CRC was precisely predicted by the theoretical CRC for simple additivity of agonist effects. In conclusion, since relatively small increases in ET-1 concentrations were associated with significant increases in alpha 1-adrenergic-mediated contractile responses, these data provide further testimony to the importance of ET-1 in modulating corporal smooth muscle tone, and moreover, establish a conceptual framework for understanding the mechanism of its action(s).

  15. Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesh, G.; Deth, R.C.


    Evidence for a nonlinear relationship between alpha-1 adrenergic receptor occupancy and tissue responses, together with the finding of different affinity states for agonist binding, has raised the possibility of functional heterogeneity of alpha-1 adrenergic receptors. We have conducted studies to examine: 1) binding characteristics of (/sup 3/H)prazosin, 2) competition of antagonists at these sites and 3) different affinity states of the receptor for agonists and modulation of these states by 5'-guanylylimidodiphosphate (Gpp(NH)p). A plasma membrane-enriched vesicular fraction (F2; 15%/33% sucrose interphase) was prepared from the muscular medial layer of bovine thoracic aorta. (/sup 3/H)Prazosin binding was characterized by a monophasic saturation isotherm (KD = 0.116 nM, Bmax = 112 fmol/mg of protein). Antagonist displacement studies yielded a relative potency order of prazosin greater than or equal to WB4104 much greater than phentolamine greater than corynanthine greater than yohimbine greater than or equal to idazoxan greater than rauwolscine. Competition curves for unlabeled prazosin, WB4101 (2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane) and phentolamine were shallow and were best modeled to two binding sites with picomolar and nanomolar KD values. Gpp(NH)p was without effect on antagonist affinity. Agonist (epinephrine, norepinephrine and phenylephrine) competition with (/sup 3/H)prazosin binding was biphasic with pseudo-Hill slopes less than 1.0. Binding was best described by a two-site model in which the average contribution of high affinity sites was 23% of total binding. KD values for the high affinity site ranged from 2.9 to 18 nM, and 3.9 to 5.0 microM for the low affinity site.

  16. The effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine, and antagonists yohimbine and efaroxan, on the spinal cholinergic receptor system in the rat

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban


    Cholinergic agonists produce spinal antinociception via mechanisms involving an increased release of intraspinal acetylcholine. The cholinergic receptor system interacts with several other receptor types, such as alpha2-adrenergic receptors. To fully understand these interactions, the effects...... of various receptor ligands on the cholinergic system must be investigated in detail. This study was initiated to investigate the effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine and the alpha2-adrenergic receptor antagonists yohimbine and efaroxan on spinal cholinergic receptors...... in the rat. Spinal microdialysis was used to measure in vivo changes of acetylcholine after administration of the ligands, with or without nicotinic receptor blockade. In addition, in vitro binding properties of the ligands on muscarinic and nicotinic receptors were investigated. It was found that clonidine...

  17. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Doornbos, R.P.; Witkamp, R.F.; Greef, de J.; Rodenburg, R.J.T.


    Vascular endothelial growth factor (VEGF), oncostatin M (OSM), and granulocyte chemotactic protein-2 (GCP-2/CXCL6) are up-regulated in U937 macrophages and peripheral blood macrophages exposed to LPS, beta-adrenergic receptor (ß2-AR) agonists (e.g. zilpaterol, and clenbuterol) and some other agents

  18. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages

    NARCIS (Netherlands)

    Verhoeckx, K.C.; Doornbos, R.P.; Witkamp, R.F.; Greef, J. van der; Rodenburg, R.J.T.


    Vascular endothelial growth factor (VEGF), oncostatin M (OSM), and granulocyte chemotactic protein-2 (GCP-2/CXCL6) are up-regulated in U937 macrophages and peripheral blood macrophages exposed to LPS, beta-adrenergic receptor (beta2-AR) agonists (e.g. zilpaterol, and clenbuterol) and some other agen

  19. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Doornbos, R.P.; Witkamp, R.F.; Greef, J. van der; Rodenburg, R.J.T.


    Vascular endothelial growth factor (VEGF), oncostatin M (OSM), and granulocyte chemotactic protein-2 (GCP-2/CXCL6) are up-regulated in U937 macrophages and peripheral blood macrophages exposed to LPS, beta-adrenergic receptor (β2-AR) agonists (e.g. zilpaterol, and clenbuterol) and some other agents

  20. Effects of the β-Adrenergic Agonist Cimaterol on Growth and Carcass Quality of Monozygotic Friesian Young Bulls at Three Developmental Stages

    DEFF Research Database (Denmark)

    Vestergaard, Mogens; Sommer, Mario; Klastrup, Signe;


    The objective was to investigate the effects of the β-adrenergic agonist cimaterol (CIM) on growth and carcass quality of Friesian young bulls at different developmental stages. The study comprised three liveweight groups (WG) each of four pairs of monozygotic twins. The average initial liveweight...... in cuts from the hind region of the carcass. The percentage of carcass saleable meat increased (Pleanness...

  1. Anti-Brownian ELectrokinetic (ABEL) trapping of single β2-adrenergic receptors in the absence and presence of agonist (United States)

    Bockenhauer, Samuel; Fuerstenberg, Alexandre; Yao, Xiao Jie; Kobilka, Brian K.; Moerner, W. E.


    The ABEL trap allows trapping of single biomolecules in solution for extended observation without immobilization. The essential idea combines fluorescence-based position estimation with fast electrokinetic feedback in a microfluidic geometry to counter the Brownian motion of a single nanoscale object, hence maintaining its position in the field of view for hundreds of milliseconds to seconds. Such prolonged observation of single proteins allows access to slow dynamics, as probed by any available photophysical observables. We have used the ABEL trap to study conformational dynamics of the β2-adrenergic receptor, a key G-protein coupled receptor and drug target, in the absence and presence of agonist. A single environment-sensitive dye reports on the receptor microenvironment, providing a real-time readout of conformational change for each trapped receptor. The focus of this paper will be a quantitative comparison of the ligandfree and agonist-bound receptor data from our ABEL trap experiments. We observe a small but clearly detectable shift in conformational equilibria and a lengthening of fluctuation timescales upon binding of agonist. In order to quantify the shift in state distributions and timescales, we apply nonparametric statistical tests to place error bounds on the resulting single-molecule distributions.

  2. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. (United States)

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike


    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.

  3. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Stimulation of α1aAdrenergic Receptors (ARs is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10(-7 M induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10(-8 M induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca(2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca(2+ chelation, suggesting Ca(2+ independent activation of novel PKC isoforms. In contrast, Ca(2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.

  4. Oxidation of nutrients in bull calves treated with beta-adrenergic agonists

    DEFF Research Database (Denmark)

    Chwalibog, André; Jensen, K; Thorbek, G


    Oxidation of protein (OXP), carbohydrate (OXCHO) and fat (OXF) was investigated with 12 growing bulls treated with beta-agonist (L-644, 969) during two 6 weeks trials (Section A and B) at a mean live weight of 195 and 335 kg. Heat production and nutrient oxidation was calculated from gas exchange......, with CO2 reduced for CO2 from fermentation processes, and nitrogen excretion in urine. The beta-agonist had no effect on the level of rumen fermentation as indicated by the same methane production for control and treated animals. Heat Production (HE, RQx) increased by the treatment of beta......-agonist corresponding to the increment in the protein retention. OXP/HE,RQx was reduced to about 10% in treated animals, indicating that in order to supply amino acids for an increased protein deposition oxidation of protein is decreased. OXF/HE,RQx were markedly higher in treated animals, but as indicated by the same...

  5. CRM 1-mediated degradation and agonist-induced down-regulation of beta-adrenergic receptor mRNAs. (United States)

    Bai, Ying; Lu, Huafei; Machida, Curtis A


    The beta1-adrenergic receptor (beta1-AR) mRNAs are post-transcriptionally regulated at the level of mRNA stability and undergo accelerated agonist-mediated degradation via interaction of its 3' untranslated region (UTR) with RNA binding proteins, including the HuR nuclear protein. In a previous report [Kirigiti et al. (2001). Mol. Pharmacol. 60:1308-1324], we examined the agonist-mediated down-regulation of the rat beta1-AR mRNAs, endogenously expressed in the rat C6 cell line and ectopically expressed in transfectant hamster DDT1MF2 and rat L6 cells. In this report, we determined that isoproterenol treatment of neonatal rat cortical neurons, an important cell type expressing beta1-ARs in the brain, results in significant decreases in beta1-AR mRNA stability, while treatment with leptomycin B, an inhibitor of the nuclear export receptor CRM 1, results in significant increases in beta1-AR mRNA stability and nuclear retention. UV-crosslinking/immunoprecipitation and glycerol gradient fractionation analyses indicate that the beta1-AR 3' UTR recognize complexes composed of HuR and multiple proteins, including CRM 1. Cell-permeable peptides containing the leucine-rich nuclear export signal (NES) were used as inhibitors of CRM 1-mediated nuclear export. When DDT1MF2 transfectants were treated with isoproterenol and peptide inhibitors, only the co-addition of the NES inhibitor reversed the isoproterenol-induced reduction of beta1-AR mRNA levels. Our results suggest that CRM 1-dependent NES-mediated mechanisms influence the degradation and agonist-mediated down-regulation of the beta1-AR mRNAs.

  6. Heterogeneous responses of human limbs to infused adrenergic agonists: a gravitational effect? (United States)

    Pawelczyk, James A.; Levine, Benjamin D.


    Unlike quadrupeds, the legs of humans are regularly exposed to elevated pressures relative to the arms. We hypothesized that this "dependent hypertension" would be associated with altered adrenergic responsiveness. Isoproterenol (0.75-24 ng x 100 ml limb volume-1 x min-1) and phenylephrine (0.025-0.8 microg x 100 ml limb volume-1 x min-1) were infused incrementally in the brachial and femoral arteries of 12 normal volunteers; changes in limb blood flow were quantified by using strain-gauge plethysmography. Compared with the forearm, baseline calf vascular resistance was greater (38.8 +/- 2.5 vs. 26.9 +/- 2.0 mmHg x 100 ml x min x ml-1; P filtration in the legs during standing.

  7. Quantitative protein and fat metabolism in bull calves treated with beta-adrenergic agonist

    DEFF Research Database (Denmark)

    Chwalibog, André; Jensen, K; Thorbek, G


    Protein and energy utilization and quantitative retention of protein, fat and energy was investigated with 12 Red Danish bulls during two subsequent 6 weeks trials (Sections A and B) at a mean live weight of 195 and 335 kg respectively. Treatments were control (Group 1) and beta-agonist (L-644...... matter, metabolizable energy and digestible protein was of the same magnitude for all groups. The beta-agonist had no significant effect on protein digestibility and metabolizability of energy, but daily live weight gain was significantly higher in the treated bulls. The utilization of digested protein...... was strongly influenced by treatment, with the highest values for Group 2 in both sections. The protein retention increased with 25% in Group 2, with the highest increment of 113 g/d in Section B. The fat retention decreased in treated animals, most pronounced in Group 3, where the reduction was about 50...

  8. Agonist-promoted desensitization and phosphorylation of. cap alpha. /sub 1/-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Leeb-Lundberg, L.M.F.; Cotecchia, S.; Caron, M.G.; Lefkowitz, R.J.


    In the DDT/sub 1/ MF-2 hamster vas deferens smooth muscle cell line the ..cap alpha../sub 1/-adrenergic receptor (..cap alpha../sub 1/-AR) agonist norepinephrine (NE) promotes rapid attenuation of ..cap alpha../sub 1/-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the ..cap alpha../sub 1/-AR. Cells were labeled by incubation with /sup 32/P/sub i/. Coincubation with NE (100 significantly increases the rate of /sup 32/P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 NE (in the presence of 1 propranolol to prevent ..beta..-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. ..cap alpha../sub 1/-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified ..cap alpha../sub 1/-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from approx. 1 mol phosphate/mol ..cap alpha../sub 1/-AR in the basal condition to approx. 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid ..cap alpha../sub 1/-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of ..cap alpha../sub 1/-AR receptor responsiveness.

  9. Spectrofluorimetric determination of certain adrenergic agonist drugs in their pure forms and pharmaceutical formulations: Content uniformity test application. (United States)

    Badr El-Din, Khalid M; Attia, Tamer Z


    A new, simple, sensitive and rapid spectrofluorimetric method has been developed for determination of certain adrenergic agonists such as isoxsuprine hydrochloride, ritodrine hydrochloride and etilefrine hydrochloride in their pure forms and pharmaceutical dosage forms. The method depends on micellar enhancement of the native fluorescence of investigated drugs by using 2% w/v sodium dodecyl sulfate (SDS) as an anionic surfactant. The enhanced fluorescence intensity of investigated drugs was measured at 305 nm after excitation at 278 nm. The interaction of studied drugs with SDS was studied, and the enhanced fluorescence intensity was exploited to develop an assay method for the determination of investigated drugs. The relative fluorescence intensity-concentration plots were rectilinear over the range 0.15-3.00 μg ml(-1) , with low quantification limits of 0.132, 0.123 and 0.118 μg mL(-1) for isoxsuprine, ritodrine and etilefrine, respectively. The proposed method was successfully applied for determination of studied drugs in their pharmaceutical formulations. Moreover, the high sensitivity of the proposed method allows performing the content uniformity testing of the studied drugs in their tablets by using the official United States Pharmacopeia (USP) guidelines. Statistical comparisons of the results with those of the reported methods revealed excellent agreement and indicated no significant difference in accuracy and precision.

  10. Management of facial erythema of rosacea: what is the role of topical α-adrenergic receptor agonist therapy? (United States)

    Del Rosso, James Q


    Several more recent advances have led to a better understanding of the pathophysiologic mechanisms involved in rosacea and therapeutic modalities used for treatment. Although the clinical features may vary among patients, there are some unifying mechanisms that appear to relate to the more common presentations of rosacea. Both neurovascular dysregulation and augmented immune detection and response appear to play central roles that lead to many of the signs and symptoms of rosacea. Diffuse central facial erythema is a very common finding that intensifies during flares and persists to varying degrees between flares. This background of facial redness occurs secondary to vasodilation and fixed vascular changes that develop over time. Physical modalities are commonly used to treat the erythema that persists as a result of fixed changes in superficial cutaneous vasculature that do not remit after treatment with agents whose mechanisms are active primarily against some of the inflammatory processes operative in rosacea (ie metronidazole, azelaic acid, tetracyclines). As enlarged superficial cutaneous vessels that contribute to the fixed background facial redness of rosacea remain vasoactive to sympathetic nervous system innervation, topical α-adrenergic receptor agonists, namely brimonidine and oxymetazoline, are currently under evaluation for the treatment of facial erythema of rosacea. This article focuses on the clinical differentiation of facial erythema of rosacea and its management.

  11. Multiresidue Method for Analysis of β Agonists in Swine Urine by Enzyme Linked Receptor Assay Based on β2 Adrenergic Receptor Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available A novel enzyme-linked receptor assay (ELRA based on β2-adrenergic receptor (β2-AR has been developed for rapid and high-throughput detection of β-adrenergic agonists (β-agonists in urine. Human embryonic kidney cells (HEK293 were introduced as the expression system to enhance the functionality of the recombinant β2-AR, and the attempt to detect β-agonists in swine urine using such approaches was accomplished unprecedentedly. In this article, a recombinant porcine β2-AR was produced in the inner membrane of HEK293 cells and purified from crude membrane protein by nickel-nitrilotriacetic acid affinity chromatography. After activity identification, the recombinant receptor was used in the development of direct competitive ELRA. Several parameters such as blocking buffer and blocking process were optimized and the performance of the system was determined. The IC50 concentrations of clenbuterol, salbutamol, and ractopamine were 34, 53 and 63 μg/L, and the average recovery rates were 68.2%, 60.3% and 65.5%, respectively. ELRA based on β2-AR shows a series of advantages such as safety, easy operation, and high efficiency, making it promising for the rapid screening of β-agonists in animal urine.

  12. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.


    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587 was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.

  13. Effect of. cap alpha. -,. beta. -adrenergic receptor agonists and antagonists of the efflux of /sup 22/Na and uptake of /sup 42/K by rat brain cortical slices

    Energy Technology Data Exchange (ETDEWEB)

    Phillis, J.W.; Wu, P.H.; Thierry, D.L.


    The effects of norepinephrine on ion fluxes in rat brain cortical slices have now been ascertained. /sup 22/Na efflux and /sup 42/K influx are enhanced by norepinephrine. The increase in ion fluxes can be blocked by ouabain, phentolamine and propranolol, suggesting that the catecholamine activates a membrane sodium pump by a receptor-mediated step. The facilitation of /sup 22/Na efflux is stereospecific as demonstrated by the very weak action of D-norepinephrine at 10/sup -5/ M concentration. Various ..cap alpha..-adrenergic and ..beta..-adrenergic receptor agonists, including oxymetazoline, naphazoline, clonidine, tramazoline, methoxamine, phenylephrine, L-isoproterenol and methoxyphenamine are potent stimulants of the sodium pump as demonstrated by their enhancement of ion fluxes in rat brain cortical slices. The results are consistent with the hypothesis that norepinephrine hyperpolarizes central neurons by activating an ouabain-sensitive, receptor-mediated sodium pump.

  14. Effect of Alpha-1-Adrenergic Agonist, Midodrine for the Management of Long-Standing Neurogenic Shock in Patient with Cervical Spinal Cord Injury: A Case Report


    Kim, Taikwan; Jwa, Cheol Su


    We report a rare case of a 71-year-old male patient who had suffered from long-lasting neurogenic shock for 13 weeks after cervical spinal cord injury (SCI) caused by a bicycle accident. The neurogenic shock was resolved dramatically 2 weeks after the administration of alpha-1-adrenergic agonist, midodrine hydrochloride. In usual cases, neurogenic shock tends to improve between 2 and 6 weeks after SCI; however, in a few cases, the shock lasts for several months. In our case, spinal shock last...

  15. Effects of the perfusion of beta-, beta2-, or beta3-adrenergic agonists or epinephrine on in situ adipose tissue lipolysis measured by microdialysis in underfed ewes. (United States)

    Ferlay, A; Charret, C; Galitzky, J; Berlan, M; Chilliard, Y


    The effects of isoproterenol (ISO, a non-selective beta-agonist), terbutaline (TER, a selective beta2-agonist), CL316243 (CL, a selective beta3-agonist), and epinephrine (EPI, beta- and alpha2-agonist) on in situ lipolytic response of s.c. adipose tissue were investigated in vivo, using a microdialysis method to measure glycerol release, in 12 adult nonlactating and ovariectomized, underfed Lacaune ewes. All the adrenergic compounds were perfused for 120 min at 10(-6), 10(-5), and 10(-4) M. They had no lipolytic effect at 10(-6) M. Isoproterenol and EPI at 10(-5) and 10(-4) M enhanced, in the same way, maximal response and area under the concentration curve (AUC) of dialysate glycerol, thus suggesting that involvement of alpha2-adrenoceptors in the control of in situ lipolysis is of minor importance in underfed ewes. Terbutaline had only a slight lipolytic effect at 10(-5) M. This low effect could be due to a lower affinity of TER than of ISO for the beta2-adrenoceptors. The beta3-agonist, CL, had no lipolytic effect whatever the concentration perfused. Further studies are needed to prove the putative presence of beta3-adrenoceptors and their possible role in the ovine adipose tissue.

  16. Apparent histological changes of adipocytes after treatment with CL 316,243, a ß-3-adrenergic receptor agonist

    Directory of Open Access Journals (Sweden)

    Ghorbani M


    Full Text Available Masoud Ghorbani,1,2,* Shahram Teimourian,3,* Reza Farzad,4 Nabiollah Namvar Asl4 1Research and Development Department, Pasteur Institute of Iran, Tehran, Iran; 2Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada; 3Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran; 4Department of Animal Science, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran*These authors contributed equally to this work Background and objectives: The objective of this experiment was to study the effect of CL 316,243 (CL (a highly selective ß3-adrenergic receptor agonist on cellular changes occurring in retroperitoneal white adipose tissue (RWAT of lean and obese rats. Methods: Ten-month-old lean and obese Zucker rats were implanted subcutaneously with osmotic mini-pumps, infusing either saline or CL (1 mg/kg body weight/day for 4 weeks. Results: There was no effect of CL on food intake. However, the resting metabolic rate in lean and obese rats increased by 55% and 96% per rat, respectively. Total RWAT weight decreased in both lean and obese rats under influence of CL treatment by 65% and 38%, respectively. Total body weight and body fat were lower in CL treated rats. Detection of uncoupling protein 1(UCP1 in RWAT was confirmed qualitatively by both immunohistochemistry and immunofluorescence using a rabbit anti rat UCP1 antibody which showed the appearance of a marked increase of this protein in the adipose tissue. Stained semi-thin sections (0.5 µm also demonstrated abundant nuclei in multilocular adipocytes, in endothelial cells associated with the vasculature, and in interstitial cells. In CL-treated obese rats, a clustering of several multilocular cells around the periphery of a white adipocyte was seen. Conclusion: These results indicate that treatment of both lean and obese Zucker rats with CL induces extensive remodeling of RWAT that includes shrinkage of white adipose tissue, appearance of

  17. Combination of roflumilast with a beta-2 adrenergic receptor agonist inhibits proinflammatory and profibrotic mediator release from human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Tannheimer Stacey L


    Full Text Available Abstract Background Small airway narrowing is an important pathology which impacts lung function in chronic obstructive pulmonary disease (COPD. The accumulation of fibroblasts and myofibroblasts contribute to inflammation, remodeling and fibrosis by production and release of mediators such as cytokines, profibrotic factors and extracellular matrix proteins. This study investigated the effects of the phosphodiesterase 4 inhibitor roflumilast, combined with the long acting β2 adrenergic agonist indacaterol, both approved therapeutics for COPD, on fibroblast functions that contribute to inflammation and airway fibrosis. Methods The effects of roflumilast and indacaterol treatment were characterized on transforming growth factor β1 (TGFβ1-treated normal human lung fibroblasts (NHLF. NHLF were evaluated for expression of the profibrotic mediators endothelin-1 (ET-1 and connective tissue growth factor (CTGF, expression of the myofibroblast marker alpha smooth muscle actin, and fibronectin (FN secretion. Tumor necrosis factor-α (TNF-α was used to induce secretion of chemokine C-X-C motif ligand 10 (CXCL10, chemokine C-C motif ligand 5 (CCL5 and granulocyte macrophage colony-stimulating factor (GM-CSF from NHLF and drug inhibition was assessed. Results Evaluation of roflumilast (1-10 μM showed no significant inhibition alone on TGFβ1-induced ET-1 and CTGF mRNA transcripts, ET-1 and FN protein production, alpha smooth muscle expression, or TNF-α-induced secretion of CXCL10, CCL5 and GM-CSF. A concentration-dependent inhibition of ET-1 and CTGF was shown with indacaterol treatment, and a submaximal concentration was chosen for combination studies. When indacaterol (0.1 nM was added to roflumilast, significant inhibition was seen on all inflammatory and fibrotic mediators evaluated, which was superior to the inhibition seen with either drug alone. Roflumilast plus indacaterol combination treatment resulted in significantly elevated phosphorylation

  18. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors. (United States)

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M


    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  19. Effects of the α₂-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. (United States)

    Hysek, Cédric M; Brugger, Robin; Simmler, Linda D; Bruggisser, Marcel; Donzelli, Massimiliano; Grouzmann, Eric; Hoener, Marius C; Liechti, Matthias E


    The mechanism of action of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) involves the carrier-mediated and potentially vesicular release of monoamines. We assessed the effects of the sympatholytic α₂-adrenergic receptor agonist clonidine (150 μg p.o.), which inhibits the neuronal vesicular release of norepinephrine, on the cardiovascular and psychotropic response to MDMA (125 mg p.o.) in 16 healthy subjects. The study used a randomized, double-blind, placebo-controlled crossover design with four experimental sessions. The administration of clonidine 1 h before MDMA reduced the MDMA-induced increases in plasma norepinephrine concentrations and blood pressure but only to the extent that clonidine lowered norepinephrine levels and blood pressure compared with placebo. Thus, no interaction was found between the cardiovascular effects of the two drugs. Clonidine did not affect the psychotropic effects or pharmacokinetics of MDMA. The lack of an interaction of the effects of clonidine and MDMA indicates that vesicular release of norepinephrine, which is inhibited by clonidine, does not critically contribute to the effects of MDMA in humans. Although clonidine may be used in the treatment of stimulant-induced hypertensive reactions, the present findings do not support a role for α₂-adrenergic receptor agonists in the prevention of psychostimulant dependence.

  20. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice. (United States)

    Elayan, Hamzeh; Milic, Milos; Sun, Ping; Gharaibeh, Munir; Ziegler, Michael G


    Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake.

  1. Effect of Alpha-1-Adrenergic Agonist, Midodrine for the Management of Long-Standing Neurogenic Shock in Patient with Cervical Spinal Cord Injury: A Case Report. (United States)

    Kim, Taikwan; Jwa, Cheol Su


    We report a rare case of a 71-year-old male patient who had suffered from long-lasting neurogenic shock for 13 weeks after cervical spinal cord injury (SCI) caused by a bicycle accident. The neurogenic shock was resolved dramatically 2 weeks after the administration of alpha-1-adrenergic agonist, midodrine hydrochloride. In usual cases, neurogenic shock tends to improve between 2 and 6 weeks after SCI; however, in a few cases, the shock lasts for several months. In our case, spinal shock lasted for 13 weeks and exhibited very sensitive decline of blood pressure for even a slight decrease of dopamine despite recovered bulbospongiosus reflex. Three days after midodrine hydrochloride was added, hypotension improved dramatically. We discuss our rare case with pertinent literatures.


    Marrow, Judilee C; Woc-Colburn, Margarita; Hayek, Lee-Ann C; Marker, Laurie; Murray, Suzan


    Alpha2-adrenergic agonists are used to immobilize many veterinary species, but use has been infrequently linked to urine contamination of semen collected via electroejaculation. The objective of the study was to compare the α2-agonists medetomidine and dexmedetomidine on urine contamination of semen in anesthetized cheetahs (Acinonyx jubatus) during electroejaculation procedures. From 2009-2012, a retrospective medical record review revealed 21 anesthesia events in 12 adult male cheetahs. Animals were immobilized with combinations of Telazol® (2.33±0.43 mg/kg) and ketamine (2.38±1 mg/kg); Telazol (1.17±0.14 mg/kg), ketamine (1.17±0.14 mg/kg), and medetomidine (0.012±0.0017 mg/kg); or Telazol (1.59±0.1 mg/kg), ketamine (1.59±0.1 mg/kg) and dexmedetomidine (0.01±0.001 mg/kg). Semen was successfully collected in all animals; four animals anesthetized with medetomidine had urine contamination (P=0.037). Medetomidine may contribute to urine contamination; however, further investigation is needed to determine significance in cheetahs.

  3. Dynamin-association with agonist-mediated sequestration of beta-adrenergic receptor in single-cell eukaryote Paramecium. (United States)

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta


    Evidence that dynamin is associated with the sequestration of the Paramecium beta(2)-adrenergic receptor (betaAR) immunoanalogue is presented. We previously reported a dramatic change in the distribution of betaAR analogue in the subcellular fractions upon isoproterenol treatment: it is redistributed from the membraneous to the cytosolic fraction, as revealed by quantitative image analysis of western blots. Here we confirm and extend this observation by laser scanning confocal and immunogold electron microscopy. In the presence of isoproterenol (10 micro mol l(-1)) betaAR translocated from the cell surface into dynamin-positive vesicles in the cytoplasmic compartment, as observed by dual fluorochrome immunolabeling in a series of the confocal optical sections. Colocalization of betaAR and dynamin in the tiny endocytic vesicles was detected by further electron microscopic studies. Generally receptor sequestration follows its desensitization, which is initiated by receptor phosphorylation by G-protein-coupled receptor kinase. We cloned and sequenced the gene fragment of 407 nucleotides homologous to the beta-adrenergic receptor kinase (betaARK): its deduced amino acid sequence shows 51.6% homology in 126 amino acids that overlap with the human betaARK2 (GRK3), and may participate in Paramecium betaAR desensitization. These results suggest that the molecular machinery for the desensitization/sequestration of the receptor immunorelated to vertebrate betaAR exists in unicellular PARAMECIUM:

  4. Activation ofβ2-Adrenergic Receptor Induced by Three Catecholamine Agonists: a Docking and Molecular Dynamics Study

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui; DONG Li-hua; LING Bao-ping; WANG Zhi-guo; LIU Yong-jun


    We studied the activation of β2-adrenergic receptor(β2AR) by norepinephrine,epinephrine and isoproterenol using docking and molecular dynamics(MD) simulation.The simulation was done on the assumption that β2AR was surrounded with explicit water and infinite lipid bilayer membrane at body temperature.So the result should be close to that under the physiological conditions.We calculated the structure of binding sites in β2AR for the three activators.We also simulated the change of the conformation ofβ2AR in the transmembrane regions(TMs),in the molecular switches,and in the conserved DRY(Aspartic acid,Arginine and Tyrosine) motif.This study provides detailed information concerning the structure ofβ2AR during activation process.

  5. Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue. (United States)

    Preitner, F; Muzzin, P; Revelli, J P; Seydoux, J; Galitzky, J; Berlan, M; Lafontan, M; Giacobino, J P


    The beta3-adrenoceptor plays an important role in the adrenergic response of brown and white adipose tissues (BAT and WAT). In this study, in vitro metabolic responses to beta-adrenoceptor stimulation were compared in adipose tissues of beta3-adrenoceptor knockout and wild type mice. The measured parameters were BAT fragment oxygen uptake (MO2) and isolated white adipocyte lipolysis. In BAT of wild type mice (-)-norepinephrine maximally stimulated MO2 4.1+/-0.8 fold. Similar maximal stimulations were obtained with beta1-, beta2- or beta3-adrenoceptor selective agonists (dobutamine 5.1+/-0.3, terbutaline 5.3+/-0.3 and CL 316,243 4.8+/-0.9 fold, respectively); in BAT of beta3-adrenoceptor knockout mice, the beta1- and beta2-responses were fully conserved. In BAT of wild type mice, the beta1/beta2-antagonist and beta3-partial agonist CGP 12177 elicited a maximal MO2 response (4.7+/-0.4 fold). In beta3-adrenoceptor knockout BAT, this response was fully conserved despite an absence of response to CL 316,243. This unexpected result suggests that an atypical beta-adrenoceptor, distinct from the beta1-, beta2- and beta3-subtypes and referred to as a putative beta4-adrenoceptor is present in BAT and that it can mediate in vitro a maximal MO2 stimulation. In isolated white adipocytes of wild type mice, (-)-epinephrine maximally stimulated lipolysis 12.1+/-2.6 fold. Similar maximal stimulations were obtained with beta1-, beta2- or beta3-adrenoceptor selective agonists (TO509 12+/-2, procaterol 11+/-3, CL 316,243 11+/-3 fold, respectively) or with CGP 12177 (7.1+/-1.5 fold). In isolated white adipocytes of beta3-adrenoceptor knockout mice, the lipolytic responses to (-)epinephrine, to the beta1-, beta2-, beta3-adrenoceptor selective agonists and to CGP 12177 were almost or totally depressed, whereas those to ACTH, forskolin and dibutyryl cyclic AMP were conserved.

  6. Metabolic response to various β-adrenoceptor agonists in β3-adrenoceptor knockout mice: Evidence for a new β-adrenergic receptor in brown adipose tissue (United States)

    Preitner, Frédéric; Muzzin, Patrick; Revelli, Jean-Pierre; Seydoux, Josiane; Galitzky, Jean; Berlan, Michel; Lafontan, Max; Giacobino, Jean-Paul


    The β3-adrenoceptor plays an important role in the adrenergic response of brown and white adipose tissues (BAT and WAT). In this study, in vitro metabolic responses to β-adrenoceptor stimulation were compared in adipose tissues of β3-adrenoceptor knockout and wild type mice. The measured parameters were BAT fragment oxygen uptake (MO2) and isolated white adipocyte lipolysis. In BAT of wild type mice (−)-norepinephrine maximally stimulated MO2 4.1±0.8 fold. Similar maximal stimulations were obtained with β1-,β2- or β3-adrenoceptor selective agonists (dobutamine 5.1±0.3, terbutaline 5.3±0.3 and CL 316,243 4.8±0.9 fold, respectively); in BAT of β3-adrenoceptor knockout mice, the β1- and β2-responses were fully conserved. In BAT of wild type mice, the β1/β2-antagonist and β3-partial agonist CGP 12177 elicited a maximal MO2 response (4.7±0.4 fold). In β3-adrenoceptor knockout BAT, this response was fully conserved despite an absence of response to CL 316,243. This unexpected result suggests that an atypical β-adrenoceptor, distinct from the β1-, β2- and β3-subtypes and referred to as a putative β4-adrenoceptor is present in BAT and that it can mediate in vitro a maximal MO2 stimulation. In isolated white adipocytes of wild type mice, (−)-epinephrine maximally stimulated lipolysis 12.1±2.6 fold. Similar maximal stimulations were obtained with β1-, β2- or β3-adrenoceptor selective agonists (TO509 12±2, procaterol 11±3, CL 316,243 11±3 fold, respectively) or with CGP 12177 (7.1±1.5 fold). In isolated white adipocytes of β3-adrenoceptor knockout mice, the lipolytic responses to (−)epinephrine, to the β1-, β2-, β3-adrenoceptor selective agonists and to CGP 12177 were almost or totally depressed, whereas those to ACTH, forskolin and dibutyryl cyclic AMP were conserved. PMID:9756384

  7. Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise. (United States)

    Sato, Shogo; Shirato, Ken; Mitsuhashi, Ryosuke; Inoue, Daisuke; Kizaki, Takako; Ohno, Hideki; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko


    The aim of this study was to clarify the intracellular β2-adrenergic receptor signaling specificity in mouse slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles, resulting from single-dose β2-agonist clenbuterol treatment and acute exercise. At 1, 4, and 24 h after single-dose treatment with clenbuterol or after acute running exercise, the soleus and TA muscles were isolated and subjected to analysis. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased after single-dose clenbuterol treatment and acute exercise in the soleus muscle but not in the TA muscle. Although there was no change in the phosphorylation of Akt after acute exercise in either muscle, phosphorylation of Akt in the soleus muscle increased after single-dose clenbuterol treatment, whereas that in the TA muscle remained unchanged. These results suggest that p38 MAPK and Akt pathways play a functional role in the adaptation to clenbuterol treatment and exercise, particularly in slow-twitch muscles.

  8. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men. (United States)

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke; Bangsbo, Jens


    The aim was to investigate the effect of the long-acting β2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 μg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue.

  9. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist. (United States)

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira


    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages.

  10. Altered Expression Profile of Renal α1D-Adrenergic Receptor in Diabetes and Its Modulation by PPAR Agonists

    Directory of Open Access Journals (Sweden)

    Xueying Zhao


    Full Text Available Alpha1D-adrenergic receptor (α1D-AR plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α1D-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs. 12-week-old Zucker lean (ZL and Zucker diabetic fatty (ZD rats were treated with fenofibrate or rosiglitazone for 8–10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α1D-AR in rat kidney tissue. Using microarray, we found that α1D-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α1D-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α1D-AR gene. Immunofluorescence staining confirmed that α1D-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α1D-AR and kidney injury molecule-1 indicated that α1D-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α1D-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α1D-AR in diabetic nephropathy.

  11. The Effects of Continuous and Intermittent Feeding of β-agonist Zilpaterol Hydrochloride on Muscle β-adrenergic Receptors Gene Expression in Feedlot Male Lambs

    Directory of Open Access Journals (Sweden)

    Vahid Vahedi


    Full Text Available Introduction The compounds known as β-adrenergic agonists (β-AA are organic molecules that have the ability to bind to β-adrenergic receptors (β-AR and start biochemical reactions that will result in increase of accretion of skeletal muscle and reduction in accretion of fat. The anabolic responses to β-AA are temporary, with a peak time occurring during the first 14 days, after which there is a linear decline in growth response, due to either down-regulation or desensitization of the β-AR. Based on down-regulation of β-AR research, the hypothesis that intermittent feeding of β-AA could enhance response on growth performance was created. The objective of this study was therefore to ascertain the effects of continuous and intermittent use of ZH for a period of 42 d on β-AR gene expression in Lori-Bakhtiari feedlot lambs. Materials and Methods The continuous feeding of ZH (daily regimen, intermittent 1 d feeding ZH followed by 1 d of withdrawal (1 on 1 off regimen, and intermittent 2 d feeding ZH followed by 2 d of withdrawal (2 on 2 off regimen were employed as the different feeding methods. Thirty two Lori-Bakhtiari male lambs (initial BW=44±4.7 kg were assigned to one of four treatments (8 lambs/treatment based on initial BW and were fed with a diet content of 14% protein and supplemented with 0.2 mg/kg of live weight d-1ZH. The basal diet without ZH was the added control group. For evaluating gene expression, biopsy samples of the semimembranosus muscle were collected from 3 lambs per treatment before ZH supplementation on d 0, and subsequently at d 21, and d 42. Samples were rapidly frozen in liquid N2. In laboratory after total RNA isolation from muscle, the RNA was then reverse-transcribed into complementary DNA (cDNA. Real time PCR for cDNA samples was performed using an iQ5 BioRad instrument. Results and Discussion The results of this study showed that the main effects and period × regimen interactions effect was not significant

  12. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. (United States)

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P


    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats.

  13. Regulation of UCP1 in the Browning of Epididymal Adipose Tissue by β3-Adrenergic Agonist: A Role for MicroRNAs

    Directory of Open Access Journals (Sweden)

    Zongji Zheng


    Full Text Available Background. White adipose tissue browning may be a promising strategy to combat obesity. UCP1 is strongly induced in White adipose tissue with β3-adrenergic agonist treatment, but the causes of this increase have not been fully elucidated. This study aims to explore more miRNAs involved in the process of browning of visceral adipose tissue. Methods. Total of fourteen mice were randomly divided into control and study group. Study group mice were injected intraperitoneally with CL316243 once daily for seven days; meanwhile the control group were treated with 0.9% NaCl. After a 7-day period, the expression of genes involved in WAT browning and potential UCP1-targeting miRNAs in adipose tissues was analyzed by qPCR. Results. qPCR analysis revealed that UCP1, DIO2, CIDEA, and CPT1B in epididymal adipose tissue were overexpressed in CL316243 group. Furthermore, potential UCP1-targeting miR-9 and miR-338-3p in epididymal adipose tissue were significantly decreased in CL316243 group. Conclusion. This suggests that potential UCP1-targeting miR-9 and miR-338-3p may be involved in the browning of epididymal adipose tissue by regulating UCP1 gene expression. In this study, we demonstrated that this increase of UCP1 is due, at least in part, to the decreased expression of certain UCP1-targeting miRNAs in epididymal adipose tissue compared to control.

  14. Effects of β2 adrenergic receptor agonists on acute myocardial ischemia%沙丁胺醇对急性心肌缺血模型大鼠心电图及血清心肌酶谱的影响

    Institute of Scientific and Technical Information of China (English)

    李艳; 李明; 高伟


    目的:探讨β2肾上腺素受体激动剂沙丁胺醇(Salbutamol)对急性心肌缺血模型大鼠心电图及血清天冬氨酸转氨酶(AST)、乳酸脱氢酶(LDH)、肌酸激酶(CK)和超氧化物歧化酶(SOD)表达的影响.方法:采用舌下静脉注射垂体后叶素(1U/kg,6U/ml)的方法制备大鼠急性心肌缺血模型.静脉滴注5%葡萄糖500ml含沙丁胺醇(Sal butamol)0.18 mg(滴速0.5 ml/min),记录大鼠心电图J点位移及T波变化.测定血清AST、LDH、CK和SOD的含量.结果:β2受体激动剂Salbutamol恢复了由急性心肌缺血造成的心电图J点位移及T波变化值的异常改变,降低了心肌缺血大鼠血清AST、LDH和CK的水平,升高了血清SOD含量.结论:Salbutamol对急性心肌缺血具有一定的保护作用,该作用可能与降低肿瘤坏死因子-α的表达有关.%Objective: To observe the effects of p2 adrenergic agonists-salbutamol on the ECG and the levels of serum AST, LD, CK and SOD in the acute myocardial ischemia rats models. Methods: Injecting pituitrin (lU/kg, 6U/ml) into sublingual vein simulated the acute ischemic rats models. Intravenous 5% glucose containing salbutamol 0. 18 mg to record the displacement of J point and the changing of T wave. To determine the contents of serum AST, LDH, CK and SOD. Results: (32 adrenergic agonists-salbutamol reversed the abnormal changes of ECG induced by acute myocardial ischemia, and decreased the levels of serum AST, LDH, CK and SOD. Conclusion: Salbutamol have a certain protective effect on acute myocardial ischemia, which might involved with an downregulation of TNF2α.

  15. 抗哮喘药物β2肾上腺素受体激动剂的药物基因组学研究进展%Pharmacogenomics of β2-Adrenergic Receptor Agonists in Asthma Therapy

    Institute of Scientific and Technical Information of China (English)

    李浩; 王永庆; 孟玲; 刘菲; 龚晓健; 魏继福


    尽管目前临床上用于治疗哮喘的药物有许多种,但这些药物对部分患者的疗效却很差.有证据表明这种个体差异与个人的基因差异密切相关.本文主要针对临床上常用的治疗哮喘的药物B2-肾上腺素受体激动剂的药物基因组学进行综述,并提出了今后有关这一领域的研究方向,用以提高药物治疗效果,减少副作用,并降低患者的治疗费用.%Despite there are several classes of asthma medications clinically available, a significant portion of patients fail to respond to these therapeutic agents. Evidence suggests that genetic factors may partly mediate the heterogeneity in asthma treatment responses. This review focuses on one of the major classes of asthma medications—β2 -adrenergic receptor agonists, discusses important findings in asthma pharmacogenetic and pharmacogenomic studies and proposes future research directions in this field in order to improve therapeutic outcome, minimize side effects and lead to a more cost-effective care.

  16. [Mivazerol and other benzylimidazoles with alpha-2 adrenergic properties]. (United States)

    Cossement, E; Geerts, J P; Michel, P; Motte, G; Noyer, M


    4-Benzyl-imidazole compounds derived from Salbutanol are evaluated for potential adrenergic activities. The prevalent property of a series of new bioisosteres of catecholamines either of the saligenol-(ucb LO61) or benzamide-(Mivazerol) type is a selective alpha-adrenergic agonism, at the presynaptic level. The present study stresses the structural features responsible for the alpha-2-agonistic property.

  17. A Phase 3 Placebo-Controlled, Double Blind, Multi-Site Trial of the alpha-2-adrenergic Agonist, Lofexidine, for Opioid Withdrawal (United States)

    Yu, Elmer; Miotto, Karen; Akerele, Evaristo; Montgomery, Ann; Elkashef, Ahmed; Walsh, Robert; Montoya, Ivan; Fischman, Marian W.; Collins, Joseph; McSherry, Frances; Boardman, Kathy; Davies, David K.; O’Brien, Charles P.; Ling, Walter; Kleber, Herbert; Herman, Barbara H.


    Context Lofexidine is an alpha-2-A noradrenergic receptor agonist that is approved in the United Kingdom for the treatment of opioid withdrawal symptoms. Lofexidine has been reported to have more significant effects on decreasing opioid withdrawal symptoms with less hypotension than clonidine. Objective To demonstrate that lofexidine is well tolerated and effective in the alleviation of observationally-defined opioid withdrawal symptoms in opioid dependent individuals undergoing medically supervised opioid detoxification as compared to placebo. Design An inpatient, Phase 3, placebo-controlled, double blind, randomized multi-site trial with three phases: (1) Opioid Agonist Stabilization Phase (days 1–3), (2) Detoxification/Medication or Placebo Phase (days 4–8), and (3) Post Detoxification/Medication Phase (days 9–11). Subjects Sixty-eight opioid dependent subjects were enrolled at three sites with 35 randomized to lofexidine and 33 to placebo. Main Outcome Measure Modified Himmelsbach Opiate Withdrawal Scale (MHOWS) on study day 5 (2nd opioid detoxification treatment day). Results Due to significant findings, the study was terminated early. On the study day 5 MHOWS, subjects treated with lofexidine had significantly lower scores (equating to fewer/less severe withdrawal symptoms) than placebo subjects (Least squares means 19.5 ± 2.1 versus 30.9 ± 2.7; p=0.0019). Lofexidine subjects had significantly better retention in treatment than placebo subjects (38.2% versus 15.2%; Log rank test p=0.01). Conclusions Lofexidine is well tolerated and more efficacious than placebo for reducing opioid withdrawal symptoms in inpatients undergoing medically supervised opioid detoxification. Trial Registration trial registry name A Phase 3 Placebo-Controlled, Double-Blind Multi-Site Trial of Lofexidine for Opiate Withdrawal, registration number NCT00032942, URL for the registry PMID:18508207

  18. Increase in skeletal muscle protein content by the ß-2 selective adrenergic agonist clenbuterol exacerbates hypoalbuminemia in rats fed a low-protein diet

    Directory of Open Access Journals (Sweden)

    A.L. Sawaya


    Full Text Available This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL. Males (4 weeks old from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group. CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A, were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05. Total liver protein decreased below the level seen in either pair-fed animals (group P or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05, whereas gastrocnemius muscle protein was higher than the values normally described for control (C animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05. Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05. This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05. Brown adipose tissue (BAT cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05, was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05. The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.

  19. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    Directory of Open Access Journals (Sweden)

    Shogo Sato


    Full Text Available We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  20. Contribution of α- and β-Adrenergic Mechanisms to the Development of Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Beate Rassler


    Full Text Available Endogenous or exogenous catecholamines can induce pulmonary edema (PE. This may occur in human pathologic conditions such as in pheochromocytoma or in neurogenic pulmonary edema (NPE but can also be provoked after experimental administration of adrenergic agonists. PE can result from stimulation with different types of adrenergic stimulation. With -adrenergic treatment, it develops more rapidly, is more severe with abundant protein-rich fluid in the alveolar space, and is accompanied by strong generalized inflammation in the lung. Similar detrimental effects of -adrenergic stimulation have repeatedly been described and are considered to play a pivotal role in NPE or in PE in patients with pheochromocytoma. Although -adrenergic agonists have often been reported to prevent or attenuate PE by enhancing alveolar fluid clearance, PE may also be induced by -adrenergic treatment as can be observed in tocolysis. In experimental models, infusion of -adrenergic agonists induces less severe PE than -adrenergic stimulation. The present paper addresses the current understanding of the possible contribution of - and -adrenergic pathways to the development of PE.

  1. Pregnancy modifies the alpha2-beta-adrenergic receptor functional balance in rabbit fat cells. (United States)

    Bousquet-Mélou, A; Muñoz, C; Galitzky, J; Berlan, M; Lafontan, M


    The sympathetic nervous system controls lipolysis in fat by activation of four adrenergic receptors: beta1, beta2, beta3, and alpha2. During pregnancy, maternal metabolism presents anabolic and catabolic phases, characterized by modifications of fat responsiveness to catecholamines. The contributions of the four adrenergic receptors to adipocyte responsiveness during pregnancy have never been studied. Our aim was to evaluate the influence of pregnancy on adrenergic receptor-mediated lipolysis in rabbit white adipocytes. Functional studies were performed using subtype-selective and non-selective adrenergic receptor agonists. Overall adrenergic responsiveness was measured with the physiological agonist epinephrine. Non-adrenergic agents were used to evaluate different steps of the lipolytic cascade. The alpha2- and beta1/beta2-adrenergic receptor numbers were determined with selective radioligands. Non-adrenergic agents revealed that pregnancy induced an intracytoplasmic modification of the lipolytic cascade in inguinal but not in retroperitoneal adipocytes. Pregnancy induced an increase in beta1- and specially beta3-mediated lipolysis. The amounts of adipocyte beta1/beta2- and alpha2-adrenergic receptors were increased in pregnant rabbits. Epinephrine effects revealed an increased contribution of alpha2-adrenergic receptor-mediated antilipolysis in adipocytes from pregnant rabbits. These results indicate that pregnancy regulates adipocyte responsiveness to catecholamines mainly via the alpha2- and beta3-adrenergic pathways. Pregnancy induces an intracytoplasmic modification of the lipolytic cascade, probably via hormone-sensitive lipase, with differences according to fat location.-Bousquet-Mélou, A., C. Muñoz, J. Galitzky, M. Berlan, and M. Lafontan. Pregnancy modifies the alpha2-beta-adrenergic receptor functional balance in rabbit fat cells.

  2. Glycogenolysis response to adrenergic agonists in the liver of rats treated with monosodium glutamate (MSG = Resposta glicogenolítica à agonistas adrenérgicos no fígado de ratos tratados com glutamato monossódico (MSG

    Directory of Open Access Journals (Sweden)

    Rosana Torrezan


    Full Text Available Administration of MSG to neonate rats causes lesions in the arcuate nucleus (AN, followed by a syndrome of neuroendocrine dysfunction characterized by obesity and decreased sympathetic activity. The aim of the present investigation was to examine the responses of hepatic glycogenolysis to α- and β-adrenergic agonists in rats’ treatment with MSG. Male Wistar rats received subcutaneous injections of MSG (4 mg g-1 body weight or hyperosmotic saline (controls during five days after birth. Ninety days after treatment, the livers of the MSG or controls rats were perfused in situ with epinephryne and α- and β-adrenergic agonists. Epinephryne, Isoproterenol and phenylephrine increased glycogenolysis in the MSGtreated rats, compared to the controls (50 ± 2.8 Vs 17 ± 0.89 μmol min-1 g-1 of liver, pAdministração de glutamato monossódico (MSG em ratos neonatos causa lesão no núcleo arqueado (NA, seguido por uma síndrome de disfunção neuroendócrina caracterizada por obesidade e reduzida atividade simpática. O objetivo da presente investigação foi examinar a resposta da glicogenólise hepática a agonistas adrenérgico em ratos tratados com MSG. Ratos Wistar machos receberam injeções subcutâneas de MSG (4 mg g-1 de peso corporal ou salina equimolar (controles durante cinco dias após o nascimento. Noventa dias após o tratamento, os fígados de ratos-MSG ou controles foram perfundidos in situ com epinefrina e agonistas α- e β-adrenérgico. Isoproterenol, fenilefrina e epinefrina aumentaram a glicogenólise em ratos-MSG, comparados aos controles (50 ± 2,8 Vs 17 ± 0,89 μmol min-1 g-1 de fígado, p<0,0001; 64 ± 0,15 Vs 37 ± 0,39, p<0,0001; 35 ± 2,48 Vs 27 ± 0,98, p<0,05, respectivamente. Concluiu-se que a lesão do NA aumentou o catabolismo do glicogênio aos agonistas adrenérgicos, possivelmente devido à reduzida atividade do eixo simpático - medula adrenal.

  3. Analysis of adrenergic regulation of melatonin synthesis in Siberian hamster pineal emphasizes the role of HIOMT. (United States)

    Ceinos, R M; Chansard, M; Revel, F; Calgari, C; Míguez, J M; Simonneaux, V


    Seasonal variations of environmental factors are translated into annual fluctuations in synthesis and release of melatonin, which in turn acts as a neuroendocrine messenger for the synchronization of annual functions. So far, most studies performed to understand the regulation of melatonin synthesis have used the non seasonal laboratory rat. It was demonstrated that nocturnal melatonin synthesis depends on alpha- and beta-adrenergic activation of the enzyme arylalkylamine N-acetyltransferase (AA-NAT). In this study, we investigated the mechanisms of melatonin synthesis in the Siberian hamster, a seasonal species with marked photoperiodic variation in melatonin peak duration and amplitude. A beta-adrenergic receptor agonist alone markedly stimulated AA-NAT activity and melatonin synthesis and release. An alpha-adrenergic receptor agonist, while having no effect per se, potentiated the beta-adrenergic stimulation of AA-NAT activity both in vitro and in vivo. Strikingly, the potentiation of AA-NAT activity did not result in a potentiation of melatonin synthesis, suggesting that the rate of melatonin production is limited downstream in the metabolic pathway, most probably at the level of hydroxyindole-O-methyltransferase (HIOMT). HIOMT presented a constitutively high activity that was not acutely (within hours) stimulated by beta-adrenergic agonist, but was rather up-regulated by chronic application of the agonist. This long-term beta-adrenergic regulation may explain the reported large photoperiodic variation of HIOMT activity that drives the photoperiodic variation in melatonin peak.

  4. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Noble, E.P.; Ritchie, T.; de Vellis, J.


    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  5. Impact of the Tamsulosin in Alpha Adrenergic Receptor of Airways at Patients with Increased Bronchial Reactibility


    Mustafa, Lirim; Ilazi, Ali; Dauti, Arta; Islami, Pellumb; Kastrati, Bashkim; Islami, Hilmi


    Objective: In this work, effect of tamsulosin as antagonist of alpha1A and alpha1B adrenergic receptor and effect of agonists of beta2 adrenergic receptor–salbutamol in patients with increased bronchial reactibility was studied. Methods: Parameters of the lung function are determined with Body plethysmography six (6) hours after administration of tamsulosin. Raw and ITGV were registered and specific resistance (SRaw) was calculated as well. Tamsulosin was administered in per os manner as a pr...

  6. Resposta glicogenolítica à agonistas adrenérgicos no fígado de ratos tratados com glutamato monossódico (MSG - DOI: 10.4025/actascihealthsci.v28i2.1103 Glycogenolysis response to adrenergic agonists in the liver of rats treated with monosodium glutamate (MSG - DOI: 10.4025/actascihealthsci.v28i2.1103

    Directory of Open Access Journals (Sweden)

    Nilton de Almeida Brito


    Full Text Available Administração de glutamato monossódico (MSG em ratos neonatos causa lesão no núcleo arqueado (NA, seguido por uma síndrome de disfunção neuroendócrina caracterizada por obesidade e reduzida atividade simpática. O objetivo da presente investigação foi examinar a resposta da glicogenólise hepática a agonistas adrenérgico em ratos tratados com MSG. Ratos Wistar machos receberam injeções subcutâneas de MSG (4 mg g-1 de peso corporal ou salina equimolar (controles durante cinco dias após o nascimento. Noventa dias após o tratamento, os fígados de ratos-MSG ou controles foram perfundidos in situ com epinefrina e agonistas α- e β-adrenérgico. Isoproterenol, fenilefrina e epinefrina aumentaram a glicogenólise em ratos-MSG, comparados aos controles (50 ± 2,8 Vs 17 ± 0,89 μmol min-1 g-1 de fígado, p Administration of MSG to neonate rats causes lesions in the arcuate nucleus (AN, followed by a syndrome of neuroendocrine dysfunction characterized by obesity and decreased sympathetic activity. The aim of the present investigation was to examine the responses of hepatic glycogenolysis to α- and β-adrenergic agonists in rats’ treatment with MSG. Male Wistar rats received subcutaneous injections of MSG (4 mg g-1 body weight or hyperosmotic saline (controls during five days after birth. Ninety days after treatment, the livers of the MSG or controls rats were perfused in situ with epinephryne and α- and β-adrenergic agonists. Epinephryne, Isoproterenol and phenylephrine increased glycogenolysis in the MSG-treated rats, compared to the controls (50 ± 2.8 Vs 17 ± 0.89 μmol min-1 g-1 of liver, p < 0.0001; 64 ± 0.15 Vs 37 ± 0.39, p < 0.0001; 35 ± 2.48 Vs 27 ± 0.98, p < 0.05, respectively. Results indicated that the lesion in the AN increased glycogen catabolism to adrenergic agonists, possibly, due to the reduced activity of the sympathetic-adrenal axis

  7. Adrenergic effects on secretion of epidermal growth factor from Brunner's glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier


    The influence of the sympathetic nervous system and adrenergic agonists on flow rate and secretion of epidermal growth factor (EGF) from Brunner's glands has been investigated in the rat. Chemical sympathectomy by administration of 6-hydroxydopamine increased volume secretion and output of EGF from...... Brunner's glands but depleted the glands of EGF. Infusion of noradrenaline, an alpha-adrenergic agonist, inhibited basal and vasoactive intestinal polypeptide (VIP) stimulated flow rate and output of EGF from Brunner's glands and increased the amount of EGF in the tissue. Vasoactive intestinal polypeptide...... also increased the amount of EGF in Brunner's gland tissue and this was unchanged after simultaneous infusion of VIP and noradrenaline as well as VIP and isoproterenol, a beta-adrenergic agonist. Isoproterenol had no effect on basal and VIP stimulated secretion of EGF from Brunner's glands...

  8. Social crowding stress diminishes the pituitary-adrenocortical and hypothalamic histamine response to adrenergic stimulation. (United States)

    Bugajski, J; Gadek-Michalska, A; Borycz, J


    Social stress of crowding almost totally reduced the rise in serum corticosterone elicited by intracerebroventricular administration of isoprenaline, a beta-adrenergic receptor agonist, after 3 and 7 day of crowding and substantially diminished that response after 14 and 21 days. Crowding stress totally abolished the increase in hypothalamic histamine induced by isoprenaline in control rats. Crowding also significantly diminished the increase in serum corticosterone evoked by clonidine, an alpha 2-adrenergic agonist, and abolished the clonidine-induced elevation in hypothalamic histamine levels. The stimulatory effect of phenylephrine, an alpha 1-adrenergic agonist, on corticosterone secretion was only moderately diminished in crowded rats. Neither phenylephrine nor crowding stress changed significantly the hypothalamic histamine levels. These results indicate that social stress of crowding considerably impairs the hypothalamic-pituitary-adrenocortical responsiveness to central beta- and alpha 2-adrenergic receptor stimulation. Crowding also abolishes the rise in hypothalamic histamine induced by beta- and alpha 2-adrenergic agonist, suggesting a role of hypothalamic histamine in the HPA adaptation to the social stress of crowding.

  9. Beta-adrenergic stimulation of phagocytosis in the unicellular eukaryote Paramecium aurelia. (United States)

    Wyroba, E


    Bete-adrenergic agonists isoproterenol and norepinephrine enhanced phagocytosis in Paramecium. Stimulation was stereospecific, dose-dependent and inhibited by the beta-agonists propranolol and alprenolol. Phorbol ester and forskolin potentiated the stimulatory effect of catecholamines on Paramecium phagocytosis. The dansyl analogue of propranolol (DAPN) was used for fluorescent visualization of the beta-adrenergic receptor sites in Paramecium which have been found to be localized at the cell membrane and within the membrane of the nascent digestive vacuoles. The appearance of the characteristic fluorescent pattern has been blocked by 1-propranolol.

  10. Adrenergic deficiency leads to impaired electrical conduction and increased arrhythmic potential in the embryonic mouse heart. (United States)

    Baker, Candice; Taylor, David G; Osuala, Kingsley; Natarajan, Anupama; Molnar, Peter J; Hickman, James; Alam, Sabikha; Moscato, Brittany; Weinshenker, David; Ebert, Steven N


    To determine if adrenergic hormones play a critical role in the functional development of the cardiac pacemaking and conduction system, we employed a mouse model where adrenergic hormone production was blocked due to targeted disruption of the dopamine β-hydroxylase (Dbh) gene. Immunofluorescent histochemical evaluation of the major gap junction protein, connexin 43, revealed that its expression was substantially decreased in adrenergic-deficient (Dbh-/-) relative to adrenergic-competent (Dbh+/+ and Dbh+/-) mouse hearts at embryonic day 10.5 (E10.5), whereas pacemaker and structural protein staining appeared similar. To evaluate cardiac electrical conduction in these hearts, we cultured them on microelectrode arrays (8×8, 200 μm apart). Our results show a significant slowing of atrioventricular conduction in adrenergic-deficient hearts compared to controls (31.4±6.4 vs. 15.4±1.7 ms, respectively, pheart rate and rhythm, mouse hearts from adrenergic-competent and deficient embryos were cultured ex vivo at E10.5, and heart rates were measured before and after challenge with the β-adrenergic receptor agonist, isoproterenol (0.5 μM). On average, all hearts showed increased heart rate responses following isoproterenol challenge, but a significant (phearts. These results show that adrenergic hormones may influence heart development by stimulating connexin 43 expression, facilitating atrioventricular conduction, and helping to maintain cardiac rhythm during a critical phase of embryonic development.

  11. Characterization and regulation of. beta. /sub 2/-adrenergic receptors in rat vas deferens

    Energy Technology Data Exchange (ETDEWEB)

    May, J.M.


    ..beta../sub 2/-Adrenergic receptors in rat vas deferens were examined by measuring the binding of /sup 125/I-pindolol (/sup 125/IPIN) to membrane preparations and the inhibition of evoked contractions in intact tissues. /sup 125/IPIN labeled a single class of binding sites with mass action kinetics. Affinity constants for ..beta..-adrenergic receptor antagonists calculated from both binding and functional experiments agreed well, suggesting that /sup 125/IPIN labels the functional ..beta../sub 2/-adrenergic receptor. n-Bromoacetylalprenololmenthane (BAAM) was used to decrease receptor density so that agonist affinity constants could be determined functionally. Treatment of tissues with BAAM decreased the functional potencies of agonists. Higher concentrations of BAAM decreased the maximum tissue response. Affinity constants for agonists calculated after BAAM treatment were compared to affinity constants determined from binding studies done under conditions designed to promote high or low affinity agonist binding. Functional affinity constants for isoproterenol and salbutamol agreed with the low affinity binding constants, suggesting that the low affinity form of the receptor initiates the functional response. Because acute denervation of vasa deferentia did not alter the density of /sup 125/IPIN binding sites, the sites are probably post-junctional. Chronic infusion of isoproterenol reduced the potency of isoproterenol, the maximum tissue response, and the receptor density. These results suggest that ..beta..-adrenergic receptor density and responsiveness in rat vas deferens are not affected by removing catecholamine sources, but receptor density and responsiveness can be decreased by increasing agonist concentration at the receptor.

  12. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J


    by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...... to diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  13. The β3-adrenergic receptor is dispensable for browning of adipose tissues. (United States)

    de Jong, Jasper M A; Wouters, René T F; Boulet, Nathalie; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa


    Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2 and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus, our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. This should be taken into account in the increasing number of studies on the induction of browning and their extrapolation to human physiology.

  14. Beta-Adrenergic gene therapy for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Koch Walter J


    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  15. Protection against Acetylcholinesterase Inhibitor Toxicity by Alpha- Adrenergic Agonists (United States)


    in Rats 22 " fable 4 Prevalence of Soman-Evoked Behaviors at the Time of Maximal Expression 23 Table 5 Open-field Motor Activity 2 Days After Soman... Brecht , K.M. and Lenz, D.E. (1987). Effect of carboxylesterase inhibition on carbamate protection against soman toxicity. In: Proceedings of the 1987...Medical Defense Bioscience Review, Aberdeen Proving Ground. pp. 17-24. 33. Maxwell, D.M., Brecht . K.M. and O’neill, B.L1 (1987).The effect of

  16. A single bout of exercise induces beta-adrenergic desensitization in human adipose tissue. (United States)

    Marion-Latard, F; De Glisezinski, I; Crampes, F; Berlan, M; Galitzky, J; Suljkovicova, H; Riviere, D; Stich, V


    This study was designed to assess whether physiological activation of the sympathetic nervous system induced by exercise changes adipose tissue responsiveness to catecholamines in humans. Lipid mobilization in abdominal subcutaneous adipose tissue was studied with the use of a microdialysis method in 11 nontrained men (age: 22. 3 +/- 1.5 yr; body mass index: 23.0 +/- 1.6). Adipose tissue adrenergic sensitivity was explored with norepinephrine, dobutamine (beta(1)-agonist), or terbutaline (beta(2)-agonist) perfused during 30 min through probes before and after 60-min exercise (50% of the maximal aerobic power). The increase in extracellular glycerol concentration during infusion was significantly lower after the exercise when compared with the increase observed before the exercise (P < 0.05, P < 0.02, and P < 0.01, respectively, for norepinephrine, dobutamine, and terbutaline). In a control experiment realized without exercise, no difference in norepinephrine-induced glycerol increase between the two infusions was observed. To assess the involvement of catecholamines in the blunted beta-adrenergic-induced lipolytic response after exercise, adipose tissue adrenergic sensitivity was explored with two 60-min infusions of norepinephrine or epinephrine separated by a 60-min interval. With both catecholamines, the increase in glycerol was significantly lower during the second infusion (P < 0.05). The findings suggest that aerobic exercise, which increased adrenergic activity, induces a desensitization in beta(1)- and beta(2)-adrenergic lipolytic pathways in human subcutaneous adipose tissue.

  17. Impact of the Tamsulosin in Alpha Adrenergic Receptor of Airways at Patients with Increased Bronchial Reactibility (United States)

    Mustafa, Lirim; Ilazi, Ali; Dauti, Arta; Islami, Pellumb; Kastrati, Bashkim; Islami, Hilmi


    Objective: In this work, effect of tamsulosin as antagonist of alpha1A and alpha1B adrenergic receptor and effect of agonists of beta2 adrenergic receptor–salbutamol in patients with increased bronchial reactibility was studied. Methods: Parameters of the lung function are determined with Body plethysmography six (6) hours after administration of tamsulosin. Raw and ITGV were registered and specific resistance (SRaw) was calculated as well. Tamsulosin was administered in per os manner as a preparation in the shape of the capsules with a brand name of “Prolosin”, produced by Niche Generics Limited, Hitchin, Herts. Results: After six (6) hours of administration of tamsulosin, results gained indicate that blockage of alpha1A and alpha1B-adrenergic receptor (0.8 mg per os) has not changed significantly (p > 0.1) the bronchomotor tonus of tracheobronchial tree in comparison to the check-up that has inhaled salbutamol agonist of adrenergic beta2 receptor (2 inh. x 0.2 mg), (p < 0.05). Blood pressure suffered no significant decrease following administration of the 0.8 mg dose of tamsulosin. Conclusion: This suggests that even after six hours of administration of tamsulosin, and determining of lung function parameters, the activity of alpha1A and alpha1B-adrenergic receptor in the smooth bronchial musculature has not changed in patients with increased bronchial reactibility. PMID:26543414

  18. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    Energy Technology Data Exchange (ETDEWEB)

    Taouis, M.; Berlan, M.; Lafontan, M.


    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  19. Sports doping: emerging designer and therapeutic β2-agonists. (United States)

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F


    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  20. Immunoanalogue of vertebrate beta-adrenergic receptor in the unicellular eukaryote Paramecium. (United States)

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta


    Cell fractionation, SDS-PAGE, quantitative Western blot, confocal immunolocalization and immunogold labelling were performed to find an interpretation of the physiological response of the unicellular eukaryote Paramecium to beta-adrenergic ligands. The 69 kDa polypeptide separated by SDS-PAGE in S2 and P2 Paramecium subcellular fractions cross-reacted with antibody directed against human beta2-adrenergic receptor. This was detected by Western blotting followed by chemiluminescent detection. Quantitative image analysis showed that beta-selective adrenergic agonist (-)-isoproterenol--previously shown to enhance phagocytic activity--evoked redistribution of the adrenergic receptor analogue from membraneous (P2) to cytosolic (S2) fraction. The relative increase in immunoreactive band intensity in S2 reached 80% and was paralleled by a 59% decrease in P2 fraction. Confocal immunofluorescence revealed beta2-adrenergic receptor sites on the cell surface and at the ridge of the cytopharynx--where nascent phagosomes are formed. This localization was confirmed by immunoelectron microscopy. These results indicate that the 69 kDa Paramecium polypeptide immunorelated to vertebrate beta2-adrenergic receptor appeared in this evolutionary ancient cell as a nutrient receptor.

  1. Inhaled adrenergics and anticholinergics in obstructive lung disease: do they enhance mucociliary clearance? (United States)

    Restrepo, Ruben D


    Pulmonary mucociliary clearance is an essential defense mechanism against bacteria and particulate matter. Mucociliary dysfunction is an important feature of obstructive lung diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, and bronchiectasis. This dysfunction in airway clearance is associated with accelerated loss of lung function in patients with obstructive lung disease. The involvement of the cholinergic and adrenergic neural pathways in the pathophysiology of mucus hypersecretion suggests the potential therapeutic role of bronchodilators as mucoactive agents. Although anticholinergics and adrenergic agonist bronchodilators have been routinely used, alone or in combination, to enhance mucociliary clearance in patients with obstructive lung disease, the existing evidence does not consistently show clinical effectiveness.

  2. Antagonism of apomorphine-enhanced startle by alpha 1-adrenergic antagonists. (United States)

    Davis, M; Kehne, J H; Commissaris, R L


    The present study investigated the possible involvement of central noradrenergic neurons in mediating the excitatory effect of the dopamine agonist apomorphine on the acoustic startle response in rats. Experiment 1 assessed the effects of intraperitoneal (i.p.) administration of adrenergic antagonists on apomorphine-enhanced startle. The excitation of startle produced by apomorphine (1.0-3.0 mg/kg i.p.) was blocked by the alpha 1-adrenergic antagonists prazosin (0.03-1.0 mg/kg) and WB-4101 (1.0 mg/kg). Prazosin was very potent in this regard, having an ED50 of 0.03 mg/kg. Blockade of beta-adrenergic receptors with propranolol (20 mg/kg) or blockade of peripheral alpha-adrenergic receptors with phentolamine (10 mg/kg) failed to alter the effect of apomorphine. Prazosin did not block the enhancement of startle produced by other drugs (5-methoxy-N,N-dimethyltryptamine, strychnine), nor did it alter the entry of apomorphine into the brain. The alpha 1-adrenergic antagonists piperoxane (0.03 mg/kg), yohimbine (0.03 mg/kg) or RX781094 (0.07 mg/kg) markedly potentiated apomorphine excitation. These data indicated that specific blockade of central alpha 1-adrenergic receptors prevents apomorphine-enhanced startle. In contrast to the effects of alpha 1-adrenergic antagonists, Experiment 2 found that other drugs that produce an acute (clonidine, 0.040 mg/kg) or chronic (intraventricular 6-hydroxydopamine, 2 X 200 micrograms; DSP4, 50 mg/kg i.p.) disruption of noradrenergic transmission failed to affect apomorphine excitation. Thus, the ability of alpha 1-adrenergic antagonists to block apomorphine's excitation of startle cannot be explained by a simple dopamine-norepinephrine interaction. Alternative hypothesis are discussed.

  3. Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors. (United States)

    Huang, H M; Gibson, G E


    An alteration in signal transduction systems in Alzheimer's disease would likely be of pathophysiological significance, because these steps are critical to normal brain function. Since dynamic processes are difficult to study in autopsied brain, the current studies utilized cultured skin fibroblasts. The beta-adrenergic-stimulated increase in cAMP was reduced approximately 80% in fibroblasts from Alzheimer's disease compared with age-matched controls. The deficit in Alzheimer fibroblasts in response to various adrenergic agonists paralleled their beta-adrenergic potency, and enhancement of cAMP accumulation by a non-adrenergic agonist, such as prostaglandin E1, was similar in Alzheimer and control fibroblasts. Diminished adenylate cyclase activity did not underlie these abnormalities, since direct stimulation of adenylate cyclase by forskolin elevated cAMP production equally in Alzheimer and control fibroblasts. Cholera toxin equally stimulated cAMP formation in Alzheimer and control fibroblasts. Moreover, cholera toxin partially reduced isoproterenol-induced cAMP deficit in Alzheimer fibroblasts. Pertussis toxin, on the other hand, did not alter the Alzheimer deficits. The results suggest either that the coupling of the GTP-binding protein(s) to the beta-adrenergic receptor is abnormal or that the sensitivity of receptor is altered with Alzheimer's disease. Further, any hypothesis about Alzheimer's disease must explain why a reduced beta-adrenergic-stimulated cAMP formation persists in tissue culture.

  4. Characterization of beta-adrenergic receptors in dispersed rat testicular interstitial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poyet, P.; Labrie, F.


    Recent studies have shown that beta-adrenergic agents stimulate steroidogenesis and cyclic AMP formation in mouse Leydig cells in culture. To obtain information about the possible presence and the characteristics of a beta-adrenergic receptor in rat testicular interstitial cells, the potent beta-adrenergic antagonist (/sup 125/I)cyanopindolol (CYP) was used as ligand. Interstitial cells prepared by collagenase dispersion from rat testis were incubated with the ligand for 2 h at room temperature. (/sup 125/I)cyanopindolol binds to a single class of high affinity sites at an apparent KD value of 15 pM. A number of sites of 6,600 sites/cell is measured when 0.1 microM (-) propranolol is used to determine non-specific binding. The order of potency of a series of agonists competing for (/sup 125/I)cyanopindolol binding is consistent with the interaction of a beta 2-subtype receptor: zinterol greater than (-) isoproterenol greater than (-) epinephrine = salbutamol much greater than (-) norepinephrine. In addition, it was observed that the potency of a large series of specific beta 1 and beta 2 synthetic compounds for displacing (/sup 125/I)cyanopindolol in rat interstitial cells is similar to the potency observed for these compounds in a typical beta 2-adrenergic tissue, the rat lung. For example, the potency of zinterol, a specific beta 2-adrenergic agonist, is 10 times higher in interstitial cells and lung than in rat heart, a typical beta 1-adrenergic tissue. Inversely, practolol, a typical beta 1-antagonist, is about 50 times more potent in rat heart than in interstitial cells and lung.

  5. Modulation of nicotinic receptor channels by adrenergic stimulation in rat pinealocytes (United States)

    Yoon, Jin-Young; Jung, Seung-Ryoung; Hille, Bertil


    Melatonin secretion from the pineal gland is triggered by norepinephrine released from sympathetic terminals at night. In contrast, cholinergic and parasympathetic inputs, by activating nicotinic cholinergic receptors (nAChR), have been suggested to counterbalance the noradrenergic input. Here we investigated whether adrenergic signaling regulates nAChR channels in rat pinealocytes. Acetylcholine or the selective nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) activated large nAChR currents in whole cell patch-clamp experiments. Norepinephrine (NE) reduced the nAChR currents, an effect partially mimicked by a β-adrenergic receptor agonist, isoproterenol, and blocked by a β-adrenergic receptor antagonist, propranolol. Increasing intracellular cAMP levels using membrane-permeable 8-bromoadenosine (8-Br)-cAMP or 5,6-dichlorobenzimidazole riboside-3′,5′-cyclic monophosphorothioate (cBIMPS) also reduced nAChR activity, mimicking the effects of NE and isoproterenol. Further, removal of ATP from the intracellular pipette solution blocked the reduction of nAChR currents, suggesting involvement of protein kinases. Indeed protein kinase A inhibitors, H-89 and Rp-cAMPS, blocked the modulation of nAChR by adrenergic stimulation. After the downmodulation by NE, nAChR channels mediated a smaller Ca2+ influx and less membrane depolarization from the resting potential. Together these results suggest that NE released from sympathetic terminals at night attenuates nicotinic cholinergic signaling. PMID:24553185

  6. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. (United States)

    Kawaura, Kazuaki; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko


    A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect.

  7. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130. (United States)

    Sanae, F; Miyamoto, K; Koshiura, R


    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  8. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A


    crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context...... of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting...

  9. Quantitation of alpha 1-adrenergic receptors in porcine uterine and mesenteric arteries

    Energy Technology Data Exchange (ETDEWEB)

    Farley, D.B.; Ford, S.P.; Reynolds, L.P.; Bhatnagar, R.K.; Van Orden, D.E.


    The activation of vascular alpha-adrenergic receptors may be involved in the control of uterine blood flow. A radioligand binding assay with the use of the alpha 1-adrenergic antagonist /sup 3/H-WB-4101 was established to characterize the alpha-adrenergic receptors in uterine and mesenteric arterial membranes obtained from nonpregnant pigs. Specific binding of /sup 3/H-WB-4101 was rapid, saturable, and exhibited the alpha-adrenergic agonist potency order of (-)-epinephrine inhibition constant (Ki) . 0.6 mumol/L greater than (-)-norepinephrine (Ki . 1.5 mumol/L) much greater than (-)-isoproterenol (Ki . 120 mumol/L). The alpha-adrenergic antagonist phentolamine (Ki . 6.0 nmol/L) was 200 times more potent than the beta-adrenergic antagonist (+/-)-propranolol (Ki . 1,200 nmol/L); the alpha 1-selective antagonist prazosin (Ki . 1.2 nmol/L) was 130 times more potent than the alpha 2-selective antagonist yohimbine (Ki . 160 nmol/L). Scatchard analysis, as well as iterative curve-fitting analysis, demonstrated that /sup 3/H-WB-4101 binding by arterial membranes was to a single class of binding sites. Uterine arteries exhibited greater maximal binding capacity (BMax) than that of mesenteric arteries (47.5 +/- 3.2 versus 30.9 +/- 3.6 fmol per milligram of protein, p less than 0.01), but the uterine artery dissociation constant (Kd) was higher, thus indicating a lower affinity, when compared with mesenteric artery (0.43 +/- 0.04 versus 0.33 +/- 0.04 nmol/L, p less than 0.05).

  10. Synthesis and characterization of arylamine derivatives of rauwolscine as molecular probes for alpha 2-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, S.M.; Graham, R.M.; Hess, H.J.; Grodski, A.; Repaske, M.G.; Nunnari, J.M.; Limbird, L.E.; Homcy, C.J.


    The selective alpha 2-adrenergic receptor antagonist rauwolscine was structurally modified to yield a series of arylamine carboxamide derivatives, which were investigated as potential molecular probes for the localization and structural characterization of alpha 2-adrenergic receptors. The arylamine carboxamides differ in the number of carbon atoms separating the reactive phenyl moiety from the fused ring structure of the parent compound, rauwolscine carboxylate. Competitive inhibition studies with (/sup 3/H)rauwolscine in rat kidney membranes indicate that the affinity for the carboxamide derivatives is inversely related to the length of the carbon spacer arm with rauwolscine 4-aminophenyl carboxamide exhibiting the highest affinity (Kd = 2.3 +/- 0.2 nM). Radioiodination of rau-AMPC yields a ligand, /sup 125/I-rau-AMPC, which binds to rat kidney alpha 2-adrenergic receptors with high affinity, as determined by both kinetic analysis (Kd = k2/k1 = 0.016 min-1/2.1 X 10(7) M-1 min-1 = 0.76 nM) and equilibrium binding studies (Kd = 0.78 +/- 0.16 nM). /sup 125/I-rau-AMPC was quantitatively converted to the photolabile arylazide derivative 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-azido-3-(/sup 125/I)iodophenyl) carboxamide (/sup 125/I-rau-AZPC). In a partially purified receptor preparation from porcine brain, this compound photolabels a major (Mr = 62,000) peptide. The labeling of this peptide is inhibited by adrenergic agonists and antagonists with a rank order of potency consistent with an alpha 2-adrenergic receptor binding site. Both /sup 125/I-rau-AMPC and the photolabile arylazide derivative, /sup 125/I-rau-AZPC, should prove useful as molecular probes for the structural and biochemical characterization of alpha 2-adrenergic receptors.

  11. GLP-1 Receptor Agonists (United States)

    ... in Balance › GLP-1 Receptor Agonists Fact Sheet GLP-1 Receptor Agonists May, 2012 Download PDFs English Espanol Editors Silvio ... are too high or too low. What are GLP-1 receptor agonist medicines? GLP-1 receptor agonist medicines, also called ...

  12. Binding of (3H)dihydroergocryptine to an alpha-adrenergic site in the stalk median eminence of the steer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.T.; Roberts, J.M.; Weiner, R.I.


    Dihydroergocryptine (DHE), a potent dopamine agonist and alpha-adrenergic antagonist, has been used as a radioligand to characterize both dopamine and alpha-adrenergic receptors. In the present study, the binding of (3H)DHE to particulate fractions of the steer stalk median eminence was characterized using a filtration assay. Specific binding was defined by the presence of 10 microM phentolamine or by an iterative nonlinear hyperbolic curve-fitting program. Scatchard analysis of equilibrium isotherms of specific binding defined a single high affinity (Kd . 1.78 +/- 0.22 nM), saturable (maximum binding, 481 +/- 39 fmol/mg protein), stereoselective binding site. The Kd, calculated from the ratio of the rate constants k2 and k1, was 2.8 +/- 0.14 nM. The rank order of potency of agonists to compete for (3H)DHE binding (l-epinephrine greater than l-norepinephrine greater than dopamine greater than l-isoproterenol) was consistent with interactions at an alpha-adrenergic site. The rank order of potency of alpha-antagonists (phentolamine greater than yohimbine greater than prazosin) suggested that this was an alpha 2-adrenergic receptor. The affinity of dopamine agonists for the (3H)DHE-binding site was 10-fold lower relative to their potency at known dopamine receptors, while the affinity of dopaminergic antagonists was 100-fold lower. Furthermore, Scatchard analysis of specific (3H)DHE binding in the presence of a concentration of spiperone which should saturate dopamine receptors, only decreased the number of binding sites by 9%. These data demonstrate the presence of large numbers of alpha-adrenergic receptors in the stalk median eminence of the steer. Only a small number of dopaminergic binding sites for (3H)DHE appeared to be present.

  13. Beta-adrenergic signals regulate cardiac differentiation of mouse embryonic stem cells via mitogen-activated protein kinase pathways. (United States)

    Yan, Lihui; Jia, Zhuqing; Cui, Jingjing; Yang, Hongtao; Yang, Huangtian; Zhang, Yongzhen; Zhou, Chunyan


    As embryonic stem cell-derived cardiomyocytes (ESC-CMs) have the potential to be used in cell replacement therapy, an understanding of the signaling mechanisms that regulate their terminal differentiation is imperative. In previous studies, we discovered the presence of adrenergic and muscarinic receptors in mouse embryonic stem cells (ESCs). However, little is known about the role of these receptors in cardiac differentiation and development, which is critically important in cardiac physiology and pharmacology. Here, we demonstrated that a β-adrenergic receptor (β-AR) agonist significantly enhanced cardiac differentiation as indicated by a higher percentage of beating embryoid bodies and a higher expression level of cardiac markers. Application of β1-AR and β2-AR antagonists partly abolished the effect of the β-AR agonist. In addition, by administering selective inhibitors we found that the effect of β-AR was driven via p38 mitogen-activated protein kinase and extracellular-signal regulated kinase pathway. These findings suggest that ESCs are also a target for β-adrenergic regulation and β-adrenergic signaling plays a role in ESC cardiac differentiation.

  14. The relationship between some beta-adrenergic mediated responses and plasma concentrations of adrenaline and cyclic AMP in man

    DEFF Research Database (Denmark)

    Philipsen, E K; Myhre, John Gabriel; Larsen, S;


    concentrations at low adrenaline infusion rates was prevented, whereas a small increase in cyclic AMP was found at high adrenaline infusion rates, probably owing to incomplete beta-receptor blockade. Likewise, the adrenaline-induced increments in blood substrates (glucose, lactate, glycerol and beta......To test the hypothesis that increments in plasma cyclic AMP during beta-adrenergic stimulation reflect integrated second messenger function of the tissues activated by the agonist, graded adrenaline infusion resulting in plasma adrenaline concentrations within the physiological range was performed...... hydroxybutyric acid) were significantly reduced but not completely prevented by beta-blockade. We conclude that an altered relationship between beta-agonist concentrations and plasma cyclic AMP may provide evidence for the existence of differences in beta-adrenergic sensitivity in man....

  15. β2 Adrenergic receptor on T lymphocytes and its clinical implications

    Institute of Scientific and Technical Information of China (English)

    Xuelai Fan; Yuedan Wang


    Sustained complex cross-talk between the immune system and the nervous system plays a vital role in retaining homeostasis in a healthy individual.One of the central regulatory mechanisms involved is the existence and functions of β2-adrenergic receptors (β2AR) on T lymphocytes.This article reviews research progress made recently,including the expression of adrenergic receptors on Tlymphocytes,the structure and intracellular pathways of β2AR,the activation of I32AR by either endogenous or exogenous agonists,and the effect of β2AR stimulation on T cells which alters T cell proliferation,differentiation,cytokine production and T-helper-mediated antibody production.Furthermore,we discuss the roles of β2AR played in the pathogenesis and treatment of autoimmune diseases.

  16. Adrenergic blockade in diabetic and uninephrectomized rats

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Jørgensen, P E


    was comparable. In adrenergic antagonist treated diabetic rats, it was reduced by at least 40% throughout the study period. Uninephrectomy caused a 50% reduction in the urinary excretion of EGF. This was not influenced by treatment with an adrenergic antagonist. After 3 weeks, saline-treated diabetic rats had......The present study reports on the effects of adrenergic blocking agents on the renal growth and on the renal content and urinary excretion of epidermal growth factor (EGF) in streptozotocin-induced diabetic or uninephrectomized rats. Diabetic and uninephrectomized rats were allocated to groups...... treated with either saline or adrenergic antagonists and compared to controls and sham-operated controls, respectively. 24-hour urine samples were obtained on days 7, 14, and 21 and renal tissue samples on day 21. The 24-hour urinary excretion of EGF from controls and saline-treated diabetic rats...

  17. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells (United States)

    Young, R. B.; Bridge, K. Y.


    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  18. Alpha-adrenergic receptor blockade by phentolamine increases the efficacy of vasodilators in penile corpus cavernosum. (United States)

    Kim, N N; Goldstein, I; Moreland, R B; Traish, A M


    Penile trabecular smooth muscle tone, a major determinant of erectile function, is highly regulated by numerous inter- and intracellular pathways. The interaction between pathways mediating contraction and relaxation has not been studied in detail. To this end, we investigated the functional effects of alpha adrenergic receptor blockade with phentolamine and its interaction with vasodilators (sildenafil, vasoactive intestinal polypeptide (VIP) and PGE1) that elevate cyclic nucleotides on penile cavernosal smooth muscle contractility. In organ bath preparations of cavernosal tissue strips contracted with phenylephrine, phentolamine significantly enhanced relaxation induced by sildenafil, VIP and PGE1. Sildenafil, VIP or PGE1 also significantly enhanced relaxation induced by phentolamine in cavernosal tissue strips contracted with phenylephrine. To study the effects of alpha adrenergic receptor blockade and modification of cyclic nucleotide metabolism during active neurogenic input, cavernosal tissue strips in organ bath preparations were contracted with the non-adrenergic agonist endothelin-1 and subjected to electrical field stimulation (EFS) in the absence or presence of phentolamine and/or sildenafil. EFS (5-40Hz) typically caused biphasic relaxation and contraction responses. Phentolamine alone enhanced relaxation and reduced or prevented contraction to EFS. Sildenafil enhanced relaxation to EFS at lower frequencies (phentolamine and sildenafil enhanced EFS-induced relaxation at all frequencies tested. EFS, in the presence of 10 nM phentolamine and 30 nM sildenafil, produced enhanced relaxation responses which were quantitatively similar to those obtained in the presence of 50 nM sildenafil alone. Thus, blockade of alpha-adrenergic receptors with phentolamine increases the efficacy of cyclic nucleotide-dependent vasodilators. Furthermore, phentolamine potentiates relaxation and attenuates contraction in response to endogenous neurotransmitters which are released

  19. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells. (United States)

    Wenner, Maria I; Maker, Garth L; Dawson, Linda F; Drummond, Peter D; Mullaney, Ian


    Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells.

  20. Phospholemman and beta-adrenergic stimulation in the heart. (United States)

    Wang, JuFang; Gao, Erhe; Song, Jianliang; Zhang, Xue-Qian; Li, Jifen; Koch, Walter J; Tucker, Amy L; Philipson, Kenneth D; Chan, Tung O; Feldman, Arthur M; Cheung, Joseph Y


    Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist

  1. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;


    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  2. a-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg

    DEFF Research Database (Denmark)

    Keller, David M; Sander, Mikael; Stallknecht, Bente Merete;


    This study tested the hypothesis that passive leg heating attenuates a-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (Calf......BF, ¹³³xenon) and calf vascular conductance (CalfVC) were measured during intra-arterial infusion of an a1-adrenoreceptor agonist, phenylephrine (PE, 0.025 to 0.8 µg kg¿1 min¿1) and an a2-adrenoreceptor agonist, BHT-933 (1.0 to 10 µg kg¿1 min¿1) during normothermia and passive leg heating (water-perfused pant...... leg). Passive leg heating (~46¿C water temperature) increased FVC from 4.5 ± 0.5 to 11.9 ± 1.3 ml min¿1 mmHg¿1 (P

  3. Changing face of β2-adrenergic and muscarinic receptor therapies in asthma. (United States)

    Wasilewski, Nastasia V; Lougheed, M Diane; Fisher, John T


    Despite current available treatment options, a significant proportion of patients with asthma remain uncontrolled and asthma pharmacotherapy continues to evolve. β2-Adrenergic receptor agonists play a major role as bronchodilators in asthma therapy, although new perspectives reflect the potential for bias G-protein coupled receptor signaling pathways. Due to the success of muscarinic antagonists in chronic obstructive pulmonary disease, and the elucidation that muscarinic receptors play a role in airway remodeling, muscarinic receptors represent an attractive therapeutic target in asthma. Although short-acting muscarinic antagonists are currently limited to their use in acute asthma and as alternative bronchodilators in individuals who experience side effects with β2-agonists, recent clinical trials indicate that the long-acting muscarinic antagonist, tiotropium, deserves consideration as a potential therapeutic agent for select populations. The continued evolution of anticholinergic therapy in asthma will require appropriately designed studies to assess mechanisms, efficacy and safety in asthma.

  4. Effects of central imidazolinergic and alpha2-adrenergic activation on water intake

    Directory of Open Access Journals (Sweden)

    Sugawara A.M.


    Full Text Available Non-adrenergic ligands that bind to imidazoline receptors (I-R, a selective ligand that binds to alpha2-adrenoceptors (alpha2-AR and mixed ligands that bind to both receptors were tested for their action on water intake behavior of 24-h water-deprived rats. All drugs were injected into the third cerebral ventricle. Except for agmatine (80 nmol, mixed ligands binding to I-R/alpha2-AR such as guanabenz (40 nmol and UK 14304 (20 nmol inhibited water intake by 65% and up to 95%, respectively. The selective non-imidazoline alpha2-AR agonist, alpha-methylnoradrenaline, produced inhibition of water intake similar to that obtained with guanabenz, but at higher doses (80 nmol. The non-adrenergic I-R ligands histamine (160 nmol, mixed histaminergic and imidazoline ligand and imidazole-4-acetic acid (80 nmol, imidazoline ligand did not alter water intake. The results show that selective, non-imidazoline alpha2-AR activation suppresses water intake, and suggest that the action on imidazoline sites by non-adrenergic ligands is not sufficient to inhibit water intake.

  5. Alpha adrenergic modulation of the Na/sup +/ pump of canine vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Navran, S.S.; Adair, S.E.; Allen, J.C.; Seidel, C.L.


    Some vasoactive agents, eg. beta adrenergic agonists and forskolin, stimulate the Na/sup 7/ pump by a cAMP- dependent mechanism. The authors have now demonstrated that phenylephrine (PE) stimulates the Na/sup 7/ pump in intact blood vessels as quantitated by an increased ouabain-sensitive /sup 86/Rb uptake. The stimulation is dose-dependent (ED/sub 50/, 3 x 10/sup -6/M) and blocked by phentolamine (I/sub 50/, 10/sup -7/M), prazosin (I/sub 50/, 10/sup -8/M) yohimbine (I/sub 50/, 10/sup -6/M) or elevated intracellular Na/sup +/. These data suggest that the Na/sup +/ pump stimulation is mediated through alpha/sub 1/ receptors which produce an influx of extracellular Na/sup +/. In vascular smooth muscle cell cultures PE stimulates the Na/sup +/ pump, but only when cells have been deprived of fetal calf serum (FCS). Since FCS is known to stimulate Na/sup +/influx, in the continuous presence of FCS, these cells may already be Na/sup +/-loaded and therefore refractory to further stimulation by alpha-adrenergic agents. Unlike those vasorelaxants whose mechanism involves stimulation of the Na/sup +/ pump, alpha adrenergic agents are vasoconstrictors and therefore the role of Na/sup +/ pump stimulation in this case may be as a mechanism of feedback inhibition of contractility.

  6. Effect of adrenergic receptor ligands on metaiodobenzylguanidine uptake and storage in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Babich, J.W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States); Graham, W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Fischman, A.J. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States)


    The effects of adrenergic receptor ligands on uptake and storage of the radiopharmaceutical [{sup 125}I]metaiodobenzylguanidine (MIBG) were studied in the human neuroblastoma cell line SK-N-SH. For uptake studies, cells were with varying concentrations of {alpha}-agonist (clonidine, methoxamine, and xylazine), {alpha}-antagonist (phentolamine, tolazoline, phenoxybenzamine, yohimbine, and prazosin), {beta}-antagonist (propranolol, atenolol), {beta}-agonist (isoprenaline and salbutamol), mixed {alpha}/{beta} antagonist (labetalol), or the neuronal blocking agent guanethidine, prior to the addition of [{sup 125}I]MIBG (0.1 {mu}M). The incubation was continued for 2 h and specific cell-associated radioactivity was measured. For the storage studies, cells were incubated with [{sup 125}I]MIBG for 2 h, followed by replacement with fresh medium with or without drug (MIBG, clonidine, or yohimbine). Cell-associated radioactivity was measured at various times over the next 20 h. Propanolol reduced [{sup 125}I]MIBG uptake by approximately 30% (P<0.01) at all concentrations tested, most likely due to nonspecific membrane changes. In conclusion, the results of this study establish that selected adrenergic ligands can significantly influence the pattern of uptake and storage of MIBG in cultured neuroblastoma cells, most likely through inhibition of uptake or through noncompetitive inhibition. The potential inplications of these findings justify further study. (orig./VHE). With 4 figs., 1 tab.

  7. Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Akihiko Urayama

    Full Text Available The impermeability of the adult blood-brain barrier (BBB to lysosomal enzymes impedes the ability to treat the central nervous system manifestations of lysosomal storage diseases. Here, we found that simultaneous stimulation of the alpha1 and alpha2 adrenoreceptor restores in adult mice the high rate of transport for the lysosomal enzyme P-GUS that is seen in neonates but lost with development. Beta adrenergics, other monoamines, and acetylcholine did not restore this transport. A high dose (500 microg/mouse of clonidine, a strong alpha2 and weak alpha1 agonist, was able to act as monotherapy in the stimulation of P-GUS transport. Neither use of alpha1 plus alpha2 agonists nor the high dose clonidine disrupted the BBB to albumin. In situ brain perfusion and immunohistochemistry studies indicated that adrengerics act on transporters already at the luminal surface of brain endothelial cells. These results show that adrenergic stimulation, including monotherapy with clonidine, could be key for CNS enzyme replacement therapy.

  8. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.


    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.


    NARCIS (Netherlands)



    A neurochemical assessment of noradrenergic and adrenergic functioning was carried out with autistic patients and normal control individuals. Norepinephrine and related compounds were measured in autistic (n = 17 unmedicated, 23 medicated; age range 9-29 years old) and normal controls (n = 27; age r

  10. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. (United States)

    Li, Shaomin; Jin, Ming; Zhang, Dainan; Yang, Ting; Koeglsperger, Thomas; Fu, Hongjun; Selkoe, Dennis J


    A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here, we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD cortex. Protection by EE occurred in both young and middle-aged wild-type mice. Exposure to novelty afforded greater protection than did aerobic exercise. Mice chronically fed a β-adrenergic agonist without EE were protected from hippocampal impairment by Aβ oligomers. Thus, EE enhances hippocampal synaptic plasticity by activating β-adrenoceptor signaling and mitigating synaptotoxicity of human Aβ oligomers. These mechanistic insights support using prolonged exposure to cognitive novelty and/or oral β-adrenergic agonists to lessen the effects of Aβ accumulation during aging.

  11. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.; Mishra, R.K.


    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  12. Subthreshold α2-Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Minglin Pan


    Full Text Available The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1 receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX- sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  13. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. (United States)

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta


    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  14. Alpha-Adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Wada, A.; Izumi, F.; Magnoni, M.S.; Trabucchi, M.


    In rat cerebral microvessels, we characterized alpha 1- and alpha 2-adrenergic receptors, using (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine as radioligands. (/sup 3/H)Prazosin binding to the cerebral microvessels was saturable and of high affinity (dissociation constant of 78 pM), with a maximum binding of 48 fmol/mg protein. (/sup 3/H)Prazosin binding reached equilibrium within 15 minutes and was dissociated by the addition of 10 microM phentolamine. The inhibitory effects of isomers of norepinephrine and epinephrine on the binding showed that l-isomers were over 10 times more potent than d-isomers. (/sup 3/H)-p-Amino-clonidine binding to the cerebral microvessels was saturable and of high affinity (K/sub D/ . 0.61 nM) with a B/sub max/ of 73 fmol/mg protein. The binding reached equilibrium within 30 minutes, and was dissociated by the addition of 100 microM l-norepinephrine. l-Isomers of norepinephrine and epinephrine were over 10 times more potent than d-isomers in displacing the binding. Thus, both (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine bindings to the cerebral microvessels were characterized by saturability, high affinity, reversibility, and stereo-specificity. Furthermore, the specificity of both binding sites was pharmacologically evaluated by the inhibitory effects of various adrenergic agonists and antagonists on the bindings. These data indicate the existence of alpha-adrenergic receptors in the cerebral microvessels and are consistent with the hypothesis that the cerebral microcirculation is regulated by adrenergic innervation. Furthermore, the receptors were measured in cerebral microvessels of spontaneously hypertensive rats and Wistar-Kyoto controls.

  15. Adrenergic signaling elements in the bladder wall of the adult rat. (United States)

    Persyn, Sara; Eastham, Jane; De Wachter, Stefan; Gillespie, James


    A growing body of work is describing the absence of a significant sympathetic innervation of the detrusor implying little sympathetic regulation of bladder contractility. However, low doses of adrenergic agonists are capable of relaxing the bladder smooth muscle. If these effects underpin a physiological response then the cellular nature and operation of this system are currently unknown. The present immunohistochemistry study was done to explore the existence of alternative adrenergic signaling elements in the rat bladder wall. Using antibodies to tyrosine hydroxylase (TH) and vesicular mono-amine transporter (vmat), few adrenergic nerves were found in the detrusor although TH immunoreactive (IR) nerves were apparent in the bladder neck. TH-IR and vmat-IR nerves were however abundant surrounding blood vessels. A population of vmat-IR cells was found within the network of interstitial cells that surround the detrusor muscle bundles. These vmat-IR cells were not or only weakly TH-IR. This suggests that these interstitial cells have the capacity to store and release catecholamines that may involve noradrenaline. Cells expressing the β1-adrenoceptor (β1AR-IR) were also detected within the interstitial cell network. Double staining with antibodies to β1AR and vmat suggests that the majority of vmat-IR interstitial cells show β1AR-IR indicative of an autocrine signaling system. In conclusion, a population of interstitial cells has the machinery to store, release and respond to catecholamines. Thus, there might exist a non-neuronal β-adrenergic system operating in the bladder wall possibly linked to one component of motor activity, micro-contractions, a system that may be involved in mechanisms underpinning bladder sensation.

  16. Mechanism of adrenergic stimulation of hepatic ketogenesis. (United States)

    Kosugi, K; Harano, Y; Nakano, T; Suzuki, M; Kashiwagi, A; Shigeta, Y


    The effects of alpha- and beta-adrenergic stimulation on ketogenesis were examined in freshly isolated rat hepatocytes in order to determine which alpha- or beta-adrenergic stimulation is involved in the enhancement of ketogenesis. In the presence of 0.3 mmol/L (U-14C)-palmitate, epinephrine, norepinephrine, and phenylephrine at 500 ng/mL increased ketogenesis by 25% (16.0 +/- 0.17 v 12.8 +/- 0.13 nmol/mg protein per hour), 20% (15.3 +/- 0.28) and 20% (15.4 +/- 0.36), respectively. However, isoproterenol even at 1 microgram/mL did not stimulate ketogenesis. Phentolamine (5 micrograms/mL) almost completely abolished the effect of epinephrine on ketogenesis (13.7 +/- 0.30 v 16.0 +/- 0.17) but propranolol did not inhibit the stimulation by epinephrine (15.6 +/- 0.38 v 16.0 +/- 0.17). Trifluoperazine (10 mumol/L), presumably an inhibitor of calcium-dependent protein kinase, abolished the effect of epinephrine (13.6 +/- 0.22 v 16.0 +/- 0.17). These results indicate that catecholamines increase ketogenesis predominantly through the alpha-adrenergic system independent of cyclic AMP, and calcium-dependent protein kinase is thought to be involved in the activation of ketogenesis. On the other hand, glucagon stimulated ketogenesis with an increase of cyclic AMP, which was not inhibited by alpha- and beta-adrenergic antagonists. Alpha-adrenergic stimulation increased hepatic glycogenolysis much more at much lower concentrations when compared with ketogenesis. Stimulation of ketogenesis by catecholamines seemed to be less sensitive and responsive compared with hepatic glycogenolysis.

  17. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. (United States)

    Cairns, Simeon P; Borrani, Fabio


    Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists

  18. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.


    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  19. Osmotic versus adrenergic control of ion transport by ionocytes of Fundulus heteroclitus in the cold

    DEFF Research Database (Denmark)

    Tait, Janet C; Mercer, Evan W; Gerber, Lucie;


    In eurythermic vertebrates, acclimation to the cold may produce changes in physiological control systems. We hypothesize that relatively direct osmosensitive control will operate better than adrenergic receptor mediated control of ion transport in cold vs. warm conditions. Fish were acclimated...... to full strength seawater (SW) at 21°C and 5°C for four weeks, gill samples and blood were taken and opercular epithelia mounted in Ussing style chambers. Short-circuit current Isc at 21°C and 5°C (measured at acclimation temperature), was significantly inhibited by the α2-adrenergic agonist clonidine...... inhibition of Isc, was higher in warm acclimated (-95%), compared to cold acclimated fish (-75%), while hypertonic stimulations were the same, indicating equal responsiveness to hyperosmotic stimuli. Plasma osmolality was significantly elevated in cold acclimated fish and, by TEM, gill ionocytes from cold...

  20. -Adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Buxton, I.L.O.; Brunton, L.L.


    When incubated with purified cardiomyocytes from adult rat ventricle, the 1-antagonist (TH)prazosin binds to a single class of sites with high affinity. Competition for (TH)prazosin binding by the 2-selective antagonist yohimbine and the nonselective -antagonist phentolamine demonstrates that these receptors are of the 1-subtype. In addition, incubation of myocyte membranes with (TH)yohimbine results in no measurable specific binding. Agonist competition for (TH)prazosin binding to membranes prepared from purified myocytes demonstrates the presence of two components of binding: 28% of 1-receptors interact with norepinephrine with high affinity (K/sub D/ = 36 nM), whereas the majority of receptors (72%) have a low affinity for agonist (K/sub D/ = 2.2 M). After addition of 10 M GTP, norepinephrine competes for (TH)prazosin binding to a single class of sites with lower affinity (K/sub D/ = 2.2 M). Incubation of intact myocytes for 2 min with 1 M norepinephrine leads to significantly less cyclic AMP (cAMP) accumulation than stimulation with either norepinephrine plus prazosin or isoproterenol. Likewise, incubation of intact myocytes with 10 W M norepinephrine leads to significantly less activation of cAMP-dependent protein kinase than when myocytes are stimulated by both norepinephrine and the 1-adrenergic antagonist, prazosin or the US -adrenergic agonist, isoproterenol. They conclude that the cardiomyocyte 1 receptor is coupled to a guanine nucleotide-binding protein, that 1-receptors are functionally linked to decreased intracellular cAMP content, and that this change in cellular cAMP is expressed as described activation of cAMP-dependent protein kinase.

  1. β-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A.

    Directory of Open Access Journals (Sweden)

    Yingxin Li

    Full Text Available The T-type Ca(2+ channel (TTCC plays important roles in cellular excitability and Ca(2+ regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by β-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs from Cav3.1 double transgenic (TG mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study β-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca(2+ current (I(Ca-T(3.1. I(Ca-T(3.1 was not found in control VMs but was robust in all examined TG-VMs. A β-adrenergic agonist (isoproterenol, ISO and a cyclic AMP analog (dibutyryl-cAMP significantly increased I(Ca-T(3.1 as well as I(Ca-L in TG-VMs at both physiological and room temperatures. The ISO effect on I(Ca-L and I(Ca-T in TG myocytes was blocked by H89, a PKA inhibitor. I(Ca-T was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of I(Ca-T in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. I(Ca-T in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the β-adrenergic (β-AR system. In conclusion, β-adrenergic stimulation increases I(Ca-T(3.1 in cardiomyocytes(, which is mediated by the cAMP/PKA pathway. The upregulation of I(Ca-T(3.1 by the β-adrenergic system could play important roles in cellular functions involving Cav3.1.

  2. Adrenergic Receptors From Molecular Structure to in vivo function. (United States)

    Hein, L; Kobilka, B K


    Adrenergic receptors form the interface between the sympathetic nervous system and the cardiovascular system as well as many endocrine and parenchymal tissues. Although several hundred G-protein-coupled receptors have been identified, adrenergic receptors, along with the visual pigment rhodopsin, have been among the most extensively studied members of this family of receptors. This review focuses on recent advances in understanding the molecular structure, function, and regulation of adrenergic receptors using in vitro systems and integrates recent transgenic animal models that were generated to study the adrenergic system in vivo. (Trends Cardiovasc Med 1997;7:137-145). © 1997, Elsevier Science Inc.

  3. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;


    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound...... to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair...

  4. ß-adrenergic regulation of ion transport in pancreatic ducts: Patch-clamp study of isolated rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I


    much smaller effects. At comparable concentrations, it depolarized Vm by a few millivolts. Neither agonist had significant effects on intracellular Ca2+. CONCLUSIONS: This study provides the first direct evidence that adrenergic stimulation, namely, that of beta-adrenoceptors, controls ion transport....... METHODS: Small intralobular ducts were isolated from rat pancreas and studied in vitro by the whole-cell patch clamp technique. Cell membrane voltages and currents were indicators of cellular ion transport. In some ducts, intracellular Ca2+ activity was measured by fluorescence optical methods. RESULTS...... in pancreatic ducts. Similar to secretin, isoproterenol stimulation leads to opening of luminal Cl- channels, and HCO3- enters the lumen in exchange for Cl-....

  5. [Melatonin receptor agonist]. (United States)

    Uchiyama, Makoto


    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  6. Guinea-pig ileum as ex vivo model useful to characterize ligands displaying Imidazoline I2 and Adrenergic alpha2 mixed activity: a preliminary study

    Directory of Open Access Journals (Sweden)

    Marialessandra Contino


    Full Text Available The lack of an effective analgesic treatment makes pain a clinical challenge and the need of a novel approach to identify new agents is urgent. In this scenario I2-ligands can be considered an alternative strategy in pain therapy. The development of an ex vivo model useful for the evaluation of functional activities at both a2 and I2-IBs (imidazoline binding sites is an important task in pharmacological sciences since several I2 ligands display activity also towards a receptors. The present study aims to develop an ex vivo model for estimating the activity of I2-IBs ligands in a biological sample where a1 and a2 adrenergic receptors are present. For this purpose the imidalzoline endogenous ligand, harmane, reference compounds, 2BFI and BU224, and imidazoline derivatives 1-3 have been selected taking into account their in vitro activity towards IBs and adrenergic receptors. All compounds have been tested ex vivo in guinea pig-ileum where a2A-ARs are prejunctionally and I2-IBS postjunctionally localized. Adrenergic component has been identified by the studying the interference of compounds on the electrically-evoked contraction while I2-IBs activity by testing the ability of compounds to inhibit the carbachol-evoked contractions in the presence of prazosin to mask the a1 adrenoceptors. Compounds 1 and 2 were found I2-IBs antago nists (pIC50=4.2 and 4.0, respectively whereas compound 3 was I2-IBs agonist (EC50=0.38 mM; All ligands were a2 adrenergic agonists. This paper suggests guinea-pig ileum as the first ex vivo approach for establishing both the intrinsic activity of I2-IBs ligands and the physiological correlation between IBs and adrenergic system.

  7. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle (United States)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.


    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  8. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes. (United States)

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon


    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  9. The role of basolateral amygdala adrenergic receptors in hippocampus dependent spatial memory in rat

    Directory of Open Access Journals (Sweden)

    Vafaei A.L.


    Full Text Available Background and the purpose of the study: There are extensive evidences indicating that the noradrenergic system of the basolateral nucleus of the amygdala (BLA is involved in memory processes. The present study investigated the role of the BLA adrenergic receptors (ARs in hippocampus dependent spatial memory in place avoidance task in male rat. Material and Methods: Long Evans rats (n=150 were trained to avoid footshock in a 60° segment while foraging for scattered food on a circular (80-cm diameter arena. The rats were injected bilaterally in the BLA specific ARS (Adrenergic receptors agonist norepinephrine (NE, 0.5 and 1 µg/µl and specific β-ARs antagonist propranolol (PRO, 0.5 and 1 µg/µl before acquisition, after training or before retrieval of the place avoidance task. Control rats received vehicle at the same volume. The learning in a single 30-min session was assessed 24h later by a 30-min extinction trial in which the time to first entrance and the number of entrances to the shocked area measured the avoidance memory. Results: Acquisition and consolidation were enhanced and impaired significantly by NE and PRO when the drugs were injected 10 min before or immediately after training, respectively. In contrast, neither NE nor PRO influenced animal performances when injected before retention testing. Conclusion: Findings of this study indicates that adrenergic system of the BLA plays an important role in regulation of memory storage and show further evidences for the opinion that the BLA plays an important role in integrating hormonal and neurotransmitter influences on memory storage.


    NARCIS (Netherlands)



    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or antagonist

  11. Gene transfer of a β2-adrenergic receptor kinase inhibitor up-regulates the level of β2-adrenergic receptor and cAMP in the asthmatic murine lung

    Institute of Scientific and Technical Information of China (English)

    Mao Huang; Yan Wu; Xin Yao; Wuangjian Cha; Kaisheng Yin


    Objective: To investigate the effects of gene transfer of a β-adrenergic receptor(β-AR) kinase inhibitor(β ARKct)on pulmonary β2-adrenergic receptor and cAMP following β2-AR agonist treatment in asthmatic mice, and to analyze the relationship between the routes of gene delivery and the changes of β2AR and cAMP. Methods: BALB/c mice were sensitized and challenged by ovalbumin to establish the asthmatic model treated with βAR agonist ( salbutamol injected intramuscularly). The plasmid with the expression of βARKct was constructed and βARKct gene transfer was performed through intravenous injection or intratracheal instillation in asthmatic mice.The gene expression was measured with Western blot analysis, and the changes of pulmonary β-AR and cAMP evaluated by Radioimmunoassay. Results: The expression of tranfered βARKct gene was detectable in lungs and it was expressed more in the lungs of the mice receiving intratracheally plasmid than those receiving intravenously. The levels of βAR and cAMP were upregulated after using plasmid-βARKct to the asthmatic mice treated with β AR agonist. Conclusion: Our results indicated that there were down-regulation of βAR and cAMP in asthmatic mice treated with βAR agonist. Gene transfer of βARKct could inhibit the extent of the down-regulation of βAR and cAMP. The route of gene delivery could also affect the degree of up-regulation of βAR and cAMP. Gene transfer βARKct may provide a novel approach to the therapeutic strategy for asthma.

  12. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase. (United States)

    Limberg, Jacqueline K; Johansson, Rebecca E; Peltonen, Garrett L; Harrell, John W; Kellawan, J Mikhail; Eldridge, Marlowe W; Sebranek, Joshua J; Schrage, William G


    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.

  13. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.A.


    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  14. [Beta-3 adrenergic receptor--structure and role in obesity and metabolic disorders]. (United States)

    Wiejak, J; Wyroba, E


    Structure and essential motifs of beta 3-adrenergic receptor (known previously as atypical beta-AR), which plays a central role in regulation of lipid metabolism have been described. Obesity results from an imbalance between caloric intake and energy expenditure. The consequence of catecholamine activation of beta 3-AR is increased mobilization of fatty acids from triglyceride stores (lipolysis) in brown and white adipose tissue as well as increased fatty acid beta-oxidation and heat-production via UCP-1 (thermogenesis) in brown adipose tissue. A pharmacokinetic effects of beta 3-agonists and putative involvement of Trp/Arg mutation in beta 3-AR gene in obesity and another metabolic disorders have been discussed.

  15. [Adrenergic innervation and norepinephrine content in postnatal rat uterus]. (United States)

    Itoh, M


    Using fluorescent histochemical method and high performance liquid chromatography with electrochemical detector, we investigated adrenergic innervation and norepinephrine content in the rat uterus in the process of the growth. The adrenergic nerve terminals in the rat uterus developed with age and reached to adult level at 7 weeks of age after birth, although the short adrenergic ganglionic cells and small intense fluorescent cells were present even at birth. Norepinephrine content per organ also increased with age and reached to adult level at 10 weeks of age after birth, while NE content per gram wet tissue weight had a peak in 3-day-old rat uterus. These morphological and biochemical data revealed that the sympathetic nervous system in rat uterus matures in 7 to 10 weeks after birth, while the short adrenergic nervous system is accomplished in earlier stage. The maturation of adrenergic innervation in the uterus was considerably later than in the other organs of rat and developed with the sexual maturation.

  16. Adrenergic urticaria: review of the literature and proposed mechanism. (United States)

    Hogan, Sara R; Mandrell, Joshua; Eilers, David


    Adrenergic urticaria is a rare type of stress-induced physical urticaria characterized by transient outbreaks of red papules surrounded by halos of hypopigmented, vasoconstricted skin. First described in 1985, there are 10 reported cases of adrenergic urticaria in the English-language medical literature. Episodes are caused by various triggers, including emotional upset, coffee, and chocolate, during which serum catecholamines and IgE are elevated, whereas histamine and serotonin levels remain within normal limits. The precise mechanisms leading to the pathogenesis of adrenergic urticaria have yet to be elucidated. Diagnosis can be made by intradermal injection of epinephrine or norepinephrine, which reproduces the characteristic rash, or by clinical observation. Trigger avoidance and oral propranolol are currently the best known treatments for adrenergic urticaria. Nonspecific therapies, including tranquilizers and antihistamines, may also ease symptoms. This article explores the pathophysiology of adrenergic urticaria and proposes a mechanism by which propranolol treats the condition.

  17. Protein kinase Cζ regulates phospholipase D activity in rat-1 fibroblasts expressing the α1A adrenergic receptor

    Directory of Open Access Journals (Sweden)

    Bourgoin Sylvain G


    Full Text Available Abstract Background Phenylephrine (PHE, an α1 adrenergic receptor agonist, increases phospholipase D (PLD activity, independent of classical and novel protein kinase C (PKC isoforms, in rat-1 fibroblasts expressing α1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCζ to PLD activation in response to PHE in these cells. Results PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCζ translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCζ activity was reduced at 2 and 5 min and returned to a sub-basal level within 10–15 min. Ectopic expression of kinase-dead PKCζ, but not constitutively active PKCζ, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCζ reduced basal PKCζ activity and abolished PHE-induced PLD activation. Conclusion α1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCζ; Our data also suggest that catalytic activation of PKCζ is not required for PLD stimulation.

  18. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors (United States)

    Hansen, Niels; Manahan-Vaughan, Denise


    Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus. PMID:24464942

  19. Defective Resensitization in Human Airway Smooth Muscle Cells Evokes β-Adrenergic Receptor Dysfunction in Severe Asthma.

    Directory of Open Access Journals (Sweden)

    Manveen K Gupta

    Full Text Available β2-adrenergic receptor (β2AR agonists (β2-agonist are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation by phosphorylation through G-protein coupled receptor kinases (GRKs which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie

  20. Comparison of alpha-2 adrenergic receptors and their regulation in rodent and porcine species

    Energy Technology Data Exchange (ETDEWEB)

    Feller, D.J.; Bylund, D.B.


    The alpha-2 adrenergic antagonist (/sup 3/H)yohimbine (YOH) and the alpha-2 agonist (/sup 3/H)p-aminoclonidine (PAC) saturably label high-affinity binding sites in the submandibular gland from 3-week-old rats and 5-week-old pigs and in the lung from neonatal rats and 5-week-old pigs. (/sup 3/H)YOH had KD values of 5.5, 1.8, 0.45 and 0.22 nM in the rat gland and lung and porcine gland and lung, respectively. KD values of 2.4, 5.3 and 1.3 nM were found for (/sup 3/H)PAC in rodent and pig submandibular gland and pig lung, respectively. Both /sup 3/H-ligands labeled approximately the same density of sites within each tissue except in the rat lung in which (/sup 3/H)PAC binding was too low to reliably estimate. In all cases the pharmacologic profile was indicative of an alpha-2 adrenergic receptor site. However, the Ki of yohimbine vs. (/sup 3/H)PAC was 30- to 140-fold higher for the rodent relative to the porcine species. GTP decreased the affinity of (-)-epinephrine and PAC at (/sup 3/H)YOH-labeled sites in the pig gland and lung, but did not shift the affinity of epinephrine in the rat gland. These results suggest the possibility of subtype or species differences for the alpha-2 receptor. The Ki values of the antagonists YOH and phentolamine were different at (/sup 3/H)PAC and (/sup 3/H)YOH sites. GTP caused a dose-dependent reduction in (/sup 3/H)PAC binding in the porcine submandibular gland and lung. At 10 microM GTP, this loss was due to a decrease in /sup 3/H-agonist affinity, but not density.

  1. Mapping genetic variants associated with beta-adrenergic responses in inbred mice.

    Directory of Open Access Journals (Sweden)

    Micha Hersch

    Full Text Available β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS addressing the values and susceptibility of cardiovascular-related traits to a selective β(1-blocker, Atenolol (ate, and a β-agonist, Isoproterenol (iso. The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA, a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8. An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6. Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD. Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.

  2. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis

    NARCIS (Netherlands)

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M


    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intesti

  3. Effect of beta2-adrenergic agonists on eosinophil adhesion, superoxide anion generation, and degranulation

    Directory of Open Access Journals (Sweden)

    Toru Noguchi


    Conclusions: These findings suggest that formoterol, but not salbutamol, suppresses eosinophil functions enhanced by IL-5, LTD4, or IP-10. As these factors are involved in the development of asthma exacerbation, our results strongly support the hypothesis that administration of formoterol is a novel strategy for treating asthma exacerbation.

  4. The serotonin 5-Hydroxytryptaphan1A receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin, stimulates sympathetic-dependent increases in venous tone during hypovolemic shock. (United States)

    Tiniakov, Ruslan; Scrogin, Karie E


    Adjuvant treatment of hypovolemic shock with vasoconstrictors is controversial due to their propensity to raise arterial resistance and exacerbate ischemia. A more advantageous therapeutic approach would use agents that also promote venoconstriction to augment perfusion pressure through increased venous return. Recent studies indicate that 5-hydroxytryptophan (5-HT)(1A) receptor agonists increase blood pressure by stimulating sympathetic drive when administered after acute hypotensive hemorrhage. Given that venous tone is highly dependent upon sympathetic activation of alpha(2)-adrenergic receptors, we hypothesized that the 5-HT(1A) receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), would increase venous tone in rats subject to hypovolemic shock through sympathetic activation of alpha(2)-adrenergic receptors. Systemic administration of 8-OH-DPAT produced a sustained rise in blood pressure (+44 +/- 3 mm Hg 35 min after injection, P hypovolemic shock. An equipressor infusion of epinephrine failed to influence mean circulatory filling pressure (MCFP). Ganglionic blockade, alpha(1)-, or peripheral alpha(2)-adrenergic receptor blockade prevented the rise in MCFP observed with 8-OH-DPAT, but only alpha(1)-adrenergic receptor blockade diminished the pressor effect of the drug (P hypovolemic shock through both direct vascular activation and sympathetic activation of alpha(1)-adrenergic receptors. The sympathoexcitatory effect of 8-OH-DPAT contributes to elevated venous tone through concurrent activation of both alpha(1)- and alpha(2)-adrenergic receptors. The data suggest that 5-HT(1A) receptor agonists may provide an advantageous alternative to currently therapeutic interventions used to raise perfusion pressure in hypovolemic shock.

  5. Role of prostaglandin E2 in alterations of the beta-adrenergic system from rat eclamptic uterus. (United States)

    Sales, M E; Borda, E S; Sterin-Borda, L; Arregger, A; Andrada, E C


    The inotropic effect of isoproterenol, as well as the beta-adrenoceptor population, was measured in pregnant uterine tissue from female spontaneous hypertensive rats (SHR) (control group: C) and female SHR that were grafted with skin from Holtzman male rats (eclamptic group: E). The Kd value of the concentration-response curve of isoproterenol was higher for uteri from E rats than C rats. This phenomenon was not accompanied by a modification in the expression of beta-adrenoceptors. Inhibition of the synthesis of prostaglandins prevented the hyporeactivity to isoproterenol during eclampsia. Moreover, uteri from E rats generated and released greater amounts of prostaglandin E2 (PGE2) than uteri from C rats, even in the presence or absence of isoproterenol. In addition, whereas isoproterenol administered alone increased basal cyclic AMP (cAMP) production from C uteri, PGE2 administered alone enhanced cAMP production in E uterine tissue. These results suggest that the decrease in beta-adrenergic response to the agonist in E rats is ascribed to PGE2 production. The abnormal reactivity to the beta-agonist could be associated with a heterologous desensitization of uterine beta-adrenoceptors exerted by PGE2 overload in uteri from E rats. These results bear directly on the regulation of uterine motility during pregnancy, since an impaired response to beta-adrenergic innervation could lead to increased uterine motility, impairing the maintenance of pregnancy.

  6. Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the β2 adrenergic receptor. (United States)

    Patriarchi, Tommaso; Qian, Hai; Di Biase, Valentina; Malik, Zulfiquar A; Chowdhury, Dhrubajyoti; Price, Jennifer L; Hammes, Erik A; Buonarati, Olivia R; Westenbroek, Ruth E; Catterall, William A; Hofmann, Franz; Xiang, Yang K; Murphy, Geoffrey G; Chen, Chao-Ye; Navedo, Manuel F; Hell, Johannes W


    Agonist-triggered downregulation of β-adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of β2AR signaling highly specific for Cav1.2. We find that β2-AR binding to Cav1.2 residues 1923-1942 is required for β-adrenergic regulation of Cav1.2. Despite the prominence of PKA-mediated phosphorylation of Cav1.2 S1928 within the newly identified β2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the β2AR from Cav1.2 upon β-adrenergic stimulation rendering Cav1.2 refractory for several minutes from further β-adrenergic stimulation. This effect is lost in S1928A knock-in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, β2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the β2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized β2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT-LTP) depends on Cav1.2 and its regulation by channel-associated β2AR.

  7. Stress and glucocorticoids impair memory retrieval via β2-adrenergic, Gi/o-coupled suppression of cAMP signaling. (United States)

    Schutsky, Keith; Ouyang, Ming; Castelino, Christina B; Zhang, Lei; Thomas, Steven A


    Acute stress impairs the retrieval of hippocampus-dependent memory, and this effect is mimicked by exogenous administration of stress-responsive glucocorticoid hormones. It has been proposed that glucocorticoids affect memory by promoting the release and/or blocking the reuptake of norepinephrine (NE), a stress-responsive neurotransmitter. It has also been proposed that this enhanced NE signaling impairs memory retrieval by stimulating β(1)-adrenergic receptors and elevating levels of cAMP. In contrast, other evidence indicates that NE, β(1), and cAMP signaling is transiently required for the retrieval of hippocampus-dependent memory. To resolve this discrepancy, wild-type rats and mice with and without gene-targeted mutations were stressed or treated with glucocorticoids and/or adrenergic receptor drugs before testing memory for inhibitory avoidance or fear conditioning. Here we report that glucocorticoids do not require NE to impair retrieval. However, stress- and glucocorticoid-induced impairments of retrieval depend on the activation of β(2) (but not β(1))-adrenergic receptors. Offering an explanation for the opposing functions of these two receptors, the impairing effects of stress, glucocorticoids and β(2) agonists on retrieval are blocked by pertussis toxin, which inactivates signaling by G(i/o)-coupled receptors. In hippocampal slices, β(2) signaling decreases cAMP levels and greatly reduces the increase in cAMP mediated by β(1) signaling. Finally, augmenting cAMP signaling in the hippocampus prevents the impairment of retrieval by systemic β(2) agonists or glucocorticoids. These results demonstrate that the β(2) receptor can be a critical effector of acute stress, and that β(1) and β(2) receptors can have quite distinct roles in CNS signaling and cognition.

  8. Regulatory volume increase in astrocytes exposed to hypertonic medium requires β1 -adrenergic Na(+) /K(+) -ATPase stimulation and glycogenolysis. (United States)

    Song, Dan; Xu, Junnan; Hertz, Leif; Peng, Liang


    The cotransporter of Na(+) , K(+) , 2Cl(-) , and water, NKKC1, is activated under two conditions in the brain, exposure to highly elevated extracellular K(+) concentrations, causing astrocytic swelling, and regulatory volume increase in cells shrunk in response to exposure to hypertonic medium. NKCC1-mediated transport occurs as secondary active transport driven by Na(+) /K(+) -ATPase activity, which establishes a favorable ratio for NKCC1 operation between extracellular and intracellular products of the concentrations of Na(+) , K(+) , and Cl(-) × Cl(-) . In the adult brain, astrocytes are the main target for NKCC1 stimulation, and their Na(+) /K(+) -ATPase activity is stimulated by elevated K(+) or the β-adrenergic agonist isoproterenol. Extracellular K(+) concentration is normal during regulatory volume increase, so this study investigated whether the volume increase occurred faster in the presence of isoproterenol. Measurement of cell volume via live cell microscopic imaging fluorescence to record fluorescence intensity of calcein showed that this was the case at isoproterenol concentrations of ≥1 µM in well-differentiated mouse astrocyte cultures incubated in isotonic medium with 100 mM sucrose added. This stimulation was abolished by the β1 -adrenergic antagonist betaxolol, but not by ICI118551, a β2 -adrenergic antagonist. A large part of the β1 -adrenergic signaling pathway in astrocytes is known. Inhibitors of this pathway as well as the glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol hydrochloride and the NKCC1 inhibitors bumetanide and furosemide abolished stimulation by isoproterenol, and it was weakened by the Na(+) /K(+) -ATPase inhibitor ouabain. These observations are of physiological relevance because extracellular hypertonicity occurs during intense neuronal activity. This might trigger a regulatory volume increase, associated with the post-excitatory undershoot.

  9. Alpha1A-adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies to the alpha(1-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A-adrenergic receptor and maintained them for one year. Alpha(1A-adrenergic antibodies (alpha(1A-AR-AB were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min. Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A-AR-AB could contribute to cardiovascular endorgan damage.

  10. Melatonin agonists and insomnia. (United States)

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew


    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  11. Cholinergic and adrenergic influence on the teleost heart in vivo. (United States)

    Axelsson, M; Ehrenström, F; Nilsson, S


    The tonical cholinergic and adrenergic influence on the heart rate was investigated in vivo in seven species of marine teleosts (pollack, Pollachius pollachius; cuckoo wrasse, Labrus mixtus; ballan wrasse, Labrus berggylta; five-bearded rockling, Ciliata mustela; tadpole fish, Raniceps raninus; eel-pout, Zoarces viviparus and short-spined sea scorpion, Myoxocephalus scor pius) during rest and, in two of the species (P. pollachius and L. mixtus), also during moderate swimming exercise in a Blazka-type swim tunnel. Ventral aortic blood pressure and heart rate were recorded via a catheter implanted in an afferent branchial artery, and the influence of the cholinergic and adrenergic tonus on the heart rate was assessed by injection of atropine and sotalol respectively. During rest the adrenergic tonus was higher than the cholinergic tonus in all species except L. berggylta, where the reverse was true. In P. pollachius and L. mixtus, exercise appeared to produce a lowering of the cholinergic tonus on the heart and, possibly, a slight increase of the adrenergic tonus. The nature of the adrenergic tonus (humoral or neural) is not clear, but the low plasma concentrations of catecholamines both during rest and exercise could be interpreted in favour of a mainly neural adrenergic tonus on the teleost heart. These experiments are compatible with the view that both a cholinergic inhibitory tonus and an adrenergic excitatory tonus are general features in the control of the teleost heart in vivo, both at rest and during moderate swimming exercise.

  12. Agentic extraversion modulates the cardiovascular effects of the dopamine D2 agonist bromocriptine. (United States)

    Wacker, Jan; Stemmler, Gerhard


    A recent psychobiological theory postulates a dopaminergic basis for the agency facet of extraversion, leading to the prediction that this personality trait modulates the psychophysiological effects of dopaminergic drugs. A single dose of the dopamine D2 receptor agonist bromocriptine reduces blood pressure in healthy volunteers. However, it is currently unknown whether this hypotensive effect of bromocriptine is modulated by agentic extraversion. Therefore, we measured resting cardiovascular activation in groups of healthy male volunteers either high or low in agentic extraversion, either under bromocriptine (1.25 mg) or placebo. Focusing the analyses on activation components derived from 18 cardiovascular variables, we found that bromocriptine reduces alpha-adrenergic activation in the sample as a whole, whereas the effects on beta-adrenergic and cholinergic activation are modulated by agentic extraversion.

  13. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, G.L.; Malik, K.U.; Lew, D.B. (Univ. of Tennessee, Memphis (United States))


    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. ({sup 14}C)AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. ({sup 14}C)AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2{alpha}. Trace amounts of PGD2 and 6-keto-PGF1{alpha} but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10{sup {minus}7}, 10{sup {minus}7}M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10{sup {minus}6}M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective {beta}2 antagonist, butoxamine (70%: 10{sup {minus}7}M, 91%: 10{sup {minus}6}M) and somewhat reduced by {beta}1 antagonists practolol and metoprolol (30-64%:10{sup {minus}6}M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of {beta}2 adrenergic receptor.

  14. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)


    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  15. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G


    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  16. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Petrash, A.; Bylund, D.


    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  17. Receptor subtype involved in α1-adrenergic receptor-mediated Ca2+ sig-naling in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Lin-lin FAN; Yu TANG; You-yi ZHANG; Qi-de HAN


    Aim: The enhancement of intracellular Ca2+ signaling in response to α1-adrener-gic receptor (α1-AR) stimulation is an essential signal transduction event in the regulation of cardiac functions, such as cardiac growth, cardiac contraction, and cardiac adaptation to various situations. The present study was intended to determine the role(s) of the α1-AR subtype(s) in mediating this response. Methods: We evaluated the effects of subtype-specific agonists and antagonists of the α1- AR on the intracellular Ca2+ signaling of neonatal rat ventricular myocytes using a confocal microscope. Results: After being cultured for 48 h, the myocytes exhibited spontaneous local Ca2+ release, sparks, and global Ca2+ transients. The activation of the α1-AR with phenylephrine, a selective agonist of the α1-AR, dose-dependently increased the frequency of Ca2+ transients with an EC50 value of 2.3 μmol/L. Blocking the α1A-AR subtype with 5-methyhirapidil (5-Mu) inhi-bited the stimulatory effect of phenylephrine with an IC50 value of 6.7 nmol/L. In contrast, blockade of the α1B-AR and α1D-AR subtypes with chloroethylclonidine and BMY 7378, respectively, did not affect the phenylephrine effect. Similarly, the local Ca2+ spark numbers were also increased by the activation of theα1-AR, and this effect could be abolished selectively by 5-Mu. More importantly, A61603, a novel selective α1A-AR agonist, mimicked the effects of phenylephrine, but with more potency (EC50 value =6.9 nmol/L) in the potentiation of Ca2+ transients, and blockade of the α1A-AR by 5-Mu caused abolishment of its effects. Conclusion: These results indicate that α1-adrenergic stimulation of intracellular Ca2+ activity is mediated selectively by the α1A-AR.

  18. Pharmacogenetics of β2-Agonists


    Nobuyuki Hizawa


    Short-acting β2-agonists (SABAs) and long-acting β2-agonists (LABAs) are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD) because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target ...

  19. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice


    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  20. Adrenergic receptor control mechanism for growth hormone secretion. (United States)

    Blackard, W G; Heidingsfelder, S A


    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  1. A natural history of "agonist". (United States)

    Russo, Ruth


    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  2. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina


    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...... presently available are administered once or twice daily, but several once-weekly GLP-1R agonists are in late clinical development. Areas covered: The present review aims to give an overview of the clinical data on the currently available GLP-1R agonists used for treatment of type 2 diabetes, exenatide...

  3. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom. (United States)

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima


    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  4. Solubilization of a guanyl nucleotide-sensitive alpha/sub 1/ adrenergic receptor from liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.I.; Moss, J.


    Rat liver membranes incubated with norepinephrine before solubilization with digitonin yielded a soluble hormone-receptor complex from which the release of tightly bound norepinephrine was facilitated by guanyl nucleotides. Binding of the alpha/sub 1/-adrenergic receptor antagonist, (/sup 3/H)-prazosin, to the soluble preparation was utilized as a gauge of guanyl nucleotide-induced release of receptor-bound agonist. The following potency series was obtained with regard to the ability of guanyl nucleotides to facilitate (/sup 3/H)-prazosin binding to the solubilized preparation: guanosine 5'-0-(3-thiotriphosphate)(K/sub 1/2/ = 2.5 nM), guanylyl-imidodiphosphate (K/sub 1/2/ = 10 nM), guanosine triphosphate (K/sub 1/2/ = 34 nM) and adenylyl-imidodiphosphate (K/sub 1/2/ > 1 mM). In the presence of guanylyl-imidodiphosphate (0.4 mM), the receptor population displayed monotonic binding parameters with a K/sub d/ for (/sup 3/H)-prazosin of 1.16 nM by Scatchard analysis. Competition curves against (/sup 3/H)-prazosin with the antagonists phentolamine and yohimbine revealed respective K/sub i/'s of .089 and 1.8; curves with the agonists norepinephrine and isoproterenol yielded respective K/sub i/'s of and 360 Competition curves performed in the absence of guanyl nucleotide were complex demonstrating an apparent increase in affinity for agonists and an apparent decrease in affinity for antagonists. These curve shifts are consistent with the conversion of receptor to and from the guanyl nucleotide-sensitive state as a function of competing ligand concentration.

  5. β2-Adrenergic ion-channel coupled receptors as conformational motion detectors.

    Directory of Open Access Journals (Sweden)

    Lydia N Caro

    Full Text Available Ion Channel-Coupled Receptors (ICCRs are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K(+-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K(+ channel Kir6.2 and muscarinic M(2 or dopaminergic D(2 receptors. Here, we extend the concept to the distinct, longer β(2-adrenergic receptor which, unlike M(2 and D(2 receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β(2 constructs. We then demonstrate how engineering of both receptor and channel can produce β(2-Kir6.2 ICCRs. Specifically, removal of 62-72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β(2 ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β(2 receptor.

  6. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina


    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...

  7. The impact of β 2 adrenergic receptor polymorphisms on the outcomes in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Ersilia Cipolletta


    Full Text Available Cardiovascular diseases (CVD include a heterogeneous group of multifactorial conditions and represent the major health problem in the western society. Many studies have evidenced that inter-individual variability affects the prognosis and the response to pharmacological treatment in patients with CVD. The identification of genetic markers to select patients more susceptible to develop cardiovascular complications has a therapeutic interest for undertaking individualized therapeutic approach. The sympathetic nervous system acts through adrenergic receptor subtypes and plays a key role in the development and prognosis of CVD. In particular, β-2 adrenergic receptors (β2AR, expressed in a wide variety of tissues, are critical regulators of cardiac output, peripheral vascular resistance and metabolism. Several variations with multiple single-nucleotide polymorphisms have been identified in β2AR gene. There are 3 common β2AR polymorphisms characterized in more detail for their influence on functional receptor activity. In particular, the changing an arginine for a glycine at position 16 of the receptor protein (Arg16Gly is associated with increased agonist-induced down-regulation; the substitution of glutamine with glutamic acid at position 27 (Gln27Glu leads to resistance to down-regulation; the substitution of threonine with isoleucine (Thr164Ile at position 164 causes receptor uncoupling from the G protein. Many studies have indicated the association of β2AR polymorphisms with various cardiovascular and metabolic diseases and have contributed to indicate the β2AR gene variants an appropriate target for investigating possible links between receptor polymorphisms, drug responses and susceptibility to CVD. However, the reports on the association of β2AR polymorphisms with clinical outcomes of CVD have been contradictory. In this review, we will illustrate the effects of β2ARs genetic variability on the management of CVD.

  8. Involvement of β3-adrenergic receptors in the control of food intake in rats

    Directory of Open Access Journals (Sweden)

    S.A. Kanzler


    Full Text Available This study examined the food intake changes evoked by intracerebroventricular (icv injection of a selective agonist (BRL37344, 2 and 20 nmol or antagonist (SR59230A, 10 and 50 nmol of β3-adrenergic receptors in 24-h fasted rats (adult male Wistar rats, 200-350 g, N = 6/treatment. The animals were also pretreated with saline icv (SAL or SR59230A (50 nmol followed by BRL37344 (20 nmol or SAL in order to determine the selectivity of the effects evoked by BRL37344 on food intake or the selectivity of the effects evoked by SR59230A on risk assessment (RA behavior. The highest dose of BRL37344 (N = 7 decreased food intake 1 h after the treatment (6.4 ± 0.5 g in SAL-treated vs 4.2 ± 0.8 g in drug-treated rats. While both doses of SR59230A failed to affect food intake (5.1 ± 1.1 g for 10 nmol and 6.0 ± 1.8 g for 50 nmol, this treatment reduced the RA frequency (number/30 min (4 ± 2 for SAL-treated vs 1 ± 1 for 10 nmol and 0.5 ± 1 for 50 nmol SR59230A-treated rats, an ethological parameter related to anxiety. While pretreatment with SR59230A (7.0 ± 0.5 g abolished the hypophagia induced by BRL37344 (3.6 ± 0.9 g, BRL37344 suppressed the reduction in RA frequency caused by SR59230A. These results show that the hypophagia caused by BRL37344 is selectively mediated by β3-adrenergic receptors within the central nervous system. Moreover, they suggest the involvement of these receptors in the control of anxiety.

  9. Activation of antilipolytic alpha(2)-adrenergic receptors by epinephrine during exercise in human adipose tissue. (United States)

    Stich, V; de Glisezinski, I; Crampes, F; Suljkovicova, H; Galitzky, J; Riviere, D; Hejnova, J; Lafontan, M; Berlan, M


    The involvement of the antilipolytic alpha(2)-adrenergic pathway and the specific role of epinephrine in the control of lipolysis during exercise in adipose tissue (AT) were investigated in healthy male subjects (age: 24.1 +/- 2.2 yr; body mass index: 23.0 +/- 1.6). An in vitro study carried out on isolated adipocytes showed that the weak lipolytic effect of epinephrine was potentiated after blockade of alpha(2)-adrenergic receptor (AR) by an alpha(2)-AR antagonist and reached that of isoproterenol, a beta-AR agonist. The effect of the nonselective alpha(2)-AR antagonist phentolamine on the response of the extracellular glycerol concentration (EGC) in AT during two successive bouts of aerobic exercise (50% maximum O(2) uptake, 60 min duration) was evaluated using the microdialysis method. The metabolic responses measured in perfused probes with Ringer solution were compared with those obtained in perfused probes with Ringer plus 0.1 mmol/l phentolamine. Plasma norepinephrine level was not different during the two exercise bouts, whereas that of epinephrine was 2.5-fold higher during the second exercise. EGC in AT was twofold higher in the second compared with the first exercise, and the same response pattern was found for plasma glycerol. The exercise-induced increase in EGC was higher in the probe perfused with phentolamine compared with the control probe in both bouts of exercise. However, the potentiating effect of phentolamine on EGC was significant during the second exercise bout but did not reach a significant level during the first. These results suggest that epinephrine is involved in the control of lipid mobilization through activation of antilipolytic alpha(2)-AR in human subcutaneous AT during exercise.

  10. Role of beta2 agonists in respiratory medicine with particular attention to novel patents and effects on endocrine system and immune response. (United States)

    Larocca, Nancy E; Moreno, Dolores; Garmendia, Jenny V; De Sanctis, Juan B


    Beta adrenergic receptors are very important in respiratory medicine. Traditionally, the stimulation of beta adrenergic receptors by beta2-agonists is commonly used for giving bronchodilation in chronic airflow obstruction However; the wide distribution of these receptors in cells and tissues other than airway smooth muscle suggests that beta agonists should offer other beneficial effects in respiratory disease. Recent studies have shown the importance of these receptors in the modulation of endocrine and immune system that affect respiratory function and may decrease therapy effectiveness in asthma and chronic obstructive pulmonary disease. New patented compound and uses have provided new insights in future therapeutics of respiratory diseases in which genetic, endocrine and immune response should be considered.

  11. Adrenergic Receptors and Metabolism: Role in development of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Michele eCiccarelli


    Full Text Available Activation of the adrenergic system has a profound effects on metabolism. Increased circulating catecholamine and activation of the different adrenergic receptors deployed in the various organs produce important metabolic responses which include: 1 increased lipolysis and elevated levels of fatty acids in plasma, 2 increased gluconeogenesis by the liver to provide substrate for the brain and 3 moderate inhibition of insulin release by the pancreas to conserve glucose and to shift fuel metabolism of muscle in the direction of fatty acid oxidation. These physiological responses, typical of the stress conditions, are demonstrated to be detrimental for the functioning of different organs like the cardiac muscle when they become chronic. Indeed, a common feature of many pathological conditions involving over-activation of the adrenergic system is the development of metabolic alterations which can include insulin resistance, altered glucose and lipid metabolism and mitochondrial dysfunction. These patterns are involved with a variably extent among the different pathologies , however they are in general strictly correlated to the level of activation of the adrenergic system. Here we will review the effects of the different adrenergic receptors subtypes on the metabolic variation observed in important disease like Heart Failure.

  12. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht


    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  13. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites. (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W


    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  14. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice. (United States)

    Labbé, Sébastien M; Caron, Alexandre; Chechi, Kanta; Laplante, Mathieu; Lecomte, Roger; Richard, Denis


    Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.

  15. Control of yeast mating signal transduction by a mammalian. beta. sub 2 -adrenergic receptor and G sub s. alpha. subunit

    Energy Technology Data Exchange (ETDEWEB)

    King, K.; Caron, M.G.; Lefkowitz, R.J. (Duke Univ. Medical Center, Durham, NC (USA)); Dohlman, H.G.; Thorner, J. (Univ. of California, Berkeley (USA))


    To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR and a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.

  16. Moxonidine, an antihypertensive agent, is permissive to alpha1-adrenergic receptor pathway in the rat-tail artery. (United States)

    George, Oommen K; Gonzalez, Ramon R; Edwards, Lincoln P


    To investigate whether alpha1-adrenergic receptors were involved in the contractile response of tail arteries to moxonidine, isolated ring segments of tail arteries from male adult Sprague-Dawley rats were studied. Moxonidine (EC50 = 1.3 microM) and the alpha1-agonist phenylephrine (EC50 = 2.5 microM) increased tension development in the rat-tail artery similarly. The response to moxonidine (1 microM) could be blocked by both alpha1-adrenoceptor blockers prazosin (IC50 = 1 nM), and urapidil (IC50 = 14 nM), and also by alpha2-adrenoceptor blockers, yohimbine (IC50 = 49 nM) and efaroxan (IC50 = 49 nM). Combination drug treatment (urapidil and yohimbine, or yohimbine and prazosin) was more effective in blocking the contractile response to moxonidine, than treatment with prazosin or urapidil alone. Comparison of pA2 values for prazosin in the presence of moxonidine (9.35) or phenylephrine (10.2) confirm that alpha1-adrenergic receptors are involved in the contractile response of rat-tail artery to moxonidine.

  17. RT-PCR and Northern blot analysis in search for a putative Paramecium beta-adrenergic receptor. (United States)

    Płatek, A; Wiejak, J; Wyroba, E


    RT-PCR and Northern blot analysis were performed in order to search for a putative beta-adrenergic receptor (beta-AR) in Paramecium using several beta2-adrenergic-specific molecular probes. Under strictly defined RT-PCR conditions DNA species of expected molecular size about 360 bp were generated with the primers corresponding to the universal mammalian beta2-AR sequence tagged sites (located within the 4th and the 6th transmembrane regions of the receptor). This RT-PCR product hybridized in Southern blot analysis with the oligonucleotide probe designed to the highly conservative beta2-AR region involved in G-proteins interaction and located within the amplified region. Northern hybridization was performed on Paramecium total RNA and mRNA with human beta2-AR cDNA and two oligonucleotide probes: the first included Phe 290 involved in agonist binding (Strader et al., 1995) and the second was the backward RT-PCR primer. All these probes revealed the presence of about 2 kb mRNA which is consistent with the size of beta2-AR transcripts found in higher eukaryotes.

  18. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine. (United States)

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain


    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.

  19. [Beta 3 adrenergic receptor polymorphism and obesity]. (United States)

    Yoshida, T; Umekawa, T


    The beta 3-adrenoceptor plays a significant role in the control of lipolysis and thermogenesis in the brown adipose tissue of rodents and humans. In human beta 3-adrenoceptor, a Trp to Arg replacement has recently been discovered. This change which occurs at position 64, in the first coding exon, has been correlated with increased weight gain, difficulty in losing weight, insulin resistance syndrome, and worsened diabetic situation. Higher percentages of this mutation are observed in Pima Indians (over 30%) and Japanese (20%). The possible functional mechanism of Trp54Arg is reported using human HEK293 cell line stably expressing the wild type and the [Arg64] beta 3-adrenoceptor type. Beta 3-adrenoceptor agonists available for humans are been also developing. In this paper we describe these points up-to-date.

  20. Changes of lymphocyte beta-adrenergic receptors after surgical stress. (United States)

    Eandi, M; Buraglio, M; Arduino, C; Viano, I; Sansalvadore, G; Arbinolo, M A


    In this study the authors' purpose was to observe the effects of surgical stress on the number of lymphocyte beta-adrenergic receptors in hypertensive and normotensive subjects. It was noticed that after surgery a significant reduction occurred in the number of binding sites of lymphocytes of both hypertensive and normotensive subjects. The time course of recovery to the pre-operative values of binding sites varied between the two groups, being slower in normotensive than in hypertensive patients. This might suggest a different pattern of regulation of the beta-adrenergic receptor between hypertensive and normotensive subjects.

  1. [The sources of the adrenergic innervation of the rat uterus]. (United States)

    Proĭmina, F I; Rakitskaia, V V


    Complete disappearance of adrenergic fibers in the rat uterus is only possible after complete removal of ovaries along with ovarian plexus, transection of the uterus-vaginal connexion and removal of a portion of sympathetic nervous trunk. "Long" adrenergic neurons situated in spinal sympathetic ganglia, seem not to be the only source of sympathetic innervation of the myometrium's vessels. A part of nervous fibers of vascular plexuses and all muscle nerves are represented by "short" neurons starting from the ganglionic structures of the uterus-vaginal connexion.

  2. The effects of adjuvant arthritis on the myometrial adrenergic functions in the nonpregnant and the late-pregnant rat. (United States)

    Csik, G; Spiegl, G; Minorics, R; Falkay, G; Zupko, I


    The beneficial effects of pregnancy on the symptoms of inflammatory diseases are well documented. The modulation in the uterine functions in the presence of generalized inflammation, however, is much less characterized. The aim of the present study was to explore the modulatory action of adjuvant arthritis on the adrenergic functions of the uterus in nonpregnant and late pregnant rats. Adjuvant arthritis was induced by the subplantar injection of M. butyricum. Presynaptic functions were characterized by a superfusion technique and by registration of the contractions of isolated uterine rings elicited by electric field stimulation. The functions of the adrenoceptors were characterized by constructing concentration-response curves with agonists for both α- and β-receptors. Where these curves differed significantly from the control, the expressions of these receptors at the mRNA level were additionally determined. Adjuvant arthritis substantially decreased the uptake and release of [(3)H]noradrenaline in myometrial samples from nonpregnant rats, but caused no change at term. The electrically induced contractions were decreased by inflammation in both gestational states. Arthritis resulted in decreased β-adrenoceptor-mediated relaxation (in both the nonpregnant and the late-pregnant animals) and an increase in α-mediated contraction at term. It can be concluded that adjuvant arthritis deteriorates the adrenergic innervation of the uterus. The effects of exogenous sympathomimetics are shifted, favoring a state of higher contractility. If similar mechanisms are operative in humans, the present results could imply that β-adrenoceptor agonists are not ideal tocolytics when pregnancy is complicated by generalized inflammation.

  3. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR. (United States)

    Latek, Dorota; Kolinski, Michal; Ghoshdastider, Umesh; Debinski, Aleksander; Bombolewski, Rafal; Plazinska, Anita; Jozwiak, Krzysztof; Filipek, Slawomir


    Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.

  4. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). (United States)

    Wu, Shun-Fan; Yao, Yao; Huang, Jia; Ye, Gong-Yin


    Octopamine, the invertebrate counterpart of adrenaline and noradrenaline, plays a key role in regulation of many physiological and behavioral processes in insects. It modulates these functions through binding to specific octopamine receptors, which are typical rhodopsin-like G-protein coupled receptors. A cDNA encoding a seven-transmembrane receptor was cloned from the nerve cord of the rice stem borer, Chilo suppressalis, viz. CsOA2B2, which shares high sequence similarity to CG6989, a Drosophila β-adrenergic-like octopamine receptor (DmOctβ2R). We generated an HEK-293 cell line that stably expresses CsOA2B2 in order to examine the functional and pharmacological properties of this receptor. Activation of CsOA2B2 by octopamine increased the production of cAMP in a dose-dependent manner (EC(50)=2.33 nmol l(-1)), with a maximum response at 100 nmol l(-1). Tyramine also activated the receptor but with much less potency than octopamine. Dopamine and serotonin had marginal effects on cAMP production. Using a series of known agonists and antagonists for octopamine receptors, we observed a rather unique pharmacological profile for CsOA2B2 through measurements of cAMP. The rank order of potency of the agonists was naphazoline > clonidine. The activated effect of octopamine is abolished by co-incubation with phentolamine, mianserin or chlorpromazine. Using in vivo pharmacology, CsOA2B2 antagonists mianserin and phentolamine impaired the motor ability of individual rice stem borers. The results of the present study are important for a better functional understanding of this receptor as well as for practical applications in the development of environmentally sustainable pesticides.

  5. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Aaron Uschakov

    Full Text Available We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA of hypocretin/orexin (hcrt/orx neurons was changed to an inhibition following sleep deprivation (SD. Here we describe that in control condition (CC, i.e. following 2 hours of natural sleep in the morning, the α(2-adrenergic receptor (α(2-AR agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC, it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK channels. Since concentrations of clonidine up to a thousand times (100 µM higher than those effective in SDC (100 nM, were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2-ARs associated with GIRK channels is normally down-regulated (or desensitized in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.

  6. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    Energy Technology Data Exchange (ETDEWEB)

    Wagerle, L.C.; Delivoria-Papadopoulos, M.


    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  7. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with Human β₃-Adrenergic Activity. (United States)

    Apablaza, Gastón; Montoya, Luisa; Morales-Verdejo, Cesar; Mellado, Marco; Cuellar, Mauricio; Lagos, Carlos F; Soto-Delgado, Jorge; Chung, Hery; Pessoa-Mahana, Carlos David; Mella, Jaime


    The β₃ adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β₃ adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent β₃ adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β₃ adrenergic activity is given.

  8. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R-2-((2-(1H-Indol-2-ylethylamino-1-Phenylethan-1-ol with Human β3-Adrenergic Activity

    Directory of Open Access Journals (Sweden)

    Gastón Apablaza


    Full Text Available The β3 adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration in USA and the MHRA (Medicines and Healthcare products Regulatory Agency in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β3 adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis study on a series of potent β3 adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β3 adrenergic activity is given.

  9. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    Directory of Open Access Journals (Sweden)

    Juan Suárez


    Full Text Available β-adrenergic receptor activation promotes brown adipose tissue (BAT β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα in white adipose tissue (WAT. Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (eWAT was monitored. CL316243 (1 mg/kg and OEA (5 mg/kg co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2. This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs, and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2 and BAT (Fgf21, Prdm16 genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.

  10. Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation. (United States)

    Renauld, A E; Spengler, R N


    Neuron expression of the cytokine tumor necrosis factor-alpha (TNF), and the regulation of the levels of TNF by alpha(2)-adrenergic receptor activation were investigated. Adult rat hippocampal neurons and phorbol ester (PMA)-differentiated SH-SY5Y cells were examined. Intracellular levels of TNF mRNA accumulation, as well as TNF protein and that released into the supernatant were quantified by in situ hybridization, immunocytochemistry and bioanalysis, respectively. Both neuron cultures demonstrated constitutive production of TNF. Activation of the alpha(2)-adrenergic receptor increased intracellular levels of TNF mRNA and protein in SH-SY5Y cells after addition of graded concentrations of the selective agonist, Brimonidine (UK-14304) to parallel cultures. Intracellular levels of mRNA were increased in a concentration-dependent fashion within 15 min of UK-14304 addition and were sustained during 24 hr of receptor activation. In addition, the levels of TNF in the supernatant were increased in both types of neuron cultures within 15 min of alpha(2)-adrenergic receptor activation. Furthermore, levels of TNF significantly increased in the supernatants of both neuron cultures after potassium-induced depolarization. A reduction in this depolarization-induced release occurred in hippocampal neuron cultures after exposure to the sympathomimetic tyramine with media replacement to deplete endogenous catecholamines. This finding reveals a role for endogenous catecholamines in the regulation of TNF production. Potassium-induced depolarization resulted in the release of TNF in hippocampal neuron cultures within 15 min but not until 24 hr in SH-SY5Y cultures demonstrating a temporally mediated event dependent upon cell type. Neuron expression of TNF, regulated by alpha(2)-adrenergic receptor activation demonstrates not only how a neuron controls its own production of this pleiotropic cytokine, but also displays a normal role for neurons in directing the many functions of TNF.

  11. Direct effect of cadmium on blood pressure and adrenergic system in the cat

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.W.; Bingham, G.


    The dose-response effect of cadmium on systolic and diastolic pressure were measured in the cat after injecting a bolus of cadmium intravenously. In animals treated with 100, 125, or 150 ug cadmium/kg BW systolic and diastolic pressure were both significantly increased. These increases were gradual as the dose Cd was increased from 75 to 125 ug. In an attempt to determine the mechanism associated with cadmium-induced hypertension in the cat the effect of this element on the adrenergic system was studied. The effect of ..cap alpha.. and BETA agonists on cadmium-induced increase in blood pressure were determined by the injection of either propranolol or phentolamine at 20 mg/kg BW. The hypertensive effect of 125 ug Cd was abolished by phentolamine but not by propranolol suggesting, that Cd may induce the release of norepinephrine from storage sites. In support of this suggestion we observed in cats treated with 125 ug Cd a significant increase in plasma norepinephrine which was not affected by propranolol or phentolamine injections. However reserpine pretreatment abolished both the increase in plasma norepinephrine and the cadmium-induced hypertensive effect. The data suggest that the associated mechanism of cadmium-induced hypertension may be related to the effect of this element of the release of norepinephrine. Increases in the extracellular levels of this neurotransmitter in turn provokes a rise in blood pressure through its interaction with the receptors of vascular smooth muscle cells. 38 references, 7 figures, 1 table.

  12. Peptide YY antagonizes beta-adrenergic-stimulated release of insulin in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Greeley, G.H. Jr.; Lluis, F.; Gomex, G.; Ishizuka, J.; Holland, B.; Thompson, J.C. (Univ. of Texas Medical Branch, Galveston (USA))


    Peptide YY (PYY) and neuropeptide Y (NPY) are peptides of 36 amino acids that share structural homologies with pancreatic polypeptide (PP). PP is predominantly found in the endocrine pancreas. PYY is primarily found in mucosal endocrine cells of the distal ileum, colon, and rectum, whereas NPY is found in both the peripheral and central nervous system. Previous studies indicate that these peptides can interact with the autonomic nervous system. The objective of the present experiments was to study the effect of PYY on neurally stimulated insulin release in conscious dogs. Intravenous administration of PYY (100, 200, and 400 pmol{center dot}kg{sup {minus}1} {center dot}h{sup {minus}1}) reduced 2-DG-stimulated insulin release in a dose-dependent manner (P <0.05) without affecting plasma glucose levels. Administration of NPY, but not PP, reduced 2-DG-stimulated release of insulin. The inhibitory action of PYY on 2-DG-stimulated insulin release persisted in the presence of atropine or phentolamine treatment; however, hexamethonium alone or phentolamine plus propranolol treatment blocked the inhibitory action of PYY. Release of insulin stimulated by the {beta}-agonist isoproterenol was also inhibited by PYY. These results indicate that PYY can inhibit autonomic neurotransmission by a mechanism that may involve ganglionic or postganglionic inhibition of {beta}-adrenergic stimulation. The findings suggest a role for PYY and NPY in the autonomic regulation of insulin release.

  13. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye


    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  14. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Gao-shang Chai; Yang-yang Wang; Amina Yasheng; Peng Zhao


    Impaired hippocampal neurogenesis is one of the early pathological features of Alzheimer’s disease. Enhancing adult hippocampal neuro-genesis has been pursued as a potential therapeutic strategy for Alzheimer’s disease. Recent studies have demonstrated that environmental novelty activates β2-adrenergic signaling and prevents the memory impairment induced by amyloid-β oligomers. Here, we hypothesized that β2-adrenoceptor activation would enhance neurogenesis and ameliorate memory deifcits in Alzheimer’s disease. To test this hypothe-sis, we investigated the effects and mechanisms of action of β2-adrenoceptor activation on neurogenesis and memory in amyloid precursor protein/presenilin 1 (APP/PS1) mice using the agonist clenbuterol (intraperitoneal injection, 2 mg/kg). We found that β2-adrenoceptor ac-tivation enhanced hippocampal neurogenesis, ameliorated memory deifcits, and increased dendritic branching and the density of dendritic spines. hTese effects were associated with the upregulation of postsynaptic density 95, synapsin 1 and synaptophysin in APP/PS1 mice. Furthermore, β2-adrenoceptor activation decreased cerebral amyloid plaques by decreasing APP phosphorylation at hTr668. hTese ifndings suggest that β2-adrenoceptor activation enhances neurogenesis and ameliorates memory deifcits in APP/PS1 mice.

  15. Impaired desensitization of a human polymorphic α2B-adrenergic receptor variant enhances its sympatho-inhibitory activity in chromaffin cells

    Directory of Open Access Journals (Sweden)

    Lymperopoulos Anastasios


    Full Text Available Abstract Background α2-adrenergic receptors (ARs mediate many cellular actions of epinephrine and norepinephrine and inhibit their secretion from adrenal chromaffin cells. Like many other G-protein coupled receptors (GPCRs, they undergo agonist-dependent phopshorylation and desensitization by GPCR Kinases (GRKs, a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A deletion polymorphism in the human α2B-AR gene (Glu301-303 causes impaired agonist-promoted receptor phosphorylation and desensitization in heterologous cell lines. Given the importance of α2-ARs in regulation of catecholamine secretion from chromaffin cells, we sought to investigate, in the present study, the desensitization properties and the sympatho-inhibitory activity of this variant in a chromaffin cell line. For this purpose, we expressed this variant and its wild type counterpart in the well-established chromaffin cell line PC12, and performed receptor phosphorylation and desensitization studies, as well as in vitro catecholamine secretion assays. Results Both the agonist-induced phosphorylation and agonist-dependent desensitization of the human Glu301-303 deletion polymorphic α2B-AR are significantly impaired in PC12 cells, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in vitro. Conclusion This α2B-AR gene polymorphism (Glu301-303 deletion might confer better protection against conditions characterized and aggravated by sympathetic/catecholaminergic overstimulation in vivo.

  16. Pharmacogenetics of β2-Agonists

    Directory of Open Access Journals (Sweden)

    Nobuyuki Hizawa


    Full Text Available Short-acting β2-agonists (SABAs and long-acting β2-agonists (LABAs are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target therapies in highly responsive patients, especially for more expensive therapies or those with increased risk of side effects. Variation in response to both SABAs and LABAs has been observed in patients with polymorphisms in the β2 adrenoceptor gene (ADRB2. This review summarizes results from various studies on the possible relationship between ADRB2 polymorphisms and the bronchodilator or bronchoprotective effects of inhaled β2-agonists. By assessing the ADRB2 genotype, the hope is that it will be possible to predict the responsiveness to chronic administration of β2-agonists. Genetic testing, however, is of limited usefulness at this stage for ADRB2 because the common variants identified thus far account for only a small proportion of the variation observed for given responses. Carefully performed and adequately powered clinical trials continue to be important for achieving the goal of pharmacogenetic approaches to therapy.

  17. Regulation of gap-junction protein connexin 43 by β-adrenergic receptor stimulation in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yi XIA; Kai-zheng GONG; Ming XU; You-yi ZHANG; Ji-hong GUO; Yao SONG; Ping ZHANG


    Aim:β-adrenergic receptor (β-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties.Connexin 43 (Cx43),the predominant gap-junction protein in the heart,has an indispensable role in modulating cardiac electric activities by affecting gap-junction function.The present study investigates the effects of short-term stimulation of β-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function.Methods:The level of Cx43 expression in neonatal rat cardiomyocytes (NRCM) was detected by a Western blotting assay.The GJIC function was evaluated by scrape loading/dye transfer assay.Results:Stimulation of β-AR by the agonist isoproterenol for 5 min induces the up-regulation of nonphosphorylated Cx43 protein level,but not total Cx43.Selective β2-AR inhibitor ICI 118551,but not β-AR inhibitor CGP20712,could fully abolish the effect.Moreover,pretreatment with both protein kinase A inhibitor H89 and G,protein inhibitor pertussis toxin also inhibited the isoproterenol-induced increase of nonphosphorylated Cx43 expression.Isoproterenol-induced up-regulation of nonphosphorylated Cx43 is accompanied with enhanced GJIC function.Conclusion:Taken together,β2-AR stimulation increases the expression of nonphosphorylated Cx43,thereby enhancing the gating function of gap junctions in cardiac myocytes in both a protein kinase A-and G1-dependent manner.

  18. Adrenergic receptors and gastric secretion in dogs. Is a "tonic balance" relationship between vagal and beta 2-adrenergic activity a possibility?

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K


    The relative influence of adrenergic receptors on gastric acid secretion in the dog stomach with different vagal activity or "tone" is almost unknown. beta-adrenoceptors seem to be most important for the direct effect of adrenergic stimulation on acid secretion. In this study the effects of vagot...

  19. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Luong KV


    Full Text Available Khanh vinh quốc Lương, Lan Thi Hoàng NguyễnVietnamese American Medical Research Foundation, Westminster, California, USAAbstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.Keywords: β-adrenergic blocker, neoplasm, β-adrenergic antagonism, non-genomic factor

  20. Characterization of a panel of six β2-adrenergic receptor antibodies by indirect immunofluorescence microscopy (United States)

    Koryakina, Yulia A; Fowler, Tristan W; Jones, Stacie M; Schnackenberg, Bradley J; Cornett, Lawrence E; Kurten, Richard C


    Background The β2-adrenergic receptor (β2AR) is a primary target for medications used to treat asthma. Due to the low abundance of β2AR, very few studies have reported its localization in tissues. However, the intracellular location of β2AR in lung tissue, especially in airway smooth muscle cells, is very likely to have a significant impact on how the airways respond to β-agonist medications. Thus, a method for visualizing β2AR in tissues would be of utility. The purpose of this study was to develop an immunofluorescent labeling technique for localizing native and recombinant β2AR in primary cell cultures. Methods A panel of six different antibodies were evaluated in indirect immunofluorescence assays for their ability to recognize human and rat β2AR expressed in HEK 293 cells. Antibodies capable of recognizing rat β2AR were identified and used to localize native β2AR in primary cultures of rat airway smooth muscle and epithelial cells. β2AR expression was confirmed by performing ligand binding assays using the β-adrenergic antagonist [3H] dihydroalprenolol ([3H]DHA). Results Among the six antibodies tested, we identified three of interest. An antibody developed against the C-terminal 15 amino acids of the human β2AR (Ab-Bethyl) specifically recognized human but not rat β2AR. An antibody developed against the C-terminal domain of the mouse β2AR (Ab-sc570) specifically recognized rat but not human β2AR. An antibody developed against 78 amino acids of the C-terminus of the human β2AR (Ab-13989) was capable of recognizing both rat and human β2ARs. In HEK 293 cells, the receptors were predominantly localized to the cell surface. By contrast, about half of the native rat β2AR that we visualized in primary cultures of rat airway epithelial and smooth muscle cells using Ab-sc570 and Ab-13989 was found inside cells rather than on their surface. Conclusion Antibodies have been identified that recognize human β2AR, rat β2AR or both rat and human β2AR

  1. Characterization of a panel of six β2-adrenergic receptor antibodies by indirect immunofluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Jones Stacie M


    Full Text Available Abstract Background The β2-adrenergic receptor (β2AR is a primary target for medications used to treat asthma. Due to the low abundance of β2AR, very few studies have reported its localization in tissues. However, the intracellular location of β2AR in lung tissue, especially in airway smooth muscle cells, is very likely to have a significant impact on how the airways respond to β-agonist medications. Thus, a method for visualizing β2AR in tissues would be of utility. The purpose of this study was to develop an immunofluorescent labeling technique for localizing native and recombinant β2AR in primary cell cultures. Methods A panel of six different antibodies were evaluated in indirect immunofluorescence assays for their ability to recognize human and rat β2AR expressed in HEK 293 cells. Antibodies capable of recognizing rat β2AR were identified and used to localize native β2AR in primary cultures of rat airway smooth muscle and epithelial cells. β2AR expression was confirmed by performing ligand binding assays using the β-adrenergic antagonist [3H] dihydroalprenolol ([3H]DHA. Results Among the six antibodies tested, we identified three of interest. An antibody developed against the C-terminal 15 amino acids of the human β2AR (Ab-Bethyl specifically recognized human but not rat β2AR. An antibody developed against the C-terminal domain of the mouse β2AR (Ab-sc570 specifically recognized rat but not human β2AR. An antibody developed against 78 amino acids of the C-terminus of the human β2AR (Ab-13989 was capable of recognizing both rat and human β2ARs. In HEK 293 cells, the receptors were predominantly localized to the cell surface. By contrast, about half of the native rat β2AR that we visualized in primary cultures of rat airway epithelial and smooth muscle cells using Ab-sc570 and Ab-13989 was found inside cells rather than on their surface. Conclusion Antibodies have been identified that recognize human β2AR, rat β2AR or

  2. Neurohumoral activation in heart failure: the role of adrenergic receptors


    Patricia C. Brum; Rolim, Natale P. L.; BACURAU, Aline V. N.; Alessandra Medeiros


    Heart failure (HF) is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardia...

  3. Relationship between oxidative stress and beta-2 adrenergic receptor desensitization%氧化应激与β2肾上腺素能受体脱敏的关系

    Institute of Scientific and Technical Information of China (English)

    任丽君; 刘华; 倪松石


    Oxidative stress is caused by an imbalance between the production of reactive oxygen species,reactive nitrogen species and removal,resulting in a high level of reactive oxygen species within an organism.This high level will damage molecular,cellular and organism.The currently studies have shown that oxidative stress plays an important role in β2-adrenergic receptor desensitization.However,β2-adrenergic receptor agonists have been largely restricted in the treatment of bronchial asthma because of β2-adrenergic receptor desensitization.The review is about oxidative stress and β2-adrenergic receptor.%氧化应激是体内活性氧和活性氮自由基产生过多,超过了机体清除速率,氧化系统和抗氧化系统失衡,导致活性氧在体内蓄积而引起的分子、细胞和机体的损伤.目前诸多研究认为氧化应激在β2肾上腺素能受体(β2-adrenergic receptor,β2AR)脱敏中起着重要作用,而β2AR脱敏会影响到β2肾上腺素能受体激动剂在支气管哮喘治疗中的效果,现就氧化应激与β2AR脱敏的关系作一综述.

  4. Commentary: Are alpha-2 agonist really effective in children with tics with comorbid ADHD? A commentary on Whittington et al. (2016). (United States)

    Bloch, Michael H


    In this issue, Whittington et al. (2016) present a systematic review that reports the efficacy of three primary treatments for children with Tourette syndrome (TS) - (a) α2-adrenergic receptor agonists; (b) antipsychotic medications; and (c) habit reversal training/comprehensive behavioral intervention. In this commentary, we highlight the large degree of heterogeneity observed in the meta-analysis of trials involving alpha-2 agonist medications and present possible explanations for the observed heterogeneity. Among these possible explanations is the possibility that presence of comorbid ADHD may moderate the efficacy of alpha-2 agonists in the treatment of tic disorder with the medications being more effective in patients with both conditions. The commentary reviews the evidence supporting this possible moderating effect of ADHD and discusses the implications for such a relationship.

  5. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization. (United States)

    Fan, Xiaofang; Gu, Xuejiang; Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng; Wang, Yongyu


    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  6. α1 -AR agonist induced piloerection protects against the development of traction alopecia. (United States)

    Goren, Andy; Shapiro, Jerry; Sinclair, Rodney; Kovacevic, Maja; McCoy, John


    Traction alopecia is hair loss that occurs after persistent pulling (e.g., during cosmetic procedures) on the roots of hair over time. Unlike plucking, which is painful, persistent pulling may go unnoticed until a patient presents with either bald spots or diffuse telogen shedding. Each hair follicle in the scalp contains an arrector pili muscle that, when contracted, erects the hair. The smooth muscle in the arrector pili expresses α1 adrenergic receptors (α1 -AR). As such, we hypothesized that contraction of the arrector pili muscle via an α1 -AR agonist would increase the threshold of force required to pluck hair during cosmetic procedures. Female subjects, ages 18-40, were recruited to study the effect of topically applied phenylephrine, a selective α1 -AR agonist, on epilation force and hair shedding during cosmetic procedures. In our blinded study, 80% of subjects demonstrated reduced shedding on days using phenylephrine compared to days using a placebo solution. The average reduction in hair loss was approximately 42%. In addition, the force threshold required for epilation increased by approximately 172% following topical phenylephrine application. To our knowledge this is the first study demonstrating the utility of α1 -AR agonists in the treatment of traction alopecia and hair shedding during cosmetic procedures.

  7. Inflammation and exercise: Inhibition of monocytic intracellular TNF production by acute exercise via β2-adrenergic activation. (United States)

    Dimitrov, Stoyan; Hulteng, Elaine; Hong, Suzi


    Regular exercise is shown to exert anti-inflammatory effects, yet the effects of acute exercise on cellular inflammatory responses and its mechanisms remain unclear. We tested the hypothesis that sympathoadrenergic activation during a single bout of exercise has a suppressive effect on monocytic cytokine production mediated by β2 adrenergic receptors (AR). We investigated the effects of 20-min moderate (65-70% VO2 peak) exercise-induced catecholamine production on LPS-stimulated TNF production by monocytes in 47 healthy volunteers and determined AR subtypes involved. We also examined the effects of β-agonist isoproterenol and endogenous β- and α-agonists epinephrine and norepinephrine, and receptor-subtype-specific β- and α-antagonists on TNF production in a series of in vitro investigations. LPS-stimulated TNF production by peripheral blood monocytes was determined intracellularly by flow cytometry, using an intracellular protein transport inhibitor. Percent TNF-producing monocytes and per-cell TNF production with and without LPS was suppressed by exercise with moderate to large effects, which was reversed by a β2-AR antagonist in spite that plasma TNF levels did not change. This inhibitory response in TNF production by exercise was mirrored by β-AR agonists in an agonist-specific and dose-dependent manner in vitro: similar isoproterenol (EC50=2.1-4.7×10(-10)M) and epinephrine (EC50=4.4-10×10(-10)M) potency and higher norepinephrine concentrations (EC50=2.6-4.3×10(-8)M) needed for the effects. Importantly, epinephrine levels observed during acute exercise in vivo significantly inhibited TNF production in vitro. The inhibitory effect of the AR agonists was abolished by β2-, but not by β1- or α-AR blockers. We conclude that the downregulation of monocytic TNF production during acute exercise is mediated by elevated epinephrine levels through β2-ARs. Decreased inflammatory responses during acute exercise may protect against chronic conditions with low

  8. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Patricia C. Brum


    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  9. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Qifeng Bai

    Full Text Available We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551. The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at

  10. GnRH agonist triggering

    DEFF Research Database (Denmark)

    Kol, Shahar; Humaidan, Peter; Al Humaidan, Peter Samir Heskjær


    The concept that a bolus of gonadotrophin-releasing hormone agonist (GnRHa) can replace human chorionic gonadotrophin (HCG) as a trigger of final oocyte maturation was introduced several years ago. Recent developments in the area strengthen this premise. GnRHa trigger offers important advantages...... triggering concept should be challenged and that the GnRHa trigger is the way to move forward with thoughtful consideration of the needs, safety and comfort of our patients. Routinely, human chorionic gonadotrophin (HCG) is used to induce ovulation in fertility treatments. This approach deviates...... significantly from physiology and often results in insufficient hormonal support in early pregnancy and in ovarian hyperstimulation syndrome (OHSS). An alternative approach is to use a gonadotrophin-releasing hormone (GnRH) agonist which allows a more physiological trigger of ovulation and, most importantly...

  11. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in DSS-induced colitis model. (United States)

    Deng, Que; Chen, Hongyu; Liu, Yanjun; Xiao, Fengjun; Guo, Liang; Liu, Dan; Cheng, Xiang; Zhao, Min; Wang, Xiaomeng; Xie, Shuai; Qi, Siyong; Yin, Zhaoyang; Gao, Jiangping; Chen, Xintian; Wang, Jiangong; Guo, Ning; Ma, Yuanfang; Shi, Ming


    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition. Psychological stress has been postulated to affect the clinical symptoms and recurrence of IBD. The exact molecular mechanisms are not fully understood. In the present study, we demonstrate that psychological stress promotes neutrophil infiltration into colon tissues in dextran sulfate sodium (DSS)-induced colitis model. The psychological stress resulted in abnormal expression of the proinflammatory cytokines (IL-1β, IL-6, IL-17A, and IL-22) and neutrophil chemokines (CXCL1 and CXCL2) and overactivation of the STAT3 inflammatory signaling pathway. Under chronic unpredictable stress, the adrenergic nervous system was markedly activated, as the expression of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, in bone marrow and colonic epithelium was enhanced, especially in the myenteric ganglia. The β-AR agonist isoproterenol mimicked the effects of psychological stress on neutrophilia, neutrophil infiltration, and colonic damage in DSS-induced colitis. The β1-AR/β2-AR inhibitor propranolol reduced the numbers of the neutrophils in the circulation, suppressed neutrophil infiltration into colonic tissues, and attenuated the colonic tissue damage promoted by chronic stress. Propranolol also abolished stress-induced upregulation of proinflammatory cytokines and neutrophil chemokines. Our data reveal a close linkage between the β1-AR/β2-AR activation and neutrophil trafficking and also suggest the critical roles of adrenergic nervous system in exacerbation of inflammation and damage of colonic tissues in experimental colitis. The current study provides a new insight into the mechanisms underlying the association of psychological stress with excessive inflammatory response and pathophysiological consequences in IBD. The findings also suggest a potential application of neuroprotective agents to prevent relapsing immune activation in the treatment of IBD.

  12. Differential regulation of atrial natriuretic peptide- and adrenergic receptor-dependent lipolytic pathways in human adipose tissue. (United States)

    Moro, Cédric; Polak, Jan; Richterova, Blanka; Sengenès, Coralie; Pelikanova, Terezie; Galitzky, Jean; Stich, Vladimir; Lafontan, Max; Berlan, Michel


    The aim of the study was to investigate the regulation affecting the recently described atrial natriuretic peptide (ANP)-dependent lipolytic pathway in comparison with the adrenergic lipolytic cascade. We studied in vivo the effect of a euglycemic-hyperinsulinemic clamp on the changes occurring in the extracellular glycerol concentration (EGC) of subcutaneous adipose tissue (SCAT) during ANP or epinephrine perfusion in a microdialysis probe. Homologous desensitization and the incidence of hyperinsulinemia on the ANP- and catecholaminergic-dependent control of lipolysis were also investigated in vitro on fat cells from SCAT. When perfused in SCAT, epinephrine and ANP promoted an increase in EGC; the EGC increase was significantly lower during the clamp. The reduction of epinephrine-induced lipolysis was limited (18%) when phentolamine (an alpha(2)-adrenergic receptor [AR] antagonist) was perfused together with epinephrine. Unlike the effect of epinephrine, the response to ANP observed during the second perfusion was reduced by 32%. The increase in extracellular guanosine 3',5' -cyclic monophosphate concentration, which reflects ANP activity, was also reduced during the second perfusion. Desensitization of the lipolytic effects of ANP was observed in vitro after a 2-hour period of recovery, while the effects of alpha(2)-AR agonist or of epinephrine were unchanged. Insulin was without any effect on ANP-induced lipolysis and alpha(2)-AR-mediated antilipolysis, while it reduced beta-AR-induced lipolysis. The ANP-dependent lipolytic pathway undergoes desensitization in vitro and in situ. Insulin had no inhibitory effect on either ANP- or alpha(2)-AR-dependent pathways, while it counteracted the beta-AR pathway.


    Kuznetsova, L A; Sharova, T S; Pertseva, M N; Shpakov, A O


    The stimulating effect of norepinephrine, isoproterenol and selective β-adrenoceptor (β3-AR) agonists BRL 37344 and CL 316.243 on the adenylyl cyclase signaling system (ACSS) in the brain and myocardium of young and mature rats (disease induction at 2 and 4 months, respectively) with experimental obesity and type 2 diabetes mellitus (DM2), and the influence of long-term treatment of animals with intranasal insulin (I-I) were studied. The AC stimulatory effects of β-agonist isoproterenol in animals with obesity and DM2 was shown to be practically unchanged. The respective effects of norepinephrine on the AC activity were attenuated in the brain of young and mature rats and in the myocardium if mature rats, and the I-I treatment led to their partial recovery. In the brain and myocardium of mature rats with obesity and DM2, the enhancement of the AC stimulatory effects of β3-AR agonists was observed, white in young rats the influence of the same pathological conditions was lacking. The I-I treatment decreased the AC stimulatory effects of β3-agonists to their levels in the control. Since functional disruption of the adrenergic agonist-sensitive ACSS can lead to metabolic syndrome and DM2, the recovery of this system by the I-I treatment offers one of the ways to correct these diseases and their complications in the nervous and cardiovascular systems.

  14. β2-Agonist clenbuterol hinders human monocyte differentiation into dendritic cells. (United States)

    Giordani, Luciana; Cuzziol, Noemi; Del Pinto, Tamara; Sanchez, Massimo; Maccari, Sonia; Massimi, Alessia; Pietraforte, Donatella; Viora, Marina


    Clenbuterol (CLB) is a beta2-adrenergic agonist commonly used in asthma therapy, but is also a non-steroidal anabolic drug often abused in sport doping practices. Here we evaluated the in vitro impact of CLB on the physiology and function of human monocytes and dendritic cells (DCs), instrumental in the development of immune responses. We demonstrate that CLB inhibits the differentiation of monocytes into DCs and this effect is specific and dependent on β2-adrenergic receptor (AR) activation. We found that CLB treatment reduced the percentage of CD1a(+) immature DCs, while increasing the frequency of monocytes retaining CD14 surface expression. Moreover, CLB inhibited tumor necrosis factor-alpha (TNF-alpha) enhanced IL-(interleukin)-10 and IL-6 production. In contrast, CLB did not modulate the phenotypic and functional properties of monocytes and DCs, such as the surface expression of HLA-DR, CD83, CD80 and CD86 molecules, cytokine production, immunostimulatory activity and phagocytic activity. Moreover, we found that CLB did not modulate the activation of NF-kB in DCs. Moreover, we found that the differentiation of monocytes into DCs was associated with a significant decrease of β2-ARs mRNA expression. These results provide new insights on the effect of CLB on monocyte differentiation into DCs. Considering the frequent illegal use of CLB in doping, our work suggests that this drug is potentially harmful to immune responses decreasing the supply of DCs, thus subverting immune surveillance.

  15. Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists

    NARCIS (Netherlands)

    Coppes, RP; Zeilstra, LJW; Kampinga, HH; Konings, AWT


    Damage to salivary glands after radiotherapeutic treatment of head and neck tumours can severely impair the quality of life of the patients. In the current study we have investigated the early-to-late pathogenesis of the parotid gland after radiation. Also the ability to ameliorate the damage using

  16. Developmental α₂-adrenergic regulation of noradrenergic synaptic facilitation at cerebellar GABAergic synapses. (United States)

    Hirono, M; Nagao, S; Obata, K


    In the central nervous system, the normal development of neuronal circuits requires adequate temporal activation of receptors for individual neurotransmitters. Previous studies have demonstrated that α₂-adrenoceptor (α₂-AR) activation eliminates spontaneous action potentials of interneurons in the cerebellar molecular layer (MLIs) and subsequently reduces the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in Purkinje cells (PCs) after the second postnatal week. The magnitude of the α₂-adrenergic reduction in sIPSC frequency is enhanced during the third postnatal week because of an increase in firing-derived sIPSCs. However, little is known about the effects of α₂-AR activation by noradrenaline (NA) on cerebellar GABAergic synaptic transmission that is accompanied by the activation of other AR subtypes, α₁- and β-ARs. Here, we developmentally examined the roles of α₂-AR activation in the noradrenergic facilitation of sIPSCs in cerebellar PCs. Until the second postnatal week, when substantial inhibitory effects of α₂-ARs are absent, NA potentiated sIPSCs and maintained the increased sIPSC frequency, suggesting that NA causes long-lasting facilitation of GABAergic synaptic transmission through α₁- and β-AR activation. After the second postnatal week, NA transiently increased the sIPSC frequency, whereas blocking α₂-ARs sustained the noradrenergic sIPSC facilitation and increase in the firing rate of MLIs, suggesting that α₂-AR activation suppresses the noradrenergic facilitation of GABAergic synaptic transmission. The simultaneous activation of α₁- and β-ARs by their specific agonists mimicked the persistent facilitation of sIPSC frequency, which required extracellular signal-regulated kinase 1/2 activation. These findings indicate that NA acts as a neurotrophic factor that strengthens GABAergic synaptic transmission in the developing cerebellar cortex and that α₂-ARs temporally restrain the noradrenergic

  17. Beta-adrenergic modulation of tremor and corticomuscular coherence in humans.

    Directory of Open Access Journals (Sweden)

    Mark R Baker

    Full Text Available Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ~20 Hz descending input could be altered by non-linear interactions with ~10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist and salbutamol (β(2-agonist, which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg significantly increased beta band (15.3-32.2 Hz corticomuscular coherence compared with placebo, but reduced tremor in the 6.2-11.9 Hz range. Salbutamol (2.5 mg was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.

  18. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Directory of Open Access Journals (Sweden)

    Robichon Alain


    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  19. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. (United States)

    Vardjan, Nina; Kreft, Marko; Zorec, Robert


    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease.

  20. The rush to adrenaline: drugs in sport acting on the beta-adrenergic system. (United States)

    Davis, E; Loiacono, R; Summers, R J


    Athletes attempt to improve performance with drugs that act on the beta-adrenergic system directly or indirectly. Of three beta-adrenoceptor (AR) subtypes, the beta(2)-AR is the main target in sport; they have bronchodilator and anabolic actions and enhance anti-inflammatory actions of corticosteroids. Although demonstrable in animal experiments and humans, there is little evidence that these properties can significantly improve performance in trained athletes. Their actions may also be compromised by receptor desensitization and by common, naturally occurring receptor mutations (polymorphisms) that can influence receptor signalling and desensitization properties in individuals. Indirectly acting agents affect release and reuptake of noradrenaline and adrenaline, thereby influencing all AR subtypes including the three beta-ARs. These agents can have potent psychostimulant effects that provide an illusion of better performance that does not usually translate into improvement in practice. Amphetamines and cocaine also have considerable potential for cardiac damage. beta-AR antagonists (beta-blockers) are used in sports that require steadiness and accuracy, such as archery and shooting, where their ability to reduce heart rate and muscle tremor may improve performance. They have a deleterious effect in endurance sports because they reduce physical performance and maximum exercise load. Recent studies have identified that many beta-AR antagonists not only block the actions of agonists but also activate other (mitogen-activated PK) signalling pathways influencing cell growth and fate. The concept that many compounds previously regarded as 'blockers' may express their own spectrum of pharmacological properties has potentially far-reaching consequences for the use of drugs both therapeutically and illicitly.

  1. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. (United States)

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel


    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  2. Site-specific O-glycosylation by Polypeptide GalNAc-transferase T2 Co-regulates Beta1-adrenergic Receptor N-terminal Cleavage. (United States)

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Holst Hansen, Lasse; Overall, Christopher; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E


    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as beta-blockers, relatively little is still known about its regulation. We have previously shown that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation, and moreover that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N-terminus, including the Ser49 residue at a location of the common Ser49Gly single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T edited cell line model systems, and a GalNAc-T2 knockout rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis leads to attenuated receptor signaling, as the maximal response elicited by the βAR agonist isoproterenol and it potency in a cAMP accumulation assay was decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.

  3. Mivazerol, a novel compound with high specificity for alpha 2 adrenergic receptors: binding studies on different human and rat membrane preparations. (United States)

    Noyer, M; de Laveleye, F; Vauquelin, G; Gobert, J; Wülfert, E


    Mivazerol, 3-[1(H-imidazol-4-yl)methyl]-2-hydroxybenzamide hydrochloride, a new potential anti-ischemic drug designed by UCB S.A. Pharma Sector, has been studied in binding experiments on adrenergic, dopaminergic, serotoninergic, muscarinic and idazoxan binding sites. Our results indicate that this compound displays high affinity and marked specificity for alpha 2 adrenoceptors. Mivazerol displaced the binding of the alpha 2 adrenoceptor antagonist [3H]RX 821002 to the alpha 2A adrenoceptors in human frontal cortex membranes with an apparent Ki value of 37 nM. The competition curve was shallow (nH = 0.55), suggesting that this compound acts as an alpha 2 adrenergic agonist. Mivazerol was also a potent competitor for [3H]RX 821002 binding to human platelet membranes (containing alpha 2A adrenoceptors) and rat kidney membranes (75% of the alpha 2 adrenoceptors of the alpha 2B subtype), indicating that this compound is not alpha 2 adrenoceptor subtype selective. Equilibrium dissociation constants for alpha 1 adrenoceptors (displacement of [3H]prazosin) and 5-HT1A receptors (displacement of [3H]rauwolscine) were respectively about 120 times (Ki = 4.4 microM) and 14 times (Ki = 530 nM) higher than that for the alpha 2 adrenoceptors. Equilibrium dissociation constants were approximately 1000 times higher for all other receptors tested in this study; namely beta 1 and beta 2 adrenoceptors, D1- and D2-dopamine receptors, M1-, M2- and M3-muscarinic receptors, 5-HT2 receptors and non-adrenergic idazoxan binding sites.

  4. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy. (United States)

    Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen


    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.

  5. Inhibition of Brain Swelling after Ischemia-Reperfusion by β-Adrenergic Antagonists: Correlation with Increased K+ and Decreased Ca2+ Concentrations in Extracellular Fluid

    Directory of Open Access Journals (Sweden)

    Dan Song


    Full Text Available Infarct size and brain edema following ischemia/reperfusion are reduced by inhibitors of the Na+, K+, 2Cl−, and water cotransporter NKCC1 and by β1-adrenoceptor antagonists. NKCC1 is a secondary active transporter, mainly localized in astrocytes, driven by transmembrane Na+/K+ gradients generated by the Na+,K+-ATPase. The astrocytic Na+,K+-ATPase is stimulated by small increases in extracellular K+ concentration and by the β-adrenergic agonist isoproterenol. Larger K+ increases, as occurring during ischemia, also stimulate NKCC1, creating cell swelling. This study showed no edema after 3 hr medial cerebral artery occlusion but pronounced edema after 8 hr reperfusion. The edema was abolished by inhibitors of specifically β1-adrenergic pathways, indicating failure of K+-mediated, but not β1-adrenoceptor-mediated, stimulation of Na+,K+-ATPase/NKCC1 transport during reoxygenation. Ninety percent reduction of extracellular Ca2+ concentration occurs in ischemia. Ca2+ omission abolished K+ uptake in normoxic cultures of astrocytes after addition of 5 mM KCl. A large decrease in ouabain potency on K+ uptake in cultured astrocytes was also demonstrated in Ca2+-depleted media, and endogenous ouabains are needed for astrocytic K+ uptake. Thus, among the ionic changes induced by ischemia, the decrease in extracellular Ca2+ causes failure of the high-K+-stimulated Na+,K+-ATPase/NKCC1 ion/water uptake, making β1-adrenergic activation the only stimulus and its inhibition effective against edema.

  6. Adrenergic effects on renal secretion of epidermal growth factor in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba


    , a beta-adrenergic blocking agent, decreased basal and beta-adrenergic stimulated total output of urinary EGF. Acetylcholine and the anticholinergic agent atropine had no effect on the output of EGF in urine. Also chemical sympathectomy induced by 6-hydroxydopamine reduced the urinary output of EGF. None...

  7. Autoantibodies against α1 adrenergic receptor related with cardiac remodeling in hypertensive patients by clinical observation

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the effects of autoantibodies against a adrenergic receptor on cardiac remodeling in patients with hypertension. Methods Five hundred and fifty three patients with hypertension in our hospital were selected. The autoantibodies againstα1 adrenergic receptor in sera of donor were detected by ELISA, and the Results of echocardiography were recorded. By

  8. Interaction between muscarinic and β-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    Martin C. Michel


    In many tissues the parasympathetic and sympathetic nervous system regulate smooth musc tone via their transmitters aeetylcholine and noradrenaline, respectively. Direct smooth musc e e effects of acetylcholine via muscarinic receptors always promote contraction, but non-neuronal sources can importantly contribute to such stimulation. Direct smooth muscle effects of noradren- aline can promote contraction via al- and sometimes also α2-adrenoceptors but can promote re- laxation and inhibit contraction via β-adrenoceptors. I will focus on the interaction between sub- types of muscarinic and β-adrenergic receptors, largely using the urinary bladder as an exam- ple.

  9. β-adrenergic modulation of in vivo long-term potentiation in area CA1 and its role in spatial learning in rats

    Institute of Scientific and Technical Information of China (English)

    JI; Jinzhao; (季今朝); ZHANG; Xuehan; (张雪寒); LI; Baoming; (李葆明)


    Activation of β-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to β-adrenergic regulation. To address this question, we investigated the effects of the β-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a frequency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that β-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦ (United States)

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.


    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  11. Lack of delayed effects of amphetamine, methoxamine, and prazosin (adrenergic drugs) on behavioral outcome after lateral fluid percussion brain injury in the rat. (United States)

    Dose, J M; Dhillon, H S; Maki, A; Kraemer, P J; Prasad, R M


    This study examined the delayed effects of the administration of d-amphetamine, methoxamine (an alpha1-adrenergic receptor agonist), and prazosin (an alpha1-adrenergic receptor antagonist) on the behavioral outcome of lateral fluid-percussion (FP) brain injury. Rats trained to perform a beam-walking task were subjected to brain injury of moderate severity (2.1 to 2.2 atm). Twenty-four hours after injury, rats were treated with amphetamine, methoxamine, or prazosin at two or three different dose levels. Amphetamine-treated animals displayed no significant improvement in beam-walking ability either during or after drug intoxication (from days 3 to 5 after brain injury). Similarly, neither methoxamine nor prazosin significantly affected beam-walking ability during or after drug intoxication. Neither amphetamine treatment at three different doses nor treatment with methoxamine or prazosin at two different doses affected the spatial learning disabilities of brain-injured animals. These results suggest that (1) unlike amphetamine administration after sensorimotor cortex (SMC) ablation or contusion brain injury models, amphetamine administration at 24 h after concussive FP brain injury does not improve beam-walking performance; (2) unlike amphetamine administration 10 min after concussive FP brain injury amphetamine administration 24 h after injury does not improve cognitive function; and (3) unlike prazosin administration after SMC ablation brain injury, prazosin administration 24 h after concussive FP brain injury does not effect beam-walking performance.


    NARCIS (Netherlands)



    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1) stim

  13. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Galbo, H


    The role of alpha- and beta-adrenergic receptor stimulation for the effect of epinephrine on muscle glycogenolysis, glucose- and oxygen uptake and muscle performance was studied in the perfused rat hindquarter at rest and during electrical stimulation (60 contractions/min). Adrenergic stimulation...... was obtained by epinephrine in a physiological concentration (2.4 X 10(-8) M) and alpha- and beta-adrenergic blockade by 10(-5) M phentolamine and propranolol, respectively. Epinephrine enhanced net glycogenolysis during contractions most markedly in slow-twitch red fibers. In these fibers the effect...... of alpha-adrenergic receptors and had a positive inotropic effect during contractions which was abolished by alpha- as well as by beta-adrenergic blockade. The results indicate that epinephrine has profound effects on contracting muscle, and that these effects are elicited through different combinations...

  14. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly


    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  15. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J;


    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter.......Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin binding...... from sarcolemma of soleus muscle (phentolamine greater than phenylephrine greater than idazoxan greater than yohimbine) suggested that the receptors were alpha 1. Binding sites for dihydroalprenolol (beta antagonist) were also more concentrated on red than white muscle and outnumbered prazosin sites...

  16. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists. (United States)

    Hong, Seoung-Soo; Bavadekar, Supriya A; Lee, Sang-Il; Patil, Popat N; Lalchandani, S G; Feller, Dennis R; Miller, Duane D


    The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.

  17. Blood flow distribution with adrenergic and histaminergic antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.


    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects.

  18. Vascular adrenergic receptor responses in skeletal muscle in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mechler, F.; Mastaglia, F.L.


    The pharmacological responses of vascular adrenergic receptors to intravenously administered epinephrine, phentolamine, and propranolol were assessed by measuring muscle blood flow (MBF) changes in the tibialis anterior muscle using the xenon 133 clearance technique and were compared in 8 normal subjects and 11 patients with myotonic dystrophy. In cases with advanced involvement of the muscle, the resting MBF was reduced and was not significantly altered by epinephrine before or after alpha- or beta-receptor blockade. In patients in whom the tibialis anterior muscle was normal or only minimally affected clinically, a paradoxical reduction in the epinephrine-induced increase in MBF was found after alpha blockade by phentolamine, and the epinephrine-induced MBF increase was not completely blocked by propranolol as in the normal subjects. These findings point to functional alteration in the properties of vascular adrenergic receptors in muscle in myotonic dystrophy. While this may be another manifestation of a widespread cell membrane defect in the disease, the possibility that the changes are secondary to the myotonic state cannot be excluded.


    Directory of Open Access Journals (Sweden)

    D. Cinghiţă


    Full Text Available In this work we study agonistic behavior of laboratory white mice when they are kept in captivity. For all this experimental work we used direct observation of mice, in small lists, because we need a reduced space to emphasize characteristics of agonistic behavior. Relations between members of the same species that live in organized groups are based in most cases on hierarchical structure. Relations between leader and subservient, decided by fighting, involve a thorough observation between individuals. Each member of a group has its own place on the ierarchical scale depending on resultes of fhights – it can be leader or it can be subsurvient, depending on if it wines or looses the fight. Once hierarchical scale made, every animal will adjust its behavior. After analyzing the obtained data we have enough reasons to believe that after fights the winner, usually, is the massive mouse, but it is also very important the sexual ripeness, so the immature male will be beaten. The leader male had a big exploring area and it checks up all territory.The females can be more aggressive, its fights are more brutal, than male fights are, when they fight for supremacy, but in this case fights are not as frequent as in the case of males. Always the superior female, on hierarchical scale, shows males its own statute, so the strongest genes will be perpetuated.

  20. Are Agonistic Autoantibodies against G-Protein Coupled Receptors Involved in the Development of Long-Term Side Effects of Tumor Chemotherapy?

    Directory of Open Access Journals (Sweden)

    Annekathrin Haberland


    Full Text Available Metabolic syndrome and cardiomyopathies are long-term consequences of chemo- and radiotherapy and develop long after completing the initial tumor treatment. The slow progression of such late effects might be an indication of the involvement of autoimmune processes in the development of such follow-up consequences. Functionally active autoantibodies, which permanently stimulate relevant cell receptors, might be a crucial component. Here, we report the detection of functionally active agonistic autoantibodies such as the autoantibody against the adrenergic alpha1-receptor, the muscarinic M2-receptor, and the newly discovered autoantibody against the Mas-receptor in the plasma of a cancer survivor following chemotherapy treatment.

  1. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel

    Directory of Open Access Journals (Sweden)

    Hui-Min Li


    Full Text Available The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs, namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1 from the oriental fruit fly, Bactrocera dorsalis (Hendel, a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS and Malpighian tubules (MT in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.

  2. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (United States)

    Li, Hui-Min; Jiang, Hong-Bo; Gui, Shun-Hua; Liu, Xiao-Qiang; Liu, Hong; Lu, Xue-Ping; Smagghe, Guy; Wang, Jin-Jun


    The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs), namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1) from the oriental fruit fly, Bactrocera dorsalis (Hendel), a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS) and Malpighian tubules (MT) in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors. PMID:27669213

  3. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  4. Identification of high affinity bioactive Salbutamol conformer directed against mutated (Thr164Ile) beta 2 adrenergic receptor. (United States)

    Bandaru, Srinivas; Tiwari, Geet; Akka, Jyothy; Marri, Vijaya Kumar; Alvala, Mallika; Gutlapalli, Venkata Ravi; Nayarisseri, Anuraj; Mundluru, Hema Prasad


    Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic treatment of bronchial asthma. Unfortunately, a subset of patients show refractoriness to it owing to ADRB2 gene variant (rs 1800888). The variant substitutes Thr to Ile at the position 164 in the β2 adrenergic receptor leading to sub-optimal binding of agonists. The present study aims to associate the Salbutamol response with the variant and select the bioactive conformer of Sabutamol with optimal binding affinity against mutated receptor by in silico approaches. To assess bronchodilator response spirometry was performed before and 15 min after Salbutamol (200 mcg) inhalation. Responders to Salbutamol were categorized if percentage reversibility was greater than or equal to 12%, while those showing FEV₁ reversibility less than 12% were classified as non-responders. Among the 344 subjects screened, 238 were responders and 106 were non-responders. The frequency of mutant allele "T" was significantly higher in case of non-responders (p Salbutamol conformer ensembles supported by systematic search algorithm. 4369 conformers were generated of which only 1882 were considered bioactive conformers (threshold RMSD≤1 in reference to normalized structure of salbutamol). All the bioactive conformers were evaluated for the binding affinity against (Thr164 Ile) receptor through MolDock aided docking algorithm. One of the bioactive conformer (P.E. = -57.0038, RMSD = 0.6) demonstrated 1.54 folds greater affinity than the normal Salbutamol in the mutated receptor. The conformer identified in the present study may be put to pharmacodynamic and pharmacokinetic studies in future ahead.

  5. Indices of brain beta-adrenergic receptor signal transduction in the learned helplessness animal model of depression. (United States)

    Gurguis, G N; Kramer, G; Petty, F


    Both stress response and antidepressant drug action may be mediated by beta-adrenergic receptors (beta AR). Since learned helplessness is a stress-induced animal model of depression, beta AR are relevant to investigate in this model. To date, studies have measured changes in total receptor density (RT), but have not examined more detailed aspects of signal transduction mechanisms such as coupling of the receptor to GS protein. We have investigated brain beta AR coupling in the frontal cortex, hippocampus and hypothalamus of rats exposed to inescapable shock and then tested for learned helplessness, and in both tested and naive controls using [125I]-iodocyanopindolol (ICYP) as the ligand. Both antagonist-saturation and agonist-displacement experiments were conducted, and the specificity for the beta AR was optimized by excluding ICYP binding to 5HT1B receptors. The percentage receptor density in the high-conformational state (%RH) and the ratio of agonist (isoproterenol) dissociation constant from the receptor in the low-/high-conformational states (KL/KH) were used as indices of coupling to GS protein. No significant differences were found between rats developing learned helplessness and non-helpless rats after inescapable stress in any parameter measured in any brain region. In the frontal cortex, exposure to inescapable shock induced beta AR uncoupling from GS protein as suggested by a low KL/KH ratio both in helpless and non-helpless rats but not in either control group. In the hypothalamus, there were trends for higher RL, RT and KL/KH ratio in helpless rats and stressed controls compared to naive controls. These findings suggest that beta AR binding parameters in frontal cortex, hippocampus or hypothalamus did not differentiate between helpless and non-helpless rats. Changes in beta AR coupling observed in these brain regions may reflect effects of stress, which appeared to be region-specific, rather than stress-induced behavioral depression.

  6. Purification and reconstitution of the human platelet. cap alpha. /sub 2/-adrenergic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Regan, J.W.; Cerione, R.A.; Nakata, H.; Benovic, J.L.; DeMarinis, R.M.; Caron, M.G.; Lefkowitz, R.J.


    Human platelet ..cap alpha../sub 2/-adrenergic receptors have been purified approx.80,000 fold to apparent homogeneity by a five step chromatographic procedure. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated protein from purified receptor preparations shows a single major band of M/sub r/ 64,000. The competitive binding of ligands to the purified receptor protein shows the proper ..cap alpha../sub 2/-adrenergic specificity. The ..cap alpha../sub 2/-adrenergic receptor contains an essential sulfhydryl residues. Thus, exposure of the purified receptor to the sulfhydryl specific reagent, phenylmercuric chloride (PMC), resulted in a 80% loss of binding activity. This loss of binding activity was prevented when exposure to PMC was done in the presence of ..cap alpha../sub 2/-adrenergic ligands and it was reversed by subsequent exposure to dithiothreitol. Partial proteolysis of purified ..cap alpha../sub 2/-adrenergic receptors was obtained with S. aureus V-8 protease, ..cap alpha..-chymotrypsin and papain. In a comparison with purified ..beta../sub 2/-adrenergic receptors no common partial proteolytic products were found. Partially purified preparations of the ..cap alpha../sub 2/-adrenergic receptor were successfully reconstituted into phospholipid vesicles with the inhibitory guanyl nucleotide-binding regulatory protein, N/sub i/. In these reconstituted preparations, epinephrine could stimulate, and phentolamine could block, the GTPase activity of N/sub i/.

  7. Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Zachary M. Harris


    Full Text Available Stress (Takotsubo cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy.

  8. Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review. (United States)

    Harris, Zachary M; Alonso, Alvaro; Kennedy, Thomas P


    Stress (Takotsubo) cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy.

  9. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint (United States)

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-xu; Ren, Gao-tong; Xu, Xin-yue; Li, Fei-fei; Tay, Franklin R.; Wang, Mei-qing


    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  10. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor (United States)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis


    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  11. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai


    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  12. Beta-agonists and animal welfare (United States)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  13. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. (United States)

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés


    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  14. [Involvement of adrenergic mechanisms in developing the nervous syndrome of high pressure and nitrogen narcosis]. (United States)

    Sledkov, A I; Bernarskii, K V; Shilina, M N


    Involvement of the adrenergic mediator system in central mechanisms of hyperbaric nitrogen narcosis or the high pressure nervous syndrome (NSHP) produced by nitrogen or heliox gas mixtures under increased pressure was studied in mice and rabbit experiments with the use of pharmacological substances-analyzers. Accumulated data are indicative of lack of a significant role of the adrenergic system in the NSHP genesis and a protective effect of activation of the central but not peripheric adrenergic mediation in development of the behavioural and electrophysiological symptomatics of nitrogen narcosis. Mechanisms of NSHP and nitrogen narcosis and possible principles of pharmacological correction are under discussion.

  15. EEG differences between the opioid and adrenergic psyhoneuroendocrine rat types

    DEFF Research Database (Denmark)

    Cristea, A; Moldovan, M; Munteanu, A M


    Our work is based on the hypothesis of the existence of an opioid psychoneuroendocrine type named "O" type (Cristea, 1993), opposed to the well known adrenergic "A" type described by Roseman and Friedman in 1980. In the present study we tested the differences between the background EEG activity...... adult (140 g) male Wistar population using the distribution of the tail retraction time (TRT) during a tail-flick test. The epidural EEG activity, was quantified within the 1-30 Hz band by six numerical parameters: root mean square (RMS), mean spectral frequency (MSF), spectral edge frequency at 95...... theta RSP asymmetry both during consciousness and ether anesthesia while no such theta gradient could be shown for the "O" type. The differences between the "A" and "O" types are enhanced under light Ether anesthesia to which the "A" type is more resistant. The EEG complementarity between the "A" and "O...

  16. Dopaminergic and beta-adrenergic effects on gastric antral motility

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Gottrup, F


    of bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...


    Directory of Open Access Journals (Sweden)

    Dario eLeosco


    Full Text Available In heart failure (HF, exercise has been shown to modulate cardiac sympathetic hyperactivation which is one of the earliest features of neurohormonal derangement in this syndrome and correlates with adverse outcome. An important molecular alteration related to chronic sympathetic overstimulation in HF is represented by cardiac β-adrenergic receptor (β-AR dysfunction . It has been demonstrated that exercise reverses β-AR dysfunction by restoring cardiac receptor membrane density and G-protein-dependent adenylyl cyclase activation. In particular, several evidence indicate that exercise reduces levels of cardiac G-protein coupled receptor kinase-2 (GRK2 which is known to be involved in both β1-AR and β2-AR dysregulation in HF. Similar alterations of β-AR system have been described also in the senescent heart. It has also been demonstrated that exercise training restores adrenal GRK2/α-2AR/cathecolamine (CA production axis. At vascular level, exercise shows a therapeutic effect on age-related impairment of vascular reactivity to adrenergic stimulation and restores β-AR-dependent vasodilatation by increasing vascular β-AR responsiveness and reducing endothelial GRK2 activity. Sympathetic nervous system overdrive is thought to account for >50 % of all cases of hypertension and a lack of balance between parasympathetic and sympathetic modulation has been observed in hypertensive subjects. Non-pharmacological, lifestyle interventions have been associated with reductions in SNS overactivity and blood pressure in hypertension. Several evidence have highlighted the blood pressure lowering effects of aerobic endurance exercise in patients with hypertension and the significant reduction in sympathetic neural activity has been reported as one of the main mechanisms explaining the favourable effects of exercise on blood pressure control.

  18. Dietary supplement for energy and reduced appetite containing the β-agonist isopropyloctopamine leads to heart problems and hospitalisations. (United States)

    Bovee, Toine F H; Mol, Hans G J; Bienenmann-Ploum, Monique E; Heskamp, Henri H; Van Bruchem, Gerard D; Van Ginkel, Leendert A; Kooijman, Martin; Lasaroms, Johan J P; Van Dam, Ruud; Hoogenboom, Ron L A P


    In 2013 the Dutch authorities issued a warning against a dietary supplement that was linked to 11 reported adverse reactions, including heart problems and in one case even a cardiac arrest. In the UK a 20-year-old woman, said to have overdosed on this supplement, died. Since according to the label the product was a herbal mixture, initial LC-MS/MS analysis focused on the detection of plant toxins. Yohimbe alkaloids, which are not allowed to be present in herbal preparations according to Dutch legislation, were found at relatively high levels (400-900 mg kg(-1)). However, their presence did not explain the adverse health effects reported. Based on these effects the supplement was screened for the presence of a β-agonist, using three different biosensor assays, i.e. the validated competitive radioligand β2-adrenergic receptor binding assay, a validated β-agonists ELISA and a newly developed multiplex microsphere (bead)-based β-agonist assay with imaging detection (MAGPIX(®)). The high responses obtained in these three biosensors suggested strongly the presence of a β-agonist. Inspection of the label indicated the presence of N-isopropyloctopamine. A pure standard of this compound was bought and shown to have a strong activity in the three biosensor assays. Analysis by LC-full-scan high-resolution MS confirmed the presence of this 'unknown known' β3-agonist N-isopropyloctopamine, reported to lead to heart problems at high doses. A confirmatory quantitative analysis revealed that one dose of the preparation resulted in an intake of 40-60 mg, which is within the therapeutic range of this compound. The case shows the strength of combining bioassays with chemical analytical techniques for identification of illegal pharmacologically active substances in food supplements.

  19. The effect of Dopamine receptor agonists on twich response of Guinea-pig ileum longitudinal muscle and its relation to Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Keshavarz M


    Full Text Available In this study the effects of bromocriptine and apomorphine (dopamine receptor agonists on electrical field induced twitch response of longitudinal muscle of guinea-pig illeum was investigated. Bromocriptine and apomorphine dose dependently inhibited illeal contraction. IC50 for this inhibitory effects were 6.22±0.645×10^-7 M and 5.48±0.647×10^-6 M, respectively. sulpiride (a specific D2 dopamine receptor antagonist with concentration of 10^-5 M inhibited the effects of these agonists. Yohimbine (an ?2 adrenergic receptor antagonist only blocked the inhibitory effect of bromocriptine but failed to block apomorphine inhibitory effects. L-NAME (nitric oxide synthetase inhibitor with concentration of 10^-3 M blocked the effects of bromocriptine and apomorphine. These data suggest that there is inhibitory presynaptic dopamine receptors in cholinergic terminals of guinea-pig ileum and its function is related to formation of nitric oxide.

  20. Alpha 2 adrenergic receptors in hyperplastic human prostate: identification and characterization using (/sup 3/H) rauwolscine

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, E.; Lepor, H.


    (/sup 3/H)Rauwolscine ((/sup 3/H)Ra), a selective ligand for the alpha 2 adrenergic receptor, was used to identify and characterize alpha 2 adrenergic receptors in prostate glands of men with benign prostatic hyperplasia. Specific binding of (/sup 3/H)Ra to prostatic tissue homogenates was rapid and readily reversible by addition of excess unlabelled phentolamine. Scatchard analysis of saturation experiments demonstrates a single, saturable class of high affinity binding sites (Bmax = 0.31 +/- 0.04 fmol./microgram. DNA, Kd = 0.9 +/- 0.11 nM.). The relative potency of alpha adrenergic drugs (clonidine, alpha-methylnorepinephrine and prazosin) in competing for (/sup 3/H)Ra binding sites was consistent with the order predicted for an alpha 2 subtype. The role of alpha 2 adrenergic receptors in normal prostatic function and in men with bladder outlet obstruction secondary to BPH requires further investigation.

  1. Adrenergic effects on secretion of amylase from the rat salivary glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba


    The present study was undertaken to investigate the effect of adrenergic agents on secretion of amylase from the salivary glands in vivo. Saliva was collected from the distal oesophagus in conscious rats. Adrenaline increased the concentration of amylase in saliva and serum significantly....... The result of infusion of alpha- and beta-adrenergic antagonists as well as noradrenaline and isoproterenol showed that secretion of salivary amylase is predominantly mediated by stimulation of beta-adrenergic receptors, especially of the beta 1-subtype. Investigation of the isoenzyme pattern in saliva......, pancreatic juice and serum demonstrated that the major component in serum is salivary amylase. This study has shown that beta-adrenergic agents stimulate secretion of amylase from the salivary glands in rats. Though the secretion is mainly exocrine small amounts of amylase is found in serum, which seems...

  2. Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine.

    Directory of Open Access Journals (Sweden)

    Giovanni Sansoè

    Full Text Available In human cirrhosis, adrenergic hyperfunction causes proximal tubular fluid retention and contributes to diuretic-resistant ascites, and clonidine, a sympatholytic drug, improves natriuresis in difficult-to-treat ascites.To compare clonidine (aspecific α2-adrenoceptor agonist to SSP-002021R (prodrug of guanfacine, specific α2A-receptor agonist, both associated with diuretics, in experimental cirrhotic ascites.Six groups of 12 rats were studied: controls (G1; controls receiving furosemide and potassium canrenoate (G2; rats with ascitic cirrhosis due to 14-week CCl4 treatment (G3; cirrhotic rats treated (over the 11th-14th CCl4 weeks with furosemide and canrenoate (G4, furosemide, canrenoate and clonidine (G5, or diuretics and SSP002021R (G6. Three rats of each group had their hormonal status and renal function assessed at the end of 11th, 12th, 13th, and 14th weeks of respective treatments.Cirrhotic rats in G3 and G4 gained weight over the 12th-14th CCl4 weeks. In G4, brief increase in sodium excretion over the 11th-12th weeks preceded worsening of inulin clearance and natriuresis (diuretic resistance. In comparison with G4, the addition of clonidine (G5 or guanfacine (G6 to diuretics improved, respectively, sodium excretion over the 11th-12th CCl4 weeks, or GFR and electrolytes excretion over the 13th-14th CCl4 weeks. Natriuretic responses in G5 and G6 were accompanied by reduced catecholamine serum levels.α2A-receptor agonists restore glomerular filtration rate and natriuresis, and delay diuretic-resistant ascites in experimental advanced cirrhosis. Clonidine ameliorates diuretic-dependent natriuresis just for a short time.

  3. Thermogenesis and mitochondrial GDP binding with age in response to the novel agonist CGP-12177A. (United States)

    Scarpace, P J; Matheny, M; Borst, S E


    The ability to regulate body temperature diminishes with age in both humans and rodents. To investigate whether attenuation of sympathetically activated thermogenesis in brown adipose tissue (BAT) may account for the loss of thermoregulation with age, we assessed O2 consumption and body temperature in response to norepinephrine and the specific BAT beta-adrenergic agonist CGP-12177A in 6-, 18-, and 24-mo-old rats. In addition, the effects of this agonist on interscapular BAT mitochondrial GDP binding in young and senescent rats were determined. CGP-12177A rapidly induced an elevation in O2 consumption, which peaked at 25 min, followed by a decline over 4 h. The peak increase in O2 consumption over baseline and the cumulative 4-h response were decreased with age [P less than 0.02, analysis of variance (ANOVA)]. CGP-12177A induced an increase in body temperature that paralleled but appropriately lagged behind the increase in O2 consumption and that was decreased with age (P less than 0.02, ANOVA). The norepinephrine-induced increase in O2 consumption was also reduced with age but was not paralleled by a change in body temperature and was associated with a four- to fivefold increase in physical activity. In young rats CGP-12177A increased the number of available BAT mitochondrial GDP binding sites at 20 and 60 min post-injection, but in senescent rats GCP-12177A was unable to increase GDP binding. These data indicate that CGP-12177A is a novel agonist for BAT thermogenesis. With age there is a reduced capacity for thermogenesis that involves a failure to increase GDP binding, either due to a diminished amount of uncoupling protein with age or a failure to unmask reserve GDP binding sites.

  4. Differential Regulation of Two Palmitoylation Sites in the Cytoplasmic Tail of the β1-Adrenergic Receptor*



    S-Palmitoylation of G protein-coupled receptors (GPCRs) is a prevalent modification, contributing to the regulation of receptor function. Despite its importance, the palmitoylation status of the β1-adrenergic receptor, a GPCR critical for heart function, has never been determined. We report here that the β1-adrenergic receptor is palmitoylated on three cysteine residues at two sites in the C-terminal tail. One site (proximal) is adjacent to the seventh transmembrane domain and is a consensus ...

  5. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction]. (United States)

    Lobanok, L M; Bulanova, K Ia; Gerasimovich, N V; Sineleva, M V; Miliutin, A A


    Incorporated 137Cs (absorbed dose of 0.26 Gy) causes decrease of myocardial's contractile function and inotropic response to beta-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and beta-adrenoreceptors affinity. Adrenergic effects, mediated by alpha-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' density on sarcolemma surface.

  6. β2-adrenergic receptor Thr164Ile polymorphism, obesity, and diabetes

    DEFF Research Database (Denmark)

    Thomsen, Mette; Dahl, Morten; Tybjærg-Hansen, Anne;


    The β(2)-adrenergic receptor (ADRB2) influences regulation of energy balance by stimulating catecholamine-induced lipolysis in adipose tissue. The rare functional ADRB2rs1800888(Thr164Ile) polymorphism could therefore influence risk of obesity and subsequently diabetes.......The β(2)-adrenergic receptor (ADRB2) influences regulation of energy balance by stimulating catecholamine-induced lipolysis in adipose tissue. The rare functional ADRB2rs1800888(Thr164Ile) polymorphism could therefore influence risk of obesity and subsequently diabetes....

  7. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley


    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  8. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg


    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  9. The adrenergic retulation of the cardiovascular system in the South American rattlesnake, Crotalus durissus

    DEFF Research Database (Denmark)

    Galli, G.L.J.; Jensen, Nini Skovgaard; Abe, A.S.


    The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic...... arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through α-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (Gsys) more than doubled), while...... injection of propranolol caused a systemic vasoconstriction, pointing to a potent α-adrenergic, and a weaker β-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused...

  10. Determinants Present in the Receptor Carboxy Tail Are Responsible for Differences in Subtype-Specific Coupling of β-Adrenergic Receptors to Phosphoinositide 3-Kinase

    Directory of Open Access Journals (Sweden)

    Julie Simard


    Full Text Available An agonist-occupied β2-adrenergic receptor (β2-AR recruits G protein receptor kinase-2 (GRK2 which is recruited to the membrane. Thus, the physical proximity of activated β2-AR and PI-3K allows the activation of the latter. In contrast, it has been observed that the β1-AR is unable to activate the PI-3K/Akt pathway. We hypothesized that the difference might be due to molecular determinants present in the carboxy termini of the two β-AR subtypes. Using transiently transfected HEK 293 cells expressing either β1- or β2-AR, we also observed that in presence of an agonist, β2-AR, but not β1-AR, is able to activate the PI-3K/Akt pathway. Switching the seventh transmembrane domain and the carboxy tail between the two receptors reverses this phenotype; that is, β1×β2-AR can activate the PI-3K/Akt pathway whereas β2×β1-AR cannot. Pretreatment with pertussis toxin abolished the activation of PI-3K by β2- or β1×β2-AR stimulation. Ligand-mediated internalization of the β2-AR induced by a 15-minute stimulation with agonist was abolished in the presence of a dominant negative of PI-3K or following pertussis toxin pretreatment. These results indicate that the subtype-specific differences in the coupling to PI-3K/Akt pathway are due to molecular determinants present in the carboxy tail of the receptor and further that β2-AR activates PI-3K via a pertussis toxin-sensitive mechanism.

  11. Discovery of high affinity ligands for β2-adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking. (United States)

    Yakar, Ruya; Akten, Ebru Demet


    Novel high affinity compounds for human β2-adrenergic receptor (β2-AR) were searched among the clean drug-like subset of ZINC database consisting of 9,928,465 molecules that satisfy the Lipinski's rule of five. The screening protocol consisted of a high-throughput pharmacophore screening followed by an extensive amount of docking and rescoring. The pharmacophore model was composed of key features shared by all five inactive states of β2-AR in complex with inverse agonists and antagonists. To test the discriminatory power of the pharmacophore model, a small-scale screening was initially performed on a database consisting of 117 compounds of which 53 antagonists were taken as active inhibitors and 64 agonists as inactive inhibitors. Accordingly, 7.3% of the ZINC database subset (729,413 compounds) satisfied the pharmacophore requirements, along with 44 antagonists and 17 agonists. Afterwards, all these hit compounds were docked to the inactive apo form of the receptor using various docking and scoring protocols. Following each docking experiment, the best pose was further evaluated based on the existence of key residues for antagonist binding in its vicinity. After final evaluations based on the human intestinal absorption (HIA) and the blood brain barrier (BBB) penetration properties, 62 hit compounds have been clustered based on their structural similarity and as a result four scaffolds were revealed. Two of these scaffolds were also observed in three high affinity compounds with experimentally known Ki values. Moreover, novel chemical compounds with distinct structures have been determined as potential β2-AR drug candidates.

  12. PPAR Agonists and Cardiovascular Disease in Diabetes

    Directory of Open Access Journals (Sweden)

    Anna C. Calkin


    Full Text Available Peroxisome proliferators activated receptors (PPARs are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPAR agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPAR agonists, and more recently dual PPAR/ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPAR receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  13. PPAR Agonists and Cardiovascular Disease in Diabetes (United States)

    Calkin, Anna C.; Thomas, Merlin C.


    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  14. PPAR Agonists and Cardiovascular Disease in Diabetes. (United States)

    Calkin, Anna C; Thomas, Merlin C


    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  15. Influence of 5-HT1A agonist on the feeding behavior of Coturnix japonica (Galliformes: Aves

    Directory of Open Access Journals (Sweden)

    L. C. Reis

    Full Text Available In this study, we investigate the effect of serotonin receptor 5-HT1A stimulation on the feeding behavior of quails (Coturnix japonica. The administration of 5-HT1A agonist, 8-OH-DPAT (0.05 to 5.0 mg/Kg dose-dependently inhibited the food intake in normally fed quails. Greater inhibition was attained with 5.0 mg/kg (0.93 ± 0.21 g vs. 5.83 ± 0.25 g, P < 0.05, 2 h after food offer. A comparable response was obtained from previously fasted quails. At end of 2 h, a higher dose of 8-OH-DPAT induced more intense hypophagy (1.59 ± 0.41 g vs. 6.85 ± 1.04 g, P < 0.0001. Previous treatment with the antagonist 5-HT1A/beta-adrenergic, propranolol, failed to block the inhibitory action of 8-OH-DPAT, but instead, intensified it (controls, 5.22 ± 1.09 g; 8-OH-DPAT, 1.41 ± 0.19 g; propranolol + 8-OH-DPAT, 0.44 ± 0.25 g, P < 0.01, for all comparisons. The administration of an isolated higher dose of propranolol induced a hypophagic action (controls, 4.5 ± 0.8 g vs. propranolol, 2.0 ± 0.2 g, P < 0.01. Current outcomes suggest a possible role of 5-HT1A receptor on the feeding behavior of quails, as opposed to mammals. On the other hand, the intensified hypophagy induced by previous administration of propranolol raises the hypothesis of a beta-adrenergic excitatory mechanism that controls the feeding behavior of quails.

  16. Dihydrocodeine / Agonists for Alcohol Dependents

    Directory of Open Access Journals (Sweden)

    Albrecht eUlmer


    Full Text Available Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients.Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC to 102 heavily alcohol addict-ed patients, later, also Buprenorphine, Clomethiazole (>6 weeks, Baclofen and in one case Amphetamine, each on individual indication. This paper focuses on the data with DH, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC-treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-step scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details.Conclusions: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around ¼ of the patients already. Many further

  17. Postnatal development of adrenergic responsiveness in the rabbit heart. (United States)

    Feng, Z P; Dryden, W F; Gordon, T


    It is uncertain how changes in the beta-adrenoceptor population influence the contractility of developing heart. To resolve this we have examined postnatal developmental changes in the adrenergic responsiveness of the rabbit heart. The inotropic effect of isoproterenol on isolated left ventricular papillary muscles from rabbits aged 3, 21, and 90 days was compared with the relative number of beta-adrenoceptors at each age measured using [3H]dihydroalprenolol ([3H]DHA) as the specific ligand. The maximum tension developed in response to isoproterenol increases from 37 +/- 7 to 175 +/- 33% above control twitch tension between 3 and 21 days of age; this is followed by a decrease to 68 +/- 12% in the young adult. During this period of development, there is a decline in EC50 towards increased sensitivity. These differences are partially accounted for by an increase in the numbers of specific [3H]DHA binding sites from 17.3 +/- 2.3 to 56.6 +/- 9.9 fmol/mg wet tissue weight from 3 to 21 days, and a subsequent decrease to 32 +/- 4.5 fmol/mg tissue in the young adult. The proportionally larger increase in contractility compared with the number of beta-adrenoceptor binding sites during the first 3 weeks of life is discussed in terms of the developmental changes in the efficacy of coupling between receptor occupancy and contraction.

  18. Recent progress in α1-adrenergic receptor research

    Institute of Scientific and Technical Information of China (English)

    Zhong-jian CHEN; Kenneth P MINNEMAN


    α1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned α1-AR subtypes (α1A, α1B, and α1D)are G protein-coupled receptors that signal through the Gq/11 signaling pathway,each showing distinct pharmacological properties and tissue distributions.However, due to the lack of highly subtype-selective drugs, the functional rolesof individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype.Conopeptide ρ-TIA has been found to be a new α1B-AR selective antagonist withdifferent modes of inhibition at α1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on α1-AR functions in vivo,especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular α1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual α1-AR subtypes.

  19. Species differences in the localization and number of CNS beta adrenergic receptors: Rat versus guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Booze, R.M.; Crisostomo, E.A.; Davis, J.N.


    The localization and number of beta adrenergic receptors were directly compared in the brains of rats and guinea pigs. The time course of association and saturability of (125I)cyanopindolol (CYP) binding to slide-mounted tissue sections was similar in rats (Kd = 17 pM) and guinea pigs (Kd = 20 pM). The beta-1 and beta-2 receptor subtypes were examined through the use of highly selective unlabeled receptor antagonists, ICI 118,551 (50 nM) and ICI 89,406 (70 nM). Dramatic species differences between rats and guinea pigs were observed in the neuroanatomical regional localization of the beta adrenergic receptor subtypes. For example, in the thalamus prominent beta-1 and beta-2 receptor populations were identified in the rat; however, the entire thalamus of the guinea pig had few, if any, beta adrenergic receptors of either subtype. Hippocampal area CA1 had high levels of beta-2 adrenergic receptors in both rats and guinea pigs but was accompanied by a widespread distribution of beta-2 adrenergic receptors only in rats. Quantitative autoradiographic analyses of 25 selected neuroanatomical regions (1) confirmed the qualitative differences in CNS beta adrenergic receptor localization, (2) determined that guinea pigs had significantly lower levels of beta adrenergic receptors than rats and (3) indicated a differential pattern of receptor subtypes between the two species. Knowledge of species differences in receptor patterns may be useful in designing effective experiments as well as in exploring the relationships between receptor and innervation patterns. Collectively, these data suggest caution be used in extrapolation of the relationships of neurotransmitters and receptors from studies of a single species.

  20. Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts. (United States)

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S


    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for beta-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5'-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of beta-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

  1. The role of Cl- in the regulation of ion and liquid transport in the intact alveolus during β-adrenergic stimulation. (United States)

    Alexandrou, Dionysios; Walters, Dafydd V


    The epithelium of the developing lung displays an evolving liquid transport phenotype, in which Cl(-) secretion during fetal life is rapidly switched to Na(+) absorption perinatally. However, the mechanisms underlying the homeostasis of the thin layer of liquid lining the postnatal pulmonary epithelium remain elusive. In particular, it remains unclear whether the stimulated clearance of excess alveolar liquid is mediated via transepithelial Cl(-) transport. Our study is a pharmacological analysis with the aim of addressing this issue, which is of major physiological significance in cases of pulmonary oedema from any cause. We measured the rate of transepithelial liquid movement (J(v)) with (125)I-albumin, in the in situ perfused adult rat lung. Transepithelial Cl(-) transport was studied with the use of the Cl(-) channel inhibitor NPPB in the resting state and during stimulation with the β(2)-adrenergic agonist terbutaline. The study of J(v) in these conditions revealed the following findings: (1) there is net absorption of excess of alveolar liquid in the resting, unstimulated state, which is predominantly amiloride sensitive; (2) inhibition of Cl(-) transport with NPPB in the resting state results in a 1.6-fold increase in net absorption of alveolar liquid; and (3) the terbutaline-stimulated net absorption of the excess liquid is enhanced by 2.8-fold in the presence of NPPB. Our results are suggestive of the functional presence of secretory, but not absorptive, Cl(-) mechanisms and show that transepithelial Cl(-) transport is not part of the mechanism underlying lung liquid clearance in response to β-adrenergic stimulation.

  2. Sympathetic nerve activity in normal and cystic follicles from isolated bovine ovary: local effect of beta-adrenergic stimulation on steroid secretion

    Directory of Open Access Journals (Sweden)

    Ortega Hugo H


    Full Text Available Abstract Cystic ovarian disease (COD is an important cause of abnormal estrous behavior and infertility in dairy cows. COD is mainly observed in high-yielding dairy cows during the first months post-partum, a period of high stress. We have previously reported that, in lower mammals, stress induces a cystic condition similar to the polycystic ovary syndrome in humans and that stress is a definitive component in the human pathology. To know if COD in cows is also associated with high sympathetic activity, we studied isolated small antral (5mm, preovulatory (10mm and cystic follicles (25mm. Cystic follicles which present an area 600 fold greater compared with preovulatory follicles has only 10 times less concentration of NE as compared with small antral and preovulatory follicles but they had 10 times more NE in follicular fluid, suggesting a high efflux of neurotransmitter from the cyst wall. This suggestion was reinforced by the high basal release of recently taken-up 3H-NE found in cystic follicles. While lower levels of beta-adrenergic receptor were found in cystic follicles, there was a heightened response to the beta-adrenergic agonist isoproterenol and to hCG, as measured by testosterone secretion. There was however an unexpected capacity of the ovary in vitro to produce cortisol and to secrete it in response to hCG but not to isoproterenol. These data suggest that, during COD, the bovine ovary is under high sympathetic nerve activity that in addition to an increased response to hCG in cortisol secretion could participate in COD development.

  3. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts.

    Directory of Open Access Journals (Sweden)

    Qian Shi

    Full Text Available Glycyrrhetic acid (GA exerts synergistic anti-asthmatic effects via a β₂-adrenergic receptor (β₂AR-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β₂AR-Gs-adenylate cyclase (AC-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β₂AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA was synthesized and applied to human embryonic kidney 293 (HEK293 cells expressing fusion β₂AR, and the electron spin resonance (ESR technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β₂AR and Gαs, as well as in reduced β₂AR internalization. Co-localization of β₂AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β₂AR-protein kinase A (PKA signaling pathway was proposed. The enhanced efficacy of β₂AR agonists by this novel mechanism could prevent tachyphylaxis.

  4. The second Lilly Prize Lecture, University of Newcastle, July 1977. beta-Adrenergic receptor blockade in hypertension, past, present and future. (United States)

    Prichard, B N


    All beta-adrenoceptor blocking drugs that have been described share the common property of being competitive inhibitors. They differ in their associated properties, the presence or absence of cardioselectivity, membrane stabilizing activity, and partial agonist activity. Recently some beta-adrenoceptor blocking drugs have been reported which also possess alpha-adrenoceptor blocking activity. The associated properties have been used as a basis for classifying beta-adrenoceptor blocking drugs (Fitzgerald, 1969, 1972). The presence or absence of cardioselectivity is most useful for dividing beta-adrenoceptor blocking drugs. The non-selective drugs (Division I) can be further divided according to the presence or absence of intrinsic sympathomimetic activity (ISA) and membrane stabilizing activity (Fitzgerald's groups I-IV). Group I possess both membrane activity and ISA, e.g. alprenolol, oxprenolol, group II just membrane action, e.g. propanolol, group III ISA but no membrane action, e.g. pindolol. Fitzgerald placed pindolol in group I but should be placed in group III as it possesses a high degree of beta-adrenoceptor blocking potency in relation to its membrane activity (Prichard, 1974). Finally drugs in group IV have neither ISA nor membrane action, e.g. sotalol, timolol. The cardioselective drugs (Division II) can be similarly sub-divided into groups I-IV according to the presence or absence of ISA or membrane action (Fitzgerald grouped all these together as group V). Lastly there are new beta-adrenergic receptor blocking drugs which in addition have alpha- adrenergic receptor blocking properties (Division III).

  5. Sinoatrial tissue of crucian carp heart has only negative contractile responses to autonomic agonists

    Directory of Open Access Journals (Sweden)

    Hälinen Mervi


    Full Text Available Abstract Background In the anoxia-tolerant crucian carp (Carassius carassius cardiac activity varies according to the seasons. To clarify the role of autonomic nervous control in modulation of cardiac activity, responses of atrial contraction and heart rate (HR to carbacholine (CCh and isoprenaline (Iso were determined in fish acclimatized to winter (4°C, cold-acclimated, CA and summer (18°C, warm-acclimated, WA temperatures. Results Inhibitory action of CCh was much stronger on atrial contractility than HR. CCh reduced force of atrial contraction at an order of magnitude lower concentrations (EC50 2.75-3.5·10-8 M in comparison to its depressive effect on HR (EC50 1.23-2.02·10-7 M (P -8 M and 10-7 M CCh, respectively (P + current, IK,CCh, with an EC50 value of 3-4.5·10-7 M and inhibited Ca2+ current (ICa by 28 ± 8% and 51 ± 6% at 10-7 M and 10-6 M, respectively. These currents can explain the shortening of AP. Iso did not elicit any responses in crucian carp sinoatrial preparations nor did it have any effect on atrial ICa, probably due to the saturation of the β-adrenergic cascade in the basal state. Conclusion In the crucian carp, HR and force of atrial contraction show cardio-depressive responses to the cholinergic agonist, but do not have any responses to the β-adrenergic agonist. The scope of inhibitory regulation by CCh is increased by the high basal tone of the adenylate cyclase-cAMP cascade. Higher concentrations of CCh were required to induce IK,CCh and inhibit ICa than was needed for CCh's negative inotropic effect on atrial muscle suggesting that neither IK,CCh nor ICa alone can mediate CCh's actions but they might synergistically reduce AP duration and atrial force production. Autonomic responses were similar in CA winter fish and WA summer fish indicating that cardiac sensitivity to external modulation by the autonomic nervous system is not involved in seasonal acclimatization of the crucian carp heart to cold and anoxic

  6. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation (United States)

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.


    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  7. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J. (Louisiana State Univ., New Orleans (USA))


    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol ({beta}-blocker) and phentolamine ({alpha}-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection.

  8. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat. (United States)

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María


    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  9. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder (United States)

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure


    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder. PMID:28198454

  10. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder. (United States)

    Zhang, Xiaobin; Norton, Joanna; Carrière, Isabelle; Ritchie, Karen; Chaudieu, Isabelle; Ryan, Joanne; Ancelin, Marie-Laure


    Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder.

  11. β-Adrenergic stimulation and rapid pacing mutually promote heterogeneous electrical failure and ventricular fibrillation in the globally ischemic heart. (United States)

    Garg, Vivek; Taylor, Tyson; Warren, Mark; Venable, Paul; Sciuto, Katie; Shibayama, Junko; Zaitsev, Alexey


    Global ischemia, catecholamine surge, and rapid heart rhythm (RHR) due to ventricular tachycardia or ventricular fibrillation (VF) are the three major factors of sudden cardiac arrest (SCA). Loss of excitability culminating in global electrical failure (asystole) is the major adverse outcome of SCA with increasing prevalence worldwide. The roles of catecholamines and RHR in the electrical failure during SCA remain unclear. We hypothesized that both β-adrenergic stimulation (βAS) and RHR accelerate electrical failure in the globally ischemic heart. We performed optical mapping of the action potential (OAP) in the right ventricular (RV) and left (LV) ventricular epicardium of isolated rabbit hearts subjected to 30-min global ischemia. Hearts were paced at a cycle length of either 300 or 200 ms, and either in the presence or in the absence of β-agonist isoproterenol (30 nM). 2,3-Butanedione monoxime (20 mM) was used to reduce motion artifact. We found that RHR and βAS synergistically accelerated the decline of the OAP upstroke velocity and the progressive expansion of inexcitable regions. Under all conditions, inexcitability developed faster in the LV than in the RV. At the same time, both RHR and βAS shortened the time to VF (TVF) during ischemia. Moreover, the time at which 10% of the mapped LV area became inexcitable strongly correlated with TVF (R(2) = 0 .72, P < 0.0001). We conclude that both βAS and RHR are major factors of electrical depression and failure in the globally ischemic heart and may contribute to adverse outcomes of SCA such as asystole and recurrent/persistent VF.

  12. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity. (United States)

    Wang, Jingjing; Song, Yao; Li, Hao; Shen, Qiang; Shen, Jing; An, Xiangbo; Wu, Jimin; Zhang, Jianshu; Wu, Yunong; Xiao, Han; Zhang, Youyi


    Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.

  13. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb. (United States)

    Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K


    The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.

  14. Role of inositol 1,4,5-trisphosphate receptors in α1-adrenergic receptor-induced cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Xiao-mei LAN; Gang WANG; Sheng WEI; Rui-ping XIAO; Qi-de HAN


    Aim: Intracellular Ca2+ plays pivotal roles in diverse cellular functions, including gene transcription that underlies cardiac remodeling during stress responses. However, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the mediation of cardiac intracellular Ca2+ and hypertrophic growth remains elusive. Prior work with neonatal rat ventricular myocytes suggests that activation of IP3Rs may be linked to α1 adrenergic receptor (α1AR) increased stereotyped Ca2+ spark occurrence and global Ca2+ oscillations. Thus, we hypothesized that Ca2+ release through IP3Rs was necessary for α1AR-stimulated cardiac hypertrophy. Methods: We used myoinositol 1,4,5-trisphosphate hexakis (butyryloxymethyl) ester (IP3BM), a membrane-permeant ester of IP3, to activate IP3Rs directly, and Fluo 4/AM to measure intracellular Ca2+ signaling. Results: IP3BM (10μmol·L-1) mimicked the effects of phenylephrine, a selective agonist of α1AR, in increments in local Ca2+ spark release (especially in the perinuclear area) and global Ca2+ transient frequencies. More importantly, IP3R inhibitors, 2-aminoethoxydiphenyl borate and Xestospongin C, abolished the IP3BM-induced Ca2+ responses, and significantly suppressed α1AR-induced cardiomyocyte hypertrophy assayed by cell size, [3H] leucine incorporation and atrial natriuretic factor gene expression, during sustained (48 h) phenylephrine stimulation. Conclusion: These results, therefore, provide cellular mechanisms that link IP3R signaling to α1AR-stimulated gene expression and cardiomyocyte hypertrophy.

  15. Sexual dimorphism in adrenergic regulation of hepatic glycogenolysis

    Energy Technology Data Exchange (ETDEWEB)

    Studer, R.K.


    The total phosphorylase a plus b of hepatocytes isolated from females and incubated in the absence or presence of estradiol and progesterone at concentrations found in vivo does not vary during the estrous cycle. However, there is a slight but significant influence of the estrous cycle on basal and epinephrine-stimulated phosphorylase a activity, with a nadir being seen on diestrus. The relative contributions of the ..cap alpha..- and ..beta..-mediated pathways to phosphorylase a activation do not vary with the estrous cycle but are constant at 75 and 56%, respectively, of the response to 5 x 10/sup -8/ M epinephrine. When the epinephrine-stimulated glucose release from glycogen stores in cells from females and males is compared, the release from the female is greater than that from the male, while the ..cap alpha..-receptor-mediated stimulation in the female is comparable with that in the male. The epinephrine-stimulated increase in cytostolic free calcium (Ca/sub i/) is greater in the male than the female at 10/sup -6/ M but greater in the female than the male at 5 x 10/sup -9/ M. The changes in Ca/sub i/ are equivalent at intermediate epinephrine concentrations. When considered with the prior analysis of /sup 45/Ca efflux after adrenergic stimulation, this suggests there may be a sexual dimorphism in hepatocyte calcium transport systems. The glucose release for a given increase in Ca/sub i/ is greater in the female than the male probably due to the concomitant action of the ..beta..-mediated increase in cAMP and the ..cap alpha..-mediated increase in Ca/sub i/. This supports the conclusion that the ..beta..-mediated component does make a significant contribution to the catecholamine regulation of glycogenolysis in hepatocytes from adult female rats.

  16. Cerebral aterial spasm. I. Adrenergic mechanism in experimental cerebral vasospasm.

    Directory of Open Access Journals (Sweden)



    Full Text Available This study demonstrates that an adrenergic mechanism plays an important role in producing the delayed cerebral vasospasm which follows subarachnoid hemorrhage. Results were as follows: 1. Experimental subarachnoid hemorrhage (SAH was produced by injection of fresh arterial blood into the cisterna magna in cats. The cerebral vasospasm was shown angiographically to be biphasic in nature: immediate constriction lasting 1 h and marked prolonged spasm occurring between the 3rd and 5th day after SAH. The amount of noradrenaline (NA and dopamine-beta-hydroxylase (DBH activity decreased over a period of 24 h both within the wall of the basilar artery and in the locus ceruleus and then gradually increased, reaching a maximum on the 3rd day after SAH. 2. Topical application of spasmogenic substances (NA and blood produced a marked constriction of the hypersensitive basilar artery on the 3rd day after SAH. 3. 6-Hydroxydopamine (6-OHDA injection into the cisterna magna produced prolonged vasocilatation. The dilated vessel responded with mild transient constriction after the topical application of NA or fresh blood. DBH activity and NA concentration in the vessels, locus ceruleus and medial hypothalamus decreased markedly on the 3rd day after the cisternal injection of 6-OHDA. 4. Various spasmogenic substances (i.e. serotonin, NA, prostaglandins and methemoglobin were measured in a mixture of equal volume of CSF and blood in cats. ONly the serotonin in the mixed fluid produced vasoconstriction. Spasmogenic substances decreased markedly in the mixed fluid incubated for 3 days at 37 degrees C, and none of these substances apart from methemoglobin was present in a concentration sufficient to produce constriction of vessels. 5. These results suggest that early spasm is induced by serotonin around the arteries of the cranial base, and delayed spasm might be caused by hyperreaction of cerebral vessels to spasmogenic substances such as methemoglobin, during the

  17. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling. (United States)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C


    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  18. Muscimol as an ionotropic GABA receptor agonist. (United States)

    Johnston, Graham A R


    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  19. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    Energy Technology Data Exchange (ETDEWEB)

    Rehnmark, S.; Nedergaard, J. (Univ. of Stockholm (Sweden))


    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  20. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.


    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  1. The role of adrenergic receptors in the motility of duodenum and choledochoduodenal junction in the pig. (United States)

    Blichowski, A; Andrzejewski, W; Gaszyński, W; Kozulski, W


    The role of adenergic receptors in the motility of duodenum and choledochoduodenal junction in the pig. Acta Physiol. Pol., 1977, 28 (6): 521-528. The choldeochoduodenal junction in the Vietnamese pig is functionally and anatomically a part of duodenal wall. In view of this, investigations were carried out for establishing the role of adrenergic receptors in the development of motor function of this part of the intestinal tract. The experiments were performed on domestic Vietnamese pigs (Sus scrofa domestica) and they showed that after stimulation of alpha and beta adrenergic receptors the motor activity of the duodenal muscular coat and the choledochoduodenal junction is inhibited. The obtained results suggest similar reactions of the adrenergic receptors in both examined parts of the intestinal tract in the pig.

  2. Biochemical and pharmacological studies of the hepatic alpha sub 1 -adrenergic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tchakarov, L.E.


    The structure and the regulation of the hepatic {alpha}{sub 1}-adrenergic receptors have been studied in the rat. The in vitro incubation of isolated liver cells in a serum-free buffer for 4 hr leads to the conversion of the adrenergic activation of glycogen phosphorylase from an {alpha}{sub 1}- to a {beta}-adrenoceptor-mediated event. This change is associated with no change in the glycogenolytic response to vasopressin and a reduction of the glycogenolytic response to glucagon. The time-dependent shift in the adrenergic control of glycogenolysis does not influence the density or the affinity of ({sup 3}H)prazosin-labeled {alpha}{sub 1}-receptors and ({sup 3}H)CGP-12177-labeled {beta}-receptors. The change in the adrenergic control of glycogenolysis is reversed by a 30-min incubation with 50 nM lipomodulin, whereas in freshly isolated cells lipomodulin doesn't affect the predominant {alpha}-receptor response. Conversely, exposure of freshly isolated cells to a monoclonal antibody to lipomodulin in the presence of 10 {mu}M phenylephrine, or to 2 {mu}g/ml mellitin, results in a shift in the adrenergic control of glycogenolysis from {alpha}{sub 1}- to {beta}-type within 30 min. The mechanism of activation of the Ca{sup 2+}-linked receptors for vasopressin and adrenaline was studied in isolated liver cells. A novel irreversible antagonist for the {alpha}{sub 1}-adrenergic receptors, I-phenyoxybenzamine (I-POB) has been synthesized and pharmacologically characterized.

  3. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. (United States)

    Nasser, Yasmin; Ho, Winnie; Sharkey, Keith A


    Adrenergic receptors in the enteric nervous system (ENS) are important in control of the gastrointestinal tract. Here we describe the distribution of adrenergic receptors in the ENS of the ileum and colon of the guinea pig, rat, and mouse by using single- and double-labelling immunohistochemistry. In the myenteric plexus (MP) of the rat and mouse, alpha2a-adrenergic receptors (alpha2a-AR) were widely distributed on neurons and enteric glial cells. alpha2a-AR mainly colocalized with calretinin in the MP, whereas submucosal alpha2a-AR neurons colocalized with vasoactive intestinal polypeptide (VIP), neuropeptide Y, and calretinin in both species. In the guinea pig ileum, we observed widespread alpha2a-AR immunoreactivity on nerve fibers in the MP and on VIP neurons in the submucosal plexus (SMP). We observed extensive beta1-adrenergic receptor (beta1-AR) expression on neurons and nerve fibers in both the MP and the SMP of all species. Similarly, the beta2-adrenergic receptor (beta2-AR) was expressed on neurons and nerve fibers in the SMP of all species, as well as in the MP of the mouse. In the MP, beta1- and beta2-AR immunoreactivity was localized to several neuronal populations, including calretinin and nitrergic neurons. In the SMP of the guinea pig, beta1- and beta2-AR mainly colocalized with VIP, whereas, in the rat and mouse, beta1- and beta2-AR were distributed among the VIP and calretinin populations. Adrenergic receptors were widely localized on specific neuronal populations in all species studied. The role of glial alpha2a-AR is unknown. These results suggest that sympathetic innervation of the ENS is directed toward both enteric neurons and enteric glia.

  4. Distinctive left-sided distribution of adrenergic-derived cells in the adult mouse heart.

    Directory of Open Access Journals (Sweden)

    Kingsley Osuala

    Full Text Available Adrenaline and noradrenaline are produced within the heart from neuronal and non-neuronal sources. These adrenergic hormones have profound effects on cardiovascular development and function, yet relatively little information is available about the specific tissue distribution of adrenergic cells within the adult heart. The purpose of the present study was to define the anatomical localization of cells derived from an adrenergic lineage within the adult heart. To accomplish this, we performed genetic fate-mapping experiments where mice with the cre-recombinase (Cre gene inserted into the phenylethanolamine-n-methyltransferase (Pnmt locus were cross-mated with homozygous Rosa26 reporter (R26R mice. Because Pnmt serves as a marker gene for adrenergic cells, offspring from these matings express the β-galactosidase (βGAL reporter gene in cells of an adrenergic lineage. βGAL expression was found throughout the adult mouse heart, but was predominantly (89% located in the left atrium (LA and ventricle (LV (p<0.001 compared to RA and RV, where many of these cells appeared to have cardiomyocyte-like morphological and structural characteristics. The staining pattern in the LA was diffuse, but the LV free wall displayed intermittent non-random staining that extended from the apex to the base of the heart, including heavy staining of the anterior papillary muscle along its perimeter. Three-dimensional computer-aided reconstruction of XGAL+ staining revealed distribution throughout the LA and LV, with specific finger-like projections apparent near the mid and apical regions of the LV free wall. These data indicate that adrenergic-derived cells display distinctive left-sided distribution patterns in the adult mouse heart.

  5. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC.

    Directory of Open Access Journals (Sweden)

    David T Hughes


    Full Text Available The ability to respond to stress is at the core of an organism's survival. The hormones epinephrine and norepinephrine play a central role in stress responses in mammals, which require the synchronized interaction of the whole neuroendocrine system. Mammalian adrenergic receptors are G-coupled protein receptors (GPCRs; bacteria, however, sense these hormones through histidine sensor kinases (HKs. HKs autophosphorylate in response to signals and transfer this phosphate to response regulators (RRs. Two bacterial adrenergic receptors have been identified in EHEC, QseC and QseE, with QseE being downstream of QseC in this signaling cascade. Here we mapped the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC, which exploits this signaling system to promote disease. Through QseC, EHEC activates expression of metabolic, virulence and stress response genes, synchronizing the cell response to these stress hormones. Coordination of these responses is achieved by QseC phosphorylating three of the thirty-two EHEC RRs. The QseB RR, which is QseC's cognate RR, activates the flagella regulon which controls bacteria motility and chemotaxis. The QseF RR, which is also phosphorylated by the QseE adrenergic sensor, coordinates expression of virulence genes involved in formation of lesions in the intestinal epithelia by EHEC, and the bacterial SOS stress response. The third RR, KdpE, controls potassium uptake, osmolarity, and also the formation of lesions in the intestine. Adrenergic regulation of bacterial gene expression shares several parallels with mammalian adrenergic signaling having profound effects in the whole organism. Understanding adrenergic regulation of a bacterial cell is a powerful approach for studying the underlying mechanisms of stress and cellular survival.

  6. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. (United States)

    Wallukat, Gerd; Schimke, Ingolf


    Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1-7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer's disease, Sj

  7. Cardiovascular effects of selective agonists and antagonists of histamine H3 receptors in the anaesthetized rat. (United States)

    Coruzzi, G; Gambarelli, E; Bertaccini, G; Timmerman, H


    The cardiovascular responses to a series of selective histamine H3 receptor agonists, (R) alpha-methylhistamine, imetit and immepip and selective antagonists, thioperamide, clobenpropit and clophenpropit, were studied in anaesthetized rats. At 0.003-1 mumol/kg i.v. doses, H3 agonists failed to produce any significant change in the basal blood pressure and heart rate. Larger doses of (R) alpha-methylhistamine increased the blood pressure and heart rate and higher doses of imetit caused vasodepressor responses and reduced heart rate, whereas immepip proved virtually inactive. While (R) alpha-methylhistamine-induced effects were not blocked by histamine H1-, H2- and H3-receptor antagonists, they were however reduced by idazoxan and propranolol, which indicates that the mechanisms involved are adrenergic. The effects induced by imetit are not related to histamine H3 receptors but are mediated by indirect (via 5HT3 receptors) cholinergic mechanisms, since these effects were prevented by 1 mg/kg i.v. atropine and by 0.1 mg/kg i.v. ondansetron. Similarly, the H3 antagonists per se failed to change basal cardiovascular function up to 10 mumol/kg i.v. and only at 30 mumol/kg i.v. were marked decreases observed in the blood pressure and heart rate with a significant reduction in the effects of noradrenaline. These data indicate that in anaesthetized rats, histamine H3 receptor activation or blockade has no effect on basal cardiovascular function. The effects recorded after the administration of large doses of (R) alpha-methylhistamine and imetit are clearly unrelated to histamine H3 receptors and should be taken into account when using these compounds as H3 ligands for "in vivo" experiments.

  8. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. (United States)

    Ramseyer, Vanesa D; Granneman, James G


    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  9. Identification of Selective ERRγ Inverse Agonists

    Directory of Open Access Journals (Sweden)

    Jina Kim


    Full Text Available GSK5182 (4 is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively. Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.

  10. Infusions of alpha-2 noradrenergic agonists and antagonists into the amygdala: effects on kindling. (United States)

    Pelletier, M R; Corcoran, M E


    We reported previously that activation of alpha-2 adrenoceptors with infusions of clonidine into the amygdala/pyriform region is sufficient to retard kindling. To characterize further the involvement in kindling of alpha-2 receptors in the amygdala/pyriform, we exposed rats to unilateral intraamygdaloid infusions of a variety of noradrenergic drugs followed by either low-frequency stimulation of the amygdala, to induce rapid kindling, or conventional high-frequency stimulation. Infusions and electrical stimulation were administered once every 48 h. The prophylactic effects of clonidine were blocked by simultaneous infusion of idazoxan, an alpha-2 adrenergic antagonist, which suggests strongly that these effects were produced at an alpha-2 receptor. Intraamygdaloid infusions of xylazine, another alpha-2 agonist, also significantly retarded low-frequency kindling. Unexpectedly, intraamygdaloid infusions of the alpha-2 antagonists idazoxan, yohimbine, and SK&F 104856 failed to accelerate kindling. Infusion of the alpha-1 antagonist corynanthine also failed to affect kindling. We propose that the alpha-2 adrenoceptors in the amygdala/pyriform region contribute to the prophylactic effects of systemically administered clonidine and that the facilitation of kindling observed after systemic administration of alpha-2 antagonists may be due to blockade of alpha-2 adrenoceptors outside of the amygdala/pyriform region.

  11. Changes in postnatal norepinephrine alter alpha-2 adrenergic receptor development. (United States)

    Sanders, J D; Happe, H K; Bylund, D B; Murrin, L C


    Alpha-2 adrenergic receptors (A2AR) regulate multiple brain functions and are enriched in developing brain. Studies demonstrate norepinephrine (NE) plays a role in regulating brain maturation, suggesting it is important in A2AR development. To investigate this we employed models of NE absence and excess during brain development. For decreases in NE we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a specific noradrenergic neurotoxin. Increased noradrenergic terminal density was produced by methylazoxymethanol acetate (MAM) treatment. A2AR density was assayed with [(3)H]RX821002 autoradiography. DSP4 lesions on postnatal day (PND) 3 produce A2AR decreases in many regions by PND 5. A2AR recover to control levels by PND 15 and 25 and there is no further change in total receptor density. We also assayed A2AR in brains lesioned with DSP4 on PND 13, 23, 33 and 43 and harvested 22 days post-lesion. A2AR levels remain similar to control at each of these time points. We examined A2AR functionality and high affinity state with epinephrine-stimulated [(35)S]GTPγS and [(125)I]p-iodoclonidine autoradiography, respectively. On PND 25, control animals and animals lesioned with DSP4 on PND 3 have similar levels of [(35)S]GTPγS incorporation and no change in high affinity state. This is in contrast to increases in A2AR high affinity state produced by DSP4 lesions of mature brain. We next investigated A2AR response to increases in norepinephrine levels produced by MAM. In contrast to DSP4 lesions, increasing NE results in a large increase in A2AR. Animals treated with MAM on gestational day 14 had cortical [(3)H]RX821002 binding 100-200% greater than controls on PND 25, 35, 45, 55 and 65. These data indicate that NE regulation of A2AR differs in developing and mature brain and support the idea that NE regulates A2AR development and this has long term effects on A2AR function.

  12. Gonadotropin releasing hormone agonists: Expanding vistas

    Directory of Open Access Journals (Sweden)

    Navneet Magon


    Full Text Available Gonadotropin-releasing hormone (GnRH agonists are derived from native GnRH by amino acid substitution which yields the agonist resistant to degradation and increases its half-life. The hypogonadotropic hypogonadal state produced by GnRH agonists has been often dubbed as "pseudomenopause" or "medical oophorectomy," which are both misnomers. GnRH analogues (GnRH-a work by temporarily "switching off" the ovaries. Ovaries can be "switched off" for the therapy and therapeutic trial of many conditions which include but are not limited to subfertility, endometriosis, adenomyosis, uterine leiomyomas, precocious puberty, premenstrual dysphoric disorder, chronic pelvic pain, or the prevention of menstrual bleeding in special clinical situations. Rapidly expanding vistas of usage of GnRH agonists encompass use in sex reassignment of male to female transsexuals, management of final height in cases of congenital adrenal hyperplasia, and preserving ovarian function in women undergoing cytotoxic chemotherapy. Hypogonadic side effects caused by the use of GnRH agonists can be tackled with use of "add-back" therapy. Goserelin, leuprolide, and nafarelin are commonly used in clinical practice. GnRH-a have provided us a powerful therapeutic approach to the treatment of numerous conditions in reproductive medicine. Recent synthesis of GnRH antagonists with a better tolerability profile may open new avenues for both research and clinical applications. All stakeholders who are partners in women′s healthcare need to join hands to spread awareness so that these drugs can be used to realize their full potential.

  13. Exploring prospects of β3-adrenoceptor agonists and inverse agonists for colon mobility control

    Directory of Open Access Journals (Sweden)

    Maria Grazia Perrone


    Full Text Available Inverse agonists are useful active ingredient of drugs clinically used to treat diseases mainly involving receptors endowed with non-endogenous agonist induced activity (constitutive or basal activity. SP-1e and SP-1g are the first two potent and highly selective β3-adrenoceptor inverse agonists [EC50=181 nM (IA=- 64% and 136 nM (IA=-73%, respectively], which their peculiar activity seems due to the absolute configurations of the two stereogenic centres present in each molecule. Rat proximal colon motility measurements allowed their further pharmacological characterization and pA2 values determination by Schild analysis (7.89 and 8.16, respectively. The purpose of our work is a further characterization of our novel β3-adrenoceptor agonists (SP-1a-d, SP-1f,1h and inverse agonists (SP-1e and SP-1g on rat proximal colon motility and a confirmation of their inverse agonist nature in a more complex system like the functional test on rat proximal colon. Male Wistar rats segment of the proximal colon were placed in organ baths containing Krebs solution. Muscle tension was recorded isotonically. Cumulative β3-AR agonists doses experiments were performed for each test compound: isoprenaline, BRL37344, SP-1a-d, SP-1f and SP-1h were dissolved in Krebs. The EC50 values of each agonists and pA2 of inverse agonists were determined. SP- 1a-d, SP-1f and SP-1h in rat colon have a muscle relaxing effect thus confirming their partial agonist activity found in CHO-K1 cell line. SP-1e and SP-1g behaved as antagonists with pA2 values of 7.89 and 8.16, respectively. In conclusion, experiments carried out by using isolated rat proximal colon allowed us to determine the pA2 values of the two β3-AR inverse agonists and add knowledge on the behavior of a novel set of compounds and their possible value as agents useful whenever is necessary to also control the colon motility.

  14. The essential role for aromatic cluster in the β3 adrenergic receptor

    Institute of Scientific and Technical Information of China (English)

    Hai-yan CAI; Zhi-jian XU; Jie TANG; Ying SUN; Kai-xian CHEN; He-yao WANG; Wei-liang ZHU


    Aim:To explore the function of the conserved aromatic cluster F2135.47,F3086.51,and F3096.52 in human β3 adrenergic receptor (hβ3AR).Methods:Point mutation technology was used to produce plasmid mutations of hβ3AR.HEK-293 cells were transiently co-transfected with the hβ3AR (wild-type or mutant) plasmids and luciferase reporter vector pCRE-luc.The expression levels of hβ3AR in the cells were determined by Western blot analysis.The constitutive signalling and the signalling induced by the β3AR selective agonist,BRL (BRL37344),were then evaluated.To further explore the interaction mechanism between BRL and β3AR,a three-dimensional complex model of β3AR and BRL was constructed by homology modelling and molecular docking.Results:For F3086.51,Ala and Leu substitution significantly decreased the constitutive activities of β3AR to approximately 10% of that for the wild-type receptor.However,both the potency and maximal efficacy were unchanged by Ala substitution.In the F3086.51L construct,the EC50 value manifested as a "right shift" of approximately two orders of magnitude with an increased Emax.Impressively,the molecular pharmacological phenotype was similar to the wild-type receptor for the introduction of Tyr at position 3086.51,though the EC50 value increased by approximately five-fold for the mutant.For F3096.52,the constitutive signalling for both F3096.52A and F3096.52L constructs were strongly impaired.In the F3096.52A construct,BRL-stimulated signalling showed a normal Emax but reduced potency.Leu substitution of F3096.52 reduced both the Emax and potency.When F3096.52 was mutated to Tyr,the constitutive activity was decreased approximately three-fold,and BRL-stimulated signalling was significantly impaired.Furthermore,the double mutant (F3086.51A_F3096 52A) caused the total loss of β3AR function.The predicted binding mode between β3AR and BRL revealed that both F3086.51 and F3096.52 were in the BRL binding pocket of β3AR,while F2135.47 and W3056

  15. Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice (United States)

    Zhao, Tong-Jin; Sakata, Ichiro; Liang, Guosheng; Richardson, James A.; Brown, Michael S.; Goldstein, Joseph L.; Zigman, Jeffrey M.


    Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding β1-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective β1-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on β1 receptors on the ghrelin-secreting cells of the stomach. PMID:20713709

  16. Ghrelin secretion stimulated by {beta}1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. (United States)

    Zhao, Tong-Jin; Sakata, Ichiro; Li, Robert Lin; Liang, Guosheng; Richardson, James A; Brown, Michael S; Goldstein, Joseph L; Zigman, Jeffrey M


    Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding beta(1)-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective beta(1)-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on beta(1) receptors on the ghrelin-secreting cells of the stomach.

  17. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. (United States)

    O'Dell, Thomas J; Connor, Steven A; Guglietta, Ryan; Nguyen, Peter V


    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.

  18. Preserved alpha-adrenergic tone in the leg vascular bed of spinal cord-injured individuals.

    NARCIS (Netherlands)

    Kooijman, H.M.; Rongen, G.A.P.J.M.; Smits, P.; Hopman, M.T.E.


    BACKGROUND: Supraspinal sympathetic control of leg vascular tone is lost in spinal cord-injured individuals, but this does not result in a reduced leg vascular tone: Leg vascular resistance is even increased. The aim of this study was to assess the alpha-adrenergic contribution to the increased vasc

  19. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    Energy Technology Data Exchange (ETDEWEB)

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. (INSERM U.166 Groupe de recherches sur l' Endocrinologie de la Reproduction, Maternite Baudelocque, Paris (France))


    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  20. The role of the alpha-adrenergic receptor in the leg vasoconstrictor response to orthostatic stress.

    NARCIS (Netherlands)

    Kooijman, M.; Rongen, G.A.P.J.M.; Smits, P.; Kuppevelt, H.J.M. van; Hopman, M.T.E.


    AIM: The prompt increase in peripheral vascular resistance, mediated by sympathetic alpha-adrenergic stimulation, is believed to be the key event in blood pressure control during postural stress. However, despite the absence of central sympathetic control of the leg vasculature, postural leg vasocon

  1. Effects of Adrenergic Blockade on Postpartum Adaptive Responses Induced by Labor Contractions (United States)

    Ronca, April E.; Mills, N. A.; Lam, K. P.; Hayes, L. E.; Bowley, Susan M. (Technical Monitor)


    Prenatal exposure to labor contractions augments the expression of postnatal adaptive responses in newborn rats. Near-term rat fetuses exposed prenatally to simulated labor contractions and delivered by cesarean section breath and attach to nipples at greater frequencies than non-stimulated fetuses. Plasma NE (norepinephrine) and EPI (epinephrine) was significantly elevated in newborn rats exposed to vaginal birth or simulated labor contractions (compressions) with cesarean delivery as compared to non-compressed fetuses. In the present study, we investigated adrenergic mechanisms underlying labor-induced postnatal adaptive responses. Following spinal transection of late pregnant rat dams, fetuses were administered neurogenic or non-neurogenic adrenergic blockade: 1) bretylium (10 mg/kg sc) to prevent sympathetic neuronal release, 2) hexamethonium (30 mg/kg) to produce ganglionic blockade, 3) phenoxybenzanune (10mg/kg sc), an a- adrenergic receptor antagonist, 4) ICI-118551, 10 mg/kg sc), a b receptor antagonist, or 5) vehicle alone. Fetuses were either compressed (C) or non-compressed (NC) prior to cesarean delivery. a- and b- adrenergic antagonists reduced respiration and nipple attachment rates while sympathetic and vehicle alone did not. These results provide additional support for the hypothesis that adaptive neonatal effects of labor contractions are mediated by adrenal and extra-adrenal catecholamines.

  2. β3-Adrenergic receptor gene polymorphism and type 2 diabetes in a Caucasian population

    NARCIS (Netherlands)

    Oeveren van-Dybicz, A.M.; Vonkeman, H.E.; Bon, M.A.M.; Bergh, van den F.A.J.T.M.; Vermes, I.


    Aim: The β3-adrenergic receptor (β3-AR) is suspected to play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. A mutation in the β3-AR gene (Trp64Arg) has been associated with the capacity of weight gain and with early onset of noninsulin dependent diabetes me

  3. Effects of thyroid hormone on. beta. -adrenergic responsiveness of aging cardiovascular systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, G.; Hashimoto, K.; Hoffman, B.B.


    The authors have compared the effects of ..beta..-adrenergic stimulation on the heart and peripheral vasculature of young (2-mo-old) and older (12-mo-old) rats both in the presence and absence of triiodothyronine (T/sub 3/)-induced hyperthyroidism. The hemodynamic consequences of T/sub 3/ treatment were less prominent in the aged hyperthyroid rats compared with young hyperthyroid rats (both in intact and pithed rats). There was a decrease in sensitivity of chronotropic responsiveness to isoproterenol in older pithed rats, which was apparently reversed by T/sub 3/ treatment. The number and affinity of myocardial ..beta..-adrenergic receptor sites measured by (/sup 125/I)cyanopindolol were not significantly different in young and older control rats; also, ..beta..-receptor density increased to a similar extent in both young and older T/sub 3/-treated rats. The ability of isoproterenol to relax mesenteric arterial rings, markedly blunted in older rats, was partially restored by T/sub 3/ treatment without their being any change in isoproterenol-mediated relaxation in the arterial preparation from young rats. The number and affinity of the ..beta..-adrenergic receptors measured in the mesenteric arteries was unaffected by either aging or T/sub 3/ treatment. The data suggest that effects of thyroid hormone and age-related alterations of cardiovascular responsiveness to ..beta..-adrenergic stimulation are interrelated in a complex fashion with a net result that the hyperkinetic cardiovascular manifestations in hyperthyroidism are attenuated in the older animals.

  4. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling

    Directory of Open Access Journals (Sweden)

    Femminella GD


    Full Text Available Grazia Daniela Femminella,1 Vincenzo Barrese,2,3 Nicola Ferrara,1,4 Giuseppe Rengo4 1Department of Translational Medical Sciences, Federico II University, Naples, Italy; 2Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy; 3Division of Biomedical Sciences, St George’s University of London, London, UK; 4”Salvatore Maugeri” Foundation – IRCCS – Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy Abstract: Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism. Keywords: adrenergic system, polymorphisms, β-blockers, functional recovery

  5. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors

    DEFF Research Database (Denmark)

    Siebenmann, Christoph; Rasmussen, Peter; Sørensen, Henrik;


    Hypoxia increases the heart rate (HR) response to exercise but the mechanism(s) remain unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate but not combined inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exerci...

  6. Vasoconstriction induced by ouabain in the canine coronary artery: contribution of adrenergic and nonadrenergic responses. (United States)

    Cooke, J P; Shepherd, J T; Vanhoutte, P M


    Ouabain, when applied to rings of the left circumflex coronary artery of the dog (which contains both alpha 1-adrenoceptors leading to contraction and beta 1-adrenoceptors leading to relaxation) caused an initial contraction which peaked within 15 minutes and a later secondary increase in tension which peaked within 60 minutes. These contractions were prevented by Ca2+ removal or by verapamil. Adrenergic denervation with 6-hydroxydopamine did not affect the initial contraction. Thus it is due to a nonadrenergic effect of the glycoside. Since the secondary increase in tension was prevented by adrenergic denervation and prazosin, it is likely to be due to norepinephrine released from adrenergic nerves acting on alpha-adrenoceptors. This interpretation was confirmed by the finding that ouabain, after a latent period of about 35 minutes, augmented the output of 3H-norepinephrine from helical strips of the artery previously incubated with tritiated transmitter. In rings contracted with prostaglandin F2 alpha, ouabain reduced beta-adrenergic relaxations caused by isoproterenol or exogenous norepinephrine, but not those caused by sodium nitroprusside. Thus, in this artery, ouabain depresses the responses of the beta-adrenoceptors to the norepinephrine which it releases, thereby permitting the neurotransmitter to cause contraction by activating postjunctional alpha 1-adrenoceptors.

  7. [Adrenergic innervation of the uterus of the rat in various phases of the estrous cycle]. (United States)

    Rakitskaia, V V; Proimina, F I; Chudinov, Iu V


    Adrenergic innervation of the rat uterus is connected chiefly with vessel innervation. The highest density of fibers and the highest intensity of specific fluorescence is shown in the stage of dioestrus, the least those--in oestrus. These indices correlated with the estradiol and progesterone level in the plasma.

  8. Recent advances in the discovery of alpha1-adrenoceptor agonists. (United States)

    Bishop, Michael J


    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  9. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist. (United States)

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K


    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  10. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice (United States)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques


    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  11. Beta-adrenergic stimulation reverses the IKr–IKs dominant pattern during cardiac action potential (United States)

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T.; Chen-Izu, Ye


    β-adrenergic stimulation differentially modulates different K+ channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of IKs, IKr, and IK1 current in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K+ current to the total repolarization reserve. In this study we used an innovative AP-clamp Sequential Dissection technique to directly record the dynamic –IKs, IKr, IK1– currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of IKs, IKr, IK1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca2+ homeostasis. We found that isoproterenol treatment significantly enhanced IKs, moderately increased IK1, but slightly decreased IKr in a dose-dependent manner. The dominance pattern of the K+ currents was IKr>IK1>IKs at the control condition, but reversed to IKradrenergic stimulation. We systematically determined the changes in the relative contribution of IKs, IKr, IK1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K+ currents in a dose-dependent manner. This Knowledge is important for designing anti-arrhythmic drug strategies to treat the hearts exposed to various sympathetic tones. PMID:24535581

  12. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl


    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  13. Agonistic and reproductive interactions in Betta splendens. (United States)

    Bronstein, P M


    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  14. Signal Use by Octopuses in Agonistic Interactions. (United States)

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew


    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  15. Biphasic dose-dependent modulation of cardiac parasympathetic activity by moxonidine, an imidazoline I1-receptor agonist. (United States)

    Turcani, Marian


    Peripheral beta-adrenergic blockade and activation of central alpha2-adrenergic receptors have parasympathomimetic effects. The impact of activation of central imidazoline I1-receptors on vagal activity is not yet clear, but there is some evidence that imidazoline I1-receptors agonists may inhibit the parasympathetic system. Parasympatholytic effects may represent a risk for patient with reduced parasympathetic activity. To clarify the effect of imidazoline I1-receptors stimulation on vagal activity, increasing doses of moxonidine were applied subcutaneously to rats with implanted telemetric transmitters. Heart rate and blood pressure variability and baroreflex sensitivity were analyzed. Both, low (0.04, 0.12, and 0.36 mg/kg) and high (1.08 and 3.24 mg/kg), doses of moxonidine reduced the low-frequency power of systolic pressure variability, an index of sympathetic vascular modulation. Despite this reduction, low moxonidine doses neither reduced heart rate nor increased baroreflex gain. A decline of very low frequency power of heart rate variability, a sign of parasympatholysis, was observed with low doses of moxonidine, which can explain the absence of change in heart rate. High doses of moxonidine profoundly augmented very low and high-frequency power of heart rate variability and baroreflex sensitivity. These data suggest that the stimulation of imidazoline I1-receptors is not only sympatholytic but also seems to have as well a weak parasympatholytic effect. However, high doses of moxonidine are strongly parasympathomimetic through the activation of central alpha2-adrenoceptors. Recruitment of alpha2-adrenoceptors also results in manifestation of several side effects.

  16. 4种β2肾上腺素受体激动药对大鼠体外心脏功能影响比较%Assessment of the Effects of Different Beta 2 Adrenoceptor Agonists on Cardiac Function in Isolated Rat Heart

    Institute of Scientific and Technical Information of China (English)



    Objective To evaluate the effects of beta 2 adrenergic agonists on cardiac function in isolated rat hearts. Methods On the basis of Langendorff permission into the isolated rat hearts, cardiac function in the influence of salbuterol sulfate,levalbuterol,metoprolol tartaric acid and formoterol fumarate on systolic pressure( LVSP) ,both the maximum ascending and descending rate ( + dp/dt, - dp/dt max ) of left ventricle, and heart rate ( HR ) were monitored by using medlab recorder system. Results Beta 2 adrenergic agonists significantly increased LVSP,heart rate +dp/dt max and -dp/dt max of all groups compared with the control group (P<0.05). Arrhythmias such as premature systole, tachycardia occurred and developed with the concentration increased. While, effects of levalbuterol and formoterol fumarate were significant weaker than those of salbutamol sulfate (P<0.05). The selective beta 2 adrenergic blockers completely blocked effects of selective beta 2 adrenergic agonists; while selective beta 1 adrenergic partly blockers blocked effects of selective beta 2 adrenergic agonists. Conclusion This study demonstrats that beta 2 adrenergic agonists possess certain degree of toxicity, levalbuterol is safer on heart that albuterol; Formoterol produces less impact on heart than buterol and terbutaline; No significant difference of security occurred between formoterol and levalbuterol.%目的 评价β2肾上腺素受体激动药对大鼠体外心脏功能的影响.方法 以Langendorff灌流,通过Medlab记录系统观察硫酸沙丁胺醇、左旋沙丁胺醇、硫酸特布他林和富马酸福莫特罗对大鼠体外心脏左心室收缩压、左心室内压上升/下降最大速率、心率和心律的影响.结果 选择性β2肾上腺素受体激动药显著增加心脏左心室收缩压、左心室内压上升/下降最大速率和心率,均高于对照值,差异有统计学意义(P<0.05),并引起室性期前收缩及心动过速,随浓度增加效应增强;左旋

  17. Assessment of myocardial adrenergic innervation in patients with sick sinus syndrome: effect of asynchronous ventricular activation from ventricular apical stimulation


    Marketou, M E; Simantirakis, E N; Prassopoulos, V K; Chrysostomakis, S I; Velidaki, A A; Karkavitsas, N S; Vardas, P.E.


    Objective: To investigate ventricular sympathetic innervation in patients with sick sinus syndrome and to detect regional deterioration of adrenergic innervation caused by asynchronous ventricular activation from right ventricular pacing.

  18. Hypocaloric diet reduces exercise-induced alpha 2-adrenergic antilipolytic effect and alpha 2-adrenergic receptor mRNA levels in adipose tissue of obese women. (United States)

    Stich, V; Marion-Latard, F; Hejnova, J; Viguerie, N; Lefort, C; Suljkovicova, H; Langin, D; Lafontan, M; Berlan, M


    Previous investigations have shown that alpha 2-adrenoceptor (alpha 2-AR) stimulation blunts lipid mobilization during physiological activation of the sympathetic nervous system promoted by exercise in sc abdominal adipose tissue (SCAAT) in obese men. To investigate the effect of a low calorie diet (LCD) on the alpha 2-adrenergic responsiveness and on the expression of alpha 2-AR and beta 2-adrenoceptor (beta 2-AR) in SCAAT, 11 obese women (weight: 99.1 +/- 4.6 kg; body mass index: 34.3 +/- 1.1 kg/m(2)) received a 12-wk diet providing 500 kcal/d less than their usual diet. The exercise-induced alpha 2-adrenergic antilipolytic effect was investigated in SCAAT before and at the end of LCD. Changes in extracellular glycerol concentration and local blood flow were measured in SCAAT during a 45-min exercise bout (50% of heart rate reserve) using a control microdialysis probe and a probe supplemented with the alpha2-AR antagonist phentolamine. SCAAT biopsies were performed for determination of mRNA levels using RT-competitive PCR. Plasma catecholamine responses to exercise bout were not different before and at the end of LCD. Before LCD, the exercise-induced increase in extracellular glycerol concentration was potentiated by phentolamine supplementation, while this potentiating effect of the alpha-antagonist was not observed at the end of LCD. No changes were observed for beta 2-AR and hormone-sensitive lipase mRNA levels, while alpha 2-AR mRNA level was significantly decreased in adipose tissue during LCD. These findings show that alpha 2-AR-mediated antilipolytic action is reduced by a moderate hypocaloric diet and that down-regulation of alpha 2-AR mRNA levels may participate in the decrease of the alpha 2-adrenergic effect revealed by microdialysis.

  19. Agonist trigger: what is the best approach? Agonist trigger and low dose hCG

    DEFF Research Database (Denmark)

    Humaidan, Peter; Al Humaidan, Peter Samir Heskjær


    Low-dose hCG supplementation after GnRH agonist trigger may normalize reproductive outcome while minimizing the occurrence of OHSS in high risk IVF patients. (Fertil Steril (R) 2012;97:529-30. (C) 2012 by American Society for Reproductive Medicine.)......Low-dose hCG supplementation after GnRH agonist trigger may normalize reproductive outcome while minimizing the occurrence of OHSS in high risk IVF patients. (Fertil Steril (R) 2012;97:529-30. (C) 2012 by American Society for Reproductive Medicine.)...

  20. Impact of alpha 1-adrenergic antagonist use for benign prostatic hypertrophy on outcomes in patients with heart failure. (United States)

    Dhaliwal, Amandeep S; Habib, Gabriel; Deswal, Anita; Verduzco, Melinda; Souchek, Julianne; Ramasubbu, Kumudha; Aguilar, David; Ma, Tony S; Jneid, Hani M; Bolos, Mariana; Bozkurt, Biykem


    Previous clinical trials have shown that alpha(1)-adrenergic antagonists are not effective in subjects with heart failure (HF) and might increase HF rates when used for hypertension. However, alpha(1)-adrenergic antagonists may be prescribed to subjects with HF who have symptomatic benign prostatic hyperplasia. We sought to determine any association between alpha(1)-adrenergic antagonist use, commonly prescribed for benign prostatic hyperplasia, and the clinical outcomes of subjects with HF receiving contemporary therapy. An existing database of 388 subjects with decompensated HF admissions from 2002 to 2004 at the Veterans Affairs Hospital was analyzed according to the use of alpha(1)-adrenergic antagonists at discharge. Covariate-adjusted Cox proportional hazard models were used to examine any association with future admissions for decompensated HF and total mortality. Alpha-1-adrenergic antagonist therapy was prescribed in 25% of our HF population, predominantly for benign prostatic hyperplasia, and was not associated with significant increases in the combined risk of all-cause mortality and rehospitalization for HF (hazard ratio 1.24, 95% confidence interval 0.93 to 1.65, p = 0.14), HF hospitalization (hazard ratio 1.20, 95% confidence interval 0.85 to 1.70, p = 0.31), or all-cause mortality (hazard ratio 1.10, 95% confidence interval 0.78 to 1.56, p = 0.57). In patients not receiving beta-blocker therapy, alpha(1)-adrenergic antagonist therapy was significantly associated with increased HF hospitalizations (hazard ratio 1.94, 95% confidence interval 1.14 to 3.32, p = 0.015). In conclusion, in patients with chronic HF, the use of alpha(1)-adrenergic antagonists was significantly associated with more HF hospitalizations when prescribed without concomitant beta blockade. Thus, background beta-blocker therapy appears to be protective against the potential harmful effects of alpha(1)-adrenergic antagonist therapy in patients with HF.

  1. cAMP-synthesis in a medullary thyroid carcinoma cell line: response to adrenergic agents and prostaglandines. (United States)

    Mertens, P R; Goretzki, P E; Keck, E


    Calcitonin secretion by C-cells is mediated through intracellular 3'5'-cyclic adenosine monophosphate (cAMP) and calcium signaling. Calcitonin release stimulation tests may take advantage of both signaling cascades in screening for medullary thyroid carcinomas (MTC). To elucidate the regulation of the adenylyl cyclase system we have determined cAMP levels of a calcitonin-expressing MTC cell line (RG) after exposure to adrenergic agents and prostaglandines. In early passages (20-30) cAMP concentrations were significantly elevated in RG cells after exposure to beta-adrenergic agents and prostaglandines E1 and E2. In advanced passages (60-80) the beta-adrenergic response was no longer detectable and adrenergic receptors were uncoupled from the adenylyl cyclase complex; while the effect of prostaglandines E1 and E2 remained unaffected. Preincubation with dexamethasone, in a process requiring protein new synthesis, re-established the adrenergic response in later passages, indicating that RG cells dedifferentiated in culture over time. Our in vitro findings suggest that MTC cell dedifferentiation may be accompanied by adrenergic receptor-uncoupling from the adenylate cyclase system and that this process may be reversed by dexamethasone incubation.

  2. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway.

    Directory of Open Access Journals (Sweden)

    Irina Gradinaru

    Full Text Available α1a Adrenergic receptors (α1aARs are the predominant AR subtype in human vascular smooth muscle cells (SMCs. α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant, different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.

  3. Dopamine agonist: pathological gambling and hypersexuality. (United States)


    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication.

  4. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T


    physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose...... potential of GLP-1RA-insulin combination therapy, typically showing beneficial effects on glycaemic control and body weight, with a low incidence of hypoglycaemia and, in established insulin therapy, facilitating reductions in insulin dose. In this review, the physiological and pharmacological rationale...

  5. SNC 80 and related delta opioid agonists. (United States)

    Calderon, S N; Coop, A


    The discovery of the selective delta (delta) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, was a major advance in the field of delta-opioid ligands. Much research has been performed to uncover the structure-activity relationships (SAR) of this class of ligands and also to compare the diarylmethylpiperazines with the traditional morphinan-based delta opioids. This review focuses on the development of the SAR of this unique series of ligands, and discusses questions which remain unanswered.

  6. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism

    DEFF Research Database (Denmark)

    Rao, Fangwen; Wessel, Jennifer; Wen, Gen;


    Albumin excretion marks early glomerular injury in hypertension. This study investigated heritability of albumin excretion in twin pairs and its genetic determination by adrenergic pathway polymorphism. Genetic associations used single nucleotide polymorphisms at adrenergic pathway loci spanning...... biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine...... hydroxylase, chromogranin A, and sorting nexin 13. Dopamine D1 receptor polymorphism showed pleiotropic effects on both albumin and dopamine excretion. These studies establish new roles for heredity and environment in albumin excretion. Urinary excretions of albumin and catecholamines are highly heritable...

  7. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth (United States)

    Armaiz-Pena, Guillermo N.; Gonzalez-Villasana, Vianey; Nagaraja, Archana S.; Rodriguez-Aguayo, Cristian; Sadaoui, Nouara C.; Stone, Rebecca L.; Matsuo, Koji; Dalton, Heather J.; Previs, Rebecca A.; Jennings, Nicholas B.; Dorniak, Piotr; Hansen, Jean M.; Arevalo, Jesusa M.G.; Cole, Steve W.; Lutgendorf, Susan K.; Sood, Anil K.; Lopez-Berestein, Gabriel


    Increased adrenergic signaling facilitates tumor progression, but the underlying mechanisms remain poorly understood. We examined factors responsible for stress-mediated effects on monocyte/macrophage recruitment into the tumor microenvironment, and the resultant effects on tumor growth. In vitro, MCP1 was significantly increased after catecholamine exposure, which was mediated by cAMP and PKA. Tumor samples from mice subjected to daily restraint stress had elevated MCP1 gene and protein levels, increased CD14+ cells, and increased infiltration of CD68+ cells. hMCP1 siRNA-DOPC nanoparticles significantly abrogated daily restraint stress-induced tumor growth and inhibited infiltration of CD68+ and F4/80+ cells. In ovarian cancer patients, elevated peripheral blood monocytes and tumoral macrophages were associated with worse overall survival. Collectively, we demonstrate that increased adrenergic signaling is associated with macrophage infiltration and mediated by tumor cell-derived MCP1 production. PMID:25738355

  8. Expression of hippocampal adrenergic receptor mRNA in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jianbin Zhang; Lingling Wang; Xinjun Wang; Jingfeng Jiang; Xiaoren Xiang; Tianjun Wang


    Adrenergic receptor dysfunction is suggested as a potential cause of hippocampal vulnerability to stress-related pathology. We examined mRNA expression of adrenergic receptor (AR) subtypes α1-AR, α2-AR, and β1-AR in hippocampal subregions (CA1, CA3, dentate gyrus) using in situ hybridization in a depression model induced by chronic unpredictable mild stress and social isolation. α1-AR mRNA expression was significantly increased in the CA3 and dentate gyrus, β1-AR mRNA was significantly increased in the CA1, and α2-AR mRNA remained unchanged in all regions of depression rats compared with controls. Thus, different AR subtypes exhibit a differing pattern of mRNA expression in various hippocampal subregions following depression.

  9. Significance of adrenergic receptors for the development of nevus flammeus and nevus anemicus

    Energy Technology Data Exchange (ETDEWEB)

    Raff, M. (Vienna Univ. (Austria). 2. Hautklinik)


    Examination of patients with nevus flammeus or nevus anemicus showed disturbed sensibility in the area of the nevus in the majority of cases. Histologically and with special technique of histochemistry and fluorescence microscopy there was no evidence for neurogenic lesions. However, signs of vegetative disfunction were present: hyperhidrosis and absent reactivity of vasculature in the nevus area to vasoconstrictive and vasodilatatory stimuli. Based on these findings a disturbed regulation of vascular intramural adrenergic receptors seemed possible and really could be demonstrated by means of autoradiography. In both types of nevi only one of the adrenergic receptors could be marked with specific antagonists. Therefore, the persistent vascular dilatation and constriction can be accounted for by the absence of one of these receptors. This abnormal distribution of receptors could be due to a developmental defect influenced by the ''nerve growth factor''.

  10. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation


    Maharjan Anu S; Pilling Darrell; Gomer Richard H


    Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs) are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs) were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fi...

  11. Oral phentolamine: an alpha-1, alpha-2 adrenergic antagonist for the treatment of erectile dysfunction. (United States)

    Goldstein, I


    Phentolamine mesylate is an alpha-1 and alpha-2 selective adrenergic receptor antagonist which has undergone clinical trials for erectile dysfunction treatment. Biochemical and physiological studies in human erectile tissue have revealed a high affinity of phentolamine for alpha-1 and alpha-2 adrenergic receptors. Based on pharmacokinetic studies, it is suggested that 30-40 min following oral ingestion of 40 or 80 mg of phentolamine (Vasomax), the mean plasma phentolamine concentrations are sufficient to occupy the alpha-1 and -2 adrenergic receptors in erectile tissue and thereby result in inhibition of adrenergic-mediated physiologic activity. In large multi-center, placebo-controlled pivotal phase III clinical trials, the mean change in the erectile function domain of the International Index of Erectile Function scores (Questions 1-5 and 15) from screening to the end of treatment was significantly higher following use of active drug (40 mg and 80 mg) compared to placebo. Three to four times as many patients receiving phentolamine reported being satisfied or very satisfied compared with those receiving placebo. At doses of 40 mg and 80 mg respectively, 55% and 59% of men were able to achieve vaginal penetration with 51% and 53% achieving penetration on 75% of attempts. The correction of erectile dysfunction or improvement to a less severe category of dysfunction was experienced by 53% of men with the 80 mg dose and 40% with the 40 mg dose of phentolamine. All trends of response were the same regardless of any concomitant medication. There were no severe adverse events. At 40 mg, 7.7% experienced rhinitis and fewer than 3.1% experienced any other side effect of treatment. Phentolamine is safe, well tolerated and efficacious for the treatment of erectile dysfunction.

  12. alpha-adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle

    Directory of Open Access Journals (Sweden)

    Darren P. Casey


    Full Text Available We previously demonstrated that acute hypoperfusion in exercising human muscle causes an immediate increase in vascular resistance that is followed by a partial restoration (less than 100% recovery of flow. In the current study we examined the contribution of alpha-adrenergic vasoconstriction in the initial changes in vascular resistance at the onset of hypoperfusion as well as in the recovery of flow over time. Nine healthy male subjects (29 ± 2 performed rhythmic forearm exercise (20% of maximum during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included; baseline, exercise prior to inflation, exercise with inflation, and exercise after deflation (3 min each. Forearm blood flow (FBF; ultrasound, local (brachial artery, and systemic arterial pressure (MAP; Finometer were measured. The trial was repeated during phentolamine infusion (alpha-adrenergic receptor blockade. Forearm vascular conductance (FVC; ml min-1 100 mmHg-1 and resistance (mmHg ml min-1 was calculated from BF (ml min-1 and local MAP (mmHg. Recovery of FBF and FVC (steady state inflation plus exercise value – nadir/ [steady state exercise (control value-nadir] with phentolamine was enhanced compared with the respective control (no drug trial (FBF = 97 ± 5% vs. 81 ± 6%, P < 0.05; FVC = 126 ± 9% vs. 91 ± 5%, P < 0.01. However, the absolute (0.05 ± 0.01 vs. 0.06 ± 0.01 mmHg ml min-1; P = 0.17 and relative (35 ± 5% vs. 31 ± 2%; P = 0.41 increase in vascular resistance at the onset of balloon inflation was not different between the alpha-adrenergic receptor inhibition and control (no drug trials. Therefore, our data indicate that alpha-adrenergic mediated vasoconstriction restricts compensatory vasodilation during forearm exercise with hypoperfusion, but is not responsible for the initial increase in vascular resistance at the onset of hypoperfusion.

  13. α1A-adrenergic receptor mediated pressor response to phenylephrine in anesthetized rat

    Institute of Scientific and Technical Information of China (English)

    XU Qi; ZHU Weizhong; L(U) Zhizhen; ZHANG Youyi; HAN Qide


    To determine which subtype of α1A-adrenergic receptors plays a role in the regulation of blood pressure, with α1A-adrenergic receptor-mediated vasoconstriction in perfused hindlimb as a control, we compared the inhibitory effects of various α1A-adrenergic receptor selective antagonists on the vasopressure responses to phenylephrine between the mean arterial pressure and hindlimb perfusion pressure in anesthetized rats. In Normotensive Wistar rats, the results showed that the inhibitory effects (dose ratios of ED50, Dr) of α1A-adrenoceptor selective antagonist (prazosin, Dr 13.5 ± 3.6 vs.15.1 ± 4.3, n = 11), α1A-adrenoceptor selective antagonist (5- methyl-urapidil, Dr 2.4 ± 0.9 vs. 3.7 ± 2.3, n = 12; RS-17053, Dr 3.2 ± 1.6 vs. 4.4 ± 3.3, n =12) and α1D- adrenoceptor selective antagonist (BMY7378, Dr 1.9 ± 0.9 vs. 2.2 ± 0.8, n = 8) on phenylephrine- induced increases of perfusion pressure in the autoperfused femoral beds were the same as that in the mean arterial blood pressure in normotensive Wistar rats. The inhibitory effects of antagonists (RS-17053, Dr 3.4 ± 0.6 vs. 4.3 ± 0.9, n = 5; BMY7378, Dr 1.7±0.5 vs. 1.7 ± 0.5, n = 8) in spontaneous hypertensive rats were similar with the Wistar rats. These results suggest that the mean arterial pressure induced by phenylephrine was mainly mediated by α1A-adrenergic receptor in both the anesthetized Wistar rats and spontaneous hypertensive rats.

  14. [The adrenergic innervation of the normal rat uterus and during pregnancy]. (United States)

    Rakitskaia, V V; Chudinov, Iu V; Shaliapina, V G


    Histochemical analysis revealed that, normally, the main amount of adrenergic fibers in the rat uterus is connected with vascular innervation. The amount of neural elements projecting to the muscle cells in insignificant. In pregnancy, the amount of fibers with the specific fluorescence decreases and they completely disappear from the myometrium in parturient rats. Biochemical analysis corroborated the finding that the noradrenaline level is considerably decreased at the time in sympathetic neurons innervating the uterus thus leading to a physiological "desympathization" of the organ.

  15. [Sleep disturbances in Smith-Magenis syndrome: treatment with melatonin and beta-adrenergic antagonists]. (United States)

    Van Thillo, A; Devriendt, K; Willekens, D


    Smith-Magenis syndrome is a generic disorder, characterised by physical, neurological and behavioural features and caused by a 17p11.2 deletion. Patients with this syndrome typically display an inversion of the sleep-wake cycle. In this article we describe clinical developments in a two-year-old girl with Smith-Magenis syndrome whose sleep problems were successfully treated with melatonin and beta-adrenergic blockers. We also mention relevant data obtained in our literature search.

  16. Minimum Alveolar Concentration for Blunting Adrenergic Responses (MAC-BAR) of Sevoflurane in Dogs


    YAMASHITA, Kazuto; FURUKAWA, Erika; ITAMI, Takaharu; ISHIZUKA, Tomohito; TAMURA, Jun; MIYOSHI, Kenjirou


    It is well known that heart rate or arterial blood pressure may increase in response to surgical stimulation despite the absence of a purposeful movement. However, there is limited information regarding anesthetic requirement for blunting adrenergic response in dogs. This study was designed to compare the minimum alveolar concentrations of sevoflurane required to prevent autonomic response (MAC-BAR) and purposeful movement (MAC) in dogs. Sevoflurane MAC-BAR and MAC were determined in 5 beagle...

  17. Alpha-1 adrenergic antagonists in aircrew for the treatment of benign prostatic hypertrophy. (United States)

    Matthies, Andrew K; Tachikawa, Nina J


    Benign prostatic hypertrophy (BPH) affects the majority of men later in life. Other than surgery, finasteride (Proscar) is currently the only pharmacologic option available for U.S. Air Force (USAF) aircrew. This article will evaluate the current literature regarding the treatment of benign prostatic hypertrophy with FDA approved tamsulosin (Flomax) and alfuzosin (Uroxatrol), third-generation alpha-1 adrenergic antagonists. Current literature supports the fact that some third-generation alpha blockers limit the side effects of hypotension when compared to other alpha blockers as a result of the specificity of subtype binding of the receptors and the sustained release formulation. Alpha blockers are currently used almost universally for the treatment of BPH; however, they are currently not approved for USAF aircrew. This article will review the aeromedical implications of the side effects of alpha-1 adrenergic antagonists (alfuzosin, tamsulosin), which affect aircrew while performing aeronautical duties, and examine whether alpha-1 adrenergic antagonists should be acceptable medications in certain situations depending on airframe and aeronautical duties.

  18. Brain beta-adrenergic receptor binding in rats with obesity induced by a beef tallow diet. (United States)

    Matsuo, T; Suzuki, M


    We have previously reported that compared with safflower oil diet, feeding a beef tallow diet leads to a greater accumulation of body fat by reducing sympathetic activities. The present study examined the effects of dietary fats consisting of different fatty acids on alpha1- and beta-adrenergic receptor binding in the hypothalamus and cerebral cortex. Male Sprague-Dawley rats were meal-fed isoenergetic diets based on safflower oil (rich in n-6 polyunsaturated fatty acids) or beef tallow (rich in saturated fatty acids) for 8 weeks. Binding affinities of the beta-adrenergic receptor in the hypothalamus and cortex were significantly lower in the beef tallow diet group, but those of the alpha1-receptor did not differ between the two groups. The polyunsaturated to saturated fatty acid (P/S) ratio and fluidities of plasma membranes in the hypothalamus and cortex were lower in the beef tallow diet group than in the safflower oil diet group. These results suggest that the beef tallow diet decreases membrane fluidity by altering the fatty acid composition of plasma membranes in the hypothalamus and cerebral cortex of rat. Consequently, beta-adrenergic receptor binding affinities in the brain were lower in rats fed the beef tallow diet than in rats fed the safflower oil diet. We recognized that there is possible link between the membrane fluidity and the changes in affinity of beta-adrenoceptors in rat brain.

  19. Adrenergic mechanism responsible for pathological alteration in gastric mucosal blood flow in rats with ulcer bleeding (United States)

    Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.; Semyachkin-Glushkovskiy, I. A.; Gekalyuk, A. S.; Ulanova, M. V.; Lychagov, V. V.; Tuchin, V. V.


    The adrenergic system plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhage. Because the impaired gastric mucosal blood flow (GMBF) is the major cause of gastroduodenal lesions, including ulcer bleeding (UB), we studied the adrenergic mechanism responsible for regulation of GMBF in rats with a model of stress-induced UB (SUB) using the laser Doppler flowmetry (LDF). First, we examined the effect of adrenaline on GMBF in rats under normal state and during UB. In all healthy animals the submucosal adrenaline injection caused a decrease in local GMBF. During UB the submucosal injection of adrenaline was accompanied by less pronounced GMBF suppression in 30,3% rats with SUB vs. healthy ones. In 69,7% rats with SUB we observed the increase in local GMBF after submucosal injection of adrenaline. Second, we studied the sensitivity of gastric β2-adrenoreceptors and the activity of two factors which are involved in β2-adrenomediated vasorelaxation-KATP -channels and NO. The effects of submucosal injection of isoproterenol, ICI118551 and glybenclamide on GMBF as well as NO levels in gastric tissue were significantly elevated in rats with SUB vs. healthy rats. Thus, our results indicate that high activation of gastric β2-adrenoreceptors associated with the increased vascular KATP -channels activity and elevated NO production is the important adrenergic mechanism implicated in the pathogenesis of UB.


    Adefurin, Abiodun; Ghimire, Laxmi V.; Kohli, Utkarsh; Muszkat, Mordechai; Sofowora, Gbenga G.; Li, Chun; Levinson, Rebecca T.; Paranjape, Sachin Y.; Stein, C. Michael; Kurnik, Daniel


    α1B- adrenergic receptors contribute to vasoconstriction in humans. We tested the hypothesis that variation in the ADRA1B gene contributes to interindividual variability and ethnic differences in adrenergic vasoconstriction. We measured dorsal hand vein responses to increasing doses of phenylephrine in 64 Caucasians and 41 African-Americans and genotyped 34 ADRA1B variants. We validated findings in another model of catecholamine-induced vasoconstriction, the increase in mean arterial pressure (ΔMAP) during a cold pressor test (CPT). One ADRA1B variant, rs10070745, present in 14 African-American heterozygotes but not in Caucasians, was associated with a lower phenylephrine ED50 (geometric mean [95% CI], 144 [69–299] ng/ml) compared to 27 African-American non-carriers (208 [130–334] ng/ml; P=0.015) and contributed to the ethnic differences in ED50. The same variant was also associated with a greater ΔMAP during CPT (P=0.008). In conclusion, ADRA1B rs10070745 was significantly associated with vasoconstrictor responses after adrenergic stimulation and contributed to the ethnic difference in phenylephrine sensitivity. PMID:27089938

  1. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. (United States)

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba


    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.

  2. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism and fatigue during maximal sprinting in men

    DEFF Research Database (Denmark)

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke


    L min(-1) kg(-1)) performed a 30-s cycle ergometer sprint after inhalation of either 54 µg formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC) and contractile properties of quadriceps were measured......, and the decrease in ATP content was lower (PMVC and peak twitch force were higher (P

  3. Quantification of the effects of an alpha-2 adrenergic agonist on reflex properties in spinal cord injury using a system identification technique

    Directory of Open Access Journals (Sweden)

    Chen David


    Full Text Available Abstract Background Despite numerous investigations, the impact of tizanidine, an anti-spastic medication, on changes in reflex and muscle mechanical properties in spasticity remains unclear. This study was designed to help us understand the mechanisms of action of tizanidine on spasticity in spinal cord injured subjects with incomplete injury, by quantifying the effects of a single dose of tizanidine on ankle muscle intrinsic and reflex components. Methods A series of perturbations was applied to the spastic ankle joint of twenty-one spinal cord injured subjects, and the resulting torques were recorded. A parallel-cascade system identification method was used to separate intrinsic and reflex torques, and to identify the contribution of these components to dynamic ankle stiffness at different ankle positions, while subjects remained relaxed. Results Following administration of a single oral dose of Tizanidine, stretch evoked joint torque at the ankle decreased significantly (p Conclusions Our findings demonstrate that tizanidine acts to reduce reflex mechanical responses substantially, without inducing comparable changes in intrinsic muscle properties in individuals with spinal cord injury. Thus, the pre-post difference in joint mechanical properties can be attributed to reflex changes alone. From a practical standpoint, use of a single "test" dose of Tizanidine may help clinicians decide whether the drug can helpful in controlling symptoms in particular subjects.

  4. The importance of β2-agonists in myocardial infarction

    DEFF Research Database (Denmark)

    Rørth, Rasmus; Fosbøl, Emil L; Mogensen, Ulrik M;


    PURPOSE: β2-Agonists are widely used for relief of respiratory symptoms. Studies so far have reported conflicting results regarding use of β2-agonists and risk of myocardial infarction (MI). Yet, coronary angiographical data and longitudinal outcomes data are sparse and could help explain...

  5. Norepinephrine-Induced Adrenergic Activation Strikingly Increased the Atrial Fibrillation Duration through β1- and α1-Adrenergic Receptor-Mediated Signaling in Mice.

    Directory of Open Access Journals (Sweden)

    Kenji Suita

    Full Text Available Atrial fibrillation (AF is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered by the lack of suitable AF models in experimental animals.Our aim was to establish a long-lasting AF model in mice. We also investigated the role of adrenergic receptor (AR subtypes, which may be involved in the onset and duration of AF.Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but with only a short duration (29.0 ± 8.1 sec. We found that adrenergic activation by intraperitoneal norepinephrine (NE injection strikingly increased the AF duration. It increased the duration to more than 10 minutes, i.e., by more than 20-fold (656.2 ± 104.8 sec; P<0.001. In this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker prazosin both significantly attenuated NE-induced elongation of AF. To further explore the mechanisms underlying these receptors' effects on AF, we assessed the SR Ca(2+ leak, a major trigger of AF, and consequent spontaneous SR Ca(2+ release (SCR in atrial myocytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin significantly inhibited the NE-induced SR Ca(2+ leak and SCR. These findings suggest that both β1-AR and α1-AR may play important roles in the development of AF.We have established a long-lasting AF model in mice induced by adrenergic activation, which will be valuable in future AF study using experimental animals, such as transgenic mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the development of AF through in-vivo and in-vitro experiments.

  6. Estrogen receptor beta agonists in neurobehavioral investigations. (United States)

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin


    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research.


    NARCIS (Netherlands)



    1. The aim of this study was to find a drug that induces an almost complete degranulation of secretory cells in rat parotid and submandibular glands. 2. Phenylephrine (alpha-adrenergic), isoproterenol (beta-adrenergic) and mecholine (muscarinic cholinergic) were tested. Time and degree of maximal de

  8. Acute exposure to long-chain fatty acids impairs {alpha}2-adrenergic receptor-mediated antilipolysis in human adipose tissue. (United States)

    Polak, Jan; Moro, Cédric; Bessière, David; Hejnova, Jindra; Marquès, Marie A; Bajzova, Magda; Lafontan, Max; Crampes, Francois; Berlan, Michel; Stich, Vladimir


    The acute in vitro and in vivo effects of long-chain fatty acids (LCFAs) on the regulation of adrenergic lipolysis were investigated in human adipose tissue. The effect of a 2 h incubation, without or with LCFA (200 mumol/l), on basal and hormonally induced lipolysis was tested in vitro on isolated fat cells. The lipolytic response to epinephrine was enhanced by suppression of the antilipolytic alpha(2)-adrenergic effect. Then, healthy lean and obese male subjects performed a 45 min exercise bout at 50% of their heart rate reserve either after an overnight fast or 3 h after a high-fat meal (HFM: 95% fat, 5% carbohydrates). Subcutaneous adipose tissue lipolysis was measured by microdialysis in the presence or absence of an alpha-antagonist (phentolamine). In vivo, a HFM increased plasma levels of nonesterified fatty acids in lean and obese subjects. In both groups, the HFM did not alter hormonal responses to exercise. Under fasting conditions, the alpha(2)-adrenergic antilipolytic effect was more pronounced in obese than in lean subjects. The HFM totally suppressed the alpha(2)-adrenergic antilipolytic effect in lean and obese subjects during exercise. LCFAs per se, in vitro as well as in vivo, suppress alpha(2)-adrenergic-mediated antilipolysis in adipose tissue. LCFA-mediated suppression of antilipolytic pathways represents another mechanism whereby a high fat content in the diet might increase adipose tissue lipolysis.

  9. Exercise does not activate the β3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. (United States)

    Kleindienst, Adrien; Battault, Sylvain; Belaidi, Elise; Tanguy, Stephane; Rosselin, Marie; Boulghobra, Doria; Meyer, Gregory; Gayrard, Sandrine; Walther, Guillaume; Geny, Bernard; Durand, Gregory; Cazorla, Olivier; Reboul, Cyril


    Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to β3-adrenergic receptor (β3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the β3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the β3AR-eNOS pathway functional loss in their heart. Indeed, a selective β3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the β3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.

  10. Alpha adrenergic receptors in dog coronary arteries as detected with autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Muntz, K.; Calianos, T.; Buja, L.M.


    The authors used previously established methods to determine the presence of alpha adrenergic receptors in different sizes of dog coronary arteries using autoradiography of /sup 3/H-prazosin (PRAZ) and /sup 125/I-BE 2254 (HEAT) to label alpha/sub 1/ adrenergic receptors and /sup 3/H-rauwolscine (RAUW) to label alpha/sub 2/ adrenergic receptors. Frozen sections of the left main coronary artery (LMA), the left anterior descending artery (LAD) and myocardium were incubated in 3 concentrations of PRAZ (0.1, 0.5 and 1.0 nM) (n=5 dogs), 3 concentrations of RAUW (1, 3 and 5 nM) (n=5) and one concentration of HEAT (50 pM) (n=3). All incubations were done in the absence of (total binding) or presence of (nonspecific binding) 10/sup -5/ M phentolamine or yohimbine. The sections were processed for autoradiography and silver grains quantitated using an image analyzer. Analysis of variance determined that there was a significant difference between total and nonspecific binding in the LMA incubated with PRAZ (p < 0.016), but no significant difference between total and nonspecific binding in the LAD (p < 0.19) or in the arterioles (p < 0.68). In the experiments with HEAT, similar results were obtained. With RAUW, there was significant labeling of arterioles (p < 0.004), but not over the LAD (p < 0.11) or the LMA (p < 0.49). The results suggest that the number of coronary alpha/sub 1/ receptors decreases as vessel size decreases, while the number of alpha/sub 2/ receptors increases as vessel size decreases.

  11. MiRNA-1/133a clusters regulate adrenergic control of cardiac repolarization.

    Directory of Open Access Journals (Sweden)

    Johannes Besser

    Full Text Available The electrical properties of the heart are primarily determined by the activity of ion channels and the activity of these molecules is permanently modulated and adjusted to the physiological needs by adrenergic signaling. miRNAs are known to control the expression of many proteins and to fulfill distinct functions in the mammalian heart, though the in vivo effects of miRNAs on the electrical activity of the heart are poorly characterized. The miRNAs miR-1 and miR-133a are the most abundant miRNAs of the heart and are expressed from two miR-1/133a genomic clusters. Genetic modulation of miR-1/133a cluster expression without concomitant severe disturbance of general cardiomyocyte physiology revealed that these miRNA clusters govern cardiac muscle repolarization. Reduction of miR-1/133a dosage induced a longQT phenotype in mice especially at low heart rates. Longer action potentials in cardiomyocytes are caused by modulation of the impact of β-adrenergic signaling on the activity of the depolarizing L-type calcium channel. Pharmacological intervention to attenuate β-adrenergic signaling or L-type calcium channel activity in vivo abrogated the longQT phenotype that is caused by modulation of miR-1/133a activity. Thus, we identify the miR-1/133a miRNA clusters to be important to prevent a longQT-phenotype in the mammalian heart.

  12. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. (United States)

    Watt, Matthew J; Steinberg, Gregory R; Chan, Stanley; Garnham, Andrew; Kemp, Bruce E; Febbraio, Mark A


    Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by beta-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5'AMP-activated protein kinase (AMPK) to suppress beta-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 +/- 35 and 163 +/- 27 mmol x kg(-1) dm for CON and LG, respectively. AMPK alpha-2 was not different between trials at rest and was increased (3.7-fold, PHSL activity did not differ between trials at rest and increased (0 min: 1.67 +/- 0.13; 60 min: 2.60 +/- 0.26 mmol x min(-1) x kg(-1) dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK alpha-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 +/- 0.29 vs LG, 4.25 +/- 0.60 nM, PHSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 +/- 2.0; 60 min: 22.5 +/- 2.0 mmol x kg(-1) dm, PHSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (PHSL activity that can override beta-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

  13. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  14. Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut

    Directory of Open Access Journals (Sweden)

    Cristiano G. Moreira


    Full Text Available Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC and Citrobacter rodentium, which is largely used as a surrogate EHEC model for murine infections, are exposed to several host neurotransmitters in the gut. An important chemical exchange within the gut involves the neurotransmitters epinephrine and/or norepinephrine, extensively reported to increase virulence gene expression in EHEC, acting through two bacterial adrenergic sensors: QseC and QseE. However, EHEC is unable to establish itself and cause its hallmark lesions, attaching and effacing (AE lesions, on murine enterocytes. To address the role of these neurotransmitters during enteric infection, we employed C. rodentium. Both EHEC and C. rodentium harbor the locus of enterocyte effacement (LEE that is necessary for AE lesion formation. Here we show that expression of the LEE, as well as that of other virulence genes in C. rodentium, is also activated by epinephrine and/or norepinephrine. Both QseC and QseE are required for LEE gene activation in C. rodentium, and the qseC and qseE mutants are attenuated for murine infection. C. rodentium has a decreased ability to colonize dopamine β-hydroxylase knockout (Dbh−/− mice, which do not produce epinephrine and norepinephrine. Both adrenergic sensors are required for C. rodentium to sense these neurotransmitters and activate the LEE genes during infection. These data indicate that epinephrine and norepinephrine are sensed by bacterial adrenergic receptors during enteric infection to promote activation of their virulence repertoire. This is the first report of the role of these neurotransmitters during mammalian gastrointestinal (GI infection by a noninvasive pathogen.

  15. 164Ile allele in the beta2-Adrenergic receptor gene is associated with risk of elevated blood pressure in women. The Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Sethi, Amar A; Tybjaerg-Hansen, Anne; Jensen, Gorm B;


    Since beta2-adrenergic receptors are important regulators of blood pressure, genetic variation in this receptor could explain risk of elevated blood pressure in selected individuals. We tested the hypothesis that Gly16Arg, Gln27Glu, and Thr164Ile in the beta2-adrenergic receptor gene associated w...

  16. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man

    DEFF Research Database (Denmark)

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente


    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined....... Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data...... circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays...

  17. A comparison of adrenergic receptors of rat ascites hepatoma AH130 cells with those of normal rat hepatocytes. (United States)

    Sanae, F; Miyamoto, K; Koshiura, R


    The pharmacological specificity of adrenergic receptors in the plasma membrane of rat ascites hepatoma AH130 cells was compared with that in normal rat hepatocytes. The number of [125I]iodocyanopindolol-binding sites was much greater in AH130 cells than in the hepatocytes. We characterized the alpha-adrenergic receptor subtypes using the alpha 1-selective ligand [3H]prazosin and the alpha 2-selective ligand [3H]clonidine. AH130 cells had fewer prazosin-binding sites than the hepatocytes and about 8 times as many clonidine-binding sites of high affinity. The results showed that the adrenergic receptors in AH130 cells have pharmacological properties that are very different from those of the receptors in normal rat hepatocytes.

  18. Changes in number of alpha-adrenergic receptor subtypes in hepatocytes from rats fed 3'-methyl-4-dimethylaminoazobenzene. (United States)

    Miyamoto, K; Sanae, F; Kohei, K; Nomura, M; Koshiura, R


    Changes in numbers of alpha 1- and alpha 2-adrenergic receptors in the plasma membranes of hepatocytes from female Donryu rats given feed containing 0.06% of the carcinogen 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB), were examined. alpha 1-Adrenergic receptors, measured in terms of [3H]prazosin binding, decreased to half of the control 2 weeks after the start of this diet, then gradually decreased for the next 22 weeks. alpha 2-Adrenergic receptors, measured in terms of [3H]clonidine binding, transiently increased 3-fold over the control at 2 weeks. These changes in the early period of the 3'-MeDAB diet intake may be related to hepatocarcinogenesis.

  19. β1- and β2-adrenergic stimulation-induced electrogenic transport by human endolymphatic sac epithelium and its clinical implications (United States)

    Kim, Bo Gyung; Kim, Jin Young; Jung, JinSei; Moon, In Seok; Yoon, Joo-Heon; Choi, Jae Young; Kim, Sung Huhn


    The endolymphatic sac (ES) is a cystic structure of the inner ear connected to the cochlea and vestibule, which plays a role in regulating ion homeostasis in inner ear fluid. Disruption of ion homeostasis can cause inner ear disorders with hearing loss and dizziness, such as Meniere’s disease. Herein, we found, for the first time, functional evidence for the involvement of β1- and β2-adrenergic receptors in apical electrogenic ion transport by human ES epithelium by using electrophysiological/pharmacological and molecular biological methods, which were dependent on K+ and Cl− ion transport. The apical electrogenic transport was absent or very weak in ES epithelia of patients with Meniere’s disease. These results suggested that adrenergic stimulation via β1- and β2-adrenergic receptors in the human ES was involved in regulation of inner ear fluid ion homeostasis and impairment of this response could be a pathological mechanism of Meniere’s disease. PMID:28165045

  20. The cardiovascular effects of peroxisome proliferator-activated receptor agonists. (United States)

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J


    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  1. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye


    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  2. Recent advances in the molecular pharmacology of the alpha 1-adrenergic receptors. (United States)

    Guarino, R D; Perez, D M; Piascik, M T


    This review is intended to discuss recent developments in the molecular pharmacology of the alpha 1-adrenergic receptor (alpha 1-AR) subtypes. After a brief historical development, we will focus on the more contemporary issues having to do with this receptor family. Emphasis will be put on recent data regarding the cloning, nomenclature, signalling mechanisms, and genomic organization of the alpha 1-AR subtypes. We will also highlight recent mutational studies that identify key amino acid residues involved in ligand binding, as well as the role of the alpha 1-AR subtypes in regulating physiologic processes.

  3. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Zocher, Michael; Zhang, Cheng; Rasmussen, Søren Gøgsig Faarup;


    the kinetic, energetic, and mechanical stability of almost every structural segment at sufficient magnitude to alter the structure and functional relationship of β(2)AR. One exception was the structural core segment of β(2)AR, which establishes multiple ligand binding sites, and its properties were...... to quantify the mechanical strength and flexibility, conformational variability, and kinetic and energetic stability of structural segments stabilizing the human β(2)-adrenergic receptor (β(2)AR) in the absence and presence of the cholesterol analog cholesteryl hemisuccinate (CHS). CHS considerably increased...

  4. Alpha-adrenergic regulation of growth hormone release after electroconvulsive therapy in man. (United States)

    Vigas, M; Wiedermann, V; Németh, S; Jurcovicová, J; Zigo, L


    When electroshcok therapy was administered to male psychiatric patients without anticonvulsive premedication, serum growth hormone (GH) increased; the increase was not prevented by an infusion of 20% glucose (5 ml per min) 20 min prior to electroshock. Therefore, the GH rise is not caused by muscle exercise during convulsions. Infusing 30 mg of phentolamine 40 min prior to electroshcok inhibited the GH response. Phentolamine's effect shows that the stress-induced GH release that follows electroconvulsive therapy is mediated by alpha-adrenergic neurons.

  5. Antidiuretic effect of ritodrine with and without beta-adrenergic blockade. (United States)

    Gerritse, R; Pinas, I M; Reuwer, P J; Haspels, A A; Charbon, G A; Beijer, H J


    Dose-related effects of ritodrine and ritodrine combined with metoprolol on urinary excretion rate were studied in anesthetized dogs. Urine production was abruptly reduced after a total dose of 4 of ritodrine. This effect could not be antagonized by metoprolol, although the ritodrine-induced decrease of mean arterial pressure and renal arterial blood flow was significantly inhibited. The possible role of fluid retention during tocolytic treatment, even with beta-adrenergic blockade, in the etiology of pulmonary edema is discussed with a review on recent literature.

  6. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Gliemann, Lasse;


    were measured before and after 8 weeks of aerobic training (3-4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise......Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics...... hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P

  7. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation

    Directory of Open Access Journals (Sweden)

    Maharjan Anu S


    Full Text Available Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fibrocyte differentiation, even though enhanced extracellular tumor necrosis factor (TNF-α accumulation and/or increased cell surface CD86 or major histocompatibility complex (MHC class II levels were observed. However, all TLR2 agonists tested inhibited fibrocyte differentiation without any significant effect on cell survival. Adding TLR2 agonists to purified monocytes had no effect on fibrocyte differentiation. However, some TLR2 agonists caused PBMCs to secrete a factor that inhibits the differentiation of purified monocytes into fibrocytes. This factor is not interferon (IFN-α, IFN-γ, interleukin (IL-12, aggregated immunoglobulin G (IgG or serum amyloid P (SAP, factors known to inhibit fibrocyte differentiation. TLR2 agonist-treated PBMCs secrete low levels of IL-6, TNF-α, IFN-γ, granulocyte colony-stimulating factor and tumor growth factor β1, but combinations of these factors had no effect on fibrocyte differentiation from purified monocytes. Conclusions Our results indicate that TLR2 agonists indirectly inhibit fibrocyte differentiation and that, for some TLR2 agonists, this inhibition involves other cell types in the PBMC population secreting an unknown factor that inhibits fibrocyte differentiation. Together, these data suggest that the presence of some bacterial signals can inhibit fibrocyte differentiation and may thus slow wound closure.

  8. N-terminal {beta}{sub 2}-adrenergic receptor polymorphisms do not correlate with bronchodilator response in asthma families

    Energy Technology Data Exchange (ETDEWEB)

    Holyroyd, K.J.; Dragwa, C.; Xu, J. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)] [and others


    Family and twin studies have suggested that susceptibility to asthma is inherited. One clinically relevant phenotype in asthma is the bronchodilator response to beta adrenergic therapy (reversibility) which may also be inherited and vary among asthmatics. Two polymorphisms of the {beta}{sub 2}-adrenergic receptor common to both asthmatic and normal individuals have been reported. One polymorphism, an amino acid polymorphism at position 16, correlated in one study with the need for long-term corticosteriod use in a population of asthmatics. It is conceivable that the increased use of corticosteroids needed to control symptoms in these patients may be explained by a decreased responsiveness to brochodilators mediated through this amino acid polymorphism in the {beta}{sub 2}-adrenergic receptor. However, the response to {beta}{sub 2} bronchodilators was not tested in these patients. In our Dutch asthma families, DNA sequencing of the {beta}{sub 2}-adrenergic receptor has been performed for N-terminal polymorphisms at amino acid positions 16 and 27 in over 100 individuals, and no correlation was found with the increase of FEV{sub 1} in response to bronchodilator. Linkage analysis between bronchodilator response and marker D5S412 near the {beta}{sub 2}-adrenergic receptor gene was performed in 286 sibpairs from these families. Using a bronchodilator response of >10% in FEV{sub 1} as a qualitative definition of affected individuals, there were 145 unaffected sibpairs, 121 sibpairs where one was affected, and 20 in which both were affected. Linear regression analysis of these sibpair data suggested possible linkage (p=0.007). This supports further examination of the {beta}{sub 2}-adrenergic receptor and its regulatory regions for polymorphisms that correlate with the bronchodilator response in asthma families.

  9. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.


    /13) pathway. The recognition pattern of wFw-Isn-NH(2) with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH(2) was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue...... orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH(2) is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key...

  10. Nicotine receptor partial agonists for smoking cessation

    Directory of Open Access Journals (Sweden)

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  11. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling. (United States)

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A


    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  12. Effect of beta-adrenergic stimulants on cytotoxicity of mitomycin C in HeLa cells. (United States)

    Miyamoto, K; Sanae, F; Iwasaki, M; Koshiura, R


    Effects of several autonomic agents on the cytotoxicity of mitomycin C in HeLa cells were studied. When beta-adrenergic stimulants such as isoproterenol, epinephrine, terbutaline and turobuterol were added at concentrations over 10(-14) M 15 to 60 min before mitomycin C, the colony-forming ability of HeLa cells was significantly inhibited more than by mitomycin C alone. The action of isoproterenol and epinephrine on the colony-forming ability of the cells was abolished by propranolol. The intracellular cyclic AMP level of HeLa cells reached the peak of about two-fold the basal level at 30 min after the addition of 10(-8) M isoproterenol. In combination with mitomycin C, the high level of intracellular cyclic AMP induced by isoproterenol was maintained for a significantly longer period in comparison with that by isoproterenol alone, while mitomycin C alone caused essentially no change in the cyclic AMP level. The pretreatment with dibutyryl cyclic AMP also enhanced the effect of mitomycin C. From these findings, it is strongly suggested that the synergistic effect of beta-adrenergic stimulants on the cytotoxicity of mitomycin C is mediated via stimulation of the beta-adrenoceptors of HeLa cells which elevates the intracellular cyclic AMP for a long time in combination with mitomycin C.

  13. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D


    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  14. Alpha-1 adrenergic receptors gate rapid orientation-specific reduction in visual discrimination. (United States)

    Treviño, Mario; Frey, Sebastian; Köhr, Georg


    Prolonged imbalance in sensory experience leads to dramatic readjustments in cortical representation. Neuromodulatory systems play a critical role in habilitating experience-induced plasticity and regulate memory processes in vivo. Here, we show that a brief period of intense patterned visual stimulation combined with systemic activation of alpha-1 adrenergic neuromodulator receptors (α(1)-ARs) leads to a rapid, reversible, and NMDAR-dependent depression of AMPAR-mediated transmission from ascending inputs to layer II/III pyramidal cells in the visual cortex of young and adult mice. The magnitude of this form of α(1)-AR long-term depression (LTD), measured ex vivo with miniature EPSC recordings, is graded by the number of orientations used during visual experience. Moreover, behavioral tests of visual function following the induction of α(1)-AR LTD reveal that discrimination accuracy of sinusoidal drifting gratings is selectively reduced at high spatial frequencies in a reversible, orientation-specific, and NMDAR-dependent manner. Thus, α(1)-ARs enable rapid cortical synaptic depression which correlates with an orientation-specific decrease in visual discrimination. These findings contribute to our understanding of how adrenergic receptors interact with neuronal networks in response to changes in active sensory experience to produce adaptive behavior.

  15. α1B-Adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment

    Institute of Scientific and Technical Information of China (English)

    Md Abdul Hye KHAN; Munavvar Abdul SATTAR; Nor Azizan ABDULLAH; Edward James JOHNS


    Aim: This study examined whether α1B-adrenoceptors are involved in mediating adrenergically-induced renal vasoconstrictor responses in rats with pathophysi-ological and normal physiological states. Methods: Male Wistar Kyoto and spon-taneously hypertensive rats were induced with acute renal failure or experimental early diabetic nephropathy by cisplatin or streptozotocin, respectively. Cisplatin-induced renal failure was confirmed by impaired renal function and pronounced tubular damage. Experimental early diabetic nephropathy was confirmed by hyperglycemia, changes in physiological parameters, and renal function. The hemodynamic study was conducted on anesthetized rats after 7 d of cisplatin (renal failure) and 4 weeks of streptozotocin (experimental early diabetic nephropathy). Results: In the rats with renal failure and experimental early dia-betic nephropathy, there were marked reductions in their baseline renal blood flow (P0.05) in the renal failure and experimental early diabetic nephropathy rats, respectively, as compared to their non-renal failure and non-diabetic nephropathy controls. In the rats with renal impairment, chloroethylclonidine caused either accentuation or attenuation (all P0.05). Conclusion: This study demonstrated the presence of functional α1B-adrenoceptors that mediated the adrenergically-induced renal vaso-constrictions in rats with renal impairment, but not in rats with normal renal function.

  16. Beta-adrenergic Blockade at Memory Encoding, but Not Retrieval, Decreases the Subjective Sense of Recollection. (United States)

    Rimmele, Ulrike; Lackovic, Sandra F; Tobe, Russell H; Leventhal, Bennett L; Phelps, Elizabeth A


    Humans remember emotional events not only better but also exhibit a qualitatively distinct recollective experience-that is, emotion intensifies the subjective vividness of the memory, the sense of reliving the event, and confidence in the accuracy of the memory [Phelps, E. A., & Sharot, T. How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science, 17, 147-152, 2008]. Although it has been demonstrated that activation of the beta-adrenergic system, linked to increases in stress hormone levels and physiological arousal, mediates enhanced emotional memory accuracy, the mechanism underlying the increased subjective sense of recollection is unknown. Behavioral evidence suggests that increased arousal associated with emotional events, either at encoding or retrieval, underlies their increased subjective sense of recollection. Using a double-blind, placebo-controlled, within-subject design, we showed that reducing arousal at encoding through oral intake of 80-mg of the beta-adrenergic receptor antagonist propranolol decreases the subjective sense of recollection for both negative and neutral stimuli 24 hr later. In contrast, administration of propranolol before memory retrieval did not alter the subjective sense of recollection. These results suggest that the neurohormonal changes underlying increased arousal at the time of memory formation, rather than the time of memory retrieval, modulate the subjective sense of recollection.

  17. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise


    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are "earmarked" for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength.The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.

  18. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia


    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  19. Lack of alpha(2)-adrenergic antilipolytic effect during exercise in subcutaneous adipose tissue of trained men. (United States)

    De Glisezinski, I; Marion-Latard, F; Crampes, F; Berlan, M; Hejnova, J; Cottet-Emard, J M; Stich, V; Rivière, D


    The aim of this study was to investigate the involvement of the antilipolytic alpha(2)-adrenergic receptor pathway in the regulation of lipolysis during exercise in subcutaneous abdominal adipose tissue (SCAAT). Seven trained men and 15 untrained men were studied. With the use of microdialysis, the extracellular glycerol concentration was measured in SCAAT at rest and during 60 min of exercise at 50% of maximal oxygen consumption. One microdialysis probe was perfused with Ringer solution; the other was supplemented with phentolamine (alpha(2)-adrenergic receptor antagonist). No differences in baseline extracellular or plasma glycerol concentrations were found between the two groups. The exercise-induced extracellular and plasma glycerol increase was higher in trained compared with untrained subjects (P < 0.05). Addition of phentolamine to the perfusate enhanced the exercise-induced response of extracellular glycerol in untrained subjects but not in trained subjects. The exercise-induced increase in plasma norepinephrine and epinephrine concentrations and the decrease in plasma insulin were not different in the two groups. These in vivo findings demonstrate higher exercise-induced lipolysis in trained compared with untrained subjects and show that, in trained subjects, the alpha(2)-mediated antilipolytic action is not involved in the regulation of lipolysis in SCAAT during exercise.

  20. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes. (United States)

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S


    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  1. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise


    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338


    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Ayu Maha Iswari


    Full Text Available Melatonin is a hormone that has an important role in the mechanism of sleep. Hypnotic effects of melatonin and melatonin receptor agonist are mediated via MT1 and MT2 receptors, especially in circadian rhythm pacemaker, suprachiasmatic nucleus, which is worked on the hypothalamic sleep switch. This mechanism is quite different with the GABAergic drugs such as benzodiazepine. Agonist melatonin triggers the initiation of sleep and normalize circadian rhythms so that makes it easier to maintain sleep. The main disadvantage of melatonin in helping sleep maintenance on primary insomnia is that the half life is very short. The solution to this problem is the use of prolonged-release melatonin and melatonin receptor agonist agents such as ramelteon. Melatoninergic agonist does not cause withdrawal effects, dependence, as well as cognitive and psychomotor disorders as often happens on the use of benzodiazepine.  

  3. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control]. (United States)

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José


    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  4. Toll-like receptor agonists in cancer therapy


    Adams, Sylvia


    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recen...

  5. Short-Acting Beta-Agonist Research: A Perspective

    Directory of Open Access Journals (Sweden)

    Malcolm R Sears


    Full Text Available Asthma mortality increased sharply in New Zealand in 1977, prompting a national investigation into circumstances of asthma deaths. Subsequent observations of improved asthma control in subjects withdrawn from regular beta2-agonist treatment raised the question of whether asthma severity and, therefore, mortality could relate to frequent beta-agonist use. A randomized controlled trial of regular inhaled fenoterol versus as-needed bronchodilator use showed worsened asthma control during regular treatment despite concomitant use of inhaled corticosteroids. Assessment of these findings led to delay in the publishing of the American Asthma Guidelines, which were modified to suggest caution in using beta2-agonist treatments. Simultaneously, case control studies in New Zealand suggested that prescription of fenoterol was a substantial risk factor for asthma mortality. The causal association was hotly debated, but increasing evidence pointed to an adverse effect of fenoterol on asthma severity and, hence, mortality. This was supported by dramatic decreases in both morbidity and mortality when fenoterol was effectively withdrawn from use in New Zealand. The link between worsening asthma morbidity and mortality, and the use of potent short-acting beta2-agonists fulfills the Bradford Hill criteria for attributing causality. Application of evidence from randomized, controlled trials of short-acting beta-agonist use has led to a major shift in therapy in asthma to the recommendation of as-needed use only of short-acting beta-agonists and decreased patient reliance on regular bronchodilator therapy.

  6. Histamine H3-receptor inverse agonists as novel antipsychotics. (United States)

    Ito, Chihiro


    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  7. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density

    NARCIS (Netherlands)

    Veldhuis-Vlug, A G; Oei, L; Souverein, P C; Tanck, M W T; Rivadeneira, F; Zillikens, M C; Kamphuisen, P W; Maitland-van der Zee, A H; de Groot, M C H; Hofman, A; Uitterlinden, A G; Fliers, E; de Boer, A; Bisschop, P H


    Signaling through the beta-2 adrenergic receptor (B2AR) on the osteoblast influences bone remodeling in rodents. In the B2AR gene, three polymorphisms influence receptor function. We show that these polymorphisms are not associated with fracture risk or bone mineral density in the UCP, Rotterdam Stu

  8. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density

    NARCIS (Netherlands)

    A.G. Veldhuis-Vlug; L. Oei (Ling); P. Souverein (Patrick); M.W.T. Tanck (Michael); F. Rivadeneira Ramirez (Fernando); M.C. Zillikens (Carola); P.W. Kamphuisen; A-H. Maitland-van der Zee (Anke-Hilse); M.C.H. de Groot; A. Hofman (Albert); A.G. Uitterlinden (André); E. Fliers (Eric); A.C. de Boer (Anthonius); P.H. Bisschop


    textabstractSummary: Signaling through the beta-2 adrenergic receptor (B2AR) on the osteoblast influences bone remodeling in rodents. In the B2AR gene, three polymorphisms influence receptor function. We show that these polymorphisms are not associated with fracture risk or bone mineral density in t

  9. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density

    NARCIS (Netherlands)

    Veldhuis-Vlug, A. G.; Oei, L.; Souverein, P. C.; Tanck, M. W T; Rivadeneira, F.; Zillikens, M. C.; Kamphuisen, P. W.; Maitland - van der Zee, A. H.; de Groot, M. C H; Hofman, A.; Uitterlinden, A. G.; Fliers, E.; de Boer, A.; Bisschop, P. H.


    Summary: Signaling through the beta-2 adrenergic receptor (B2AR) on the osteoblast influences bone remodeling in rodents. In the B2AR gene, three polymorphisms influence receptor function. We show that these polymorphisms are not associated with fracture risk or bone mineral density in the UCP, Rott

  10. Family-based association analysis of beta(2)-adrenergic receptor polymorphisms in the Childhood Asthma Management Program

    NARCIS (Netherlands)

    Silverman, EK; Kwiatkowski, DJ; Sylvia, JS; Lazarus, R; Drazen, JM; Lange, C; Laird, NM; Weiss, ST


    Background: beta(2)-Adrenergic receptor (B2AR) polymorphisms have been associated with a variety of asthma-related phenotypes, but association results have been inconsistent across different studies. Objective: We sought to apply family-based association methods to individual single nucleotide polym

  11. The insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat (United States)

    Rojas, Sebastián; Diaz-Galarce, Raúl; Jerez-Baraona, Juan Manuel; Quintana-Donoso, Daisy; Moraga-Amaro, Rodrigo; Stehberg, Jimmy


    Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system. PMID:26175672

  12. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System (United States)

    Nater, Urs M.; La Marca, Roberto; Erni, Katja; Ehlert, Ulrike


    Background & Aim Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies. Methods In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies. Results Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest. Conclusions Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals. PMID:26110636

  13. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4

    DEFF Research Database (Denmark)

    Richter, Wito; Day, Peter; Agrawal, Rani


    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing...

  14. Participation of beta-adrenergic activity in modulation of GLUT4 expression during fasting and refeeding in rats (United States)

    Through in vitro studies, several factors have been reported as modulators of GLUT4 gene expression. However, the role(s) of each potential GLUT4 modulator is not completely understood in the in vivo setting. The present study has investigated the hypothesis that beta-adrenergic stimulation particip...

  15. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland.

    Directory of Open Access Journals (Sweden)

    Sergio González

    Full Text Available The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

  16. The Insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat

    Directory of Open Access Journals (Sweden)

    Sebastián Andrés Rojas


    Full Text Available Reluctance to try novel tastes (neophobia can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA compared to a low arousal context (LA. The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1% was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular norepinephrine blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system.

  17. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis. (United States)

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J


    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein-coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)-based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs.

  18. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery.

    Directory of Open Access Journals (Sweden)

    Hyoung Kyu Kim

    Full Text Available BACKGROUND AND PURPOSE: Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO in rabbit cerebral arteries (CAs. METHODS: ISO was induced in six weeks aged male New Zealand white rabbit (0.8-1.0 kg by 7-days isoproterenol injection (300 μg/kg/day. We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca(2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II, were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. RESULTS: Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1 in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca(2+ efflux and constriction response to angiotensin II and high K(+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network

  19. Effects of β2-Adrenergic Antagonist on Cytosolic Ca2+ in Ventricular Myocytes from Infarcted Rat Heart

    Institute of Scientific and Technical Information of China (English)

    Yang Hui; Wu Wei; Zeng Chong; Deng Chunyu; Fang Chang; Chen Shanming


    Objectives To investigate the effects of β2-adrenergic antagonist on cytosolic Ca2 +([Ca2+]i) in ventricular myocytes from infarcted rat heart. Methods A ligature was placed around left anterior descending coronary artery of rat hearts. Rats in the control group were sham-operated.Cardiomyocytes were dissociated at two, four, eight weeks after myocardial infarction (MI) and [Ca2+]i was measured via fura-2 fluorescence. The response of cardiomyocytes to isoproterenol in presence or absenceof beta1-adrenergic antagonist atenolol, beta2-adrenergic antagonist ICI118, 551 or non-selective β1,2- adrenergic antagonists propranolol was examined.Results The followings were found that ICI11 8, 551 had no significant effects on the rise of [Ca2+]i induced by isoproterenol in normal ventricular myocytes (P >0.05), ICI118, 551 only significantly attenuated the rise of [Ca2+]i induced by isoproterenol at four weeks and eight weeks after MI (24.5% ±5.7% vs 57.8% ±13.2%, P< 0.01; 12.2%±7.9% vs 44.6%±11.3%, P<0.01). Atenolol had suppressive effects only in the control group and the post-MI group of two weeks (P<0.05), and propranolol had suppressive effects in the control and all the three post-MI groups (P<0.01).Conclusions Beta2-adrenergic antagonist ICI118,551 may exert negative effects on Ca2+ overload initiated by sympathetic stimulation after MI.

  20. Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential. (United States)

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T; Chen-Izu, Ye


    β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.

  1. The use of alpha-1 adrenergic blockers in children with distal ureterolithiasis: a systematic review and meta-analysis (United States)

    Glina, F.P.; Castro, P.M.V.; Monteiro, G.G.R.; Guerra, G.C. Del; Glina, S.; Mazzurana, M.; Bernardo, W.M.


    ABSTRACT Introduction: Urinary lithiasis is the main urologic cause of emergency treatment in adult patient. In the past years, the incidence in children population has increased. However, literature about the use of alpha-1 adrenergic blockers in pediatric population with distal ureterolithiasis is still scarce. The drug acts by decreasing ureter contractions, especially in the distal portion, facilitating calculus expulsion. Objective: This review has the objective to evaluate the use of alpha-1 adrenergic blockers as medical expulsive treatment in children with distal ureterolithiasis. Evidence Acquisition: An electronic literature search was performed using the MEDLINE, COCHRANE, and LILACS databases. We further searched manually the references of the primary studies. Searches were concluded on October 4th, 2014. Articles were selected, independently and in pairs, by the respective titles and summaries. Any divergence was resolved by consensus. Evidence Synthesis: Alpha-1 adrenergic antagonists increased the probability of calculus expulsion by 27% (NNT=4). Calculi smaller than 5mm, increased by 33% (NNT=3). Larger than 5mm, increased by 34% (NNT=3). Conclusion: Alpha-1 adrenergic blocker use is related with a greater incidence of expulsion of ureteral calculi, smaller or greater than 5mm, and fewer episodes of pain when compared to ibuprofen. However it is necessary larger samples to enhance the power analysis of the expulsion of ureteral calculi larger than 5mm and the episodes of pain. Patient Summary: This review analyzed the outcome of alpha adrenergic antagonist in children with ureteral calculi. We conclude that it is the best medicine for use, since it helps the expulsion of the stone. PMID:26717117

  2. The use of alpha-1 adrenergic blockers in children with distal ureterolithiasis: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    F.P. Glina


    Full Text Available Introduction: Urinary lithiasis is the main urologic cause of emergency treatment in adult patient. In the past years, the incidence in children population has increased. However, literature about the use of alpha-1 adrenergic blockers in pediatric population with distal ureterolithiasis is still scarce. The drug acts by decreasing ureter contractions, especially in the distal portion, facilitating calculus expulsion. Objective: This review has the objective to evaluate the use of alpha-1 adrenergic blockers as medical expulsive treatment in children with distal ureterolithiasis. Evidence Acquisition: An electronic literature search was performed using the MEDLINE, COCHRANE, and LILACS databases. We further searched manually the references of the primary studies. Searches were concluded on October 4th, 2014. Articles were selected, independently and in pairs, by the respective titles and summaries. Any divergence was resolved by consensus. Evidence Synthesis: Alpha-1 adrenergic antagonists increased the probability of calculus expulsion by 27% (NNT=4. Calculi smaller than 5mm, increased by 33% (NNT=3. Larger than 5mm, increased by 34% (NNT=3. Conclusion: Alpha-1 adrenergic blocker use is related with a greater incidence of expulsion of ureteral calculi, smaller or greater than 5mm, and fewer episodes of pain when compared to ibuprofen. However it is necessary larger samples to enhance the power analysis of the expulsion of ureteral calculi larger than 5mm and the episodes of pain. Patient Summary: This review analyzed the outcome of alpha adrenergic antagonist in children with ureteral calculi. We conclude that it is the best medicine for use, since it helps the expulsion of the stone.

  3. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors. (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian


    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  4. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; DeVree, Brian T; Zou, Yaozhong;


    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist...

  5. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies

    DEFF Research Database (Denmark)

    Staus, Dean P; Wingler, Laura M; Strachan, Ryan T;


    to selectively bind agonist- or antagonist-occupied receptors. When expressed as intrabodies, they inhibited G protein activation (cyclic AMP accumulation), G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation, β-arrestin recruitment, and receptor internalization to varying extents...

  6. Cytisine-based nicotinic partial agonists as novel antidepressant compounds. (United States)

    Mineur, Yann S; Eibl, Christoph; Young, Grace; Kochevar, Christopher; Papke, Roger L; Gündisch, Daniela; Picciotto, Marina R


    Nicotine and other nicotinic agents are thought to regulate mood in human subjects and have antidepressant-like properties in animal models. Recent studies have demonstrated that blockade of nicotinic acetylcholine receptors (nAChRs) including those containing the beta2 subunit (beta2(*)), results in antidepressant-like effects. Previous studies have shown that cytisine, a partial agonist at alpha4/beta2(*) nAChRs, and a full agonist at alpha3/beta4(*) and alpha7 nAChRs, has antidepressant-like properties in several rodent models of antidepressant efficacy; however, it is not clear whether more selective partial agonists will also be effective in these models. We tested cytisine and two derivatives, 5-bromo-cytisine (5-Br-Cyt) and 3-(pyridin-3'-yl)-cytisine (3-pyr-Cyt) for their ability to act as a partial agonist of different nAChR subtypes and to show antidepressant-like activity in C57/BL6 mice in the tail suspension, the forced-swim, and the novelty-suppressed feeding tests. 3-pyr-Cyt was a partial agonist with very low efficacy at alpha4/beta2(*) nAChRS but had no agonist effects at other nAChRs normally targeted by cytisine, and it was effective in mouse models of antidepressant efficacy. Animals showed dose-dependent antidepressant-like effects in all three behavioral paradigms. 5-Br-Cyt was not effective in behavioral tests when administered peripherally, probably because of its inability to penetrate the blood-brain barrier, because it efficiently reduced immobility in the tail suspension test when administered intraventricularly. These results suggest that novel nicotinic partial agonists may provide new possibilities for development of drugs to treat mood disorders.

  7. Are Dopamine Agonists Neuroprotective in Parkinson‘s disease?

    Institute of Scientific and Technical Information of China (English)

    乐卫东; Jank.J


    Dopamine(DA) agonists are playing increasingly important role in the treatment of not only advanced Parkinson's disease(PD) and in PD patient with levodopa(L-DO-PA)-induced motor fluctuations,but also in early treatment of the disease.This shift has been largely due to the demonstrated L-DOPA-sparing effect of DA agonists and their putative neuroprotective effect,based largely on experimental in vitro and in vivo studies.In this article we review the evidence of neuroprotection by DA agonists pramipexole,ropinirole,pergolide,bromocriptine and apomorphine in cell cultures and animal models of nigral injury.Most of the studies suggest that DA agonists exert their neuroprotection via directly scavenging free radicals or increasing the activities of radical-scavenging enzymes,and enhancing neurotrophic activity.The finding that pramipexole can normalize mitochondrial membrane potential and inhibit activity of caspase-3 in cytoylasmic hybrid cells made from mitochondrial DNA of nonfamilial Alzheimer's disease patients,however,suggests even a broader implication for the neuroprotective role of DA agonists.Although the clinical evidence for neuroprotection by DA agonists is still limited,the preliminary results from several on-going clinal trials are promising.Several longitudinal studies are currently in progress designed to demonstrate a delay or slowing of progresion of PD using various surrogate markers of neuronal degeneration such as18F-L-DOPA PET and123I β-CIT SPECT.The results of these experimental and clinical studies will improve our understanding of the action of DA agonists and provide critical information needed for planning future therapeutic strategies in PD and related neurodegenerative disorders.

  8. Are Dopamine Agonists Neuroprotective in Parkinson′s Disease?

    Institute of Scientific and Technical Information of China (English)


    Dopamine (DA) agonists are playing increasingly important role in the treatment of not only advanced Parkinson′s disease (PD) and in PD patient with levodopa (L-DOPA)-induced motor fluctuations,but also in early treatment of the disease.This shift has been largely due to the demonstrated L-DOPA-sparing effect of DA agonists and their putative neuroprotective effect,based largely on experimental in vitro and in vivo studies.In this article we review the evidence of neuroprotection by DA agonists pramipexole,ropinirole,pergolide,bromocriptine and apomorphine in cell cultures and animal models of nigral injury.Most of the studies suggest that DA agonists exert their neuroprotection via directly scavenging free radicals or increasing the activities of radical-scavenging enzymes,and enhancing neurotrophic activity.The finding that pramipexole can normalize mitochondrial membrane potential and inhibit activity of caspase-3 in cytoplasmic hybrid cells made from mitochondrial DNA of nonfamilial Alzheimer′s disease patients,however,suggests even a broader implication for the neuroprotective role of DA agonists.Although the clinical evidence for neuroprotection by DA agonists is still limited,the preliminary results from several on-going clinical trials are promising.Several longitudinal studies are currently in progress designed to demonstrate a delay or slowing of progresion of PD using various surrogate markers of neuronal degeneration such as 18 F-L-DOPA PET and 123 I β-CIT SPECT.The results of these experimental and clinical studies will improve our understanding of the action of DA agonists and provide critical information needed for planning future therapeutic strategies in PD and related neurodegenerative disorders.``

  9. Romiplostim: a second-generation thrombopoietin agonist. (United States)

    Cohn, Claudia S; Bussel, James B


    in bone marrow reticulin have been reported. Other TPO nonpeptide mimetics have been created by using a similar strategy with libraries of nonpeptide molecules that can stimulate TPO-dependent cell lines. Eltrombopag and AKR-501 are two drugs of this type that have shown positive results in clinical trials. In addition, antibodies that can stimulate the c-Mpl receptor are being engineered to act as potent TPO agonists. These and other drugs in preclinical development represent a new line of therapy for thrombocytopenic patients.


    Directory of Open Access Journals (Sweden)

    Lucian Hritcu


    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  11. Development of an immunoaffinity chromatography column for selective extraction of a new agonist phenylethylamine A from feed, meat and liver samples. (United States)

    Mei, Liyun; Cao, Biyun; Yang, Hong; Xie, Yun; Xu, Shouming; Deng, Anping


    Phenylethanolamine A (PA) is a new emerged β-adrenergic agonist that has been illegally used as an animal feed additive for growth promotion in China. In this study, an immunoaffinity chromatography (IAC) column for selective extraction of PA from swine feed, meat and liver samples was developed. The IAC column was constructed by covalently coupling specific polyclonal antibody (Ab) against PA to CNBr-activated Sepharose 4B and packed into a common solid phase extraction (SPE) cartridge. The extraction conditions including loading, washing and eluting solutions were carefully optimized. Under optimal conditions, the IAC column was characterized in terms of maximum capacity, selectivity, extraction recovery and stability. The maximum capacity of the ICA for PA extraction was found to be 239.4ng. For selectivity testing, 100ng of other three β-adrenergic agonists (clenbuterol, ractopamine and salbutamol) was separately loaded onto the column, and it was observed that the tested compounds could not be captured on the column, e.g. the column could only selectively recognize PA. The recovery of the IAC for PA extraction was found within 96.47-101.98% when 10, 50 and 100ng PA were separately loaded onto IAC column. The IAC column was also applied to real sample extraction. Swine feed, meat and liver samples were collected and spiked with PA in range of 1.0-20ngg(-1). The spiked and unspiked samples were extracted by IAC column and measured by high performance liquid chromatography (HPLC). It was found that there was no detectable PA in the blank samples, and the extraction recoveries of the IAC for PA from the spiked samples were within 89.48-104.89%. The stability of the column was also tested. It was showed that after 35 times repeated usage, 60% of the maximum capacity was still remained. The proposed IAC was proven to be a feasible extraction method for PA from different matrices with the properties of high maximum capacity, selectivity, extraction efficiency and

  12. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG


    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  13. Synthesis of the sup 11 C-labelled. beta. -adrenergic receptor ligands atenolol, metoprolol and propanolol

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, G.; Ulin, J.; Laangstroem, B. (Uppsala Univ. (Sweden). Dept. of Organic Chemistry)


    The {sup 11}C-labelled {beta}-adrenergic receptor ligands atenolol 1, metoprolol 2 and propranolol 3 have been synthesized by an N-alkylation reaction using (2-{sup 11}C)isopropyl iodide. The labelled isopropyl iodide was prepared in a one-pot reactor system from ({sup 11}C)carbon dioxide and obtained in 40% radiochemical yield within 14 min reaction time. The total reaction times for compounds 1-3, counted from the start of the isopropyl iodide synthesis and including purification were 45-55 min. The products were obtained in 5-15% radiochemical yields and with radiochemical purities higher than 98%. The specific activity ranged from 0.4 to 4 GBq/{mu}mol. In a typical experiment starting with 4 GBq around 75 MBq of product was obtained. (author).

  14. Postcountershock myocardial damage after pretreatment with adrenergic and calcium channel antagonists in halothane-anesthetized dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, D.M.; Metz, S.; Maze, M.


    Transthoracic electric countershock can cause necrotic myocardial lesions in humans as well as experimental animals. The authors investigated the effect on postcountershock myocardial damage of pretreatment with prazosin, an alpha-1 antagonist; L-metoprolol, a beta-1 antagonist, and verapamil, a calcium channel-blocking agent. Twenty dogs were anesthetized with halothane and given two transthoracic countershocks of 295 delivered joules each after drug or vehicle treatment. Myocardial injury was quantitated 24 h following countershock by measuring the uptake of technetium-99m pyrophosphate in the myocardium. Elevated technetium-99m pyrophosphate uptake occurred in visible lesions in most dogs regardless of drug treatment. For each of four parameters of myocardial damage there was no statistically significant difference between control animals and those treated with prazosin, metoprolol, or verapamil. These data suggest that adrenergic or calcium channel-mediated mechanisms are not involved in the pathogenesis of postcountershock myocardial damage.

  15. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail:


    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  16. Adrenergic receptor polymorphisms and autonomic nervous system function in human obesity. (United States)

    Yasuda, Koichiro; Matsunaga, Tetsuro; Adachi, Tetsuya; Aoki, Norihiko; Tsujimoto, Gozoh; Tsuda, Kinsuke


    Adrenergic receptors (ARs) are cell-surface G-protein-coupled receptors for catecholamines. They are essential components of the sympathetic nervous system, organized within the autonomic nervous system (ANS), which controls various physiological functions, including energy homeostasis and metabolism of glucose and lipids. An impairment of ANS function in metabolism is considered to be one of the pathological states associated with human obesity and related metabolic diseases; thus, alterations in AR function might be implicated in the pathophysiology of these diseases. Several studies have suggested an association between obesity phenotypes and some AR polymorphisms. In vitro and human clinical studies indicate that some of these polymorphisms have functional and pathophysiological significance, including the linkage to ANS function. This review summarizes present knowledge of AR polymorphisms related to human obesity, and their association with ANS function.

  17. Presence and location of adrenergic nerve endings in the dental pulps of mouse molars. (United States)

    Avery, J K; Cox, C F; Chiego, D J


    In all, 30 adult (45-day-old) Swiss Webster mice were used for light and electron microscopic examination of the presence, number, and location of adrenergic endings in the first molar teeth. Prior to sacrifice, 10 animals received i.p. injections at 8, 6, 4, and 2 hours of 0.5 cc of 20 mg/kg solution of 5-hydroxydopamine (5-OH-DA) as a label for adrenergic endings. The animals were then anesthetized, perfused with Karnovsky's fixative, and the teeth were postfixed in Osmic acid, decalcified, embedded in methacrylate, and serial-sectioned. The sections were surveyed by light microscopy, and the number and location of nerve endings containing the reduced 5-OH-DA were recorded. Ten control mice were injected with the vehicle solution and prepared in the same manner. A third series of mice were given a single injection of 5-OH-DA, sacrificed, and prepared for ultrastructural study. The molar pulps were divided into four areas to facilitate examination: pulp horns, coronal pulp, bifurcation area, and root pulp. These four areas were further divided into three zones: odontogenic, vascular-related, and nonvascular-associated. The location and number of endings were evaluated, and an average of approximately 70 endings containing the 5-OH-DA were found in each tooth using light microscopy. These represented 35.5 +/- 5.2 in the pulp horns; 26.1 +/- 2.4 in the central coronal; 5.4 +/- 0.7 in the bifurcation, and 5.6 +/- 0.9 in the root pulp per tooth. Vascular related endings were found in greatest number, the odontogenic zone next, and free endings lease. Verification of location of 5-OH-DA by ultrastructural analysis revealed the false transmitter in vesiculated endings in the four areas and zones of the pulp.

  18. Increased circulating β2-adrenergic receptor autoantibodies are associated with smoking-related emphysema (United States)

    Hu, Jia-yi; Liu, Bei-bei; Du, Yi-peng; Zhang, Yuan; Zhang, Yi-wei; Zhang, You-yi; Xu, Ming; He, Bei


    Smoking is a dominant risk factor for chronic obstructive pulmonary disease (COPD) and emphysema, but not every smoker develops emphysema. Immune responses in smokers vary. Some autoantibodies have been shown to contribute to the development of emphysema in smokers. β2-adrenergic receptors (β2-ARs) are important targets in COPD therapy. β2-adrenergic receptor autoantibodies (β2-AAbs), which may directly affect β2-ARs, were shown to be increased in rats with passive-smoking-induced emphysema in our current preliminary studies. Using cigarette-smoke exposure (CS-exposure) and active-immune (via injections of β2-AR second extracellular loop peptides) rat models, we found that CS-exposed rats showed higher serum β2-AAb levels than control rats before alveolar airspaces became enlarged. Active-immune rats showed increased serum β2-AAb levels, and exhibited alveolar airspace destruction. CS-exposed-active-immune treated rats showed more extensive alveolar airspace destruction than rats undergoing CS-exposure alone. In our current clinical studies, we showed that plasma β2-AAb levels were positively correlated with the RV/TLC (residual volume/total lung capacity) ratio (r = 0.455, p < 0.001) and RV%pred (residual volume/residual volume predicted percentage, r = 0.454, p < 0.001) in 50 smokers; smokers with higher plasma β2-AAb levels exhibited worse alveolar airspace destruction. We suggest that increased circulating β2-AAbs are associated with smoking-related emphysema. PMID:28262783

  19. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Freudenrich, C.C.; Borle, A.B.


    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i and calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.

  20. Radiolabeled meta-iodobenzylguanidine and the adrenergic neurons of salivary glands

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.C.; Wieland, D.M.; Jaques, S. Jr.; Sherman, P.; Fisher, S.; Mallette, S.; Meyers, L.; Mangner, T.J.


    The handling of radiolabeled meta-iodobenzylguanidine (MIBG) by salivary glands was evaluated. In the submaxillary glands of rats, the uptake of 125I-MIBG was decreased after 1) nerve injury induced by 6-hydroxydopamine, 2) inhibition of the uptake-1 pathway by desmethylimipramine, and 3) surgical denervation. However, the reduction in 125I-MIGB uptake was less than that of 3H-norepinephrine (3H-NE) and of the endogenous content of NE in the glands. Yet, the sympathomimetic phenylpropanolamine displaced about the same fraction of 125I-MIBG as 3H-NE. These results suggest that 40% or more of 125I-MIBG resides in extraneuronal sites but that at least 30% and possibly more lies in the adrenergic nerve terminals. Fasting and feeding rats produced changes in the rates of disappearance of 125I-MIBG and 3H-NE from the submaxillary gland that were different, and the rates of loss of 125I-MIBG cannot be used as an index of adrenergic nerve activity. In man, the concentrations of 123I-MIBG in the salivary glands, particularly the parotid gland, are readily visible and measureable. Imipramine reduced the uptake of 123I-MIBG into parotid glands little or not at all; some of the 123I-MIBG may enter neurons via an imipramine-insensitive pathway, but a substantial fraction probably arrives in intraneuronal locations. Thus, phenylpropanolamine displaced over 50% of the parotid pool of 123I-MIBG. However, in only the most severe case of generalized autonomic neuropathy was the uptake of 123I-MIBG reduced.

  1. Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. (United States)

    Chik, C L; Arnason, T G; Dukewich, W G; Price, D M; Ranger, A; Ho, A K


    In this study, we investigated phosphorylation of Ser10 in histone H3 by norepinephrine (NE) in the rat pineal gland. In whole-animal studies, we demonstrated a marked increase in histone H3 phosphorylation in the rat pineal gland during the first half of the dark period. Exposure to light during this period caused a rapid decline in histone H3 phosphorylation with an estimated t1/2 of less than 15 min, indicating a high level of dephosphorylation activity. Corresponding studies in cultured pineal cells revealed that treatment with NE produced an increase in histone H3 phosphorylation that peaked between 2 and 3 h and declined rapidly by 4 h. The NE-induced histone H3 phosphorylation was blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor, but not by prazosin or other kinase inhibitors. Moreover, only treatment with dibutyryl cAMP but not other kinase activators mimicked the effect of NE on histone H3 phosphorylation. The NE-stimulated H3 phosphorylation was markedly increased by cotreatment with a serine/threonine phosphatase inhibitor, tautomycin or okadaic acid, supporting a high level of ongoing histone H3 dephosphorylation activity. Together, our results indicate that histone H3 phosphorylation is a naturally occurring event at night in the rat pineal gland that is driven almost exclusively by a NE-->beta-adrenergic-->cAMP/protein kinase A signaling mechanism. This transient histone H3 phosphorylation probably reflects the nocturnal activation of multiple adrenergic-regulated genes in the rat pineal gland.

  2. Multiple interactions between the alpha2C- and beta1-adrenergic receptors influence heart failure survival

    Directory of Open Access Journals (Sweden)

    Case Karen L


    Full Text Available Abstract Background Persistent stimulation of cardiac β1-adrenergic receptors by endogenous norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter receptor function or expression, as are polymorphisms of the α2C-adrenergic receptor, which regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was to investigate possible synergistic effects of polymorphisms of these two intronless genes (ADRB1 and ADRA2C, respectively on the risk of death/transplant in heart failure patients. Methods Sixteen sequence variations in ADRA2C and 17 sequence variations in ADRB1 were genotyped in a longitudinal study of 655 white heart failure patients. Eleven sequence variations in each gene were polymorphic in the heart failure cohort. Cox proportional hazards modeling was used to identify polymorphisms and potential intra- or intergenic interactions that influenced risk of death or cardiac transplant. A leave-one-out cross-validation method was utilized for internal validation. Results Three polymorphisms in ADRA2C and five polymorphisms in ADRB1 were involved in eight cross-validated epistatic interactions identifying several two-locus genotype classes with significant relative risks ranging from 3.02 to 9.23. There was no evidence of intragenic epistasis. Combining high risk genotype classes across epistatic pairs to take into account linkage disequilibrium, the relative risk of death or transplant was 3.35 (1.82, 6.18 relative to all other genotype classes. Conclusion Multiple polymorphisms act synergistically between the ADRA2C and ADRB1 genes to increase risk of death or cardiac transplant in heart failure patients.

  3. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles. (United States)

    Aaker, Aaron; Laughlin, M H


    The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.

  4. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys (United States)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.


    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  5. Alpha/sub 2/-adrenergic receptors on a platelet precursor cell line, HEL

    Energy Technology Data Exchange (ETDEWEB)

    McKernan, R.M.; Motulsky, H.J.; Rozansky, D.; Insel, P.A.


    The authors have identified ..cap alpha../sub 2/-adrenergic receptors on human erythroleukemia HEL cells, a suspension-growing, bone-marrow-derived cell line related to human platelets. Intact HEL cells were studied using radioligand binding and cAMP accumulation assays. The authors identified saturable specific binding of the ..cap alpha../sub 2/-antagonist (/sup 3/H)yohimbine (yoh) in cells incubated at 37/sup 0/C for 1 hr (B/sub max/ 5900 +/- 2100 sites/cell, K/sub d/ 3.6 +/- 0.9 nM, n = 7). Competition for (/sup 3/H)yoh binding sites with antagonists confirmed that these sites were similar to human ..cap alpha../sub 2/-adrenoceptors from platelets and other resources, as typified by their high affinity for WY-26392, yohimbine and idazoxan, and very low affinity for prazosin. Studies at 37/sup 0/C revealed a low affinity of these sites for catecholamines (K/sub i/ for (-)-epinephrine, 21; (-)-norepinephrine, 45, (+)-epinephrine, 80 When experiments were conducted at 4 /sup 0/C, (-)-epinephrine was able to compete for only 50-60% of the sites specifically labelled by (/sup 3/H)yoh at 37/sup 0/, but (-)-epinephrine had an approximately 10-fold greater affinity for these sites (K/sub i/ at 4 /sup 0/C = 2.4 In addition, epinephrine inhibited cAMP accumulation stimulated by forskolin and PGE/sub 1/ in HEL cells; this response was inhibited by pertussis toxin. The authors conclude that HEL cells possess ..cap alpha../sub 2/-adrenergic receptors linked to G/sub i/ and thus should serve as a useful model to explore metabolism and regulation of these receptors in human cells.

  6. The alpha1-adrenergic antagonist prazosin improves sleep and nightmares in civilian trauma posttraumatic stress disorder. (United States)

    Taylor, Fletcher; Raskind, Murray A


    Heightened noradrenergic reactivity may be a contributing factor in the pathophysiology of posttraumatic stress disorder (PTSD). Prazosin is an alpha1-adrenoceptor antagonist commonly used as an antihypertensive agent. Because alpha1-adrenergic activity has been associated with fear and startle responses, a drug that blocks central alpha1-adrenergic activity may be useful in the treatment of PTSD symptoms. An outpatient who had been exposed to civilian trauma and had subsequent chronic refractory PTSD was thus prescribed prazosin. The marked reduction in PTSD symptoms, particularly sleep and nightmares, prompted the following open-label feasibility trial. Five outpatients with non-combat-related PTSD were consecutively identified and received prazosin in a 6-week open-label trial. In each case, the prazosin doses were slowly increased until optimal benefit was achieved. Change was assessed with the Clinician-Administered PTSD Scale for DSM-IV, One Week Symptom Version (CAPS-SX), the Clinical Global Impression of Change Scale (CGIC), and the Clinical Impression of Change-Nightmares (CIC-Nightmares) score. All five patients experienced moderate to marked improvement on the CGIC. The CAPS-SX PTSD nightmare and sleep PTSD categories showed at least a four-point reduction of those symptoms. All patients reported at least moderate improvement on the CIC-Nightmare score. Optimal doses of prazosin ranged from 1 to 4 mg/day. The drug was reasonably tolerated, and there were no drug discontinuations. These preliminary findings provide a rationale for blind placebo-controlled efficacy trials of the alpha 1 antagonist prazosin for PTSD.

  7. Zinc and water intake in rats: investigation of adrenergic and opiatergic central mechanisms

    Directory of Open Access Journals (Sweden)

    J.B. Fregoneze


    Full Text Available We have demonstrated that central administration of zinc in minute amounts induces a significant antidipsogenic action in dehydrated rats as well as in rats under central cholinergic and angiotensinergic stimulation. Here we show that acute third ventricle injections of zinc also block water intake induced by central ß-adrenergic stimulation in Wistar rats (190-250 g. Central inhibition of opioid pathways by naloxone reverses the zinc-induced antidipsogenic effect in dehydrated rats. After 120 min, rats receiving third ventricle injections of isoproterenol (160 nmol/rat exhibited a significant increase in water intake (5.78 ± 0.54 ml/100 g body weight compared to saline-treated controls (0.15 ± 0.07 ml/100 g body weight. Pretreatment with zinc (3.0, 30.0 and 300.0 pmol/rat, 45 min before isoproterenol injection blocked water intake in a dose-dependent way. At the highest dose employed a complete blockade was demonstrable (0.54 ± 0.2 ml/100 g body weight. After 120 min, control (NaAc-treated dehydrated rats, as expected, exhibited a high water intake (7.36 ± 0.39 ml/100 g body weight. Central administration of zinc blocked this response (2.5 ± 0.77 ml/100 g body weight. Naloxone pretreatment (82.5 nmol/rat, 30 min before zinc administration reverted the water intake to the high levels observed in zinc-free dehydrated animals (7.04 ± 0.56 ml/100 g body weight. These data indicate that zinc is able to block water intake induced by central ß-adrenergic stimulation and that zinc-induced blockade of water intake in dehydrated rats may be, at least in part, due to stimulation of central opioid peptides.

  8. Role of dopamine agonists in Parkinson's disease: an update. (United States)

    Bonuccelli, Ubaldo; Pavese, Nicola


    At present, dopamine agonists play an important role in antiparkinsonian therapy since they were proved effective in the management of both advanced- and early-stage Parkinson's disease. In the latter, they are often regarded as first-choice medication to delay the introduction of levodopa therapy. Despite sharing the capacity to directly stimulate dopamine receptors, dopamine agonists show different pharmacological properties as they act on different subsets of dopamine receptors. This, in theory, provides the advantage of obtaining a different antiparkinsonian activity or safety profile with each agent. However, there is very little evidence that any of the marketed dopamine agonists should be consistently preferred in the management of patients with Parkinson's disease. Pergolide and cabergoline are now considered a second-line choice after the proven association with valvular fibrosis. Transdermal administration (rotigotine) and subcutaneous infusion (apomorphine) of dopamine receptor agonists are now available alternatives to oral administration and provide continuous dopaminergic stimulation. Continuous subcutaneous apomorphine infusion during waking hours leads to a large reduction in daily 'off' time, dyskinesias and levodopa daily dose. Almost all currently used dopamine agonists are able to provide neuroprotective effects towards dopaminergic neurons during in vitro and in vivo experiments. This neuroprotection may be the result of different mechanisms including antioxidation, scavenging of free radicals, suppression of lipid peroxidation and inhibition of apoptosis. However, the disease-modifying effect of these agents in Parkinson's disease remains to be ascertained.

  9. Intracerebroventricular administration of kappa-agonists induces convulsions in mice. (United States)

    Bansinath, M; Ramabadran, K; Turndorf, H; Shukla, V K


    Intracerebroventricular (ICV) administration of kappa-agonists (PD 117302, U-50488H and U-69593) induced convulsions in a dose-related manner in mice. The dose at which 50% of animals convulsed (CD50) was in nmol ranges for all opioids. Among the opioids used, PD 117302 was the most potent convulsant. ICV administration of either vehicle alone or U-53445E, a non-kappa-opioid (+) enantiomer of U-50488H did not induce convulsions. The convulsive response of kappa-agonists was differentially susceptible for antagonism by naloxone and/or MR 2266. Collectively, these findings support the view that convulsions induced by kappa-agonists in mice involve stereospecific opioid receptor mechanisms. Furthermore, the convulsant effect of kappa-agonists could not be modified by pretreatment with MK-801, ketamine, muscimol or baclofen. It is concluded that kappa-opioid but not NMDA or GABA receptor mechanisms are involved in convulsions induced by kappa-agonists. These results are the first experimental evidence implicating stereospecific kappa-receptor mechanisms in opioid-induced convulsions in mice.

  10. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H


    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  11. Compulsive eating and weight gain related to dopamine agonist use. (United States)

    Nirenberg, Melissa J; Waters, Cheryl


    Dopamine agonists have been implicated in causing compulsive behaviors in patients with Parkinson's disease (PD). These have included gambling, hypersexuality, hobbyism, and other repetitive, purposeless behaviors ("punding"). In this report, we describe 7 patients in whom compulsive eating developed in the context of pramipexole use. All of the affected patients had significant, undesired weight gain; 4 had other comorbid compulsive behaviors. In the 5 patients who lowered the dose of pramipexole or discontinued dopamine agonist treatment, the behavior remitted and no further weight gain occurred. Physicians should be aware that compulsive eating resulting in significant weight gain may occur in PD as a side-effect of dopamine agonist medications such as pramipexole. Given the known risks of the associated weight gain and obesity, further investigation is warranted.

  12. Principles of agonist recognition in Cys-loop receptors

    Directory of Open Access Journals (Sweden)

    Timothy eLynagh


    Full Text Available Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine and GABA. After the term chemoreceptor emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.

  13. Urinary excretion of the ß-adrenergic feed additives ractopamine and zilpaterol in breast and lung cancer patients (United States)

    Background: ß-agonists have been legally used in the U.S. for almost two decades to increase lean muscle mass in meat animals. Despite a cardiotoxic effect after high-dose exposure, there has been limited research on human ß-agonist exposures related to meat consumption. Objectives: We quantified u...

  14. Glucagon-like peptide 1 receptor agonist (GLP-1 RA)

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Tine Willum; Goetze, Jens Peter;


    AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim was to inve......AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim...

  15. Partial agonistic action of endomorphins in the mouse spinal cord. (United States)

    Mizoguchi, H; Wu, H E; Narita, M


    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  16. Targeting beta- and alpha-adrenergic receptors differentially shifts Th1, Th2, and inflammatory cytokine profiles in immune organs to attenuate adjuvant arthritis

    Directory of Open Access Journals (Sweden)

    Dianne eLorton


    Full Text Available The sympathetic nervous system (SNS regulates host defense responses and restores homeostasis. SNS-immune regulation is altered in rheumatoid arthritis (RA and rodent models of RA, characterized by nerve remodeling in immune organs and defective adrenergic receptor (AR signaling to immune cell targets that typically promotes or suppresses inflammation via α- and β2-AR activation, respectively, and indirectly drives humoral immunity by blocking Th1 cytokine secretion. Here, we investigate how β2-AR stimulation and/or α-AR blockade at disease onset affects disease pathology and cytokine profiles in relevant immune organs from male Lewis rats with adjuvant-induced arthritis (AA. Rats challenged to induce AA were treated with terbutaline (TERB, a β2-AR agonist (600 μg/kg/day and/or phentolamine (PHEN, an α-AR antagonist (5.0 mg/kg/day or vehicle from disease onset through severe disease. We report that in spleen, mesenteric (MLN and draining lymph node (DLN cells, TERB reduces proliferation, an effect independent of IL-2. TERB also fails to shift Th cytokines from a Th1 to Th2 profile in spleen and MLN (no effect on IFN-γ and DLN (greater IFN-γ cells. In splenocytes, TERB, PHEN and co-treatment (PT promotes an anti-inflammatory profile (greater IL-10 and lowers TNF-α (PT only. In DLN cells, drug treatments do not affect inflammatory profiles, except PT, which raised IL-10. In MLN cells, TERB or PHEN lowers MLN cell secretion of TNF-α or IL-10, respectively. Collectively, our findings indicate disrupted β2-AR, but not α-AR signaling in AA. Aberrant β2-AR signaling consequently derails the sympathetic regulation of lymphocyte expansion, Th cell differentiation, and inflammation in the spleen, DLNs and MLNs that is required for immune system homeostasis. Importantly, this study provides potential mechanisms through which reestablished balance between α- and β2-AR function in the immune system ameliorates inflammation and joint

  17. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists. (United States)

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M


    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.

  18. A case of life-threatening lactic acidosis after smoke inhalation - interference between beta-adrenergic agents and ethanol? (United States)

    Taboulet, P; Clemessy, J L; Freminet, A; Baud, F J


    A 49-year-old male developed bronchospasm and severe lactic acidosis after exposition to fire smoke. The correction of lactic acidosis following beta-adrenergic agents withdrawal, and the transitory increase in lactate after salbutamol reintroduction are consistent with hypersensitivity to salbutamol. However, the plasma lactate concentration (32.6 mmol/l) that we observed 9.5 h after admission is far above those currently seen after administration of beta-adrenergic agents. We searched for causes able to potentiate the adverse effects of these drugs and we noticed that our patient had a high plasma ethanol level (2.4 g/l). Alcohol metabolism in the liver results in generation of high NADH/NAD+ ratios, thus reducing lactate liver clearance. This observation suggests that plasma lactate levels should be monitored closely in alcoholic patients treated with beta-mimetic agents.

  19. Glucose-induced thermogenesis in patients with small cell lung carcinoma. The effect of acute beta-adrenergic inhibition

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Tuxen, C


    Seven patients with histologically verified small cell lung carcinoma were given an oral glucose load of 75 g on two occasions to examine the effect of glucose on whole body and forearm thermogenesis with and without acute beta-adrenergic inhibition with propranolol. Whole body energy expenditure...... was measured by the open circuit ventilated hood system. Forearm blood flow was measured by venous occlusion strain-gauge plethysmography. The uptake of oxygen in the forearm was calculated as the product of the forearm blood flow and the difference in arteriovenous oxygen concentration. The glucose......-induced forearm oxygen uptake in the period 60-120 min following the glucose load was significantly reduced after beta-adrenergic inhibition from 103 +/- 28 mumol 100 g-1 60 min-1 to 29 +/- 29 mumol 100 g-1 60 min-1 (P blood was not increased...

  20. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity (United States)

    Careaga, Mariella B. L.; Tiba, Paula A.; Ota, Simone M.; Suchecki, Deborah


    Cognitive processes, such as learning and memory, are essential for our adaptation to environmental changes and consequently for survival. Numerous studies indicate that hormones secreted during stressful situations, such as glucocorticoids (GCs), adrenaline and noradrenaline, regulate memory functions, modulating aversive memory consolidation and retrieval, in an interactive and complementary way. Thus, the facilitatory effects of GCs on memory consolidation as well as their suppressive effects on retrieval are substantially explained by this interaction. On the other hand, low levels of GCs are also associated with negative effects on memory consolidation and retrieval and the mechanisms involved are not well understood. The present study sought to investigate the consequences of blocking the rise of GCs on fear memory retrieval in multiple tests, assessing the participation of β-adrenergic signaling on this effect. Metyrapone (GCs synthesis inhibitor; 75 mg/kg), administered 90 min before the first test of contextual or tone fear conditioning (TFC), negatively affected animals’ performances, but this effect did not persist on a subsequent test, when the conditioned response was again expressed. This result suggested that the treatment impaired fear memory retrieval during the first evaluation. The administration immediately after the first test did not affect the animals’ performances in contextual fear conditioning (CFC), suggesting that the drug did not interfere with processes triggered by memory reactivation. Moreover, metyrapone effects were independent of β-adrenergic signaling, since concurrent administration with propranolol (2 mg/kg), a β-adrenergic antagonist, did not modify the effects induced by metyrapone alone. These results demonstrate that pre-test metyrapone administration led to negative effects on fear memory retrieval and this action was independent of a β-adrenergic signaling. PMID:25784866

  1. ß2 -adrenergic receptor Thr164IIe polymorphism, blood pressure and ischaemic heart disease in 66¿750 individuals

    DEFF Research Database (Denmark)

    Thomsen, M; Dahl, Morten; Tybjaerg-Hansen, A;


    The ß(2) -adrenergic receptor (ADRB2) is located on smooth muscle cells and is an important regulator of smooth muscle tone. The Thr164Ile polymorphism (rs1800888) in the ADRB2 gene is rare but has profound functional consequences on receptor function and could cause lifelong elevated smooth musc...... tone. We tested the hypothesis that Thr164Ile is associated with increased blood pressure, increased frequency of hypertension and increased risk of cardiovascular disease (CVD)....

  2. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity