WorldWideScience

Sample records for adopting global climate

  1. Review of economic and energy sector implications of adopting global climate change policies

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M.H.

    1997-12-31

    This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countries are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.

  2. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  3. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  4. Global climate experiment; Globales Klimaexperiment

    Energy Technology Data Exchange (ETDEWEB)

    Quasching, V. [Deutsche Zentrum fuer Luft- und Raumfahrt e.V., Plataforma Solar de Almeria (Spain)

    2003-07-01

    Continued greenhouse gas emissions are part of one of our today's largest scientific experiments. Most scientists agree that anthropogenic influences are responsible for already observed climatic changes. Others demand further investigations and justify continued unlimited use of fossil energy sources. This paper describes generally accepted facts on greenhouse gas emissions and climatic change with focus on part and influence of the global energy industry. [German] Mit dem fortgesetzten Ausstoss von Treibhausgasen wird zurzeit ein globales naturwissenschaftliches Experiment betrieben. Viele Wissenschaftler sind sich einig, dass bereits beobachtete Klimaveraenderungen auf den Einfluss des Menschen zurueckzufuehren sind. Andere fordern hingegen weitere Untersuchungen und halten bis dahin eine weitere uneingeschraenkte Verwendung fossiler Energietraeger fuer gerechtfertigt. Dieser Beitrag fasst weitgehend anerkannte Fakten ueber Treibhausgasemissionen und Klimaveraenderungen zusammen und beschreibt die Rolle und den Einfluss der Energiewirtschaft.

  5. Global Climate Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically...

  6. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  7. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  8. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  9. State of the Climate - Global Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  10. State of the Climate - Global Hazards

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  11. Global air quality and climate.

    Science.gov (United States)

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas

  12. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  13. Global Framework for Climate Services (GFCS)

    Science.gov (United States)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as

  14. Climate science: Misconceptions of global catastrophe

    Science.gov (United States)

    Rocklöv, Joacim

    2016-04-01

    American attitudes to changing weather, and therefore to climate change, have been analysed on the basis of US migration patterns since the 1970s. The findings have implications for the success of global climate policies. See Letter p.357

  15. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  16. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly;

    2011-01-01

    , it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...

  17. Towards a global climate constitution

    NARCIS (Netherlands)

    Weikard, H.P.

    2011-01-01

    In this paper my concern is the study of the incentives of individual countries to sign an international climate agreement that sets the terms of a climate constitution, that is, it establishes emission rights and rules for trading these rights to combat the climate problem effectively and efficient

  18. International law and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R.; Freestone, D. (eds.)

    1991-01-01

    If climatic change is a global problem, it can only have a global solution, which must be brought about through the development of appropriate international law. This book tackles the legal problems that are at the heart of the matter. It has chapters on the following: international law and the protection of the global atmosphere; the precautionary principle; international equity and global warming; tropical forests; development issues; the role of international non-governmental organisations; international law and sea level rise; the international legal protection of wildlife; controlling emissions of greenhouse gases; institutional and legal reponses to global warming; and the negotiation and drafting of the climate change convention. There are a number of appendices containing documents on global climate change. Seven chapters are abstracted separately.

  19. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  20. Impact of solar panels on global climate

    Science.gov (United States)

    Hu, Aixue; Levis, Samuel; Meehl, Gerald A.; Han, Weiqing; Washington, Warren M.; Oleson, Keith W.; van Ruijven, Bas J.; He, Mingqiong; Strand, Warren G.

    2016-03-01

    Regardless of the harmful effects of burning fossil fuels on global climate, other energy sources will become more important in the future because fossil fuels could run out by the early twenty-second century given the present rate of consumption. This implies that sooner or later humanity will rely heavily on renewable energy sources. Here we model the effects of an idealized large-scale application of renewable energy on global and regional climate relative to a background climate of the representative concentration pathway 2.6 scenario (RCP2.6; ref. ). We find that solar panels alone induce regional cooling by converting incoming solar energy to electricity in comparison to the climate without solar panels. The conversion of this electricity to heat, primarily in urban areas, increases regional and global temperatures which compensate the cooling effect. However, there are consequences involved with these processes that modulate the global atmospheric circulation, resulting in changes in regional precipitation.

  1. The New Phase of the Global Policy on Climate Change

    Directory of Open Access Journals (Sweden)

    Paul Calanter

    2012-05-01

    Full Text Available Climate change, a phenomenon that occurs worldwide, is one of the great challenges of our times.The scientific community has repeatedly drawn policy makers attention to the imperative need to adopt ofpreventive, mitigation and adaptation measures to what constitutes a threat to the normal course of life onEarth. Adoption and entry into force of the Kyoto Protocol, with its ratification by Russia, in February 2005represented a major step forward in the global struggle against climate change. In this moment, however, theconclusion in 2012 of the commitment period for reducing emissions of greenhouse gases provided by theProtocol, and the brokenness of this period, put in front of the international community the need for furtherpolicy measures to prevent and combating climate change and its effects.

  2. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  3. Global change and climate-vegetation classification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three phrases of the quantitative study of climate-vegetation classification and their characteristics are presented based on the review of advance in climate-vegetation interaction, a key issue of "global change and terrestrial ecosystems (GCTE)" which is the core project of International Geosphere-Biosphere Programme (IGBP): (ⅰ) characterized by the correlation between natural vegetation types and climate; (ⅱ) characterized by climatic indices which have obviously been restricted to plant ecophysiology; (ⅲ) characterized by coupling both structure and function of vegetation. Thus, the prospective of climate-vegetation classification for global change study in China was proposed, especially the study coupling climate-vegetation classification models with atmospheric general circulation models (GCMs) was emphasized.

  4. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  5. Global climate change and US agriculture

    Science.gov (United States)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  6. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and clima

  7. Selecting global climate models for regional climate change studies

    OpenAIRE

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simula...

  8. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.

  9. Global genetic change tracks global climate warming in Drosophila subobscura.

    Science.gov (United States)

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  10. [The global climate: a sick patient

    DEFF Research Database (Denmark)

    Lidegaard, O.; Lidegaard, M.

    2008-01-01

    , and major climatic disasters, including health threats to millions of people, are probable if the CO2 emission increases further. Therefore, serious global initiatives should be taken now in order to prevent global over heating. Denmark should be at the forefront of these initiatives Udgivelsesdato: 2008/8/25...

  11. Cave temperatures and global climatic change.

    Directory of Open Access Journals (Sweden)

    Badino Giovanni

    2004-12-01

    Full Text Available The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the geothermal one, which is deposited mainly in the epidermal parts of caves.

  12. Globalization to amplify economic climate losses

    Science.gov (United States)

    Otto, C.; Wenz, L.; Levermann, A.

    2015-12-01

    Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.

  13. Global climate change and international security.

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  14. Selecting global climate models for regional climate change studies

    Science.gov (United States)

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  15. Organizational Climate and the Adoption of Educational Innovations.

    Science.gov (United States)

    Johnson, Homer M.; Marcum, R. Laverne

    Fifteen of the most innovative schools and 15 of the least innovative schools in Oregon, Washington, Idaho, Nevada, and Utah, as identified by the Educational Innovation Checklist developed by Hinman, were examined to (1) determine whether there are significant differences between their organizational climates, (2) determine if differences exist…

  16. Climate Change and Global Wine Quality

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.V. [Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, 97520 (United States); White, M.A. [Department of Aquatic, Watershed, and Earth Resources, Utah State University, Logan, Utah, 84322 (United States); Cooper, O.R. [Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado/NOAA Aeronomy Laboratory, Boulder, Colorado, 80305 (United States); Storchmann, K. [Department of Economics, Yale University, New Haven, Connecticut, 06520 (United States)

    2005-12-01

    From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was shown that climate had, and will likely always have, a significant role in quality variations. This study revealed that the impacts of climate change are not likely to be uniform across all varieties and regions. Currently, many European regions appear to be at or near their optimum growing season temperatures, while the relationships are less defined in the New World viticulture regions. For future climates, model output for global wine producing regions predicts an average warming of 2C in the next 50 yr. For regions producing high-quality grapes at the margins of their climatic limits, these results suggest that future climate change will exceed a climatic threshold such that the ripening of balanced fruit required for existing varieties and wine styles will become progressively more difficult. In other regions, historical and predicted climate changes could push some regions into more optimal climatic regimes for the production of current varietals. In addition, the warmer conditions could lead to more poleward locations potentially becoming more conducive to grape growing and wine production.

  17. Global Climate Change and Children's Health.

    Science.gov (United States)

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge.

  18. The emergence of global climate law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan; Farber, Daniel A.; Peeters, Marjan

    2016-01-01

    As the chapters in this Encyclopedia demonstrate, climate law is a dynamic and multidisciplinary field, implicating many diverse fields of law at all levels from municipal planning through multinational treaties. The outlines of an emerging global law can be discerned, including shared principles su

  19. Climate Effects of Global Land Cover Change

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  20. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  1. The European climate under a 2 degrees C global warming

    OpenAIRE

    Vautard, R.; A. Gobiet; S. Sobolowski; Kjellström, E; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; D. Jacob

    2014-01-01

    A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresp...

  2. State of the Climate Monthly Overview - Global Snow & Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  3. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; Yoder, J. A.

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  4. Deep solar minimum and global climate changes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hady

    2013-05-01

    Full Text Available This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  5. Global Climate Change: National Security Implications

    Science.gov (United States)

    2008-05-01

    Probably long term, the single most important issue we face as a global community.” Cited in sciencepolicy.colorado.edu/ prometheus /archives/climate_ change...Surface Temperature Monitoring for Malaria Early Warning in Botswana,” American Journal of Tropical Medicine and Hygiene, Vol. 73, No. 1, 2005, pp...1950,” Tropical Medicine and International Health, Vol. 7, No. 8, pp. 657-677, August 2002. 9. Price-Smith, Contagion and Chaos. 10. E. Worral et

  6. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  7. Global fish production and climate change.

    Science.gov (United States)

    Brander, K M

    2007-12-11

    Current global fisheries production of approximately 160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Niño-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.

  8. Pliocene oceanic seaways and global climate

    Science.gov (United States)

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O.; Tiedemann, Ralf; Demenocal, Peter B.

    2017-01-01

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8–4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4–3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ18O) in combination with a recently published benthic stable carbon isotope (δ13C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8–3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  9. Global climate change economics and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Parrino, C.L.

    1996-12-31

    Timothy Wirth, Under Secretary for Global Affairs, recently stated that climate change is probably the most complicated scientific, environmental, economic, and political challenge in history. Developing an effective, flexible climate change policy with over 150 nations, diverse stakeholders and less-than-certain scientific understanding is indeed difficult with so much at stake. Specifically, what the author would like to address are some of the issues states are beginning to consider in response to the national and international discussions. The decisions at the national and international level, starting with the conference in Rio, and most recently in Geneva, will impact regulators directly. On July 17, 1996, the US negotiating team to the Framework Convention on Climate Change stated for the first time that it supports a {open_quotes}verifiable and binding post-2000 emissions target.{close_quotes} This, indeed, caught the authors attention. Until now, as you know, climate change negotiation was based on the 1992 Framework Convention on Climate Change, whereby industrialized countries agreed to a nonbinding aim of reducing green house gas emissions to 1990 levels by the year 2000. It now appears that we may soon be committed to a legally binding emission`s reduction strategy.

  10. Danish and global climate and energy challenges

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, John M. (Risoe DTU, Roskilde (Denmark)); Davidson, O. (Univ. of Sierra Leone, IPCC (Sierra Leone))

    2008-12-15

    The global energy scene is currently dominated by two overriding concerns that are strongly affecting decisions about energy development priorities: 1) Climate change 2) Energy security. This is especially true for industrialized countries and the more rapidly developing economies while many developing countries are facing really basic energy development constraints giving quite a different meaning to the concept of energy security. There is broad global recognition of the need to support these countries in their efforts to increase access to cleaner and more efficient forms of energy for the more than 1,6 billion people currently having no access to electricity and largely relying on traditional forms of biomass for basic energy services, but progress is slow in many regions. The three areas, security, climate and poverty are in several ways interlinked, and ideally national energy policies and development programmes should address all the above issues - or at least not have negative effects in any area. In practice, however, many national policy landscapes have been dominated by just one of these factors. In the political debate the access issue is often seen as a potential climate problem, but most studies indicate that access to basic energy services for the poorest one billion people, even based on fossil resources, will make very marginal contributions to global GHG emissions. The more relevant and pressing political concern is how to limit global emissions and allow the emerging economies to continue their economic growth, but as discussed in this report the technological options will be available and solutions depend on political will and agreements on sharing the technologies and financial resources. (au)

  11. Global Framework for Climate Services (GFCS): implementation approach

    Science.gov (United States)

    Lucio, Filipe

    2013-04-01

    The Extraordinary Session of the World Meteorological Congress, held from 29 to 31 October 2012, adopted the Implementation Plan of the Global Framework for Climate Services, for the subsequent consideration by the Intergovernmental Board on Climate Services, which will host its first session in July 2013. The Extraordinary Congress called for an immediate move to action, so that the work undertaken can result in activities on the ground which will benefit, in particular, vulnerable countries. The development of the GFCS through a broad consultation process accross the pillars of the GFCS (User Interface Platform; Observations and Monitoring; Climate Services Information System; Research, Modelling and Prediction; and Capacity Development) and the initial four priority areas (Agriculture and Food Security; Water; Health and Disaster Risk Reductio) identified a number of challenges, which in some cases constitute barries to implementation: - Accessibility: many countries do not have climate services at all, and all countries have scope to improve access to such services; - Capacity: many countries lack the capacity to anticipate and managed climate-related risks and opportunities; - Data: the current availability and quality of climate observations and impacts data are inadequate for large parts of the globe; - Partnerships: mechanisms to enhance interaction between climate users and providers are not always well developed, and user requirements are not always adequately understood and addressed; - Quality: operational climate services are lagging advances in climate and applications science, and the spatial and temporal resolution of information to support decision-making is often insufficient to match user requirements. To address these challenges, the Implementation Plan of the GFCS identified initial implementation projects and activities. The initial priority is to establish the leadership and management capacity to take the GFCS forward at all levels. Capacity

  12. Global climate change and infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Shope, R. (Yale Univ. School of Medicine, New Haven, CT (United States))

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.

  13. Global projections and climate stabilisation targets

    Science.gov (United States)

    Friedlingstein, Pierre

    2014-05-01

    The Summary for policy makers of the 5th Assessment Report of the Working Group 1 of IPCC has a figure that has no equivalent in previous IPCC assessment reports. This new figure shows the change in global average surface temperature as a function of cumulative anthropogenic emissions of CO2. In this talk I will describe how the concept of transient climate response to cumulative emissions (TCRE) that supports that figure emerged from the literature over the recent years and what are the fundamental physical and biogeochemical processes that explain this relationship and its linearity. I will also explore the implication of TCRE for long-term climate change and mitigation strategies as well as the limitations of the concept of TCRE.

  14. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  15. Tectonic Movement and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou

    2000-01-01

    Glaciation between northern hemisphere and southern hemisphere were synchronous, the ice age occurred not in high but in low value of the eccentricity of the earth's orbit. Such facts went against the precession principle of the astronomical theory of ice age. The inhomogeneous distribution of climate consisted with the inhomogeneous distribution of ocean and continent. The north/south antisymmetry may be attributed to southward deviation of the thermal center and northward deviation of the mass center within the mantle demonstrated by seismic tomography. The core - mantle angular momentum makes rotational energy into thermal energy and mantle plumes erupt in the ocean bottom. The earth's deformation by tidal force makes the eruption of mantle plumes strong. They are the reason that glaciation between the Northern Hemisphere and Southern Hemisphere are synchronous and the ice age occurred in low value of the eccentricity of the earth' s orbit. The tectonic movement is playing a most important part in global climate change.

  16. Global Climate Models of the Terrestrial Planets

    Science.gov (United States)

    Forget, F.; Lebonnois, S.

    On the basis of the global climate models (GCMs) originally developed for Earth, several teams around the world have been able to develop GCMs for the atmospheres of the other terrestrial bodies in our solar system: Venus, Mars, Titan, Triton, and Pluto. In spite of the apparent complexity of climate systems and meteorology, GCMs are based on a limited number of equations. In practice, relatively complete climate simulators can be developed by combining a few components such as a dynamical core, a radiative transfer solver, a parameterization of turbulence and convection, a thermal ground model, and a volatile phase change code, possibly completed by a few specific schemes. It can be shown that many of these GCM components are "universal" so that we can envisage building realistic climate models for any kind of terrestrial planets and atmospheres that we can imagine. Such a tool is useful for conducting scientific investigations on the possible climates of terrestrial extrasolar planets, or to study past environments in the solar system. The ambition behind the development of GCMs is high: The ultimate goal is to build numerical simulators based only on universal physical or chemical equations, yet able to reproduce or predict all the available observations on a given planet, without any ad hoc forcing. In other words, we aim to virtually create in our computers planets that "behave" exactly like the actual planets themselves. In reality, of course, nature is always more complex than expected, but we learn a lot in the process. In this chapter we detail some lessons learned in the solar system: In many cases, GCMs work. They have been able to simulate many aspects of planetary climates without difficulty. In some cases, however, problems have been encountered, sometimes simply because a key process has been forgotten in the model or is not yet correctly parameterized, but also because sometimes the climate regime seems to be result of a subtle balance between

  17. Global Climate Change: Role of Livestock

    Directory of Open Access Journals (Sweden)

    S.M.K. Naqvi

    2011-01-01

    Full Text Available Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG are released in the atmosphere both by natural sources and anthropogenic (human related activities. An attempt has been made in this article to understand the contribution of ruminant livestock to climate change and to identify the mitigation strategies to reduce enteric methane emission in livestock. The GHG emissions from the agriculture sector account for about 25.5% of total global radiative forcing and over 60% of anthropogenic sources. Animal husbandry accounts for 18% of GHG emissions that cause global warming. Reducing the increase of GHG emissions from agriculture, especially livestock production should therefore be a top priority, because it could curb warming fairly rapidly. Among the GHGs, CH4 is considered to be the largest potential contributor to the global warming phenomenon. Ruminant livestock such as cattle, buffalo, sheep and goats contributes the major proportion of total agricultural emission of methane. Indian livestock system is a large contributor to GHGs and therefore also to the global warming phenomenon. Methane emission from enteric fermentation from Indian livestock ranged from 7.26 to 10.4 MT/year. In India more than 90% of the total methane emission from enteric fermentation is being contributed by the large ruminants (cattle and buffalo and rest from small ruminants and others. Generally CH4 reduction strategies can be grouped under two broad categories such as management and nutritional strategies. Although the reduction in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises if they are to find industry acceptability.

  18. Global metabolic impacts of recent climate warming.

    Science.gov (United States)

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  19. White House Conference on Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  20. Constraints and Suggestions in Adopting Seasonal Climate Forecasts by Farmers in South India

    Science.gov (United States)

    Shankar, K. Ravi; Nagasree, K.; Venkateswarlu, B.; Maraty, Pochaiah

    2011-01-01

    The main objective of this study was to determine constraints and suggestions of farmers towards adopting seasonal climate forecasts. It addresses the question: Which forms of providing forecasts will be helpful to farmers in agricultural decision making? For the study, farmers were selected from Andhra Pradesh state of South India. One hundred…

  1. Studies of dynamical processes affecting global climate

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Cooper, D.; Eichinger, W. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  2. Joint science academies' statement:Global response to climate change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Climate change is real There will always be uncertainty in understanding a system as complex as the world's climate. However there is now strong evidence that significant global warming is occurring1.

  3. Climate Change in New England | Energy and Global Climate ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  4. Climate changes instead of global warming

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2014-01-01

    Full Text Available Air temperature changes on Earth in recent years are the subject of numerous and increasingly interdisciplinary research. In contrast to, conditionally speaking, generally accepted views that these changes are conditioned primarily by anthropogenic activity, more results appear to suggest that it is dominant natural processes about. Whether because of the proven existence of areas in which downtrends are registered or the stagnation of air temperature, as opposed to areas where the increase is determined, in scientific papers, as well as the media, the increasingly present is the use of the term climate changes instead of the global warming. In this paper, we shall try to present arguments for the debate relating to the official view of the IPCC, as well as research indicating the opposite view.

  5. Global analysis theory of climate system and its applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The idea and main theoretical results of the global analysis theory of climate system are briefly summarized in this paper. A theorem on the global behavior of climate system is given, i.e. there exists a global attractor in the dynamical equations of climate, any state of climate system will be evolved into the global attractor as time increases, indicating the nonlinear adjustment process of climate system to external forcing. The different effects of external forcing, dissipation and nonlinearity on the long-term behavior of solutions are pointed out, and some main applications of the global analysis theory are also introduced. Especially, three applications, the adjustment and evolution processes of climate, the principle of numerical model design and the optimally numerical integration, are discussed.

  6. IMPACT OF GLOBAL ADOPTION OF IFRS ON NIGERIAN STOCK MARKET EFFECTIVENESSNESS

    Directory of Open Access Journals (Sweden)

    Dick Oluku Mukoro

    2012-05-01

    Full Text Available International Financial Reporting Standard (IFRS is a statement of intent to globalize financial standards so as to enable investors move capital and as such enshrine global competitiveness. Nigeria’s case to attract investment through the capital market can be advanced effectively if financial reporting is standardized and adopted. As an impact study, we employed adaptive expectation variant of the autoregressive model and multiple regression technique to study the prospect of Compliance with IFRS and how the Nigerian quoted companies faired in compliance with Nigerian Accounting Standards and its correlation with reporting incentives, idiosyncratic volatilities and stock price informativeness; which more or less indicates their preparedness for global adoption of IFRS in 2012.It is recommended that stiff penalties are required to prepare Nigerian financial environment for the global adoption of IFRS.A clear road map of adoption of IFRS will further drive the much needed foreign investment in-flow and help to brand Nigeria out of the corruption quagmire.

  7. SubArctic Oceans and Global Climate

    Science.gov (United States)

    Rhines, P. B.

    2004-12-01

    The passages connecting the Arctic Ocean with the Atlantic and Pacific, and their `mediterranean' basins, are focal points for the global meridional overturning circulation, and all of the climate impacts which this implies. It is also a difficult region to model accurately: the sensitivity of climate models to subpolar ocean dynamics is well-known. In this talk we stress the need to instrument and analyze the subpolar oceans, and some examples of sustained observations developing there. Results from satellite altimetry, recent Seaglider deployments from Greenland, and mooring arrays will be described. In particular we show the first Seaglider sections of hydrography and bio-optical profiles of the Labrador Sea (one of the first extended deployments of this autonomous undersea vehicle); we discuss the decline during the 1990s of the subpolar gyre circulation of the Atlantic from its great strength during the positive NAO period of the early 1990s, and its relevance to the salinity decline observed over a much longer period; we review observations of the flows at the Iceland-Scotland Ridge and Davis Strait, argued in terms of volume transport plots on the potential temperature/salinity plane; we display maps of the `convection resistance' (related to dynamic height) and its sensitivity to surface low-salinity water masses and their partition between shallow continental shelves and deep ocean. This is a particularly exciting time for climate studies, with fundamental properties of the atmosphere-ocean circulation under debate, even before one considers natural and human-induced variability. Is the four-decade long decline in subArctic salinity the result of increased hydrologic cycle, increased or altered Arctic outflow to the Atlantic, or slowing of the subpolar circulation? Is the basic intensity of the MOC more dependent on high-latitude buoyancy forcing, or wind- or tide-driven mixing in the upwelling branch, or possibly wind-stress at high latitude? Is the

  8. Accelerating policy decisions to adopt haemophilus influenzae type B vaccine: a global, multivariable analysis.

    Directory of Open Access Journals (Sweden)

    Jessica C Shearer

    2010-03-01

    Full Text Available BACKGROUND: Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance. METHODS AND FINDINGS: Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18-0.76, or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33-0.75. For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00-1.04. Global recommendations and local studies were not associated with time to decision. CONCLUSIONS: This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors.

  9. Thermohaline circulations and global climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, H.P.

    1996-10-01

    This report discusses results from the project entitled Thermohaline Circulations and Global Climate Change. Results are discussed in three sections related to the development of the Miami Isopycnic Coordinate Ocean Model (MICOM), surface forcing of the ocean by the atmosphere, and experiments with the MICOM related to the problem of the ocean`s response to global climate change. It will require the use of a global, coupled ocean-atmospheric climate model to quantify the feedbacks between ocean and atmosphere associated with climate changes. The results presented here do provide guidance for such studies in the future.

  10. EUROPEAN UNION IN GLOBAL CLIMATE GOVERNANCE: TO PARIS AND BEYOND

    Directory of Open Access Journals (Sweden)

    E. V. Savorskaya

    2016-01-01

    Full Text Available Since the 1990s, the European Union is aspiring global leadership in the area of climate change, which is refl ected in its active participation in the negotiations on the international climate change regime. However, those ambitions have not always turned out to be appropriate or justifi ed. Despite the fact that the European Union was able to achieve certain results during the Kyoto Protocol negotiations and even more signifi cant results in the process of its ratifi cation, for the most part EU negotiation strategy based on normative considerations, had not been successful, it was especially evident during the 2009 United Nations Climate Change Conference in Copenhagen. Partly the disappointing results of EU performance during the Copenhagen negotiations are to be blamed on some of the key features of EU functioning logic, for example, the overall tendency to rely on scientifi c evidence in policy-making, which did not allow the EU to assess other parties’ interests adequately. As the results of the negotiations of parties to the UNFCCC in December 2015 in Paris have shown, the European Union did manage to work out its previous mistakes and build a broad informal international coalition. Contrary to the pessimistic expectations, the agreement was adopted and it took into account quite a few of the EU proposals. However, the Paris Treaty has a number of fl aws and inaccuracies, so the ability to eliminate them in a timely manner by the international community and the EU in particular, will determine the future of the new international climate change regime.

  11. International Peer Collaboration to Learn about Global Climate Changes

    Science.gov (United States)

    Korsager, Majken; Slotta, James D.

    2015-01-01

    Climate change is not local; it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today's increased climate change is caused by human activities and our modern lifestyle. Consequently,…

  12. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  13. Mass support for global climate agreements depends on institutional design

    OpenAIRE

    Bechtel, Michael M.; Kenneth F. Scheve

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingn...

  14. Effects of expected global climate change on marine faunas.

    Science.gov (United States)

    Fields, P A; Graham, J B; Rosenblatt, R H; Somero, G N

    1993-10-01

    Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.

  15. Talking about Climate Change and Global Warming

    Science.gov (United States)

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  16. Talking about Climate Change and Global Warming.

    Science.gov (United States)

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  17. Environmental health implications of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Robert T.; Patz, Jonathan; Gubler, Duane J.; Parson, Edward A.; Vincent, James H.

    2005-07-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and - associated with all the preceding - the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem. (Author)

  18. Talking about Climate Change and Global Warming.

    Directory of Open Access Journals (Sweden)

    Maurice Lineman

    Full Text Available The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV patterns for global warming (GW and Climate change (CC to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  19. Climate change hotspots in the CMIP5 global climate model ensemble

    OpenAIRE

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-01

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots thro...

  20. Cooperation and discord in global climate policy

    Science.gov (United States)

    Keohane, Robert O.; Victor, David G.

    2016-06-01

    Effective mitigation of climate change will require deep international cooperation, which is much more difficult to organize than the shallow coordination observed so far. Assessing the prospects for effective joint action on climate change requires an understanding of both the structure of the climate change problem and national preferences for policy action. Preferences have become clearer in light of the United Nations Framework Convention on Climate Change Conference of the Parties in December 2015. Although deep cooperation remains elusive, many partial efforts could build confidence and lead to larger cuts in emissions. This strategy of decentralized policy coordination will not solve the climate problem, but it could lead incrementally to deeper cooperation.

  1. EFFECTS OF GLOBAL CLIMATE CHANGE ON POVERTY AND SOLUTION SUGGESTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sermin Atak, Melike Erdogan, Asli Yoenten

    2008-09-30

    Most environmental risks including global warming are accepted as ''manufactured risks'' as well. Climate change, as manufactured risk, occurs due to human activities such as energy usage, industrialization, agricultural activities, pollination and forest damage which broke down the combination of global atmosphere in addition to nature sourced climate change which can be stated as external risk. Global climate change, as manufactured risk, has environmental and socio-economic effects in the subjects like water shortage, drought, highness in water levels, decrease in biological diversity, nutrition and food shortage. The effect of global climate change, as manufactured risk, on society's poverty has been classified as horizontal and vertical effect in this study. It's possible to say that horizontal effect of global climate change, as manufactured risk, on poverty will come out in the way ''expansion of poverty''. It's possible to state the vertical effect of global climate change, as manufactured risk, on poverty as the ''deepening of poverty'' and ''intensifying of poverty''. Horizontal and vertical effects of climate change on poverty can not be evaluated interdependently. The multiplier effect and the cross interaction that these two effects form together bring along the process of increasing of poverty and the solution's getting difficult. Global climate change, as manufactured risk, affects all parts but the most powerful effect of it is over the poor. The studies in the direction of decreasing the poverty effect of global climate change necessitate global cooperation. National and international solutions should be considered together. In addition to global cooperation, individual, institutional, domestic and regional applications must have complementary qualities in decreasing the effects of global climate change. Global and individual studies made for

  2. Global imprint of climate change on marine life

    DEFF Research Database (Denmark)

    Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.;

    2013-01-01

    Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available...... studies of the consistency of marine ecological observations with expectations under climate change. This yielded a metadatabase of 1,735 marine biological responses for which either regional or global climate change was considered as a driver. Included were instances of marine taxa responding as expected...

  3. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.

    Science.gov (United States)

    Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N

    2016-01-20

    Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.

  4. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  5. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  6. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  7. Global Climate Change: Threat Multiplier for AFRICOM?

    Science.gov (United States)

    2007-11-06

    Vaclav Klaus , President of the Czech Republic, as quoted in Notes for the speech of the President of the Czech Republic at the UN Climate Change...63 Vaclav Klaus , UN Climate Change Conference, 2. 64 Ibid., 1. 65 Aaron T. Wolf, and Annika Kramer, and Alexander...2007). Klaus , Vaclav , President of the Czech Republic. Notes for the Speech of the President of the Czech Republic at the UN Climate Change

  8. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  9. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    Directory of Open Access Journals (Sweden)

    Van R Haden

    Full Text Available In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  10. Global warming: China’s contribution to climate change

    Science.gov (United States)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  11. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and cultu

  12. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  13. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  14. A Tale of Two Minds: Psychology and Global Climate Change

    Science.gov (United States)

    Howard, George S.

    2010-01-01

    The American Psychological Association recently released its Presidential Task Force report on Psychology and Global Climate Change. Its principles and proposals would inaugurate a long and productive program of psychological research on climate change. But is it too little, too late? Climatologists have been growing progressively gloomier over…

  15. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.;

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes a...

  16. Disorderly Deliberation? Generative Dynamics of Global Climate Justice

    Directory of Open Access Journals (Sweden)

    James Goodman

    2011-12-01

    Full Text Available Theorisations of global governance invariably conceive of it as bringing order to disorder, whether by increasing the ‘density’ of interstate society, or by expressing the leverage of global civil society. This paper seeks to invert the frame, and to take seriously the active disordering of governance, as a generative challenge, that creates new justice claims, and opens-up new fields of public deliberation. Global climate governance is a particularly powerful context in which to track these dynamics. Climate change imposes its own pace of policy reform, forcing new imperatives; it also imposes its own remarkable scope, in terms of global reach and all-encompassing depth. The paper seeks-out generative disjunctures, where existing justice principles that underpin climate governance are challenged, disestablished, and reordered. The paper explores these themes as a way of mapping contending and conflicting trajectories in the development of climate justice as a principle of governance. The disordering effects of climate governance, the social and political forces that arise out of them and their roles in producing contender principles and practices are highlighted. We may then arrive at a conceptualization of climate governance as a necessarily disorderly process, which addresses cumulative and unanticipated challenges of climate change through successive reorientations in its modus operandi. As such, climate governance may be enabled to proceed through and beyond immediate accommodations, to offer new possibilities grounded in new rules of the game that widen realms of engagement and more effectively apprehend the challenges posed.

  17. A global overview of biotech (GM) crops: adoption, impact and future prospects.

    Science.gov (United States)

    James, Clive

    2010-01-01

    In the early 1990s, some were skeptical that genetically modified (GM) crops, now referred to as biotech crops, could deliver improved products and make an impact at the farm level. There was even more skepticism that developing countries would adopt biotech crops. The adoption of and commercialization of biotech crops in 2008 is reviewed. The impact of biotech crops are summarized including their contribution to: global food, feed and fiber security; a safer environment; a more sustainable agriculture; and the alleviation of poverty, and hunger in the developing countries of the world. Future prospects are discussed. Notably, Egypt planted Bt maize for the first time in 2008 thereby becoming the first country in the Arab world to commercialize biotech crops.

  18. Effects of expected global climate change on marine faunas

    Energy Technology Data Exchange (ETDEWEB)

    Fields, P.A.; Graham, J.B.; Rosenblatt, R.H.; Somero, G.N. (University of California San Diego, La Jolla, CA (United States). Scripps Institute of Oceanography)

    1993-10-01

    Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.

  19. What does global mean temperature tell us about local climate?

    Science.gov (United States)

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-11-13

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

  20. Mass support for global climate agreements depends on institutional design

    Science.gov (United States)

    Bechtel, Michael M.; Scheve, Kenneth F.

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals’ beliefs about the potential effectiveness of specific agreements. PMID:23886666

  1. Visualizing a global crisis. Constructing climate, future and present

    Directory of Open Access Journals (Sweden)

    Elisabeth Eide

    2012-10-01

    Full Text Available This article examines the visualization of climate change through two empirical studies. First, a quantitative overview of the visuals emerging in newspapers in 15 different countries before, during and after the Copenhagen climate summit in 2009. The findings demonstrate a variety of visual topics as well as genres, and a global diversity having to do with press conventions as well as access to resources. Then follows an in-depth study of a small number of cartoons published in the same period addressing global conflict, most of them linked to framing the Global North as responsible for the development of climate change. Leaning on Barthes and supplemented by other scholars who have studied media visualization, the article discusses the particular challenges of climate change as an often unseen phenomenon.

  2. The global atmospheric electrical circuit and climate

    CERN Document Server

    Harrison, R G

    2004-01-01

    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...

  3. Convergence of terrestrial plant production across global climate gradients.

    Science.gov (United States)

    Michaletz, Sean T; Cheng, Dongliang; Kerkhoff, Andrew J; Enquist, Brian J

    2014-08-07

    Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.

  4. Global climate change: A strategic issue facing Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Womeldorff, P.J.

    1995-12-31

    This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.

  5. Illinois task force on global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, B.S. [Illinois Dept. of Natural Resources, Springfield, IL (United States)

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  6. Climatic change controls productivity variation in global grasslands.

    Science.gov (United States)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  7. Global climate change policy issues related to the movement of industry from developed to rapidly industrializing countries

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, A.M.; Waltemath, L.A.

    1990-10-01

    Global climate change policies adopted by developed countries may encourage industries to move to countries with less restrictive policies. The purpose of this study is to identify policy-driven issues that may result in such a movement. This report (1) summarizes the conclusions of previous studies that have explored the relationship between environmental regulations and industrial movement, (2) identifies and summarizes existing and proposed US global climate change policy options, and (3) discusses issues and topics relating to possible industrial relocation because of the global climate change policy options. It concludes with recommendations for further research. Although federal global climate change policy options are the primary focus of this report, some international and regional efforts addressing this issue are also included. A potential regional industrial migration issue is highlighted. 14 refs., 2 figs., 3 tabs.

  8. Benefits and risks of adopting the global code of practice for recreational fisheries

    Science.gov (United States)

    Arlinghaus, Robert; Beard, T. Douglas; Cooke, Steven J.; Cowx, Ian G.

    2012-01-01

    Recreational fishing constitutes the dominant or sole use of many fish stocks, particularly in freshwater ecosystems in Western industrialized countries. However, despite their social and economic importance, recreational fisheries are generally guided by local or regional norms and standards, with few comprehensive policy and development frameworks existing across jurisdictions. We argue that adoption of a recently developed Global Code of Practice (CoP) for Recreational Fisheries can provide benefits for moving recreational fisheries toward sustainability on a global scale. The CoP is a voluntary document, specifically framed toward recreational fisheries practices and issues, thereby complementing and extending the United Nation's Code of Conduct for Responsible Fisheries by the Food and Agricultural Organization. The CoP for Recreational Fisheries describes the minimum standards of environmentally friendly, ethically appropriate, and—depending on local situations—socially acceptable recreational fishing and its management. Although many, if not all, of the provisions presented in the CoP are already addressed through national fisheries legislation and state-based fisheries management regulations in North America, adopting a common framework for best practices in recreational fisheries across multiple jurisdictions would further promote their long-term viability in the face of interjurisdictional angler movements and some expanding threats to the activity related to shifting sociopolitical norms.

  9. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  10. IPCC - the global climate monopoly; IPCC - det globale klimatmonopolet

    Energy Technology Data Exchange (ETDEWEB)

    Wellander, Dag

    2006-07-01

    IPCC has a dominant, almost monopolistic position when it comes to making statements about the environment and climatic change. A critical assessment of the institution is made, and attention is drawn to the fact that IPCC is not an organization with solely a scientific mission, but a hybrid between science and politics. Some of the objections from the scientific community against IPCC's models and predictions are presented.

  11. Governing Global Climate Change: Past Achievements, Future Prospects

    Directory of Open Access Journals (Sweden)

    Ella Kokotsis

    2014-11-01

    Full Text Available The cumulative effects of a significantly changing climate are projected to have disastrous implications on the world’s natural habitats, and along with that, are projected to drastically increase the rate and likelihood of violent conflict globally, particularly in high-density, urban, poverty hotspots. Limiting the effects of a changing climate is thus critical in influencing multiple societal goals including equitable sustainable development, human health, biodiversity, food security and access to reliable energy sources. This paper argues that the G7/8 has led global climate governance in ways other international environmental institu­tions have largely failed to do. It has done so largely by placing climate protection at the forefront of its policy objectives, alongside economic, health, energy and security goals, and reaching consensus repeatedly amongst its leaders on the impor­tance of stabilizing emissions through energy efficiency, conservation, investment and technological innovation. Moreover, this chapter argues that the summit’s predominant capability, its constricted participation, democratic convergence and political cohesion – as well as the combined effects of global shocks – have all had positive impacts on the G7/8’s success in mitigating climate change. Following a detailed process-tracing exercise over the summit’s 40-year history in which clear surges and retreats on global climate governance are outlined, this paper concludes by assessing the G7/8’s accountability record on climate mitigation and outlines a set of prescriptive recommendations, allowing for the delivery of a more tangible, coherent, results-driven accountability process for global climate governance.

  12. Global Deliberative Democracy and Climate Change: Insights from World Wide Views on Global Warming in Australia

    Directory of Open Access Journals (Sweden)

    Chris Riedy

    2011-12-01

    Full Text Available On 26 September 2009, approximately 4,000 citizens in 38 countries participated in World Wide Views on Global Warming (WWViews. WWViews was an ambitious first attempt to convene a deliberative mini-public at a global scale, giving people from around the world an opportunity to deliberate on international climate policy and to make recommendations to the decision-makers meeting at the United Nations Climate Change Conference in Copenhagen (COP-15 in December 2009. In this paper, we examine the role that deliberative mini-publics can play in facilitating the emergence of a global deliberative system for climate change response. We pursue this intent through a reflective evaluation of the Australian component of the World Wide Views on Global Warming project (WWViews. Our evaluation of WWViews is mixed. The Australian event was delivered with integrity and feedback from Australian participants was almost universally positive. Globally, WWViews demonstrated that it is feasible to convene a global mini-public to deliberate on issues of global relevance, such as climate change. On the other hand, the contribution of WWViews towards the emergence of a global deliberative system for climate change response was limited and it achieved little influence on global climate change policy. We identify lessons for future global mini-publics, including the need to prioritise the quality of deliberation and provide flexibility to respond to cultural and political contexts in different parts of the world. Future global mini-publics may be more influential if they seek to represent discourse diversity in addition to demographic profiles, use designs that maximise the potential for transmission from public to empowered space, run over longer time periods to build momentum for change and experiment with ways of bringing global citizens together in a single process instead of discrete national events.

  13. Global Climate Change and Ocean Education

    Science.gov (United States)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  14. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  15. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.

    negotiations is the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), published in 2007. The IPCC report has already been instrumental in increasing both public and political awareness of the societal risks associated with unchecked emission of greenhouse gases. Since...... and environment, and the many tools and approaches available to deal effectively with the challenge of climate change. The report has been produced by a writing team comprised of members of the Scientific Steering Committee for the IARU Congress and individuals invited to give the writing team academic...... of this volume. The writing team has, in addition to presentations at the Congress, drawn upon recent publications in the scientific literature to create this synthesis. This report has been critically reviewed by representatives of the Earth System Science Partnership (ESSP), by the parallel session chairs...

  16. Global climate changes, natural disasters, and travel health risks.

    Science.gov (United States)

    Diaz, James H

    2006-01-01

    Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.

  17. Global climate change: Social and economic research issues

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.; Snow, J.; Jacobson, H. [eds.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  18. The rogue nature of hiatuses in a global warming climate

    Science.gov (United States)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  19. Global climate change and vector-borne diseases

    Science.gov (United States)

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  20. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    Science.gov (United States)

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  1. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    Science.gov (United States)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and

  2. Biogeophysical effects of CO2 fertilization on global climate

    OpenAIRE

    G. Bala; Caldeira, K.; Mirin, A.; Wickett, M.; Delire, C.; Phillips, T.J.

    2011-01-01

    CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a ‘Control’ simulation with no emissions and a ‘Physiol-noGHG’ simulation where physiological...

  3. Global Climate and the Security of the European Union

    Science.gov (United States)

    2012-03-15

    precipitation suggest that climatic zones could shift several hundred kilometers towards the poles over the next fifty years. The report indicates...Romania, Slovakia, Slovenia and the Northern part of France,  Mediterranean Countries (MCEU) – Cyprus, Greece, Italy, Malta , Portugal, Spain, and the...global climate change. Precipitation is expected to decrease and draughts to increase. Egypt, Jordan, Lebanon and the Palestinian Territory will mostly

  4. Convergence of soil nitrogen isotopes across global climate gradients

    Science.gov (United States)

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  5. Increasing Diversity in Global Climate Change Research for Undergraduates

    Science.gov (United States)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  6. Projected change in global fisheries revenues under climate change

    Science.gov (United States)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  7. Projected change in global fisheries revenues under climate change.

    Science.gov (United States)

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  8. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  9. Florida-focused climate change lesson demonstrations from the ASK Florida global and regional climate change professional development workshops

    Science.gov (United States)

    Weihs, R. R.

    2013-12-01

    A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to

  10. Talking about Climate Change and Global Warming

    OpenAIRE

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warmin...

  11. Hot house global climate change and the human condition

    CERN Document Server

    Strom, Robert G

    2007-01-01

    Global warming is addressed by almost all sciences including many aspects of geosciences, atmospheric, the biological sciences, and even astronomy. It has recently become the concern of other diverse disciplines such as economics, agriculture, demographics and population statistics, medicine, engineering, and political science. This book addresses these complex interactions, integrates them, and derives meaningful conclusions and possible solutions. The text provides an easy-to-read explanation of past and present global climate change, causes and possible solutions to the problem, including t

  12. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.;

    and environment, and the many tools and approaches available to deal effectively with the challenge of climate change. The report has been produced by a writing team comprised of members of the Scientific Steering Committee for the IARU Congress and individuals invited to give the writing team academic...... and geographic breadth. It is based on the 16 plenary talks given at the Congress as well as input from over 80 chairs and cochairs of the 58 parallel sessions held at the Congress. The names of the plenary speakers and the chairs and co-chairs of the parallel sessions can be found on the inside cover...... of this volume. The writing team has, in addition to presentations at the Congress, drawn upon recent publications in the scientific literature to create this synthesis. This report has been critically reviewed by representatives of the Earth System Science Partnership (ESSP), by the parallel session chairs...

  13. Impact of climate change on global malaria distribution.

    Science.gov (United States)

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  14. Using Updated Climate Accounting to Slow Global Warming Before 2035

    Science.gov (United States)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  15. Understanding coupled climatic and ecosystem responses to global climate change in the Central Grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Falkner, M.B.; Detling, J.; Ojima, D.; Pielke, R.A.; Stohlgren, T.J. (Colorado State Univ., Ft. Collins (United States)); Kittel, T.G.F. (Colorado State Univ., Ft. Collins (United States) UCAR, Boulder, CO (United States)); Lenihan, J.; Neilson, R. (Oregon State Univ., Corvallis (United States)); Reiners, W. (Univ. of Wyoming, Laramie (United States))

    1993-06-01

    A long-term National Park Service research program to assess the potential effect of global climate change on the Central Grasslands Biogeographic Area is underway. The program consists of two integrated projects: Projecting climate and vegetation change at regional to landscape scales; and Predicting the effect of global change on vegetation in park landscapes at the plot to landscape scales. Together, these integrated field and modeling studies establish a means to validate mesoscale and landscape vegetation models, a central goal of the NPS Global Change Research Program. Vegetation life form modeling suggests that under climate change scenarios the distribution of grassland vegetation zones will undergo major shifts. Results indicate that climate change impacts that reduce water availability will more severely depress productivity of C[sub 3] grass communities relative to C[sub 4] grass communities.

  16. Global Climatic Controls On Leaf Size

    Science.gov (United States)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  17. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21(st) century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20(th)-century baseline), but not at the higher levels of global warming that occur in the late-21(st)-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  18. Global climate change is confounding species conservation strategies.

    Science.gov (United States)

    Koopowitz, Harold; Hawkins, Bradford A

    2012-06-01

    Most organisms face similar problems with respect to their conservation in the face of global climate change. Here, we examine probable effects of climate change on the hyperdiverse plant family Orchidaceae. In the 20th century, the major concerns for orchid conservation revolved around unsustainable harvest for the orchid trade and, more importantly, land conversion from natural ecosystems to those unable to support wild orchid populations. Land conversion included logging, fire regimes and forest conversions to agricultural systems. Although those forms of degradation continue, an additional suite of threats has emerged, fueled by global climate change. Global climate change involves more than responses of orchid populations to increases in ambient temperature. Increasing temperature induces secondary effects that can be more significant than simple changes in temperature. Among these new threats are extended and prolonged fire seasons, rising sea levels, increases in cyclonic storms, seasonal climate shifts, changes in orthographic wind dew point and increased drought. The long-term outlook for orchid biodiversity in the wild is dismal, as it is for many animal groups, and we need to start rethinking strategies for conservation in a rapidly changing world.

  19. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  20. Climate-induced forest dieback: An escalating global phenomenon?

    Science.gov (United States)

    Allen, C.D.

    2009-01-01

    The impacts of growing human populations and economies are both rapidly and directly transforming forests in many areas. However, little known are the pervasive effects of the ongoing climatic changes on the condition and status of forests around the world. Global patterns are now evident with the global tree mortality that is now above its usual mortality levels as it is affected by drought and heat-related forest stress and dieback. Thus, the possibility of an increased risk of climate-induced dieback is now being considered within many of the forests and woodlands of today. A focus will be given on the climatic water stress that is driven by both drought and warm temperatures. However, studying the trends in forest mortality and predictions has its limitations with such a number of information gaps and scientific uncertainties. First is the absence of an adequate global data on forest health status, followed by the fact that only a few tree species have the researchers an adequate quantitative knowledge with regards to its physiological thresholds of individual tree mortality from chronic or acute water stress. Lastly, the adequate knowledge of the feedback and non-linear interactions between climate-induced forest stress and other climate-related disturbance processes are lacking among the current scientists.

  1. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  2. Climate impacts on global hot spots of marine biodiversity

    Science.gov (United States)

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  3. Knowledge of Global Climate Change: View of Iranian University Students

    Science.gov (United States)

    Salehi, Sadegh; Nejad, Zahra Pazuki; Mahmoudi, Hossein; Burkart, Stefan

    2016-01-01

    This article assesses students' understanding of global climate change (GCC) and social factors affecting it. It was hypothesized that students who demonstrate pro-environmental attitudes are more likely to possess higher knowledge of GCC. It was further hypothesized that trust and personal efficiency would have a positive effect on the knowledge…

  4. Global water resources affected by human interventions and climate change

    Science.gov (United States)

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  5. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    Science.gov (United States)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  6. Global water resources affected by human interventions and climate change.

    Science.gov (United States)

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  7. Global Monsoon and Long-Term climate Changes

    Institute of Scientific and Technical Information of China (English)

    WANG Pinxian

    2009-01-01

    @@ The core in the current "Global Warming" debate is how to discriminate the anthropogenic from natural warming. To answer this question, we have to know the natural trend of climate changes, an issue on which scientists' opinions diverge incredibly. Some scientists tell us that the next ice age will not come in some 50 thousands years (Berger & Loutre, 2002), but others believe that new glaciation would have been upon us several thousands years ago, should it be not postponed by early human impact (Ruddiman, 2003). Climatologists now talking on "global warming" warned about "global cooling" over 30 years ago.

  8. Biophysical climate impacts of recent changes in global forest cover.

    Science.gov (United States)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  9. Global climate change adaptation priorities for biodiversity and food security.

    Science.gov (United States)

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  10. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    Science.gov (United States)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  11. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  12. Climatic irregular staircases: generalized acceleration of global warming

    Science.gov (United States)

    de Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  13. Climatic irregular staircases: generalized acceleration of global warming.

    Science.gov (United States)

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  14. Climate Discovery: NCAR Online Education Climate and Global Change Professional Development Program

    Science.gov (United States)

    Ward, D. L.; Johnson, R. M.; Foster, S.; Henderson, S.; Gardiner, L.; Russell, R.; Meymaris, K.; Hatheway, B.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) is offering middle and high school teachers an opportunity to learn about the science of climate and how current research is advancing our understanding through Climate Discovery, a series of three online professional development courses. The goals of the Climate Discovery online course series are to provide climate science content relevant to National Science Education Standards, to share easy to implement, hands-on classroom activities that facilitate student understanding of climate and global change, and to provide a broad overview of Earth system science to educator-leaders who are teaching sciences at the middle and high school levels. The first course in the series, Introduction to Earth's Climate, explores climate science and serves as the introduction to the Climate Discovery series. The second course, Earth System Science: A Climate Change Perspective, explores Earth as a system from the perspective of climate and global change, describing the interactions between the various parts of the Earth system, and how they all affect our climate. The final course, Understanding Climate Change Today, provides an opportunity to learn about the impacts of global change as well as exploring how climate models are developed and used to understand likely scenarios of future climate and how current scientific research is improving the quality of climate predictions. The online courses, instructed by science education specialists, combine information about current research and modeling efforts with classroom-tested science inquiry activities. The online course experience features a high level of interactivity, tools for assessment, and effective community-building interactive technologies. We encourage teachers immediately apply their learning by enriching their existing standards-aligned science curriculum, bringing the science of Earth's climate to their students. In this presentation, course developers and

  15. Engaging the Global South on climate engineering research

    Science.gov (United States)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  16. Global climate change: an unequivocal reality; Cambio climatico global: una realidad inequivoca

    Energy Technology Data Exchange (ETDEWEB)

    Raynal-Villasenor, J.A. [Universidad de las Americas, Puebla, Puebla (Mexico)]. E-mail: josea.raynal@udlap.mx

    2011-10-15

    During several years, a long discussion has taken place over the reality of global climate change phenomenon and, if there is one, what could be its cause. Once the 4th Assessment Report of the Intergovernmental Panel on Climatic Change (IPCC, 2007) - IPCC is part the United Nations Organization (UN) - was published, it was stated that there is a developing global climatic change and that the cause is unequivocally related with the human activity in the planet Earth. In this paper, relevant information is given about the development of global climatic change issues and some actions are mentioned that each human being of this planet can implement to mitigate it, since it has been accepted that it's impossible to stop it. [Spanish] Durante varios anos se ha discutido si existe un cambio climatico global y, si lo hay, cual es su causa. Una vez publicado el 4o. Reporte de Valoracion del Panel Intergubernamental sobre Cambio Climatico (IPCC, 2007) - el IPCC es parte de la Organizacion de las Naciones Unidas (ONU) - se preciso que hay un cambio climatico global en desarrollo y la causa inequivoca que lo esta produciendo es la actividad humana en el planeta Tierra, tambien se hablo en el IPCC de las causas naturales por las cuales el planeta se esta calentando. En el presente articulo, se da informacion relevante al cambio climatico global en desarrollo y se mencionan algunas acciones que cada ser humano de este planeta puede implementar para mitigarlo, ya que es imposible detenerlo.

  17. The economics of long-term global climate change

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  18. Shifting global invasive potential of European plants with climate change.

    Directory of Open Access Journals (Sweden)

    A Townsend Peterson

    Full Text Available Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055 climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.

  19. Global patterns in endemism explained by past climatic change.

    Science.gov (United States)

    Jansson, Roland

    2003-03-22

    I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.

  20. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  1. Fracking in the face of global climate change

    Science.gov (United States)

    Peterson, P.; Gautier, C.

    2015-12-01

    Until recently, "peak oil" was regarded as imminent. Now, however, the recent rapid increase in US oil and gas production from shale exploitation has delayed peak oil. This delay raises grave climate concerns. The development of new technologies (such as horizontal drilling) means that enormous unconventional reserves distributed worldwide may be readily recoverable, with large negative consequences on the global greenhouse gas emissions trajectory. If even a small portion of these unconventional reserves were exploited, it is highly likely that limiting global Earth warming to 2ºC, a goal being discussed for COP 21, will be impossible. Instead, tipping points in the climate system will likely be reached, with serious effects, including greatly accelerated ice melting, leading to large and unstoppable global sea level rise. The enthusiasm for shale gas stems in part from its potential role as a bridge fuel to wean the country from coal until low-carbon alternatives come into full play. However, shale gas and oil production entail direct adverse environmental impacts (air and water pollution, induced earthquakes and public health risks) that are only now coming to light. Gas production through fracking also has severe impacts on climate through the release of methane, a potent greenhouse gas that leaks from production sites. In intensive fracking regions, high methane concentrations are measured on the ground and are now detectable in satellite data. Proponents of gas fracking argue that with the right policies to protect communities and the environment, natural gas can be harnessed as part of a broad climate strategy. But opponents of gas fracking believe that no regulation will be adequate to protect communities and the local environment. They also fear that natural gas produced through fracking will delay progress toward a carbon-free future. We will explore the consequences for the global climate of exploiting these very large oil and gas resources.

  2. Global climate and the distribution of plant biomes.

    Science.gov (United States)

    Woodward, F I; Lomas, M R; Kelly, C K

    2004-10-29

    Biomes are areas of vegetation that are characterized by the same life-form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life-form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life-form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super-biome, was probably initiated 30-45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the

  3. Risk-analysis of global climate tipping points

    Energy Technology Data Exchange (ETDEWEB)

    Frieler, Katja; Meinshausen, Malte; Braun, N. [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group] [and others

    2012-09-15

    There are many elements of the Earth system that are expected to change gradually with increasing global warming. Changes might prove to be reversible after global warming returns to lower levels. But there are others that have the potential of showing a threshold behavior. This means that these changes would imply a transition between qualitatively disparate states which can be triggered by only small shifts in background climate (2). These changes are often expected not to be reversible by returning to the current level of warming. The reason for that is, that many of them are characterized by self-amplifying processes that could lead to a new internally stable state which is qualitatively different from before. There are different elements of the climate system that are already identified as potential tipping elements. This group contains the mass losses of the Greenland and the West-Antarctic Ice Sheet, the decline of the Arctic summer sea ice, different monsoon systems, the degradation of coral reefs, the dieback of the Amazon rainforest, the thawing of the permafrost regions as well as the release of methane hydrates (3). Crucially, these tipping elements have regional to global scale effects on human society, biodiversity and/or ecosystem services. Several examples may have a discernable effect on global climate through a large-scale positive feedback. This means they would further amplify the human induced climate change. These tipping elements pose risks comparable to risks found in other fields of human activity: high-impact events that have at least a few percent chance to occur classify as high-risk events. In many of these examples adaptation options are limited and prevention of occurrence may be a more viable strategy. Therefore, a better understanding of the processes driving tipping points is essential. There might be other tipping elements even more critical but not yet identified. These may also lie within our socio-economic systems that are

  4. The Arctic Ocean in the global climate system (review)

    OpenAIRE

    Alekseev,G. V./Ivanov,V. V./Zakharov,V. F./Yanes,A. V.

    1996-01-01

    The oceanic portion of the Arctic climate system has a strong influence on global climate change. This is because, first, the Arctic Ocean can change its capacity for redistribution of solar heat in consequence of the changes of thermohaline structure of the upper layer and the sea ice area on its surface, second; the vertical oceanic circulation in high latitudes is very sensitive to changes of the fresh water balance on the ocean surface that can cause a profound effect on the production of...

  5. Global climate change and cryospheric evolution in China

    Directory of Open Access Journals (Sweden)

    Qin D.

    2009-02-01

    Full Text Available Major outcomes of Working Group I, IPCC AR4 (2007, as well as the recent understandings from our regional climatic assessments in China were summarized. Changes of cryosphere in China, one of the major components in regional climate system, is specifically reviewed. Under the global/regional warming, all components of cryosphere in China (Tibetan Plateau and surroundings including glaciers, frozen ground (including permafrost and snow cover show rapid decay in the last decades. These changes have big socioeconomic impacts in west China, thus encourages both government and scientists pay more and more attention to this field.

  6. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  7. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive

  8. Thermodynamic contributions of deforestation to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A.

    2009-07-01

    This paper examines a portion of the thermodynamics of global warming. The calculations use the endothermic photosynthesis reaction and yearly measures of CO{sub 2} uptake to determine the amount of energy that is absorbed by forest cover each year. The energy absorption value of forest coverage determines the yearly cost of deforestation. The calculations reveal that 3.92 * 10{sup 15} kJ less solar energy is absorbed by global forest coverage because of deforestation each year. The energy is enough to warm the atmosphere by 0.00008 °C / year. By comparison the same amount of energy represents 0.001 % of the atmospheric energy gains between 1995 and 2003. The results of this paper raise questions about the nature of global warming and the possibility that thermodynamic contributions to global climate change are significant. (author)

  9. State of the Climate Monthly Overview - Global El Niño/Southern Oscillation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  10. Climate change denial, freedom of speech and global justice

    Directory of Open Access Journals (Sweden)

    Trygve Lavik

    2016-10-01

    Full Text Available In this paper I claim that there are moral reasons for making climate denialism illegal . First I define climate denialism, and then I discuss its impact on society and its reception in the media.  I build my philosophical arguments mainly on John Stuart Mill and Thomas M. Scanlon.  According to Mill’s utilitarian justification of free speech, even untrue opinions are valuable in society’s pursuit of more truth. Consequently one might think that Mill’s philosophy would justify climate denialists’ right to free speech.  A major section of the paper argues against that view. The main arguments are: Climate denialism is not beneficial because its main goal is to produce doubt, and not truth. Climate denialism is not sincerely meant, which is a necessary condition for Mill to accept utterances. Climate denialists bring harm, by blocking necessary action on climate change.  Primarily they harm future generations and people in developing countries. Hence the case can be made in terms of global justice: Would future generations and people in developing countries support my claim? I think so, or so I argue. My argument from global justice is built on Scanlon’s distinction between the interests of participants, the interests of audiences, and the interests of bystanders.  The climate denialists have participant interests ‘in being able to call something to the attention of a wide audience’. Audience interests consist in ‘having access to expressions that we wish to hear or read, and even in being exposed to some degree to expressions we have not chosen’. Future generations and people in poor countries are bystanders to the climate debate. If the debate postpones necessary actions, it is the bystanders who must pay the price. I argue that bystanders’ costs outweigh participants’ and audiences’ interests, and that this is an argument for a statutory ban on climate denialism.Article first published online: 21 DEC 2015 

  11. Implications of global warming for the climate of African rainforests.

    Science.gov (United States)

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  12. Is This Global Warming? Communicating the Intangibles of Climate Change

    Science.gov (United States)

    Warner, L.; Henson, R.

    2004-05-01

    Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed

  13. Andean Uplift in the Context of Global Climate Change

    Science.gov (United States)

    Jeffery, Louise; Poulsen, Chris; Ehlers, Todd; Insel, Nadja

    2010-05-01

    The two primary causes of South American climate change over the last 40 million years are global climate change and the uplift of the Andes Mountains. Quantifying spatial and temporal variations in climate over the duration of Andean surface uplift is necessary for interpreting palaeoclimate, erosion and palaeoelevation records from the region. This study utilises an atmospheric general circulation model (GCM) to investigate the magnitude and relative importance of 1) global climate and 2) Andean surface uplift to South American climate during the last 40Ma. Combined with knowledge from the geologic record, the results constrain the controls on, and timing of, landscape development. Three different atmospheric CO2 levels (1, 2 and 4x pre-industrial levels - 280ppm) are used to simulate the range of global climate since the early Cenozoic. Surface uplift of the Andes is examined with simulations at three different Andean elevations (100%, 50% and 5% of modern heights). The importance of feedbacks associated with global climate change is assessed with additional simulations incorporating 1) no Antarctic Ice Sheet and 2) an equilibrium vegetation model coupled to the climate model. Initial results show that the elevation of the Andes exerts a much stronger control on South American precipitation than does the atmospheric CO2 level. The presence of the Andes leads to an increase in annual average precipitation rates of up to 8 mm/day at 20⁰S on the eastern flanks of the mountain range. An increase in CO2 levels from 1x to 4x pre-industrial levels increases the intensity of the global hydrological cycle with annual average precipitation rates increasing by up to 5mm/day. At 50% and 5% Andean elevation, precipitation patterns over South America are independent of atmospheric CO2 concentration. However, at 100% Andean elevation South American precipitation is sensitive to high (4x) CO2 levels. Most large-scale circulation patterns over South America are consistent

  14. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  15. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  16. The effect of eurasian snow cover on global climate.

    Science.gov (United States)

    Barnett, T P; Dümenil, L; Schlese, U; Roeckner, E

    1988-01-29

    Numerical simulations with a global atmospheric circulation model suggest that largescale variations in the amount of snowfall over Eurasia in the springtime are linked to the subsequent strength of the Asian summer monsoon. Large-scale changes in Eurasian snow cover are coupled to larger scale changes in the global climate system. There is a large, strong teleconnection to the atmospheric field over North America. The model results also show snow cover effects to subsequently alter other climatic fields known to be intimately associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Thus the model results seem to challenge the current dogma that the ENSO phenomenon is solely the result of close coupling between the atmosphere and ocean by suggesting that processes over continental land masses may also have to be considered.

  17. A fast multipole transformation for global climate calculations

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  18. Land Use Change and Global Adaptations to Climate Change

    Directory of Open Access Journals (Sweden)

    Roxana Juliá

    2013-12-01

    Full Text Available This paper uses the World Trade Model with Climate Sensitive Land (WTMCL to evaluate possible future land-use changes associated with adaptations to climate change in a globalized world. In this approach, changes in regional agricultural production, which are based on comparative advantage, define patterns of land use change in agriculture in all regions of the world. We evaluate four scenarios that combine assumptions about future increases in food demand and future changes in land endowments of different productivities associated with climatic conditions: each scenario generates distinct patterns of regional specialization in the production of agricultural commodities and associated land-use change. The analysis also projects future food availability under the simulated conditions and the direction of likely changes in prices of the major agricultural commodity groups.

  19. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  20. Climate trends and global crop production since 1980.

    Science.gov (United States)

    Lobell, David B; Schlenker, Wolfram; Costa-Roberts, Justin

    2011-07-29

    Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

  1. Climate Change, Global Food Markets, and Urban Unrest

    Science.gov (United States)

    2013-02-01

    stability in Kenya , they typically focus on climatic conditions in Kenya . Yet just as El Niño in the tropical Pacific can lead to colder and wetter...global food prices in constant dollar terms, as well as the proportion of cereal staples (maize, rice , wheat, etc.) traded as a percent of total...populous countries run large rice trade surpluses – such as Thailand and Vietnam – the region as a whole is import dependent.18 Over time, Africa and

  2. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  3. Ways to Include Global Climate Change in Courses for Prospective Teachers

    Science.gov (United States)

    van Zee, Emily; Grobart, Emma; Roberts-Harris, Deborah

    2016-01-01

    What responsibility do science teacher educators have for engaging students in learning about global climate change in courses? How can the topic of global climate change be added to an already packed course curriculum? The authors have begun assembling instructional resources and learning ways others have incorporated global climate change in…

  4. Global Climate Change and Society: Scientific, Policy, and Philosophic Themes

    Science.gov (United States)

    Frodeman, R.; Bullock, M. A.

    2001-12-01

    The summer of 2001 saw the inauguration of the Global Climate Change and Society Program (GCCS), an eight week, NSF-funded experiment in undergraduate pedagogy held at the University of Colorado and the National Center for Atmospheric Research. Acknowledging from the start that climate change is more than a scientific problem, GCCS began with the simultaneous study of basic atmospheric physics, classical and environmental philosophy, and public policy. In addition to lectures and discussions on these subjects, our twelve undergraduates (majoring in the physical sciences, social sciences, and humanities) also participated in internships with scholars and researchers at NCAR, University of Colorado's Center of the American West, and the Colorado School of Mines, on specific issues in atmospheric science, science policy, and ethics and values. This talk will discuss the outcomes of GCCS: specifically, new insights into interdisciplinary pedagogy and the student creation of an extraordinary "deliverable," a group summary assessment of the global climate change debate. The student assessment called for an integrated discussion of both the science of climate change and the human values related to how we inhabit the world. The problems facing society today cannot be addressed through the single-minded adherence to science and technology; instead, society must develop new means of integrating the humanities and science in a meaningful dialogue about our common future.

  5. Evaluation of global and regional climate simulations over Africa

    Science.gov (United States)

    Nikulin, Grigory; Jones, Colin; Kjellström, Erik; Gbobaniyi, Emiola

    2013-04-01

    Two ensembles of climate simulations, one global and one regional, are evaluated and inter-compared over the Africa-CORDEX domain. The global ensemble includes eight coupled atmosphere ocean general circulation models (AOGCMs) from the CMIP5 project with horizontal resolution varying from about 1° to 3°, namely CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR. In the regional ensemble all 8 AOGCMs are downscaled over the Africa-CORDEX domain at the Rossby Centre (SMHI) by a regional climate model - RCA4 at 0.44° resolution. The main focus is on ability of both global and regional ensembles to simulate precipitation in different climate zones of Africa. Precipitation climatology is characterized by seasonal means, inter-annual variability and by various characteristics of the rainy season: onset, cessation, mean intensity and intra-seasonal variability. To see potential benefits of higher resolution in the regional downscaling all precipitation statistics are inter-compared between the individual AOGCM-RCA4(AOGCM) pairs and between the two multi-model ensemble averages. A special attention in the study is on how the AOGCMs simulate teleconnection patterns of large-scale internal variability and how these teleconnection pattern are reproduced in the downscaled regional simulations.

  6. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  7. Hurricanes and Climate Change: Global Systems and Local Impacts

    Science.gov (United States)

    Santer, J.

    2011-12-01

    With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.

  8. Can the Global Adoption of Genetically Improved Farmed Fish Increase Beyond 10%, and How?

    Directory of Open Access Journals (Sweden)

    Ingrid Olesen

    2015-05-01

    Full Text Available The annual production from global aquaculture has increased rapidly from 2.6 million tons or 3.9% of the total supply of fish, shellfish and mollusks in 1970, to 66.7 million tons or 42.2% in 2012, while capture fisheries have more or less leveled out at about 90 million tons per year since the turn of the century. Consequently, the future seafood supply is likely to depend on a further increase of aquaculture production. Unlike terrestrial animal farming, less than 10% of the aquaculture production comes from domesticated and selectively bred farm stocks. This situation has substantial consequences in terms of poorer resource efficiency, poorer product quality and poorer animal welfare. The history of biological and technical challenges when establishing selective breeding programs for aquaculture is discussed, and it is concluded that most aquaculture species may now be domesticated and improved by selection. However, the adoption of selective breeding in aquaculture is progressing slowly. This paper reports on a study carried out in 2012 to identify key issues to address in promoting the development of genetically improved aquaculture stocks. The study involved semi structured interviews of 34 respondents from different sectors of the aquaculture society in East and Southeast Asia, where 76% of the global aquaculture production is located. Based on the interviews and literature review, three key factors are identified: (i long-term public commitment is often needed for financial support of the breeding nucleus operation (at least during the first five to ten generations of selection; (ii training at all levels (from government officers and university staff to breeding nucleus and hatchery operators, as well as farmers; and (iii development of appropriate business models for benefit sharing between the breeding, multiplier and grow-out operators (whether being public, cooperative or private operations. The public support should be invested in

  9. Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading

    Science.gov (United States)

    Karsai, Márton; Iñiguez, Gerardo; Kikas, Riivo; Kaski, Kimmo; Kertész, János

    2016-06-01

    Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world’s largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable adoptions—induced by a single adopting neighbour—appear to be important only locally, while spontaneous adopters arriving at a constant rate and the involvement of unconcerned individuals govern the global emergence of social spreading.

  10. The implications of climate policy for the impacts of climate change on global water resources

    NARCIS (Netherlands)

    Arnell, N.W.; van Vuuren, D.P.; Isaac, M.

    2011-01-01

    This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at

  11. Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading

    CERN Document Server

    Karsai, Márton; Kikas, Riivo; Kaski, Kimmo; Kertész, János

    2016-01-01

    Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world's largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable ...

  12. Vulnerability of the Tibetan Pastoral Systems to Climate and Global Change

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-12-01

    Full Text Available The impacts of climate and global change on Tibetan pastoral systems have become increasingly evident. Thus, a significant research endeavor is to explore the combined effects of these changes on the livelihoods of herder households and communities, on the adaptation strategies they adopted to respond to the current and expected risks associated with these changes, and on the emerging opportunities that can strengthen their resilience and adaptive capacity. We performed an integrated analysis of the dynamics of Tibetan pastoral systems influenced by climate and global changes by using the analytical framework developed by Ostrom. Climate and global changes have significantly altered the attributes of and the interactions within Tibetan pastoral systems, thus posing great challenges to their sustainable development. We used Nagqu County, a remote area of the northern Tibetan Plateau of China, as a case study to analyze the adaptation strategies adopted by local herders to respond to multiple stressors, as well as the emerging opportunities that they can take advantage of to increase their adaptive capacity. Findings show that although local herders have developed various adaptation strategies, such as planting forage grass, buying fodder from the market, renting pastures, joining formal or informal cooperatives, and diversifying livelihoods, social, cultural, and institutional challenges still exist. To enhance the adaptive capacity of herders and to reduce their vulnerability, we recommend that future rangeland policies and programs promote: (1 comprehensive support for formal or informal pastoral cooperatives, (2 development of the rangeland economy to take advantage of the multifunctionalities of rangeland ecosystems, and (3 revitalization of the mobility paradigm to allow the flexible use of rangelands.

  13. Ocean Global Warming Impacts on the South America Climate

    Directory of Open Access Journals (Sweden)

    Renato eRamos-Da-Silva

    2016-03-01

    Full Text Available The global Ocean-Land-Atmosphere Model (OLAM model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST from the Atmospheric Model Intercomparison Project (AMIP data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3 as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  14. Decadal modulation of global surface temperature by internal climate variability

    Science.gov (United States)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  15. Ocean Global Warming Impacts on the South America Climate

    Science.gov (United States)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  16. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  17. Effects of global irrigation on the near-surface climate

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, William J. [University of Wisconsin-Madison, Center for Sustainability and the Global Environment, Madison, WI (United States); Cook, Benjamin I. [Lamont-Doherty Earth Observatory, Ocean and Climate Physics, Palisades, NY (United States); NASA Goddard Institute for Space Studies, New York, NY (United States); Buenning, Nikolaus [University of Colorado-Boulder, Department of Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Helkowski, Joseph H. [Earth Tech, Miami, FL (United States)

    2009-08-15

    Irrigation delivers about 2,600 km{sup 3} of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by {proportional_to}0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by {proportional_to}1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery. (orig.)

  18. A global database with parallel measurements to study non-climatic changes

    Science.gov (United States)

    Venema, Victor; Auchmann, Renate; Aguilar, Enric; Auer, Ingeborg; Azorin-Molina, Cesar; Brandsma, Theo; Brunetti, Michele; Dienst, Manuel; Domonkos, Peter; Gilabert, Alba; Lindén, Jenny; Milewska, Ewa; Nordli, Øyvind; Prohom, Marc; Rennie, Jared; Stepanek, Petr; Trewin, Blair; Vincent, Lucie; Willett, Kate; Wolff, Mareile

    2016-04-01

    potentially biasing transitions are the adoption of Stevenson screens, relocations (to airports) efforts to reduce undercatchment of precipitation or the move to automatic weather stations. Thus a large global parallel dataset is highly desirable as it allows for the study of systematic biases in the global record. We are interested in data from all climate variables at all time scales; from annual to sub-daily. High-resolution data is important for understanding the physical causes for the differences between the parallel measurements. For the same reason, we are also interested in other climate variables measured at the same station. For example, in case of parallel air temperature measurements, the influencing factors are expected to be global radiation, wind, humidity and cloud cover; in case of parallel precipitation measurements, wind and wet-bulb temperature are potentially important. Metadata that describe the parallel measurements is as important as the data itself and will be collected as well. For example, the types of the instruments, their siting, height, maintenance, etc. Because they are widely used to study moderate extremes, we will compute the indices of the Expert Team on Climate Change Detection and Indices (ETCCDI). In case the daily data cannot be shared, we would appreciate contributions containing these indices from parallel measurements. For more information: http://tinyurl.com/ISTI-Parallel

  19. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  20. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  1. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  2. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  3. The real ecological fallacy: epidemiology and global climate change.

    Science.gov (United States)

    Krieger, Nancy

    2015-08-01

    Prompted by my participation in the People's Climate March held in New York City on 21 September 2014, as part of the 'Harvard Divest' contingent, in this brief essay I reflect on the late 20th century development of--and debates over--the necessity of ecological thinking in epidemiology, and also the still limited engagement of our field with work on the health impact of global climate change. Revisiting critiques about the damaging influence of methodological individualism on our field, I extend critique of the still influential notion of 'ecological fallacy,' including its wilful disregard for ecology itself as being pertinent to people's ways of living--and dying. Indeed, the real 'ecological fallacy' is to think epidemiologists or others could ever understand the people's health except in societal and ecological, and hence historical, context. I conclude by urging all of us, as members of the broader scientific community, whether or not we directly study the health impacts of the planetary emergency of global climate change, to step up by joining the call for universities to divest from fossil fuels.

  4. Sensitivity of global terrestrial ecosystems to climate variability.

    Science.gov (United States)

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  5. Sensitivity of global terrestrial ecosystems to climate variability

    Science.gov (United States)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  6. Testing empirical relationships between global sea-level and global temperature in long climate model simulations

    Science.gov (United States)

    von Storch, H.; Zorita, E.; Gonzalez-Rouco, F.

    2009-04-01

    Estimations of future global sea-level rise brought about by increasing concentrations of atmospheric greenhouse gases of anthropogenic origin are based on simulations with coarse-resolution global climate models, which imposes some limitations on the skill of future projections because some of the processes that modulate the heat and fresh water flux into may not be adequately represented. To fill this gap, and until more complex climate models are available, some ad-hoc methods have been proposed that link the rise in global average temperature with the global mean sea-level rise. The statistical methods can be calibrated with observations and applied to the future global temperature rise simulated by climate models. This methods can be tested in the virtual reality simulated by global atmosphere.ocean models. Thereby, deficiencies can be identified and improvement suggested. The output of 1000-year long climate model simulation with the coupled atmosphere-ocean model ECHO-G over the past millennium has been used to determine the skill of different predictors to describe the variations of the rate of sea-level change in the simulation. These predictor variables comprise the global mean near-surface temperature, its rate of change with time and the heat-flux into the ocean. It is found that, in the framework of this climate simulation, global mean temperature is not a good predictor for the rate-of-change of sea-level. The correlation between both variables is not stable along the simulations and even its sign changes. A better predictor is the rate-of-change of temperature. Its correlation with the rate-of-change of sea-level is much more stable, it is always positive along the simulation, and there exists a lead-lag relationship between both that can be understood in simple physical terms. The best predictor among those tested is the heat-flux into the ocean. Its correlation is higher and there exists no time lag to the rate-of-change of sea-level, as expected

  7. Global climate forcing of aerosols embodied in international trade

    Science.gov (United States)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  8. International regime formation: Ozone depletion and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs.

  9. Response of seafloor ecosystems to abrupt global climate change.

    Science.gov (United States)

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  10. Equilibrium of global amphibian species distributions with climate.

    Science.gov (United States)

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F; Diniz-Filho, Jose Alexandre F; Araújo, Miguel B

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions.

  11. Formulation of an ocean model for global climate simulations

    Directory of Open Access Journals (Sweden)

    S. M. Griffies

    2005-01-01

    Full Text Available This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL climate model used for the 4th IPCC Assessment (AR4 of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1 tripolar grid to resolve the Arctic Ocean without polar filtering, (2 partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3 more accurate equation of state, (4 three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5 incorporation of regional climatological variability in shortwave penetration, (6 neutral physics parameterization for representation of the pathways of tracer transport, (7 staggered time stepping for tracer conservation and numerical efficiency, (8 anisotropic horizontal viscosities for representation of equatorial currents, (9 parameterization of exchange with marginal seas, (10 incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11 transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux' methods, (12 parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

  12. Response of seafloor ecosystems to abrupt global climate change

    Science.gov (United States)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  13. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    Science.gov (United States)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  14. The local, remote, and global consequences of climate feedbacks

    Science.gov (United States)

    Feldl, Nicole

    Climate feedbacks offer a powerful framework for revealing the energetic pathways by which the system adjusts to an imposed forcing, such as an increase in atmospheric CO2. We investigate how local atmospheric feedbacks, such as those associated with Arctic sea ice and the Walker circulation, affect both global climate sensitivity and spatial patterns of warming. Emphasis is placed on a general circulation model with idealized boundary conditions, for the clarity it provides. For this aquaplanet simulation, we account for rapid tropospheric adjustments to CO2 and explicitly diagnose feedbacks (using radiative kernels) and forcing for this precise model set-up. In particular, a detailed closure of the energy budget within a clean experimental set-up allows us to consider nonlinear interactions between feedbacks. The inclusion of a tropical Walker circulation is found to prime the Hadley Circulation for a larger deceleration under CO2 doubling, by altering subtropical stratus decks and the meridional feedback gradient. We perform targeted experiments to isolate the atmospheric processes responsible for the variability in climate sensitivity, with implications for high-sensitivity paleoclimates. The local climate response is characterized in terms of the meridional structure of feedbacks, atmospheric heat transport, nonlinearities, and forcing. Our results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous divergence of heat flux away from positive feedbacks in the subtropics; clear-sky nonlinearities that reinforce the pattern of tropical cooling and high-latitude warming tendencies; and strong ice-line feedbacks that drive further amplification of polar warming. These results have implications for regional climate

  15. The organization of global negotiations: constructing the climate change regime

    Energy Technology Data Exchange (ETDEWEB)

    Depledge, Joanna

    2005-02-15

    The basic assumption of this book is that the organization of a negotiation process matters. The global negotiations on climate change involve over 180 countries and innumerable observers and other participants, addressing enormously complex and economically vital issues with conflicting agendas. For the UN to create an effective and well-supported international regime has required enormous and very skilful organization: factors such as the role of the Chair, the choice of negotiating arenas, the rules for the conduct of business and the approach of negotiating texts are usually taken for granted, and rarely attract attention until something goes wrong. This book explores how the negotiations were organized to produce the Kyoto Protocol to the Climate Change Convention and the subsequent Bonn Agreements and Marrakesh Accords. The author draws out the lessons and implications for other intricate and far-reaching negotiations, not all of which have succeeded so far, such as the WTO trade negotiations at Seattle and Cancun. (Author)

  16. Global Food Security in a Changing Climate: Considerations and Projections

    Science.gov (United States)

    Walsh, M. K.; Brown, M. E.; Backlund, P. W.; Antle, J. M.; Carr, E. R.; Easterling, W. E.; Funk, C. C.; Murray, A.; Ngugi, M.; Barrett, C. B.; Ingram, J. S. I.; Dancheck, V.; O'Neill, B. C.; Tebaldi, C.; Mata, T.; Ojima, D. S.; Grace, K.; Jiang, H.; Bellemare, M.; Attavanich, W.; Ammann, C. M.; Maletta, H.

    2015-12-01

    Global food security is an elusive challenge and important policy focus from the community to the globe. Food is provisioned through food systems that may be simple or labyrinthine, yet each has vulnerabilities to climate change through its effects on food production, transportation, storage, and other integral food system activities. At the same time, the future of food systems is sensitive to socioeconomic trajectories determined by choices made outside of the food system, itself. Constrictions for any reason can lead to decreased food availability, access, utilization, or stability - that is, to diminished food security. Possible changes in trade and other U.S. relationships to the rest of the world under changing conditions to the end of the century are considered through integrated assessment modelling under a range of emissions scenarios. Climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. In the near term, some high-latitude production export regions may benefit from changes in climate. The types and price of food imports is likely to change, as are export demands, affecting U.S. consumers and producers. Demands placed on foreign assistance programs may increase, as may demand for advanced technologies. Adaptation across the food system has great potential to manage climate change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame.

  17. CO2 capture, reuse, and sequestration technologies for mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J., MIT Energy Laboratory

    1998-01-01

    Fossil fuels currently supply over 85% of the world`s energy needs. They will remain in abundant supply well into the 21st century. They have been a major contributor to the high standard of living enjoyed by the industrialized world. We have learned how to extract energy from fossil fuels in environmentally friendly ways, controlling the emissions of NO{sub x}, S0{sub 2}, unburned hydrocarbons, and particulates. Even with these added pollution controls, the cost of fossil energy generated power keeps falling. Despite this good news about fossil energy, its future is clouded because of the environmental and economic threat posed by possible climate change, commonly referred to as the `greenhouse effect`. The major greenhouse gas is carbon dioxide (CO{sub 2}) and the major source of anthropogenic C0{sub 2} is combustio of fossil fuels. The potential impacts of global climate change are many and varied, though there is much uncertainty as to the timing and magnitude (Watson et al., 1996). Because of the potential adverse impacts, the world community has adopted the Framework Convention on Climate Change (see Box 1). The urgency of their work was recently underscored when the Intergovernmental Panel on Climate Change (IPCC) issued their Second Assessment Report which stated that `the balance of evidence suggests a discernible human influence on global climate`. The goal of stabilization of greenhouse gas emissions at their 1990 levels in the year 2000 will not be met by the vast majority of countries. Based on this experience, it is obvious that more aggressive technology responses are required if we want to control greenhouse gas emissions.

  18. Uncertainty in runoff based on Global Climate Model precipitation and temperature data – Part 1: Assessment of Global Climate Models

    Directory of Open Access Journals (Sweden)

    T. A. McMahon

    2014-05-01

    Full Text Available Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3 GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash–Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research, MIROCM (Center for Climate System Research (The University of Tokyo, National

  19. Environmental health risk assessment and management for global climate change

    Science.gov (United States)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline

  20. China’s Peaceful Development and Global Climate Change: A Legal Perspective

    Directory of Open Access Journals (Sweden)

    Qin Tianbao

    2007-06-01

    Full Text Available Since the adoption of the reform and opening-up policy, China has witnessed rapid socio-economic progress accompanied by serious environmental problems, such as climate change, which have had a major impact on the global environment and aroused international concern about China’s peaceful development. International law on climate change has taken shape with the core instruments of the 1992 Framework Convention on Climate Change and the 1997 Kyoto Protocol. Under the current arrangement China is temporarily exempt from having to reduce its emissions of greenhouse gases (GHGs, although it will face strong pressure to commit to do so in the near future. In order to prepare for future challenges and to ensure peaceful development, it is proposed that China takes the initiative at the international level, participates in events and negotiations on implementation in respect of climate change, stresses the integration of state interests and the common interest of humankind, argues for the responsibility allocation principle of common but differentiated responsibilities of developed and developing countries, and undertakes international cooperation with regards to the Clean Development Mechanism (CDM. At the national level, it is advisable that China persists in and develops a legal system that favours recycling and improves policies and laws on energy and resources with a view to consolidate the construction of a conservation-minded society.

  1. Global Climate Change: Federal Research on Possible Human Health Effects

    Science.gov (United States)

    2006-02-10

    conditioning systems.”20 A recent rise in one measure of poverty in the United States is argued by some to suggest that there may be more poor ...conclusions are common to several studies on possible health effects of climate change: the infirm, the elderly, and the poor may be disproportionately...Global Change Research Program, op. cit. 20 Ibid. 21 Madrick, Jeff. A Rise in Child Poverty Rates Is At Risk In U.S., the New York Times on the Web, June

  2. The Effect of Tide on the Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    YANG Xuexiang; CHEN Zhen; CHEN Dianyou; Qiao Qiyuan

    2002-01-01

    The differential rotation between the solid and fluid spheres caused by tidal force could explain the 1500 to 1800-year cycle of the world's temperature. Strong tide increases the vertical and horizontal mixing of water in the oceans, drawing the cold Pacific water from the depths to the surface and the warm water from the west to the east, where it cools or warms the atmosphere above, absorbs or releases CO2 to decrease or increase greenhouse effect and to make La Nina or El Nino occur in the global. The moon's declination and obliquity of the ecliptic affect the tidal intensity. The exchange of tidal energy and tide-generating force caused by the sun, moon and major planets makes the earth's layers rotate in different speeds. The differenti-al rotation between solid and fluid of the earth is the basic reason for El Nino and global climate change.

  3. Adopting public values and climate change adaptation strategies in urban forest management: A review and analysis of the relevant literature.

    Science.gov (United States)

    Ordóñez Barona, Camilo

    2015-12-01

    Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management.

  4. Global warning : an ethnography of the encounter between global and local climate-change discourses in the Bamenda Grassfields, Cameroon

    NARCIS (Netherlands)

    Wit, de S.

    2015-01-01

    Moving beyond existing approaches that largely deal with the biophysical consequences of climate change realities in Africa, this book explores an alternative perspective that traces climate change as a travelling idea. It focuses on how globally constructed discourses on climate change find their w

  5. PERSPECTIVE: Climate change, biofuels, and global food security

    Science.gov (United States)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data

  6. An essay on global carbon budget approaches-Are we ready to deal with global climate changes now?

    Institute of Scientific and Technical Information of China (English)

    Qian YE

    2011-01-01

    In this paper,a simple analysis is conducted for the purpose of addressing a simple but fundamental question,i.e.,does the world have the capability in sciences,economics and governance to deal with the global climate change today and what should we do? By pointing out that although understanding of multidimensionality and nonlinearity of global changes from both natural and social sciences has been advanced significantly,it is extremely difficult,if not impossible,to find a single solution for global climate change because of the multi-dimensionality of social components and the nonlinearity of natural elements inherent in the global climate systems.

  7. A global database with parallel measurements to study non-climatic changes

    Science.gov (United States)

    Venema, Victor; Auchmann, Renate; Aguilar, Enric

    2015-04-01

    n this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, under the umbrella of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., relocations and changes in instrumentation, instrument height or data collection and manipulation procedures. These so-called inhomogeneities distort the climate signal and can hamper the assessment of trends and variability. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. .The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens, efforts to reduce undercatchment of precipitation or the move to automatic weather

  8. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    Science.gov (United States)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  9. Faculty Online Technology Adoption: The Role of Management Support and Organizational Climate

    Science.gov (United States)

    Huang, Rui-Ting; Deggs, David M.; Jabor, M. Khata; Machtmes, Krisanna

    2011-01-01

    Although there is a plethora of online learning studies, relatively few studies have probed into teachers' online technology adoption. It is suggested that faculty resistance to technology be one of the key hindrances to the future development of distance learning. Several studies have argued that teachers' resistance to technology, one of the key…

  10. B\\"o\\"ogg Bang drives global climate change

    CERN Document Server

    Brennwald, M S; Kipfer, R

    2011-01-01

    The B\\"o\\"ogg is a large model of a snowman, constructed of inflammable materials and filled with explosives. During the traditional festival of Sechsel\\"auten, which takes place each spring in Zurich, Switzerland, the B\\"o\\"ogg is placed atop a wooden pyre, which is set alight. According to popular legend, the time that elapses until the B\\"o\\"ogg's head explodes (the "head-bang" time) is said to give a rough forecast of local weather conditions prevailing during the following summer. However, recent research has questioned the validity of this prediction. To study the B\\"o\\"ogg's predictive powers, we analyzed the B\\"o\\"ogg head-bang time record from 1965-2010 within the context of global climate change. Our analysis shows that the B\\"o\\"ogg head-bang time is a good predictor not of short-term local weather, as might be expected from the legend, but of the behavior of the entire global climate system.

  11. Biogeophysical effects of CO2 fertilization on global climate

    Science.gov (United States)

    Bala, G.; Caldeira, K.; Mirin, A.; Wickett, M.; Delire, C.; Phillips, T. J.

    2006-11-01

    CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a `Control' simulation with no emissions and a `Physiol-noGHG' simulation where physiological changes occur as a result of prescribed CO2 emissions, but where CO2-induced greenhouse warming is not included. In our simulations, CO2 fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 yr. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal timescales, the CO2 uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO2-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century timescales, there is the prospect for net warming from CO2 fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  12. Fast-slow climate dynamics and peak global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  13. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  14. Insensitivity of Global Neolithic Transition Patterns On Climatic Change

    Science.gov (United States)

    Wirtz, K. W.

    Aiming to assess the relative importance of climate events on human history through- out the Holocene here a recently build model is employed. In the model 196 world regions are resolved which mainly differ in their food extraction potential (FEP) and potential number of agricultures. Both regional features are estimated using exist- ing vegetation maps. An array of state variables describes farming to foraging ratio, domestication success, technological and organizational development and population density. Deterministic rules for their time evolution are derived from a growth func- tion, an adaptation principle and a diffusion submodel. Overall model validity can be demonstrated by a striking similarity of simulated patterns and archaeological evi- dence. It is demonstrated that abrupt as well as smooth climatic changes, induced by FEP modifications, do not significantly affect development trajectories of Neolithic communities or global transition patterns. The stability of this result is tested through conducting numerical experiments based on massive parameter variation. However, population density always reacts sensitively, leading to the emergence of distinct mi- gration waves. An in-depth analysis of the differential model behavior provides new arguments in the face of recent or established theories linking climatic factors with human development.

  15. Global agricultural intensification during climate change: a role for genomics.

    Science.gov (United States)

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.

  16. Global change and marine communities: Alien species and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Occhipinti-Ambrogi, Anna [DET - Dip. di Ecologia del Territorio, Sezione di Ecologia, Universita degli Studi di Pavia, Via S. Epifanio 14, I-27100 Pavia (Italy)]. E-mail: occhipin@unipv.it

    2007-07-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  17. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities.

    Directory of Open Access Journals (Sweden)

    Jacob N Barney

    Full Text Available The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9, herbaceous (3, and woody (4 bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum, the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia. Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30 and moderate (EI≥20 climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of

  18. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  19. The bit in the middle: a synthesis of global health literature on policy formulation and adoption.

    Science.gov (United States)

    Berlan, David; Buse, Kent; Shiffman, Jeremy; Tanaka, Sonja

    2014-12-01

    Policy formulation and adoption are poorly understood phases of the health policy process. We conducted a narrative synthesis of 28 articles on health policy in low- and middle-income countries to provide insight on what kinds of activities take place in these phases, the actors crafting policies and the institutions in which policy making occurs. The narrative synthesis involved an inductive process to identify relevant articles, extract relevant data from text and reach new understandings. We find that actors exercising decision-making power include not just various governmental entities, but also civil society, commissioners, nongovernmental organizations and even clergy. We also find that most articles identified two or more distinct institutions in which policy formulation and adoption occurred. Finally, we identify seven distinct activities inherent in policy formulation and adoption: generation of policy alternatives, deliberation and/or consultation, advocacy of specific policy alternatives, lobbying for specific alternatives, negotiation of policy decisions, drafting or enacting policy and guidance/influence on implementation development. Health policy researchers can draw on these categories to deepen their understanding of how policy formulation and adoption unfolds.

  20. Proper indoor climate by the adoption of advanced wood burning stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Skreiberg, Oeyvind

    2014-01-01

    were designed to compare the influence of the auto-pilot device and water jacket on the indoor climate. The first experiments were conducted in 8 renovated detached houses using certified stoves while the following experiments were conducted in 4 low energy houses using modern and advanced stoves...

  1. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  2. Adopting the euro: Romanian perspectives in the context of the global financial crisis

    Directory of Open Access Journals (Sweden)

    Oros, A.

    2013-06-01

    Full Text Available The objective of this paper is to examine Romania’s capacity to fulfil the nominal convergence criteria in the current context, in order to follow the calendar proposed for euro adoption in 2015. The paper analyzed the evolution of all five criteria under the impact of the current financial crisis and also looked at the forecast provided by national and international authorities. The study was conducted considering the relative situation with the euro area. The main finding is that the actual target for euro adoption could be complied with, provided further progress is made. We have also fond that the target should be achieved as it would represent a strong stimulus for the local government to implement additional measures to reduce public indebtedness and inflationary pressure.

  3. Investigating uncertainties in global gridded datasets of climate extremes

    Directory of Open Access Journals (Sweden)

    R. J. H. Dunn

    2014-05-01

    Full Text Available We assess the effects of different methodological choices made during the construction of gridded datasets of climate extremes, focusing primarily on HadEX2. Using global timeseries of the indices and their coverage, as well as uncertainty maps, we show that the choices which have the greatest effect are those relating to the station network used or which drastically change the values for individual grid boxes. The latter are most affected by the number of stations required in or around a grid box and the gridding method used. Most parametric changes have a small impact, on global and on grid box scales, whereas structural changes to the methods or input station networks may have large effects. On grid box scales, trends in temperature indices are very robust to most choices, especially in areas which have high station density (e.g. North America, Europe and Asia. Precipitation trends, being less spatially coherent, can be more susceptible to methodological changes, but are still clear in regions of high station density. Regional trends from all indices derived from areas with few stations should be treated with care. On a global scale, the linear trends over 1951–2010 from almost all choices fall within the statistical range of trends from HadEX2. This demonstrates the robust nature of HadEX2 and related datasets to choices in the creation method.

  4. Expansion of global drylands under a warming climate

    Directory of Open Access Journals (Sweden)

    S. Feng

    2013-06-01

    Full Text Available Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41% of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in last sixty years and will continue to expand in the 21st century. By the end of this century, the world's drylands under a high greenhouse gas emission scenario are projected to be 5.8 × 106 km2 (or 10% larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  5. Expansion of global drylands under a warming climate

    Directory of Open Access Journals (Sweden)

    S. Feng

    2013-10-01

    Full Text Available Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41 percent of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in the last sixty years and will continue to expand in the 21st~century. By the end of this century, the world's drylands (under a high greenhouse gas emission scenario are projected to be 5.8 × 106 km2 (or 10% larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  6. AN ANALYSIS OF THE ORGANIZATIONAL STRUCTURE AND THE PROCESS TO ADOPT GLOBAL SOURCING

    Directory of Open Access Journals (Sweden)

    Moema Pereira Nunes

    2016-03-01

    Full Text Available This study analyze the adoption of GS by Brazilian companies in terms of organizational structure and process of GS in order to identify what is differencing the experience of these companies and the previously knowledge related with GS. A case-based qualitative research was developed. Four Brazilian companies were investigated. Data were collect interviews and a content analysis was made. Regarding the organizational structure, it was identified that the firm’s industry sector influence in the adoption of GS. It confirms the assumption that the environment plays an important role in emerging countries. The need of innovation and the geographic concentration in an industry sector were identified as influences in the organizational structure to adopt GS. The need of scale in the purchasing process was perceived as an influence in the process of GS. The investigated companies presented a non-structure process of GS, what reduce the opportunity to learn with GS as part of the process may not be monitored.

  7. The adoption of a climate disaster resilience index in Chennai, India.

    Science.gov (United States)

    Joerin, Jonas; Shaw, Rajib; Takeuchi, Yukiko; Krishnamurthy, Ramasamy

    2014-07-01

    Results derived from the Climate Disaster Resilience Index (CDRI)-consisting of five dimensions (economic, institutional, natural, physical, and social), 25 parameters, and 125 variables-reflect the abilities of people and institutions to respond to potential climate-related disasters in Chennai, India. The findings of this assessment, applied in the 10 administrative zones of the city, reveal that communities living in the northern and older parts of Chennai have lower overall resilience as compared to the flourishing areas (vis-à-vis economic growth and population) along the urban fringes. The higher resilience of communities along the urban fringes suggests that urbanisation may not necessarily lead to a deterioration of basic urban services, such as electricity, housing, and water. This indication is confirmed by a strong statistical correlation between physical resilience and population growth in Chennai. The identification of the resilience of different urban areas of Chennai has the potential to support future planning decisions on the city's scheduled expansion.

  8. Changes of indoor climate by the adoption of retrofitted wood-burning stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    2014-01-01

    More than 3 billion people in the world rely on local solid-fuels for domestic cooking and heating through inefficient combustion, causing indoor air pollution and overheating worldwide. Technological regimes were categorized in 18 popular stove models to describe how residential wood combustion...... consumption, adjust heat/demand through air-staging and ensure the indoor climate performance of advanced stoves in future housing....

  9. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  10. Exploring Holocene climate fluctuations registered in Bosnian stalagmites adopting a multiproxy approach

    Science.gov (United States)

    Chiarini, Veronica; Couchoud, Isabelle; Drysdale, Russell; Bajo, Petra; Milanolo, Simone; Hellstrom, John; De Waele, Jo

    2016-04-01

    The central Mediterranean area, a crucial region for present day and future climate change, has been characterised by contrasting patterns between northern and southern climate influences over the Holocene (e.g. Magny et al., 2012; Peyron et al., 2013). Several records from the Italian Peninsula identify this phenomenon: relatively dry conditions experienced during the first half of the Holocene are followed by an increase in moisture in the northern regions, while in the southern portion of the Peninsula the opposite trend occurs. On the Balkan side of the Adriatic Sea, this contrasting pattern is less well documented. The available studies focused on lake sediments show a more gradual and less warm early Holocene and more stable conditions during the early-mid Holocene compared to Italy (Bordon et al., 2009; Vogel et al., 2010). Several speleothems have been collected from Banja Stijena and Govještica Caves (Bosnia and Herzegovina). Preliminary U-Th dating allowed to choose the five most promising samples for further study. Stable oxygen and carbon isotopes have been analysed along the stalagmite growth axes and trace elements of one sample have been investigated. Air-mass back-trajectory analyses of present day precipitation in the area have been performed in association with GNIP rainfall isotope data analyses, with the aim of understanding the parameters driving rainfall stable oxygen isotope composition variations. Considering the impossibility of having a detailed monitoring of cave conditions due to the practical difficulties of identifying the original location of the samples collected, petrographic observations have been coupled with δ13C and δ18O in order to improve the understanding of the environmental processes recorded by these samples, as suggested in Frisia (2015) and Borsato et al. (2015). Here we will present the results of these multiproxy analyses, exploring the potential of these samples in recording regional climate fluctuations and

  11. Land-use change and global climate policies; Usage des terres et politiques climatiques globales

    Energy Technology Data Exchange (ETDEWEB)

    Gitz, V

    2004-03-15

    This PhD thesis assess the role of land-use dynamics and carbon sequestration within climate policies. First, it describes the emergence, from the Rio-1992 to the Marrakech Accords (2001), of diplomatic controversies upon carbon sinks, in the context of the progressive constitution of a scientific basis on terrestrial carbon sinks. It questions the ability of the actual form of international climate regime to generate the appropriate incentives to sequester within the forestry sector in developed countries, or to control tropical deforestation. Second, the contribution of land-use change to atmospheric CO{sub 2} rise is quantified using a newly designed model of the global carbon cycle and regional land-use (OSCAR). We show that carbon emitted via land-use is not equivalent to fossil carbon emission in respect to atmospheric CO{sub 2} rise. This effect, all the more than land-use emissions are increasing, requires a greater mitigation effort to stabilize atmospheric CO{sub 2}. Finally, optimal timing of mixed climate policies involving fossil emissions mitigation and biological sequestration is assessed within an inter temporal cost-benefit framework. We show that the social value of sequestered carbon depends on anticipating future climate damages. Within optimal control models, this links the timing of sequestration to fossil effort and to the evolution of climate damages; if the latter are uncertain, but might be revealed at a later date, then it might be optimal to reserve part of the limited sequestration potential to cut off an eventual future abatement cost peak, were a climate surprise to finally imply stringent concentration ceilings. (author)

  12. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought

    Science.gov (United States)

    Vahmani, P.; Ban-Weiss, G.

    2016-08-01

    During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought-tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought-tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought-tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought-tolerant vegetation caused mean cooling of 3.2°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and subsurface. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought-tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to strengthened sea breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.

  13. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    Science.gov (United States)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  14. Silvicultural alternatives to conventional even-aged forest management-what limits global adoption?

    Institute of Scientific and Technical Information of China (English)

    Klaus JPuettmann; Susanna Nocentini; Francis E Putz; Toshiya Yoshida; Jürgen Bauhus; Scott McG Wilson; Susan C Baker; Pablo JDonoso; Lars Drössler; Girma Amente; Brian D Harvey; Thomas Knoke; Yuanchang Lu

    2015-01-01

    Background:The development of forestry as a scientific and management discipline over the last two centuries has mainly emphasized intensive management operations focused on increased commodity production, mostly wood. This“conventional”forest management approach has typically favored production of even-aged, single-species stands. While alternative management regimes have generally received less attention, this has been changing over the last three decades, especial y in countries with developed economies. Reasons for this change include a combination of new information and concerns about the ecological consequences of intensive forestry practices and a willingness on the part of many forest owners and society to embrace a wider set of management objectives. Alternative silvicultural approaches are characterized by a set of fundamental principles, including avoidance of clearcutting, an emphasis on structural diversity and smal-scale variability, deployment of mixed species with natural regeneration, and avoidance of intensive site-preparation methods. Methods:Our compilation of the authors’ experiences and perspectives from various parts of the world aims to initiate a larger discussion concerning the constraints to and the potential of adopting alternative silvicultural practices. Results:The results suggest that a wider adoption of alternative silvicultural practices is currently hindered by a suite of ecological, economic, logistical, informational, cultural, and historical constraints. Individual contexts display their own unique combinations and relative significance of these constraints, and accordingly, targeted efforts, such as regulations and incentives, may help to overcome specific challenges. Conclusions:In a broader context, we propose that less emphases on strict applications of principles and on stand structures might provide additional flexibility and facilitate the adoption of alternative silvicultural regimes in a broader set of

  15. Geomagnetism, volcanoes, global climate change, and predictability. A progress report

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    1994-06-01

    Full Text Available A model is investigated, by which the encounters of the solar system with dense interstellar clouds ought to trigger either geomagnetic field reversals or excursions, that produce extra electric currents within the Earth dynamo, that cause extra Joule's heating, that supplies volcanoes and endogenous processes. Volcanoes increase the Earth degassing into the atmosphere, hence the concentration of the minor atmospheric constituents, including the greenhouse gases, hence they affect climate temperature, glacier melting, sea level and global change. This investigation implies both theoretical studies and observational data handling on different time scales, including present day phenomena, instrumental data series, historical records, proxy data, and geological and palaeontological evidences. The state of the art is briefly outlined, mentioning some already completed achievements, investigations in progress, and future perspectives.

  16. River Runoff Sensitivity in Eastern Siberia to Global Climate Warming

    Science.gov (United States)

    Georgiadi, A. G.; Milyukova, I. P.; Kashutina, E.

    2008-12-01

    During several last decades significant climate warming is observed in permafrost regions of Eastern Siberia. These changes include rise of air temperature as well as precipitation. Changes in regional climate are accompanied with river runoff changes. The analysis of the data shows that in the past 25 years, the largest contribution to the annual river runoff increase in the lower reaches of the Lena (Kyusyur) is made (in descending order) by the Lena river watershed (above Tabaga), the Aldan river (Okhotsky Perevoz), and the Vilyui river (Khatyryk-Khomo). The similar relation is also retained in the case of flood, with the seasonal river runoff of the Vilyui river being slightly decreased. Completely different relations are noted in winter, when a substantial river runoff increase is recorded in the lower reaches of the Lena river. In this case the major contribution to the winter river runoff increase in the Lena outlet is made by the winter river runoff increase on the Vilyui river. Unlike the above cases, the summer-fall river runoff in the lower reaches of the Lena river tends to decrease, which is similar to the trend exhibited by the Vilyui river. At the same time, the river runoff of the Lena (Tabaga) and Aldan (Verkhoyansky Perevoz) rivers increase. According to the results of hydrological modeling the expected anthropogenic climate warming in XXI century can bring more significant river runoff increase in the Lena river basin as compared with the recent one. Hydrological responses to climate warming have been evaluated for the plain part of the Lena river basin basing on a macroscale hydrological model featuring simplified description of processes developed in Institute of Geography of the Russian Academy of Sciences. Two atmosphere-ocean global circulation models included in the IPCC (ECHAM4/OPY3 and GFDL-R30) were used as scenarios of future global climate. According to the results of hydrological modeling the expected anthropogenic climate warming in

  17. Biogeophysical effects of CO2-fertilization on global climate

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  18. Drought Duration Biases in Current Global Climate Models

    Science.gov (United States)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  19. Langmuir mixing effects on global climate: WAVEWATCH III in CESM

    Science.gov (United States)

    Li, Qing; Webb, Adrean; Fox-Kemper, Baylor; Craig, Anthony; Danabasoglu, Gokhan; Large, William G.; Vertenstein, Mariana

    2016-07-01

    Large-Eddy Simulations (LES) have shown the effects of ocean surface gravity waves in enhancing the ocean boundary layer mixing through Langmuir turbulence. Neglecting this Langmuir mixing process may contribute to the common shallow bias in mixed layer depth in regions of the Southern Ocean and the Northern Atlantic in most state-of-the-art climate models. In this study, a third generation wave model, WAVEWATCH III, has been incorporated as a component of the Community Earth System Model, version 1.2 (CESM1.2). In particular, the wave model is now coupled with the ocean model through a modified version of the K-Profile Parameterization (KPP) to approximate the influence of Langmuir mixing. Unlike past studies, the wind-wave misalignment and the effects of Stokes drift penetration depth are considered through empirical scalings based on the rate of mixing in LES. Wave-Ocean only experiments show substantial improvements in the shallow biases of mixed layer depth in the Southern Ocean. Ventilation is enhanced and low concentration biases of pCFC-11 are reduced in the Southern Hemisphere. A majority of the improvements persist in the presence of other climate feedbacks in the fully coupled experiments. In addition, warming of the subsurface water over the majority of global ocean is observed in the fully coupled experiments with waves, and the cold subsurface ocean temperature biases are reduced.

  20. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy

    NARCIS (Netherlands)

    Long, T.B.; Blok, V.; Coninx, I.

    2016-01-01

    Climate-smart agriculture (CSA) is one response to the challenges faced by agriculture due to climate change. As with other sustainability transitions, technological innovation is highlighted as playing a critical role, however, the adoption and diffusion of technological innovations in OECD countri

  1. "we cannot Wait to ACT!" Simulating Global Climate Summits with Gifted and Talented Students

    Science.gov (United States)

    Haste, T.; Vesperman, D.; Alrivy, S.

    2012-12-01

    Students simulated the 2011 Durban Climate Summit in order to experience two roles: global diplomats attempting to solve a significant global problem and scientists as contributors of knowledge. Together, they worked to develop a framework to provide global solutions as world leaders. This project demonstrated [highlighted?] student work from the climate summit, describing how students promoted dialogue and provided climate science information to their diplomatic peers, who then used this information in diplomatic negotiations. By focusing on increasing student climate literacy, students engaged in both climate science and global diplomacy through meaningful simulations to understand the global and political issues surrounding Climate Change mitigation. Three classes of international middle school students attending Johns Hopkins Center for Talented Youth summer programs enacted the 2011 Durban Model United Nations meeting. One class developed a deep understanding of climate and climate science by working with computer models and data to represent members of the IPCC. Members of this class collaborated with climate scientists, conducted experiments, and developed a well-rounded understanding of paleoclimate, current climatic trends, carbon cycling, and modeling future outcomes. Two additional classes took on the roles of UN diplomats, researched their respective nations, engaged in practice UN simulations, and developed a working understanding of the diplomatic process. Students representing the IPCC assisted their diplomatic peers in developing and proposing possible UN resolutions. All three classes worked together to enact the Durban Climate Summit with the underlying focus of developing diplomatic Climate Change mitigation strategies and ultimately resolutions for member nations.

  2. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    Science.gov (United States)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  3. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security.

    Science.gov (United States)

    Tizard, Mark; Hallerman, Eric; Fahrenkrug, Scott; Newell-McGloughlin, Martina; Gibson, John; de Loos, Frans; Wagner, Stefan; Laible, Götz; Han, Jae Yong; D'Occhio, Michael; Kelly, Lisa; Lowenthal, John; Gobius, Kari; Silva, Primal; Cooper, Caitlin; Doran, Tim

    2016-10-01

    The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.

  4. Globally synchronous climate change 2800 years ago: Proxy data from peat in South America

    Science.gov (United States)

    Chambers, Frank M.; Mauquoy, Dmitri; Brain, Sally A.; Blaauw, Maarten; Daniell, John R. G.

    2007-01-01

    Initial findings from high-latitude ice-cores implied a relatively unvarying Holocene climate, in contrast to the major climate swings in the preceding late-Pleistocene. However, several climate archives from low latitudes imply a less than equable Holocene climate, as do recent studies on peat bogs in mainland north-west Europe, which indicate an abrupt climate cooling 2800 years ago, with parallels claimed in a range of climate archives elsewhere. A hypothesis that this claimed climate shift was global, and caused by reduced solar activity, has recently been disputed. Until now, no directly comparable data were available from the southern hemisphere to help resolve the dispute. Building on investigations of the vegetation history of an extensive mire in the Valle de Andorra, Tierra del Fuego, we took a further peat core from the bog to generate a high-resolution climate history through the use of determination of peat humification and quantitative leaf-count plant macrofossil analysis. Here, we present the new proxy-climate data from the bog in South America. The data are directly comparable with those in Europe, as they were produced using identical laboratory methods. They show that there was a major climate perturbation at the same time as in northwest European bogs. Its timing, nature and apparent global synchronicity lend support to the notion of solar forcing of past climate change, amplified by oceanic circulation. This finding of a similar response simultaneously in both hemispheres may help validate and improve global climate models. That reduced solar activity might cause a global climatic change suggests that attention be paid also to consideration of any global climate response to increases in solar activity. This has implications for interpreting the relative contribution of climate drivers of recent 'global warming'.

  5. Differential climate impacts for policy-relevant limits to global warming

    NARCIS (Netherlands)

    Schleussner, Carl Friedrich; Lissner, Tabea K.; Fischer, Erich M.; Wohland, Jan; Perrette, Mahé; Golly, Antonius; Rogelj, Joeri; Childers, Katelin; Schewe, Jacob; Frieler, Katja; Mengel, Matthias; Hare, William; Schaeffer, Michiel

    2016-01-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average

  6. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    Science.gov (United States)

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  7. Acting locally, developing knowledge globally: a transitions perspective on designing climate change adaptation strategies

    NARCIS (Netherlands)

    Grin, J.; Driessen, J.; Leroy, P.; van Vierssen, W.

    2010-01-01

    Climate change, from many perspectives and for many reasons, is a complex issue: scientifically, politically, and in terms of global justice. As such, climate change might be the global societal and political challenge of the 21st century. Dealing with it, either via mitigation or via adaptation, wi

  8. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  9. 1.2 million years of climate change, globally and in the Mediterranean

    NARCIS (Netherlands)

    Konijnendijk, T.Y.M.

    2015-01-01

    In this thesis we make a detailed reconstruction of climate changes based on materials from the Mediterranean Sea. Not only does this provide new insights in climate changes in the Mediterranean region, the aim is to improve our understanding of global climate changes as well. We created a single re

  10. Role of Pakistan in Global Climate Change through Greenhouse Gas Emissions (GHGs)

    OpenAIRE

    Wajeeha Malik; Hajra Shahid; Rabeea Zafar; Zaheer Uddin; Zafar Wazir; Zubair Anwar; Jabar Zaman Khan Khattak; Syed Shahid Ali

    2012-01-01

    The increasing concentration of Greenhouse Gases (GHGs) is warming the earth’s atmosphere and the phenomenon is known as Climate Change or Global Warming. The major factors contributing to the global climate change include polluted emissions by excessive burning of fossil fuels and deforestation. Pakistan contributes very little to the overall Greenhouse Gas (GHG) emissions however it remains severely impacted by the negative effects of climate change. Pakistan, in particular is estimated to ...

  11. Educating About Global Climate Change With A Cultural Perspective

    Science.gov (United States)

    Valdez, C.; Fessenden, J.; Kanjorski, N.; Hall, M. K.

    2004-12-01

    Predominantly minority populated schools in Northern New Mexico are plagued by low standardized test scores and high drop-out rates. The school system is currently failing students, and success in science is reliant on self-motivation among students. In order for students to gain momentum in a system where exposure to science is not prevalent, it is important for them to get outside support that catalyzes their interest. Collaboration between Los Alamos National Laboratory (LANL), Science Education Solutions (SES), and local schools has been established to identify student needs and provide them with the opportunity to engage in science through hands-on experience with world-class scientists. Students are being introduced to the prospects of a scientific career while getting the unique chance to explore different aspects of several LANL scientists' research. This initiative also incorporates cultural awareness efforts to promote parent and community involvement. In the past year, two pilot projects were carried out to test the concepts, goals, and methods of the collaboration. One pilot project used plant growth studies in predominantly Hispanic fifth-grade classrooms to stimulate student interest. Students explored tree ring cores and tested water-use efficiency with sponges. The other pilot project included a two-day workshop for Native American students from Jemez Pueblo focusing on global climate change. This project combined a class component and hands-on field research. Samples were taken from LANL research sites with in-field lessons from scientists who monitor the sites. In addition, Jemez Pueblo officials were able to tie the sites to the student's lives with a historical and cultural overview. The most successful elements from these pilot projects are being used to develop a long-term project that will pique student interest in the science disciplines. Field activities garnered the most enthusiastic response from students, while in-class lessons were less

  12. Adopting a Long View to Energy R&D and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Doley; P.J. Runci

    1999-08-09

    This report presents the results of an assessment of a test installation of two similar sulfur lamp, or S-lamp lighting systems, with hollow-light guide distribution. The S-lamp, developed by Fusion Lighting, Inc. with support from the U.S. Department of Energy (DOE), Office of Building Technology, Community and State Programs (BTS), was demonstrated as a prototype for the first time in 1994. The S-lamp embodies a new, microwave-powered, electrodeless technology that offers improved energy efficiency and color rendition compared with most available sources. The purpose of this assessment is to provide important information to all of those involved regarding the effectiveness and future applicability of this technology in a postal sorting setting.

  13. The magnitudes and timescales of global mean surface temperature feedbacks in climate models

    Directory of Open Access Journals (Sweden)

    A. Jarvis

    2011-12-01

    Full Text Available Because of the fundamental role feedbacks play in determining the response of surface temperature to perturbations in radiative forcing, it is important we understand the dynamic characteristics of these feedbacks. Rather than attribute the aggregate surface temperature feedback to particular physical processes, this paper adopts a linear systems approach to investigate the partitioning with respect to the timescale of the feedbacks regulating global mean surface temperature in climate models. The analysis reveals that there is a dominant net negative feedback realised on an annual timescale and that this is partially attenuated by a spectrum of positive feedbacks with characteristic timescales in the range 10 to 1000 yr. This attenuation was composed of two discrete phases which are attributed to the equilibration of "diffusive – mixed layer" and "circulatory – deep ocean" ocean heat uptake. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 percent of the overall ocean heat feedback, whilst the circulatory equilibration operated on a centennial timescale and accounted for the remaining 20 to 25 percent of the response. This suggests that the dynamics of the transient ocean heat uptake feedback first discussed by Baker and Roe (2009 tends to be dominated by loss of diffusive heat uptake in climate models, rather than circulatory deep ocean heat equilibration.

  14. Advancement of the climate dual strategy. New concepts for a globally effective climate protection; Weiterentwicklung der baden-wuerttembergischen Klimadoppelstrategie. Neue Konzepte fuer einen global wirksamen Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The Baden-Wuerttemberg Council on Sustainable Development (Stuttgart, Federal Republic of Germany) presents a climate expert report with new concepts for a globally effective climate protection. First of all, the development of the global emissions of carbon dioxide since 1990 is described. The development of the global emissions of carbon dioxide up to 2050 is forecasted. Four general criteria (effectiveness, efficiency, fairness and acceptance) for a comparative evaluation of climate protection concepts are introduced. A proposal for solution on the basis of a globally effective cap-and-trade system as well as an identical scenario as an alternative with respect to the implementation are described. This alternative scenario is based on a cap-and-trade system but it develops on the basis of national self-commitment in accordance with an incentive and sanctionative system. Both implementation proposals are compared. Recommendations of the national government Baden-Wuerttemberg are given.

  15. Integrating global energy and climate governance: The changing role of the International Energy Agency

    OpenAIRE

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s...

  16. Are natural climate forcings able to counteract the projected anthropogenic global warming?

    OpenAIRE

    Bertrand, C.; van Ypersele, J.P.; Berger, A.

    2002-01-01

    A two-dimensional global climate model is used to assess the climatic changes associated with the new IPCC SRES emissions scenarios and to determine which kind of changes in total solar irradiance and volcanic perturbations could mask the projected anthropogenic global warming associated to the SRES scenarios. Our results suggest that only extremely unlikely changes in total solar irradiance and/or volcanic eruptions would be able to overcome the simulated anthropogenic global warming over th...

  17. Development directions of the global climate protection law; Die Entwicklungslinien des globalen Klimaschutzrechts

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Katharina [Bochum Univ. (Germany)

    2014-07-01

    The contribution on development directions of the global climate protection law covers the origination process of the Kyoto protocol, the precise form of the Kyoto protocol, the climate protection regime afterwards: Montreal 2005 - implementation-improvement-innovation, Nairobi 2006 - climatic change very close, Bali 2007 - roadmap, Posen 2008 - intermediate step, Copenhagen 2009 - stagnancy, Cancun 2010 - comeback, Durban 2011 - gleam of hope, Doha 2012 - minimum compromise, Warsaw 2013 - hope. The last chapter discusses the fundamental problems and perspectives of the climate protection laws.

  18. Titan Chemistry: Results From A Global Climate Model

    Science.gov (United States)

    Wilson, Eric; West, R. A.; Friedson, A. J.; Oyafuso, F.

    2008-09-01

    We present results from a 3-dimesional global climate model of Titan's atmosphere and surface. This model, a modified version of NCAR's CAM-3 (Community Atmosphere Model), has been optimized for analysis of Titan's lower atmosphere and surface. With the inclusion of forcing from Saturn's gravitational tides, interaction from the surface, transfer of longwave and shortwave radiation, and parameterization of haze properties, constrained by Cassini observations, a dynamical field is generated, which serves to advect 14 long-lived species. The concentrations of these chemical tracers are also affected by 82 chemical reactions and the photolysis of 21 species, based on the Wilson and Atreya (2004) model, that provide sources and sinks for the advected species along with 23 additional non-advected radicals. In addition, the chemical contribution to haze conversion is parameterized along with the microphysical processes that serve to distribute haze opacity throughout the atmosphere. References Wilson, E.H. and S.K. Atreya, J. Geophys. Res., 109, E06002, 2004.

  19. Global climate and infectious disease: The cholera paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, R.R. [Univ. of Maryland Biotechnology Inst., College Park, MD (United States)

    1996-12-20

    Historically, infectious diseases have had a profound effect on human populations, including their evolution and cultural development. Despite significant advances in medical science, infectious diseases continue to impact human populations in many parts of the world. Emerging diseases are considered to be those infections that either are newly appearing in the population or are rapidly increasing in incidence or expanding in geographic range. Emergence of disease is not a simple phenomenon, mainly because infectious diseases are dynamic. Most new infections are not caused by truly new pathogens but are microorganisms (viruses, bacteria, fungi, protozoa, and helminths) that find a new way to enter a susceptible host and are newly recognized because of recently developed, sensitive techniques. Human activities drive emergence of disease and a variety of social, economic, political, climatic, technological, and environmental factors can shape the pattern of a disease and influence its emergence into populations. For example, travel affects emergence of disease, and human migrations have been the main source of epidemics throughout history. Trade caravans, religious pilgrimage, and military campaigns facilitated the spread of plague, smallpox, and cholera. Global travel is a fact of modern life and, equally so, the continued evolution of microorganisms; therefore, new infections will continue to emerge, and known infections will change in distribution, frequency, and severity. 88 refs., 1 fig.

  20. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  1. National ownership in the implementation of global climate policy in Uganda

    DEFF Research Database (Denmark)

    Olsen, K.H.

    2006-01-01

    This article explores the history, from a developing country perspective, of how external interventions to implement global policies on the Climate Convention and the Clean Development Mechanism (CDM) have been integrated into national development policy frameworks in the period 1990-2005. The main...... first. Against this background, Uganda's policy response to climate change is reviewed. National climate policies are found not to exist, and the implementation of global policies is not integrated into national policy frameworks, partly due to conflicting national and global priorities. Given limited...... national awareness and the fact that climate policy is marginal compared to other national interests in Uganda, the experiences with donor support for the implementation of global climate policy nationally are analysed. This article demonstrates that neither national policies nor national management...

  2. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    Directory of Open Access Journals (Sweden)

    Oriana Ovalle-Rivera

    Full Text Available Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  3. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010 derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  4. Time-lag effects of global vegetation responses to climate change.

    Science.gov (United States)

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change.

  5. Braking effect of climate and topography on global change-induced upslope forest expansion

    Science.gov (United States)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2016-08-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  6. Global climate change attitudes and perceptions among south American zoo visitors.

    Science.gov (United States)

    Luebke, Jerry F; Clayton, Susan; Kelly, Lisa-Anne DeGregoria; Grajal, Alejandro

    2015-01-01

    There is a substantial gap between the scientific evidence for anthropogenic climate change and the human response to this evidence. Perceptions of and responses to climate change can differ among regions of the world, as well as within countries. Therefore, information about the public's attitudes and perceptions related to climate change is essential to the development of relevant educational resources. In the present study, zoo visitors in four South American countries responded to a questionnaire regarding their attitudes and perceptions toward global climate change. Results indicated that most respondents are already highly concerned about global climate change and are interested in greater engagement in pro-environmental behaviors. Visitors also perceive various obstacles to engagement in climate change mitigation behaviors. We discuss the results of our study in terms of addressing visitors' climate change attitudes and perceptions within the social and emotional context of zoo settings.

  7. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    Science.gov (United States)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  8. Wintertime urban heat island modified by global climate change over Japan

    Science.gov (United States)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  9. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  10. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    DEFF Research Database (Denmark)

    Gladun, Elena; Ahsan, Dewan

    2016-01-01

    and in the financial infrastructure, and in the formation of an international climate change policy. The importance of the participation of Brazil, Russia, India, China, and South Africa (BRICS) in an international climate change regime has been recognized for some time. The article describes the policy...... and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make...... adequate efforts in emissions reduction measures and significant commitments in respect of the international climate change regime. The authors propose three major steps for BRICS to take the lead in dealing with climate change. First, BRICS need to foster further discussion and cooperation on climate...

  11. Global warming and contemporary climatic changes in Poland; Globalne ocieplenie a wspolczesne zmiany klimatyczne w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The conference on global warming took place in Szczecin, Poland, on May 31 to Jun 1, 1993, organized by the national committee of IGBP Global Change, the Szczecin University and the Szczecin Academy of Agriculture. Twenty papers were published. Topics covered climatic changes in geological history, microclimates in Poland, contributions of natural changes to recent global warming, scenarios for climatic change in Poland, sensitivity of the water balance to climatic change, effects of global warming on surface water temperatures, evapotranspiration in the Balkans, droughts in the Eastern Mediterranean and in Poland, precipitation patterns in Poland, temperatures and salinity in the Baltic Sea, changes in water supply of the Baltic sea, the atmospheric circulation over the Baltic sea and in Poland, cold and heat waves in Poznan during 1911-1990 and climatic changes observed in Southern Poland.

  12. Health, fairness and New Zealand's contribution to global post-2020 climate change action.

    Science.gov (United States)

    Bennett, Hayley; Macmillan, Alex; Jones, Rhys

    2015-05-29

    Health and wellbeing have been largely ignored in discussions around climate change targets and action to date. The current public consultation around New Zealand's post-2020 climate target is an opportunity for health professionals to highlight the health implications of climate change. Without urgent global efforts to bring down global GHG (greenhouse gas) emissions, the world is heading towards high levels of global warming, which will have devastating impacts on human health and wellbeing. New Zealand's action to bring down GHG emissions (as part of the global effort) has potential to improve health and reduce costs on the health sector, if health and fairness are put at the centre of policies to address climate change. New Zealand should commit to at least 40 % reductions in GHG emissions by 2030, and zero carbon emissions before 2050, with healthy and fair policies across sectors to enable reaching these targets.

  13. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  14. Global water resources affected by human interventions and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z.; Wada, Y.; Wisser, D.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  15. Global water resources affected by human interventionss and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.F.; Hanasaki, N.; Konzmann, M.; Ludwig, F.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  16. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    Science.gov (United States)

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  17. A Global Carbon Levy for Climate Change Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, Moritz [President of the Swiss Confederation (Switzerland)

    2006-11-15

    Climate change is happening, here and now. We are tied together by melting glaciers in Africa and in Europe, by floods in America and in Asia, and by droughts and shortages of fresh water in Australia and Africa. And we are tied by a joint responsibility to combat climate change around the world and help those affected by it.

  18. Probabilistic Description of Global Climatic Fields By Wave Functions

    Science.gov (United States)

    Yushkov, V.

    Probability density decomposition onto the waveforms will propose. This method is analogous to widely used EOF analysis but on three spatial dimensions and on tem- poral scale is enlarged. Probabilistic approach gives simpler understanding of main relations in climatic system. It permits to avoid sophisticated parameterization in the dynamic description. This approach allows concentrating attention on the key param- eters of climate and weather changes. Based on relatively few parameters, this method permits to describe the basic statistical characteristics of the Earth's climate and to compare various climatic data sets, theoretical climate models, and the differences between model results and observation. Probabilistic approach allows us to analyze huge archives of accumulated meteorological information and create algorithms for data storage.

  19. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  20. A global climate model based, Bayesian climate projection for northern extra-tropical land areas

    Science.gov (United States)

    Arzhanov, Maxim M.; Eliseev, Alexey V.; Mokhov, Igor I.

    2012-04-01

    Projections with contemporary global climate models (GCMs) still markedly deviate from each other on magnitude of climate changes, in particular, in middle to subpolar latitudes. In this work, a climate projection based on the ensemble of 18 CMIP3 GCM models forced by SRES A1B scenario is performed for the northern extra-tropical land. To assess the change of soil state, off-line simulations are performed with the Deep Soil Simulator (DSS) developed at the A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS). This model is forced by output of the above-mentioned GCM simulations. Ensemble mean and ensemble standard deviation for any variable are calculated by using Bayesian averaging which allows to enhance a contribution from more realistic models and diminish that from less realistic models. As a result, uncertainty for soil and permafrost variables become substantially narrower. The Bayesian weights for each model are calculated based on their performance for the present-day surface air temperature (SAT) and permafrost distributions, and for SAT trend during the 20th century. The results, except for intra-ensemble standard deviations, are not very sensitive to particular choice of Bayesian traits. Averaged over the northern extra-tropical land, annual mean surface air temperature in the ensemble increases by 3.1 ± 1.4 K (ensemble mean±intra-ensemble standard deviation) during the 21st century. Precipitation robustly increases in the pan-Arctic and decreases in the Mediterranean/Black Sea region. The models agree on near-surface permafrost degradation during the 21st century. The area underlain by near-surface permafrost decreases from the contemporary value 20 ± 3 mln sq. km to 14 ± 3 mln sq. km in the late 21st century. This leads to risk for geocryological hazard due to soil subsidence. This risk is classified as moderate to high in the southern and western parts of Siberia and Tibet in Eurasia, and in the region from Alaska

  1. Re-emergence of Chikungunya and other scourges: the role of globalization and climate change.

    Science.gov (United States)

    Rezza, Giovanni

    2008-01-01

    Globalization and climate change are important phenomena in a changing world. To date, only the effect of globalisation on infectious diseases, from vector-borne to respiratory infections, has been well established. The influence of cyclic natural climatic events and local variations in temperature and precipitation has also been recognised; however, there is still no conclusive evidence of an effect of global warming on infectious disease patterns.

  2. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  3. Omega-3: A Link between Global Climate Change and Human Health

    OpenAIRE

    Kang, Jing X.

    2011-01-01

    In recent years, global climate change has been shown to detrimentally affect many biological and environmental factors, including those of marine ecosystems. In particular, global climate change has been linked to an increase in atmospheric carbon dioxide, UV irradiation, and ocean temperatures, resulting in decreased marine phytoplankton growth and reduced synthesis of omega-3 polyunsaturated fatty acids (PUFAs). Marine phytoplankton are the primary producers of omega-3 PUFAs, which are ess...

  4. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  5. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J.S.; Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  6. Interests, Norms, and Support for the Provision of Global Public Goods: The Case of Climate Cooperation

    OpenAIRE

    Bechtel, Michael; Genovese, Federica; Kenneth F. Scheve

    2016-01-01

    Mitigating climate change requires countries to provide a global public good. This means that the domestic cleavages underlying mass attitudes toward international climate policy are a central determinant of its provision. We argue that the industry-specific costs of emission abatement and internalized social norms help explain support for climate policy. To evaluate our predictions we develop novel measures of industry-specific interests by cross-referencing individuals’ sectors of employmen...

  7. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    OpenAIRE

    2015-01-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water ...

  8. Policies, Actions and Effects for China s Forestry Response to Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Climate change is a great concern of various countries, the public and science community, and forest plays an important role in mitigating climate change. The paper made a comprehensive analysis regarding the policy selections of China to promote forestry response to the global climate change, and elaborated the concrete actions and achievements in this regard. Policy selections include: 1) Reinforce tree planting and afforestation, increase the forested area and enhance the capacity of carbon sequestration...

  9. The Role of Knowledge in Global Climate Change Governance: Modes of Legitimation in Tuvalu

    OpenAIRE

    Lazrus, Heather

    2005-01-01

    The important role of knowledge about global climate change in environmental governance is investigated in this paper. The relationship between more and less ‘global’ and ‘local’ forms of knowledge in climate governance has implications for international norms of justice, national sovereignty and human and national security. This paper attempts to show how the simultaneous and seemingly contradictory trends of ‘globalizing’ and ‘localizing’ in climate governance actually serve to help legitim...

  10. Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change

    OpenAIRE

    Peng, Roger D.; Tebaldi, Claudia; McDaniel, Larry; Bobb, Jennifer; Dominici, Francesca; Bell, Michelle D.

    2010-01-01

    Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated t...

  11. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    Science.gov (United States)

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  12. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    Science.gov (United States)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  13. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric concent

  14. Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

    NARCIS (Netherlands)

    Meller, L.; van Vuuren, D.P.; Cabeza, M.

    2015-01-01

    The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change a

  15. Now what do people know about global climate change? Survey studies of educated laypeople.

    Science.gov (United States)

    Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger

    2010-10-01

    In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels.

  16. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.;

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...

  17. Global and Local Discourses on Climate Change: A Perspective from the Concept of Embeddedness

    Directory of Open Access Journals (Sweden)

    Jailab Kumar Rai

    2011-04-01

    Full Text Available Climate change has been becoming a major order of business of all including researchers and academics. This is known that global, national and local organizations, institutions and even the individuals are partaking into the issues with their own perspectives and skills of negotiations. Despite the series of international efforts and attempts, there are also a series of national concerns, efforts and attempts in combating against the effects of global climate change. This paper is an attempt to draw on the overview of contexts and concerns of international communities for combating global climate change and its discursive influence in national policy discourses. Moreover, the paper attempts to assess the local socio-cultural discourses and dynamics of climate change in relation to global and national discourses. Finally the paper highlights on how global and local climate change knowledge networks and epistemic communities either from political processes or the socio-economic fabrics are interrelated and determinant to each other. Keywords: climate change; discourses; embeddeness; dynamics; global; local DOI: 10.3126/dsaj.v4i0.4518 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.143-180

  18. Exploring Connections between Global Climate Indices and African Vegetation Phenology

    Science.gov (United States)

    Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton

    2009-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.

  19. Low-carbon agriculture in South America to mitigate global climate change and advance food security.

    Science.gov (United States)

    Sá, João Carlos de Moraes; Lal, Rattan; Cerri, Carlos Clemente; Lorenz, Klaus; Hungria, Mariangela; de Faccio Carvalho, Paulo Cesar

    2017-01-01

    The worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear(-1) and 56Mton or 1.6Mtonyear(-1), respectively, between 2016 and 2050.

  20. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Science.gov (United States)

    Namazi, M.; von Salzen, K.; Cole, J. N. S.

    2015-09-01

    A new physically based parameterisation of black carbon (BC) in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2). Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950-1959 to 2000-2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950-1959 and 2000-2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these 2 decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  1. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Directory of Open Access Journals (Sweden)

    M. Namazi

    2015-07-01

    Full Text Available A new physically-based parameterization of black carbon (BC in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2. Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950–1959 to 2000–2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950–1959 and 2000–2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these two decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  2. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2012-11-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  3. Flood risk and climate change: global and regional perspectives

    OpenAIRE

    Kundzewicz, Zbigniew W.; Kanae, Shinjiro; Seneviratne, Sonia I; Handmer, John; Nicholls, Neville; Peduzzi, Pascal; Mechler, Reinhard; Laurens M. Bouwer; Arnell, Nigel; Mach, Katharine; Muir-Wood, Robert; Brakenridge, G. Robert; Kron, Wolfgang; Benito, Gerardo; Honda, Yasushi

    2014-01-01

    A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increase...

  4. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  5. Climate change at the coast: from global to local; Impact du changement climatique sur la cote: de global a local

    Energy Technology Data Exchange (ETDEWEB)

    Watkinson, A.R. [Tyndall Centre for Climate Change Research (United Kingdom); East Anglia Univ., School of East Science, Norwich (United Kingdom)

    2009-07-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  6. ADVANCED ENERGY TECHNOLOGIES AND CLIMATE CHANGE: AN ANALYSIS USING THE GLOBAL CHANGE ASSESSMENT MODEL (GCAM)

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J. A.; Wise, M. A.; MacCracken, C. N.

    1994-05-01

    We report results from a "top down" energy-economy model employing "bottom up" assumptions embedded in an integrated assessment framework, the Global Change Assessment Model (GCAM). The analys~s shows that from the perspective of long-term energy system development, differences. in results from the "top down" and "bottom up" research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences In modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the m~ddleo f the eighteenth century. While all energy technologies play roles in reducing future fossil fuel carbon dioxide emissions, the introduction of advanced biomass energy production technology plays a particularly important role. If biomass energy can be made available at $2.40/GJ or less in quantities sufficient to make it the core energy supply technology in the middle of the next century, then emissions can be cut dramatically relative to the reference case. The problem of emiss~ons reduction becomes one of technology development and deployment in this case, and not one of fiscal and regulatory intervention.

  7. Changes in the Global Wave Climate from Single-Model Projections

    Science.gov (United States)

    Lemos, Gil; Behrens, Arno; Dobrynin, Mikhail; Miranda, Pedro; Semedo, Alvaro; Staneva, Joanna

    2016-04-01

    Ocean surface wind waves are of outmost relevance for practical and scientific reasons. On the one hand waves have a direct impact in coastal erosion, but also in sediment transport and beach nourishment, in ship routing and ship design, as well as in coastal and offshore infrastructures, just to mention the most relevant. On the other hand waves are part of the climate system, and modulate most of the exchanges that take place at the atmosphere-ocean interface. In fact waves are the "ultimate" air-sea interaction process, clearly visible and noticeable. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit and received relative attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (Fifth Assessment Report). In the present study the impact of a warmer climate in the future global wave climate is investigated through a 3-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is eliminated, leaving only room for the climate change signal. The three ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1971 to 2005. The projected changes in the global wave climate are analyzed for the 2071-2100 period. The ensemble reference period is evaluated trough the comparison with the European Centre for medium-range weather forecasts (ECMWF) ERA-Interim reanalysis.

  8. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration.

    Science.gov (United States)

    Zhang, Ke; Kimball, John S; Nemani, Ramakrishna R; Running, Steven W; Hong, Yang; Gourley, Jonathan J; Yu, Zhongbo

    2015-10-30

    Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr(-2) (P climate phases associated with strong El Niño events.

  9. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  10. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

    Science.gov (United States)

    Naik, Vaishali; Delire, Christine; Wuebbles, Donald J.

    2004-03-01

    Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global climate and atmospheric carbon dioxide (CO2) concentration during the period 1971-1990. We integrate surface emission algorithms within the framework of a dynamic global ecosystem model, the Integrated Biospheric Simulator (IBIS), to simulate biogenic fluxes of isoprenoids as a component of the climate-vegetation dynamics. IBIS predicts global land surface isoprene emissions of 454 Tg C and monoterpenes of 72 Tg C annually and captures the spatial and temporal patterns well. The combined fluctuations in climate and atmospheric CO2 during 1971-1990 caused significant interannual and seasonal variability in global biogenic isoprenoid fluxes that was somewhat related to the El Niño-Southern Oscillation. Furthermore, an increasing trend in the simulated emissions was seen during this period that is attributed partly to the warming trend and partly to CO2 fertilization effect. The isolated effect of increasing CO2 during this period was to steadily increase emissions as a result of increases in foliar biomass. These fluctuations in biogenic emissions could have significant impacts on regional and global atmospheric chemistry and the global carbon budget.

  11. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  12. Empirical Estimates of Global Climate Sensitivity: An Assessment of Strategies Using a Coupled GCM

    Institute of Scientific and Technical Information of China (English)

    ZHU Weijun; Kevin HAMILTON

    2008-01-01

    A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.

  13. Is the global rise of asthma an early impact of anthropogenic climate change?

    Directory of Open Access Journals (Sweden)

    Paul John Beggs

    Full Text Available The increase in asthma incidence, prevalence, and morbidity over recent decades presents a significant challenge to public health. Pollen is an important trigger of some types of asthma, and both pollen quantity and season depend on climatic and meteorological variables. Over the same period as the global rise in asthma, there have been considerable increases in atmospheric carbon dioxide concentration and global average surface temperature. We hypothesize anthropogenic climate change as a plausible contributor to the rise in asthma. Greater concentrations of carbon dioxide and higher temperatures may increase pollen quantity and induce longer pollen seasons. Pollen allergenicity can also increase as a result of these changes in climate. Exposure in early life to a more allergenic environment may also provoke the development of other atopic conditions, such as eczema and allergic rhinitis. Although the etiology of asthma is complex, the recent global rise in asthma could be an early health effect of anthropogenic climate change.

  14. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water d

  15. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    During the last decades of growing scientific, political and public attention to global climate change, it has become increasingly clear that the present and projected impacts from climate change, and the ability adapt to the these changes, are not evenly distributed across the globe. This paper...... is biased toward richer countries, which are more stable and less corrupt, have higher school enrolment and expenditures on research and development, emit more carbon and are less vulnerable to climate change. Similarly, the production of knowledge, analyzed by author affiliations, is skewed away from...... the poorer, fragile and more vulnerable regions of the world. A quantitative keywords analysis of all publications shows that different knowledge domains and research themes dominate across regions, reflecting the divergent global concerns in relation to climate change. In general, research on climate change...

  16. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    DEFF Research Database (Denmark)

    Ahsan, Dewan; Gladun, Elena

    2016-01-01

    and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make......-related issues BRICS should act as a bloc. Russia’s distancing itself from its partners is considered a deficiency in strengthening the BRICS countries’ role in global governance. BRICS are capable of serving as a vigorous platform in driving climate change negotiations leading to effective binding regulations...... issues and work out an obligatory legal framework to fight climate change collectively as well as unified legislation at their domestic levels. Second, Russia and other BRICS countries have the potential to cooperate in the field of renewable energy through the exchange of technology, investment...

  17. Melancholia States in the Climate System: Exploring Global Instabilities and Critical Transitions

    CERN Document Server

    Lucarini, Valerio

    2016-01-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system's response to perturbations. Near critical transitions small causes can lead to large effects and - for all practical purposes - irreversible changes in the properties of the system. The Earth climate is multistable: present astronomical/astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate, characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches. Following an idea developed by Eckhardt and co. for the investigation of multistable turbulent fluids, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the ...

  18. Climate change damage functions in LCA – (1) from global warming potential to natural environment damages

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Hauschild, Michael Zwicky; Bagger Jørgensen, Rikke

    Energy use often is the most significant contributor to the impact category ‘global warming’ in life cycle impact assessment. However, the potential global warming effects on the climate at regional level and consequential effects on the natural environment are not thoroughly described within LCA...... methodology. The current scientific understanding of the extent of climate change impacts is limited due to the immense complexity of the multi-factorial environmental changes and unknown adaptive capacities at process, species and ecosystem level. In the presentation we argue that the global warming impacts...

  19. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Science.gov (United States)

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-10-01

    The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971-2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (-6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  20. The Great Season Climatic Oscillation and the Global Warming

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    The present earth warming up is often explained by the atmosphere gas greenhouse effect. This explanation is in contradiction with the thermodynamics second law. The warming up by greenhouse effect is quite improbable. It is cloud reflection that gives to the earth s ground its 15 degres C mean temperature. Since the reflection of the radiation by gases is negligible, the role of the atmosphere greenhouse gases in the earth warming up by earth radiation reflection loses its importance. We think that natural climatic oscillations contribute more to earth climatic disturbances. The oscillation that we hypothesize to exist has a long period (800 to 1000 years). The glacier melting and regeneration cycles lead to variations in the cold region ocean water density and thermal conductibility according to their salinity. These variations lead one to think about a macro climate oscillating between maximum hot and minimum cold temperatures. This oscillation is materialized by the passages of the planet through hot, mil...

  1. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  2. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  3. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  4. Recursive inter-generational utility in global climate risk modeling

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Ha-Duong [Centre International de Recherche sur l' Environnement et le Developpement (CIRED-CNRS), 75 - Paris (France); Treich, N. [Institut National de Recherches Agronomiques (INRA-LEERNA), 31 - Toulouse (France)

    2003-07-01

    This paper distinguishes relative risk aversion and resistance to inter-temporal substitution in climate risk modeling. Stochastic recursive preferences are introduced in a stylized numeric climate-economy model using preliminary IPCC 1998 scenarios. It shows that higher risk aversion increases the optimal carbon tax. Higher resistance to inter-temporal substitution alone has the same effect as increasing the discount rate, provided that the risk is not too large. We discuss implications of these findings for the debate upon discounting and sustainability under uncertainty. (author)

  5. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  6. Global priority conservation areas in the face of 21st century climate change.

    Science.gov (United States)

    Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin

    2013-01-01

    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st) century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  7. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  8. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  9. Energy in New England | Energy and Global Climate Change ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit provides information, technical assistance, and training on energy efficiency, renewable energy, energy use and transmission in New England. In addition, the unit works with the New England States to regulate and inventory greenhouse gas emissions.

  10. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  11. Optimising the FAMOUS climate model: inclusion of global carbon cycling

    Directory of Open Access Journals (Sweden)

    J. H. T. Williams

    2012-10-01

    Full Text Available FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

  12. Equilibrium of global amphibian species distributions with climate

    DEFF Research Database (Denmark)

    Munguí­a, Mariana; Rahbek, Carsten; Rangel, Thiago F.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a compl...

  13. Deficiencies in the simulation of the geographic distribution of climate types by global climate models

    Science.gov (United States)

    Zhang, Xianliang; Yan, Xiaodong

    2016-05-01

    The performances of General Circulation Models (GCMs) when checked with conventional methods (i.e. correlation, bias, root-mean-square error) can only be evaluated for each variable individually. The geographic distribution of climate type in GCM simulations, which reflects the spatial attributes of models and is related closely to the terrestrial biosphere, has not yet been evaluated. Thus, whether the geographic distribution of climate types was well simulated by GCMs was evaluated in this study for nine GCMs. The results showed that large areas of climate zones classified by the GCMs were allocated incorrectly when compared to the basic climate zones established by observed data. The percentages of wrong areas covered approximately 30-50 % of the total land area for most models. In addition, the temporal shift in the distribution of climate zones according to the GCMs was found to be inaccurate. Not only were the locations of shifts poorly simulated, but also the areas of shift in climate zones. Overall, the geographic distribution of climate types was not simulated well by the GCMs, nor was the temporal shift in the distribution of climate zones. Thus, a new method on how to evaluate the simulated distribution of climate types for GCMs was provided in this study.

  14. Threat to future global food security from climate change and ozone air pollution

    Science.gov (United States)

    Tai, Amos P. K.; Martin, Maria Val; Heald, Colette L.

    2014-09-01

    Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative effectiveness of these two strategies for different crops and regions. Here we present an integrated analysis of the individual and combined effects of 2000-2050 climate change and ozone trends on the production of four major crops (wheat, rice, maize and soybean) worldwide based on historical observations and model projections, specifically accounting for ozone-temperature co-variation. The projections exclude the effect of rising CO2, which has complex and potentially offsetting impacts on global food supply. We show that warming reduces global crop production by >10% by 2050 with a potential to substantially worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate or offset a substantial fraction of climate impacts depending on the scenario, suggesting the importance of air quality management in agricultural planning. Furthermore, we find that depending on region some crops are primarily sensitive to either ozone (for example, wheat) or heat (for example, maize) alone, providing a measure of relative benefits of climate adaptation versus ozone regulation for food security in different regions.

  15. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  16. Global Potential for Hydro-generated Electricity and Climate Change Impact

    Science.gov (United States)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  17. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    Science.gov (United States)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  18. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    Science.gov (United States)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-01-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897

  19. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  20. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-01

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  1. Basic Info | Energy and Global Climate Change in New ...

    Science.gov (United States)

    2017-04-10

    Beginning late in the 18th Century, human activities associated with the Industrial Revolution changed the chemical composition of the atmosphere and began influencing the Earth's climate: the burning of fossil fuels, such as coal and oil, along with deforestation, has caused concentrations of heat-trapping 'greenhouse gases' to increase significantly in our atmosphere. These gases act to prevent heat from escaping into space, like the glass panels of a greenhouse.

  2. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    Directory of Open Access Journals (Sweden)

    E. Gladun

    2016-01-01

    Full Text Available The article presents an overview and analysis of international legal regulations on climate change. The authors examine how the international regime related to climate change has evolved in multilateral agreements. A special focus is put on the principle of common but differentiated responsibilities which became the basis of discord among states in discussing targets and responsibilities in climate change mitigation. The authors note that in 2015 the international climate change regime entered a new stage where the most important role is determined for developing countries, both in the legal and in the financial infrastructure, and in the formation of an international climate change policy.The importance of the participation of Brazil, Russia, India, China, and South Africa (BRICS in an international climate change regime has been recognized for some time. The article describes the policy and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make adequate efforts in emissions reduction measures and significant commitments in respect of the international climate change regime. The authors propose three major steps for BRICS to take the lead in dealing with climate change. First, BRICS need to foster further discussion and cooperation on climate issues and work out an obligatory legal framework to fight climate change collectively as well as unified legislation at their domestic levels. Second, Russia and other BRICS countries have the potential to cooperate in the field of renewable energy through the exchange of technology, investment in the sector, and the participation of their energy companies in each other’s domestic market. Assuming Russia will support the development and enhancement of

  3. Signatures of global warming and regional climate shift in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Roshin, R.P.; Narvekar, J.; DineshKumar, P.K.; Vivekanandan, E.

    ) and melting of glaciers (Oerlemans, 1994) which has implication to global hydrological cycle apart from the concern of sea-level rise (Church, 2001; Meehl et al., 2005). Though there exist considerable amount of information on the global warming and climate...://www.ngdc.noaa.gov/stp/SOLAR/ ftpsunspotnumber.html. Global CO 2 emission data was from http:// cdiac.ornl.gov/trends/emis/meth_reg.htm while global CO 2 concentration data measured at Mauna Loa was obtained from www.esrl.noaa.gov. The rainfall over India was from Indian Institute of Tropical...

  4. Advances on the Responses of Root Dynamics to Increased Atmospheric CO2 and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Plant roots dynamics responses to elevated atmospheric CO2 concentration, increased temperature and changed precipitation can be a key link between plant growth and long-term changes in soil organic matter and ecosystem carbon balance. This paper reviews some experiments and hypotheses developed in this area, which mainly include plant fine roots growth, root turnover, root respiration and other root dynamics responses to elevated CO2 and global climate change. Some recent new methods of studying root systems were also discussed and summarized. It holds herein that the assemblage of information about root turnover patterns, root respiration and other dynamic responses to elevated atmospheric CO2 and global climatic change can help to better understand and explore some new research areas. In this paper, some research challenges in the plant root responses to the elevated CO2 and other environmental factors during global climate change were also demonstrated.

  5. Coastal erosion in China under the condition of global climate change and measures for its prevention

    Institute of Scientific and Technical Information of China (English)

    Feng Cai; Xianze Su; Jianhui Liu; Bing Li; Gang Lei

    2009-01-01

    The general characteristics of coastal erosion in China are described in terms of the regional geography,the form of erosion,the causes of erosion,and the challenges we are facing.The paper highlights the relationship between coastal erosion and sea level rises,storm waves and tides,and the influence of global climate changes on coastal erosion along the coastal zone of China.The response of the risk of coastal erosion in China to climate changes has obvious regional diversity.Research into and the forecasting of the effects of climate changes on coastal erosion are systemic work involving the natural environment,social economy,and alongshore engineering projects in the global system.Facing global warming and continual enhancement of coastal erosion,suggestions for basic theoretical study,prevention technology,management system assurance,and strengthening the legal system are presented here.

  6. Western Pacific hydroclimate linked to global climate variability over the past two millennia

    Science.gov (United States)

    Griffiths, Michael L.; Kimbrough, Alena K.; Gagan, Michael K.; Drysdale, Russell N.; Cole, Julia E.; Johnson, Kathleen R.; Zhao, Jian-Xin; Cook, Benjamin I.; Hellstrom, John C.; Hantoro, Wahyoe S.

    2016-06-01

    Interdecadal modes of tropical Pacific ocean-atmosphere circulation have a strong influence on global temperature, yet the extent to which these phenomena influence global climate on multicentury timescales is still poorly known. Here we present a 2,000-year, multiproxy reconstruction of western Pacific hydroclimate from two speleothem records for southeastern Indonesia. The composite record shows pronounced shifts in monsoon rainfall that are antiphased with precipitation records for East Asia and the central-eastern equatorial Pacific. These meridional and zonal patterns are best explained by a poleward expansion of the Australasian Intertropical Convergence Zone and weakening of the Pacific Walker circulation (PWC) between ~1000 and 1500 CE Conversely, an equatorward contraction of the Intertropical Convergence Zone and strengthened PWC occurred between ~1500 and 1900 CE. Our findings, together with climate model simulations, highlight the likelihood that century-scale variations in tropical Pacific climate modes can significantly modulate radiatively forced shifts in global temperature.

  7. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  8. Global Climate Change:A Monumental Mitigation Challenge

    Science.gov (United States)

    A holistic view of long-term sustainability cannot ignore humanity’s ever-growing demands on fossil fuels, water, and other finite geological resources. Figure 1 (Princiotta et. al., 2014) illustrates the key factors that are responsible for potentially unsustainable global impac...

  9. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  10. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    Science.gov (United States)

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  11. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  12. Uniformitarianism: A Comparative Study of the Global Transitional Climatic Area Influences on the Bampur Valley

    OpenAIRE

    Mohammad Salighe; Mehdi Mortazavi; Fariba Mosapour Negari

    2012-01-01

    The aim of this paper is to examine the interactions between people and the natural environment against a background of climatic change. The focus of attention is on the Bampur Valley, which is located in the global transitional climatic area. During the fourth and third millennium BCE, an important urban society, which was in close economic contacts with the urban societies of the Sistan Basin, Jiroft, Soghan Valley, ...

  13. Developing global climate anomalies suggest potential disease risks for 2006 – 2007

    OpenAIRE

    Tucker Compton J.; Small Jennifer; Chretien Jean-Paul; Anyamba Assaf; Linthicum Kenneth J

    2006-01-01

    Abstract Background El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hem...

  14. Policy integration, coherence and governance in Dutch climate policy : a multi-level analysis of mitigation and adoption policy

    NARCIS (Netherlands)

    Bommel, van S.; Kuindersma, W.

    2008-01-01

    This report assesses the integration of climate policy in Dutch public policy at the national, regional, local and area level. The national analysis focuses on the horizontal integration of climate policy in national government programmes, adaptation and mitigation strategies and specific policy ins

  15. Development of new impact functions for global risk caused by climate change

    Science.gov (United States)

    Miyazaki, C.

    2014-12-01

    The purpose of our study is to identify and quantify global-scale risks which can be caused by future climate change. In particular, we focus on the global-scale risks which have critical impacts to human environments. Use of impact functions is one of the common way to quantify global-scale risks. Output of impact function is climate impacts (e.g. economic damage by temperature increasing) and input can be global temperature increasing and/or socioeconomic condition (e.g. GDP). As the first step of study, we referred to AR5 WG II report (AR5, hereafter) and comprehensive inventories of climate change risks developed by Strategic R&D Area Project of the Environment Research and Technology Development Fund (ICA-RUS project). Then we extracted information which can be used to develop impact function from them. By following SPM/AR5, we focused on 11 sectors and extracted quantitative description on climate impacts from the AR5 and paper/reports cited in AR5. As a result, we identified about 40 risk items to focus as global-scale risks by climate change. Using the collected information, we tentatively made impact function on sea level rise and so on. In addition, we also extracted the impact functions used in Integrated Assessment Models (IAMs). The literature survey on IAM suggested the risk items considered in IAMs are limited. For instance, although FUND model provides detailed impact functions compared with most of other IAMs, its impact functions deal with only several sectors (e.g. agriculture, forestry, biodiversity, sea level rise, human health, energy demand and water resources). The survey on impact functions in IAMs also suggested impact function for abrupt climate change (so-called Tipping Element) is premature. Moreover, as example for quantifying health risk by our calculation, we also present the result on global-scale projection of the health burden attributable to childhood undernutrition (Ishida et al., 2014, ERL).

  16. Scientific aspects of climate change; Fundamentos cientificos del calentamiento global

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, G.

    2007-07-01

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  17. Omega-3: a link between global climate change and human health.

    Science.gov (United States)

    Kang, Jing X

    2011-01-01

    In recent years, global climate change has been shown to detrimentally affect many biological and environmental factors, including those of marine ecosystems. In particular, global climate change has been linked to an increase in atmospheric carbon dioxide, UV irradiation, and ocean temperatures, resulting in decreased marine phytoplankton growth and reduced synthesis of omega-3 polyunsaturated fatty acids (PUFAs). Marine phytoplankton are the primary producers of omega-3 PUFAs, which are essential nutrients for normal human growth and development and have many beneficial effects on human health. Thus, these detrimental effects of climate change on the oceans may reduce the availability of omega-3 PUFAs in our diets, exacerbating the modern deficiency of omega-3 PUFAs and imbalance of the tissue omega-6/omega-3 PUFA ratio, which have been associated with an increased risk for cardiovascular disease, cancer, diabetes, and neurodegenerative disease. This article provides new insight into the relationship between global climate change and human health by identifying omega-3 PUFA availability as a potentially important link, and proposes a biotechnological strategy for addressing the potential shortage of omega-3 PUFAs in human diets resulting from global climate change.

  18. Global Climate Change for Kids: Making Difficult Ideas Accessible and Exciting

    Science.gov (United States)

    Fisher, D. K.; Leon, N.; Greene, M. P.

    2009-12-01

    NASA has recently launched its Global Climate Change web site (http://climate.nasa.gov), and it has been very well received. It has now also launched in preliminary form an associated site for children and educators, with a plan for completion in the near future. The goals of the NASA Global Climate Change Education site are: To increase awareness and understanding of climate change science in upper-elementary and middle-school students, reinforcing and building upon basic concepts introduced in the formal science education curriculum for these grades; To present, insofar as possible, a holistic picture of climate change science and current evidence of climate change, describing Earth as a system of interconnected processes; To be entertaining and motivating; To be clear and easy to understand; To be easy to navigate; To address multiple learning styles; To describe and promote "green" careers; To increase awareness of NASA's contributions to climate change science; To provide valuable resources for educators; To be compliant with Section 508 of the Americans with Disabilities Act. The site incorporates research findings not only on climate change, but also on effective web design for children. It is envisioned that most of the content of the site will ultimately be presented in multimedia forms. These will include illustrated and narrated "slide shows," animated expositions, interactive concept-rich games and demonstrations, videos, animated fictionalized stories, and printable picture galleries. In recognition of the attention span of the audience, content is presented in short, modular form, with a suggested, but not mandatory order of access. Empathetic animal and human cartoon personalities are used to explain concepts and tell stories. Expository, fiction, game, video, text, and image modules are interlinked for reinforcement of similar ideas. NASA's Global Climate Change Education web site addresses the vital need to impart and emphasize Earth system science

  19. An improved dust emission model with insights into the global dust cycle's climate sensitivity

    Science.gov (United States)

    Kok, J. F.; Mahowald, N. M.; Albani, S.; Fratini, G.; Gillies, J. A.; Ishizuka, M.; Leys, J. F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R. S.; Ward, D. S.; Zobeck, T. M.

    2014-03-01

    Simulations of the global dust cycle and its interactions with a changing Earth system are hindered by the empirical nature of dust emission parameterizations in climate models. Here we take a step towards improving global dust cycle simulations by presenting a physically-based dust emission model. The resulting dust flux parameterization depends only on the wind friction speed and the soil's threshold friction speed, and can therefore be readily implemented into climate models. We show that our parameterization's functional form is supported by a compilation of quality-controlled vertical dust flux measurements, and that it better reproduces these measurements than existing parameterizations. Both our theory and measurements indicate that many climate models underestimate the dust flux's sensitivity to soil erodibility. This finding can explain why dust cycle simulations in many models are improved by using an empirical preferential sources function that shifts dust emissions towards the most erodible regions. In fact, implementing our parameterization in a climate model produces even better agreement against aerosol optical depth measurements than simulations that use such a source function. These results indicate that the need to use a source function is at least partially eliminated by the additional physics accounted for by our parameterization. Since soil erodibility is affected by climate changes, our results further suggest that many models have underestimated the climate sensitivity of the global dust cycle.

  20. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  1. The Increase of Exotic Zoonotic Helminth Infections: The Impact of Urbanization, Climate Change and Globalization.

    Science.gov (United States)

    Gordon, Catherine A; McManus, Donald P; Jones, Malcolm K; Gray, Darren J; Gobert, Geoffrey N

    2016-01-01

    Zoonotic parasitic diseases are increasingly impacting human populations due to the effects of globalization, urbanization and climate change. Here we review the recent literature on the most important helminth zoonoses, including reports of incidence and prevalence. We discuss those helminth diseases which are increasing in endemic areas and consider their geographical spread into new regions within the framework of globalization, urbanization and climate change to determine the effect these variables are having on disease incidence, transmission and the associated challenges presented for public health initiatives, including control and elimination.

  2. The Environmental Landscape Evolution of the Loess under the Background of Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the environment evolution of Shanbei Loess landscape under the background of global climate changes.[Method] The annual and monthly temperature and precipitation in Yulin area in north Shaanxi from 1952 to 2009 were selected,and by dint of linear regression and M-K mutation,the Loess land form evolution under the global climate change was studied.[Result] The temperature in Yulin area showed increasing tendency from 1952 to 2009 at a speed of 0.287℃/10 a.The year 1994 was a ...

  3. Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    Science.gov (United States)

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  4. Relationship between global mean sea-level and global mean temperature in a climate simulation of the past millennium

    Science.gov (United States)

    Storch, Hans Von; Zorita, Eduardo; González-Rouco, Jesús F.

    2008-11-01

    The possibility of using global mean near-surface temperature, its rate of change or the global mean ocean heat-flux as predictors to statistically estimate the change of global mean sea-level is explored in the context of a long climate simulation of the past millennium with the climate model ECHO-G. Such relationships have recently been proposed to by-pass the difficulty of estimating future sea-level changes based on simulations with coarse-resolution climate models. It is found that, in this simulation, a simple linear relationship between mean temperature and the rate of change of sea level does not exist. A regression parameter linking both variables, and estimated in sliding 120-year windows, varies widely along the simulation and, in some periods, even attains negative values. The ocean heat-flux and the rate-of-change of mean temperature seem to better capture the rate-of-change of sea level due to thermal expansion.

  5. Cloud physics considerations in global climate change studies

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S.

    1995-09-01

    In predicting the global warming due to a doubling of CO{sub 2} it is important not to only evaluate the net effect of all the known feedback mechanisms, but to estimate the sensitivity to each. In other words, the partial derivatives as well as the total derivatives should be estimated. In order for relative humidity to remain constant, the liquid water content must be proportional to the cube root of the saturation vapor pressure and it is difficult to explain why this should be true. The point is that sensitivities to particles are as big as the direct carbon dioxide doubling effect, so that our uncertainty about which scenario is most realistic has important implications for our global change predictions. 2 figs.

  6. Fighting windmills? EU industrial interests and global climate negotiations

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner; Svendsen, Gert Tinggaard

    2003-01-01

    ? We suggest that the EU has a rational economic interest in forcing the technological development of renewable energy sources to get a first-mover advantage, which will only pay if a sufficient number of countries implement sufficiently stringent GHG reductions. The Kyoto Protocol, which imposes...... binding reductions on 38 OECD countries, implies that, as a first-mover, the EU will be to sell the necessary new renewable technologies, most prominently wind mills, to other countries, when they ratify and implement the Kyoto target levels. In the latest EU proposal made in Johannesburg, the EU pushed...... for setting a target of 15% of all energy to come from sources such as windmills, solar panels and waves by 2015. Such a target would further the EU's interests globally, and could explain, in economic terms, why the EU eagerly promotes GHG trade at a global level whereas the US has left the Kyoto agreement...

  7. Support for global climate reorganization during the ''Medieval Climate Anomaly''

    Energy Technology Data Exchange (ETDEWEB)

    Graham, N.E. [Hydrologic Research Center, San Diego, CA (United States); Scripps Institution of Oceanography, La Jolla, CA (United States); Ammann, C.M. [National Center for Atmospheric Research, Boulder, CO (United States); Fleitmann, D. [University of Bern, Institute of Geological Sciences, Bern (Switzerland); University of Bern, Oeschger Centre for Climatic Change Research, Bern (Switzerland); Cobb, K.M. [Georgia Institute of Technology, Atlanta, GA (United States); Luterbacher, J. [Justus-Liebig-University, Giessen (Germany)

    2011-09-15

    Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; {proportional_to}900-1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations - especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA

  8. Adaptation responses to climate change differ between global megacities

    Science.gov (United States)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  9. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  10. Paradigms of global climate change and sustainable development: Issues and related policies

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2013-06-01

    Full Text Available Combating climate change is intimately linked with peace and resource equity. Therefore, critical link establishment between climate change and sustainable development is extremely relevant in global scenario. Following the 1992 Earth Summit in Rio, the international sustainable development agenda was taken up by the UN Commission on Sustainable Development (CSD; the climate change agenda was carried forward by the UN Framework Convention on Climate Change (UNFCCC. International and local climate change mitigation policies need to be assessed based on sustainability criteria. The increasing concern over climate change drives towards the search of solutions enabling to combat climate change into broader context of sustainable development. The core element of sustainable development is the integration of economic, social and environmental concerns in policy-making. Therefore, article also analyzes post-Kyoto climate change mitigation regimes and their impact on sustainable development. Wide range of post- Kyoto climate change mitigation architectures has different impact on different groups of countries. Nevertheless, there are several reasons for optimism that sustainable consumption patterns might develop. One is the diversity of current consumption patterns and the growing minority concerned with ethical consumption. Another is the growing understanding of innovation processes, developed to address technological change, but applicable to social innovation. A third reason is the growing reflexivity of communities and institutions.

  11. Testing a statistical method of global mean palotemperature estimations in a long climate simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, E.; Gonzalez-Rouco, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    Current statistical methods of reconstructing the climate of the last centuries are based on statistical models linking climate observations (temperature, sea-level-pressure) and proxy-climate data (tree-ring chronologies, ice-cores isotope concentrations, varved sediments, etc.). These models are calibrated in the instrumental period, and the longer time series of proxy data are then used to estimate the past evolution of the climate variables. Using such methods the global mean temperature of the last 600 years has been recently estimated. In this work this method of reconstruction is tested using data from a very long simulation with a climate model. This testing allows to estimate the errors of the estimations as a function of the number of proxy data and the time scale at which the estimations are probably reliable. (orig.)

  12. The Sun is the climate pacemaker II. Global ocean temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu; Knox, Robert S.

    2015-04-17

    In part I, equatorial Pacific Ocean temperature index SST3.4 was found to have segments during 1990–2014 showing a phase-locked annual signal and phase-locked signals of 2- or 3-year periods. Phase locking is to an inferred solar forcing of 1.0 cycle/yr. Here the study extends to the global ocean, from surface to 700 and 2000 m. The same phase-locking phenomena are found. The El Niño/La Niña effect diffuses into the world oceans with a delay of about two months. - Highlights: • Global ocean temperatures at depths 0–700 m and 0–2000 m from 1990 to 2014 are studied. • The same phase-locked phenomena reported in Paper I are observed. • El Niño/La Niña effects diffuse to the global oceans with a two month delay. • Ocean heat content trends during phase-locked time segments are consistent with zero.

  13. The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct?

    Directory of Open Access Journals (Sweden)

    Brian Machovina

    2012-06-01

    Full Text Available In the face of ongoing and future climate change, species must acclimate, adapt or shift their geographic distributions (i.e., "migrate" in order to avoid habitat loss and eventual extinction. Perhaps nowhere are the challenges posed by climate change more poignant and daunting than in tropical forests, which harbor the majority of Earth’s species and are facing especially rapid rates of climate change relative to current spatial or temporal variability. Due to the rapid changes in climate predicted for the tropics, coupled with the apparently low capacities of tropical tree species to either acclimate or adapt to sustained changes in environmental conditions, it is believed that the greatest hope for avoiding the loss of biodiversity in tropical forest is species migrations. This is supported by the fact that topical forests responded to historic changes in climate (e.g., post glacial warming through distributional shifts. However, a great deal of uncertainty remains as to if tropical plant and tree species can migrate, and if so, if they can migrate at the rates required to keep pace with accelerating changes in multiple climatic factors in conjunction with ongoing deforestation and other anthropogenic disturbances. In order to resolve this uncertainty, as will be required to predict, and eventually mitigate, the impacts of global climate change on tropical and global biodiversity, more basic data is required on the distributions and ecologies of tens of thousands of plants species in combination with more directed studies and large-scale experimental manipulations.

  14. Global mismatch between greenhouse gas emissions and the burden of climate change.

    Science.gov (United States)

    Althor, Glenn; Watson, James E M; Fuller, Richard A

    2016-02-05

    Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth's atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries' GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we find an enormous global inequality where 20 of the 36 highest emitting countries are among the least vulnerable to negative impacts of future climate change. Conversely, 11 of the 17 countries with low or moderate GHG emissions, are acutely vulnerable to negative impacts of climate change. In 2010, only 28 (16%) countries had an equitable balance between emissions and vulnerability. Moreover, future emissions scenarios show that this inequality will significantly worsen by 2030. Many countries are manifestly free riders causing others to bear a climate change burden, which acts as a disincentive for them to mitigate their emissions. It is time that this persistent and worsening climate inequity is resolved, and for the largest emitting countries to act on their commitment of common but differentiated responsibilities.

  15. Climate-change impact potentials as an alternative to global warming potentials

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  16. Earth's changing global atmospheric energy cycle in response to climate change.

    Science.gov (United States)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  17. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  18. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    Science.gov (United States)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  19. Global Agriculture Yields and Conflict under Future Climate

    Science.gov (United States)

    Rising, J.; Cane, M. A.

    2013-12-01

    Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.

  20. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  1. Time for a reality check on global climate change policies

    Energy Technology Data Exchange (ETDEWEB)

    O`Keefe, W.F.

    1995-12-31

    Right now no one knows enough about global warming to advocate with certainty the kinds of actions that could jeopardize our economic well being -- and the economic aspirations of developing countries. That doesn`t mean no action, which is usually described perjoratively and erroneously as business as usual. It does mean actions must be based on facts, not misperceptions and myths. It does mean a mindset that reexamines, rethinks and changes course based on new knowledge. In short, I am advocating a reality check on the process based on the political, scientific and economic realities. Each of these realities has an important role in determining how we respond to the global warming threat. Our goal should be to identify actions that do the least damage to material well-being and that preserve the path to a better way of life, especially for the developing nations. What we have instead is a process driven by political gamesmanship that will devolve into beggar the neighbor policies reminiscent of 18th century mercantilism.

  2. Links between global CO2 variability and climate anomalies of biomes

    Institute of Scientific and Technical Information of China (English)

    Peter; S.; BAKWIN

    2008-01-01

    The global rate of fossil fuel combustion continues to rise, but the amount of CO2 accumulating in the atmosphere has not increased accordingly. The causes for this discrepancy are widely debated. Par- ticularly, the location and drivers for the interannual variability of atmospheric CO2 are highly uncertain. Here we examine links between global atmospheric CO2 growth rate (CGR) and the climate anomalies of biomes based on (1986―1995) global climate data of ten years and accompanying satellite data sets. Our results show that four biomes, the tropical rainforest, tropical savanna, C4 grassland and boreal forest, and their responses to climate anomalies, are the major climate-sensitive CO2 sinks/sources that control the CGR. The nature and magnitude by which these biomes respond to climate anomalies are generally not the same. However, one common influence did emerge from our analysis; the ex- tremely high CGR observed for the one extreme El Nio year was caused by the response of the tropical biomes (rainforest, savanna and C4 grassland) to temperature.

  3. Links between global CO2 variability and climate anomalies of biomes

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; YI ChuiXiang; Peter S.BAKWIN; ZHU Li

    2008-01-01

    The global rate of fossil fuel combustion continues to rise, but the amount of CO2 accumulating in the atmosphere has not increased accordingly. The causes for this discrepancy are widely debated. Par-ticularly, the location and drivers for the interannual variability of atmospheric CO2 are highly uncertain. Here we examine links between global atmospheric CO2 growth rate (CGR) and the climate anomalies of biomes based on (1986--1995) global climate data of ten years and accompanying satellite data sets. Our results show that four biomes, the tropical rainforest, tropical savanna, C4 grassland and boreal forest, and their responses to climate anomalies, are the major climate-sensitive CO2 sinks/sources that control the CGR. The nature and magnitude by which these biomes respond to climate anomalies are generally not the same. However, one common influence did emerge from our analysis; the ex-tremely high CGR observed for the one extreme El Nino year was caused by the response of the tropical biomes (rainforest, savanna and C4 grassland) to temperature.

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  5. Global situational awareness and early warning of high-consequence climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on a grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.

  6. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    Science.gov (United States)

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation.

  7. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    NARCIS (Netherlands)

    Veldkamp, T.I.E.; Eisner, S.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consum

  8. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  9. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  10. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change

    NARCIS (Netherlands)

    Leemans, R.; Eickhout, B.

    2004-01-01

    This study assesses the impacts of climate change on species, ecosystems and landscapes over a range of increasing global mean temperatures and the corresponding temperature and precipitation patterns. Results from IMAGE, a so-called integrated assessment model, are used to link different ecological

  11. Global climatic change effects on irrigation requirements for the Central Great Plains

    Science.gov (United States)

    Rising carbon dioxide and other green house gasses (water vapor, nitrous oxide, methane, etc.) are predicted to have an effect on future climates. These gasses impact crops and global and local weather. The carbon dioxide increase is generally considered to be favorable to agriculture as it increas...

  12. Climate Change Management Approaches of Cities: A Comparative Study Between Globally Leading and Turkish Metropolitan Cities

    Directory of Open Access Journals (Sweden)

    Solmaz Filiz Karabag

    2011-05-01

    Full Text Available Many studies have focused on climate change policies and action at the national level, but few have studied policies and action at the city level, especially cities in emerging economies. To address this gap, the present study analyzes the management strategies globally leading cities have developed to address climate change and related issues and compares them with the city strategies of one rapidly urbanizing emerging economy, Turkey. In the analysis, the strategic plans of five leading global cities are compared with those of sixteen Turkish cities. While the leading global cities have specific managerial approaches to mitigate climate change, none of the Turkish cities exhibits any comprehensive approach. Furthermore, while leading global cities modify urban services to reduce greenhouse gas (GHG emissions, few Turkish cities adjust any services to address this challenge. Some Turkish cities propose an increased use of renewable energy sources and modification in their transportation system, but the focus in these plans is the current daily needs of their inhabitants. The findings of this study suggest several climate change strategies both for Turkish cities and cities in other developing countries.

  13. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta, Sandra; Hossain, Kamrul; Ren, Jingzheng

    2015-01-01

    on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal...

  14. A Study of Teacher Candidates' Experiences Investigating Global Climate Change within an Elementary Science Methods Course

    Science.gov (United States)

    Hestness, Emily; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili

    2011-01-01

    We investigated the inclusion of a curricular module on global climate change in an Elementary Science Methods course. Using complementary research methods, we analyzed findings from 63 teacher candidates' drawings, questionnaires, and journal entries collected throughout their participation in the module. We highlighted three focal cases to…

  15. In-Service Teachers' Attitudes, Knowledge and Classroom Teaching of Global Climate Change

    Science.gov (United States)

    Liu, Shiyu; Roehrig, Gillian; Bhattacharya, Devarati; Varma, Keisha

    2015-01-01

    This study explores in-service teachers' attitudes and knowledge about a pressing environmental issue, "global climate change" (GCC), and how these may relate to their classroom teaching. In this work, nineteen teachers from Native American communities attended a professional development workshop that focused on enhancing their…

  16. Citizenship for a Changing Global Climate: Learning from New Zealand and Norway

    Science.gov (United States)

    Hayward, Bronwyn; Selboe, Elin; Plew, Elizabeth

    2015-01-01

    Young citizens under the age of 25?years make up just under half of the world's population. Globally, they face new, interrelated problems of dangerous environmental change, including increasing incidence of severe storms associated with a changing climate, and related new threats to human security. Addressing the complex challenge of climate…

  17. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  18. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    Science.gov (United States)

    Osland, Michael J.; Feher, Laura; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  19. [Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants].

    Science.gov (United States)

    Hong, Jiang-Tao; Wu, Jian-Bo; Wang, Xiao-Dan

    2013-09-01

    The response patterns of biogeochemical cycle and the adaptation strategies of terrestrial plants under the background of global climate change have received extensive attention. This paper analyzed the effects of climate warming and precipitation change on the plant C:N:P in different ecosystems, the effects of elevated atmospheric CO2 on the plant nutrients in different photosynthetic pathways, and the short-term and long-term effects of the responses of soil-plant nutrients to nitrogen deposition, and explored the possible underlying mechanisms in terms of the plant physiological properties in relation to soil available nutrients, which could provide theoretical bases for studying the nutrients (C, N and P) transmission and regulation mechanisms between soil and plant, the structure and function of terrestrial ecosystems, and the responses of biogeochemical cycle to global climate change. The existing problems and the further research directions in this study area were proposed.

  20. Equity and the Global Policy on Climate Change: A Law and Economic Perspective

    Directory of Open Access Journals (Sweden)

    Andri Gunawan Wibisana

    2012-09-01

    Full Text Available The opponents of the global commitment to reduce greenhouse gases (GHGs emissions seem to have shifted their arguments from the one emphasising on the issue of uncertainty to the one focusing on the economic burdens disproportionately placed on the current generation in general, and some developed countries in particular. Inevitably, the issue of equity becomes of highly importance in the recent climate policy debates. This paper attempts to analyze the implementation of equity principles, i.e. intergenerational and intragenerational equity, in the global climate policy. In doing so, it will first briefly outline some prominent economic appraisals on the impacts of climate change. Afterwards, some proposals to incorporate equity into the economic appraisals will be analyzed. Emphasizing on the concepts of equity, this paper will finally offer some recommendations for post-Kyoto negotiations.

  1. Global surface water quality hotspots under climate change and anthropogenic developments

    Science.gov (United States)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  2. Past and future climatic changes in the Mediterranean area under various global warming scenarios

    Science.gov (United States)

    Guiot, Joel

    2016-04-01

    Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.

  3. Global markets and the differential effects of climate and weather on conflict

    Science.gov (United States)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit

  4. Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2015-01-01

    The objective of this paper is to identify better performing Coupled Model Intercomparison Project phase 3 (CMIP3) global climate models (GCMs) that reproduce grid-scale climatological statistics of observed precipitation and temperature for input to hydrologic simulation over global land regions. Current assessments are aimed mainly at examining the performance of GCMs from a climatology perspective and not from a hydrology standpoint. The performance of each GCM in reproducing the precipitation and temperature statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the Climatic Research Unit (CRU) 3.10 gridded data set and re-sampled to the resolution of each GCM for comparison. Observed and GCM-based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen-Geiger climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency (NSE) index and root mean square error (RMSE) between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following better performing GCMs from a hydrologic perspective: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCm (Model for Interdisciplinary Research on Climate) (Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change), MIUB (Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group), MPI (Max Planck Institute for Meteorology) and MRI (Japan Meteorological Research Institute). The future response of these GCMs was found to be representative of the 44 GCM ensemble members which confirms that the selected GCMs are reasonably

  5. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    Directory of Open Access Journals (Sweden)

    M. S. Mizielinski

    2014-01-01

    Full Text Available The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3 atmosphere-only global climate simulations over the period 1985–2011, at resolutions of N512 (25 km, N216 (60 km and N96 (130 km as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS, and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  6. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    Directory of Open Access Journals (Sweden)

    M. S. Mizielinski

    2014-08-01

    Full Text Available The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3 atmosphere-only global climate simulations over the period 1985–2011, at resolutions of N512 (25 km, N216 (60 km and N96 (130 km as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe in 2012, with additional resources supplied by the Natural Environment Research Council (NERC and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS, and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  7. Climate change adaptation: where does global health fit in the agenda?

    Science.gov (United States)

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  8. Simulating global soil-CO2 flux and its response to climate change

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It has been argued that increased soil respiration would become a major atmospheric source of CO2 in the event of global warming. The simple statistical models were developed based on a georeferenced database with 0.5°× 0.5° longitude/latitude resolution to simulate global soil-CO2 fluxes, to investigate climatic effects on these fluxes using sensitivity experiments, and to assess possible responses of soil-CO2 fluxes to various climate change scenarios. The statistical models yield a value of 69 PgC/a of global soil CO2 fluxes for current condition. Sensitivity experiments confirm that the fluxes are responsive to changes in temperature,precipitation and actual evapotranspiration, but increases in temperature and actual evapotranspiration affect soil-CO2 fluxes more than increases in precipitation. Using climatic change projections from four global circulation models, each corresponding to an equilibrium doubling of CO2, it can be found that the largest increases in soil-CO2 fluxes were associated with the boreal and tundra regions. The globally averaged soil-CO2 fluxes were estimated to increase by about 35 % above current values, providing a positive feedback to the greenhouse effect.

  9. Simulating global soil-CO2 flux and its response to climate change

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It has been argued that increased soil respiration would become a major atmospheric source of CO2 in the event of global warming. The simple statistical models were developed based on a georeferenced database with 0.5° × 0.5° longitude/latitude resolution to simulate global soil-CO2 fluxes, to investigate climatic effects on these fluxes using sensitivity experiments, and to assess possible responses of soil-CO2 fluxes to various climate change scenarios. The statistical models yield a value of 69 PgC/a of global soil CO2 fluxes for current condition. Sensitivity experiments confirm that the fluxes are responsive to changes in temperature,precipitation and actual evapotranspiration, but increases in temperature and actual evapotranspiration affect soil-CO2 fluxes more than increases in precipitation. Using climatic change projections from four global circulation models, each corresponding to an equilibrium doubling of CO2, it can be found that the largest increases in soil-CO2 fluxes were associated with the boreal and tundra regions. The globally averaged soil-CO2 fluxes were estimated to increase by about 35 % above current values, providing a positive feedback to the greenhouse effect.

  10. Simulation of the influence of historical land cover changes on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Civil Aviation; Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Yan, X. [Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Beijing Normal Univ. (China). State Key Lab. of Earth Surface Processes and Resource Ecology (ESPRE); Wang, Z. [British Antarctic Survey, Cambridge (United Kingdom)

    2013-09-01

    In order to estimate biogeophysical effects of historical land cover change on climate during last three centuries, a set of experiments with a climate system model of intermediate complexity (MPM-2) is performed. In response to historical deforestation, the model simulates a decrease in annual mean global temperature in the range of 0.07-0.14 C based on different grassland albedos. The effect of land cover changes is most pronounced in the middle northern latitudes with maximum cooling reaching approximately 0.6 C during northern summer. The cooling reaches 0.57 C during northern spring owing to the large effects of land surface albedo. These results suggest that land cover forcing is important for study on historical climate change and that more research is necessary in the assessment of land management options for climate change mitigation. (orig.)

  11. The Relationship between English Language Adoption and Global Digital Inequality: A Cross-Country Analysis of ICT Readiness and Use

    Science.gov (United States)

    Tang, Hui-Wen Vivian; Yin, Mu-Shang; Sheu, Ru-Shuo

    2011-01-01

    The aim of this study was to investigate whether differences in information and communication technology (ICT) readiness and access across countries were fundamentally related to the variable of English language adoption. A one-way multivariate analysis of variance (MANOVA) was utilized to comparatively examine the developments of ICT readiness…

  12. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  13. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    Science.gov (United States)

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature.

  14. Global and regional ramifications of climate change. Consequences for Norway; Globale og regionale foelger av klimaendringer. Konsekvenser for Norge

    Energy Technology Data Exchange (ETDEWEB)

    Buan, Inga Fritzen; Inderberg, Tor Haakon; Rottem, Svein Vigeland

    2010-10-22

    There is a need for more knowledge on how climate change will affect the international society and what consequences this in turn will have for Norway. This report seeks to answer the questions of, first, how global and regional climate changes can come to affect the Norwegian society, and second, what the relevant arenas for meeting these challenges are. The report is part of a larger body of scientific analyses aimed at assessing the vulnerability of the Norwegian society to the adverse effects of climate change and the consequent needs for adaptive measures. Topics covered include increased activity in the Arctic; climate change as non-traditional security threat; migration and refugees; foreign aid and development cooperation; implications for food and water supply; the roles of international agencies and non-governmental actors, and more. It also covers internal challenges in terms of critical infrastructure (in transport, power supply, and telecommunications) and in regard to health concerns. The report also differentiates between ethical obligations and instrumental challenges. (Author)

  15. Global and regional temperature-change potentials for near-term climate forcers

    Directory of Open Access Journals (Sweden)

    W. J. Collins

    2013-03-01

    Full Text Available We examine the climate effects of the emissions of near-term climate forcers (NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon and 4 ozone precursors (methane, reactive nitrogen oxides (NOx, volatile organic compounds and carbon monoxide. We calculate the global climate metrics: global warming potentials (GWPs and global temperature change potentials (GTPs. For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs. The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20–30% larger than the global average for methane, VOC and CO emissions.

  16. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    Science.gov (United States)

    Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.

  17. RCWIM - an improved global water isotope pattern prediction model using fuzzy climatic clustering regionalization

    Science.gov (United States)

    Terzer, Stefan; Araguás-Araguás, Luis; Wassenaar, Leonard I.; Aggarwal, Pradeep K.

    2013-04-01

    Prediction of geospatial H and O isotopic patterns in precipitation has become increasingly important to diverse disciplines beyond hydrology, such as climatology, ecology, food authenticity, and criminal forensics, because these two isotopes of rainwater often control the terrestrial isotopic spatial patterns that facilitate the linkage of products (food, wildlife, water) to origin or movement (food, criminalistics). Currently, spatial water isotopic pattern prediction relies on combined regression and interpolation techniques to create gridded datasets by using data obtained from the Global Network of Isotopes In Precipitation (GNIP). However, current models suffer from two shortcomings: (a) models may have limited covariates and/or parameterization fitted to a global domain, which results in poor predictive outcomes at regional scales, or (b) the spatial domain is intentionally restricted to regional settings, and thereby of little use in providing information at global geospatial scales. Here we present a new global climatically regionalized isotope prediction model which overcomes these limitations through the use of fuzzy clustering of climatic data subsets, allowing us to better identify and customize appropriate covariates and their multiple regression coefficients instead of aiming for a one-size-fits-all global fit (RCWIM - Regionalized Climate Cluster Water Isotope Model). The new model significantly reduces the point-based regression residuals and results in much lower overall isotopic prediction uncertainty, since residuals are interpolated onto the regression surface. The new precipitation δ2H and δ18O isoscape model is available on a global scale at 10 arc-minutes spatial and at monthly, seasonal and annual temporal resolution, and will provide improved predicted stable isotope values used for a growing number of applications. The model further provides a flexible framework for future improvements using regional climatic clustering.

  18. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    Science.gov (United States)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2016-04-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5 ) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  19. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    Science.gov (United States)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2017-02-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  20. Evaluation of Socio-Economic Factors that Determine Adoption of Climate Compatible Freshwater Supply Measures at Farm Level

    NARCIS (Netherlands)

    Veraart, Jeroen A.; Duinen, van Rianne; Vreke, Jan

    2017-01-01

    The availability of freshwater resources in soil and groundwater bodies in the southwestern part of The Netherlands is expected to decrease during the agricultural growing season because of an expected increase of freshwater demands and a changing climate. This expected shortage of fresh water mi

  1. Trends in global vegetation activity and climatic drivers indicate a decoupled response to climate change

    DEFF Research Database (Denmark)

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G.;

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty...... an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration...... in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS...

  2. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  3. Quantifying PM2.5-meteorology sensitivities in a global climate model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-10-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 μg m-3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 μg m-3 (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 μg m-3 for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10-50% over the

  4. Climate, CO2 and human population impacts on global wildfire emissions

    Science.gov (United States)

    Knorr, W.; Jiang, L.; Arneth, A.

    2016-01-01

    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilisation of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation.Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation-wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations use Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models. These were combined with two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs) to assess the sensitivity of emissions to the effect of climate, CO2 and humans. In addition, two alternative parameterisations of the semi-empirical burned-area model were applied. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and

  5. A globally coherent fingerprint of climate change impacts across natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Parmesan, C. [University of Texas, Austin (United States). Patterson Laboratories; Yohe, G. [Wesleyan University, Middletown, Connecticut (United States)

    2003-01-02

    Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems. (author)

  6. Global health and climate change: moving from denial and catastrophic fatalism to positive action.

    Science.gov (United States)

    Costello, Anthony; Maslin, Mark; Montgomery, Hugh; Johnson, Anne M; Ekins, Paul

    2011-05-13

    The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change-promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late.

  7. From global framing to local action : translation of climate change impacts in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ogunseitan, O.A. [Harvard Univ., Cambridge, MA (United States)

    2000-06-01

    There is considerable controversy regarding policy and climate change mitigation in Africa. Its resolution will require integrating local knowledge and values into climate impact assessments. Africa's vulnerability to climate change can be traced to the frequency of socio-ecological devastation that comes from major climate variations on the continent. The incidence of famines, homelessness and disease epidemics that require international assistance are reflections of weak policies and institution action frames used to cope with climate and weather related emergencies. However, the valuation of climate change impacts has a subjective dimension that can be gained only through indigenous experience and an understanding of values associated with life-saving intervention programs. A recent study showed that discount rates applied to future life-saving programs by Africans are very different from the rates applied in developed countries, and that the difference should be reflected in national development programs and transnational initiatives for capacity building. The study suggests that if the boundary institutions responsible for public health security have not been too effective in resolving the policy controversy surrounding Africa's participation in climate change assessments, it is due partly to the limitations imposed by cross-scale issues in framing. It was concluded that efforts to reduce Africa's dependence on global emergency health response systems will necessitate the development of autonomous capacity to adapt to natural disasters. Appropriate frame reflection is needed at the local level. 56 refs., 3 tabs., 1 fig.

  8. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    Science.gov (United States)

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  9. Climate Dynamics and Global Change: Temperature, Precipitation, and Circulation in GFDL Aqua-Planet Model

    Science.gov (United States)

    Dinh, T.; Fueglistaler, S.

    2015-12-01

    Numerical experiments are carried out using the GFDL General Circulation Model to assess climate sensitivity associated with CO2 increase and surface warming. This work is motivated by the calculation by Cess and Potter (1988, JGR), who proposed that surface temperature perturbations may be used as a surrogate for climate change induced by CO2 increase.We compare climatic changes due to CO2 increase in slab-ocean simulations with changes forced by surface warming in prescribed-surface-temperature simulations with fixed CO2 (Cess-type experiments). We found that slab-ocean and Cess-type experiments give the same rates of change per degree surface warming for the global atmosphere temperature and circulation strength. However, the global precipitation increases almost twice as slowly in slab-ocean runs (1.5%/K) when compared to Cess-type runs (2.8%/K). Therefore, we caution that Cess-type experiments may not be suitable for studying global precipitation change under climate change.

  10. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    Science.gov (United States)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from

  11. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Directory of Open Access Journals (Sweden)

    M. R. Haylock

    2011-10-01

    Full Text Available Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961–2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed.

    The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  12. An Analysis of the Vulnerability of Global Drinking Water Access to Climate-related Hazards

    Science.gov (United States)

    Elliott, M.; Banerjee, O.; Christenson, E.; Holcomb, D.; Hamrick, L.; Bartram, J.

    2014-12-01

    Global drinking water access targets are formulated around "sustainable access." Global climate change (GCC) and associated hazards threaten the sustainability of drinking water supply. Extensive literature exists on the impacts of GCC on precipitation and water resources. However, the literature lacks a credible analysis of the vulnerability of global drinking water access. This research reports on an analysis of the current vulnerability of drinking water access due to three climate-related hazardous events: cyclone, drought and flood. An ArcGIS database was built incorporating the following: population density, hazardous event frequency, drinking water technologies in use and adaptive capacity. Two global grids were incorporated first: (1) LandScanTM global population distribution; and (2) frequency of cyclone, drought and flood from ~1980-2000 from Columbia University Center for Hazards Risk Research (CHRR). Population density was used to characterize cells as urban or rural and country-level urban/rural drinking water technologies in use were added based on the WHO/UNICEF Joint Monitoring Programme data. Expert assessment of the resilience of each technology to each hazardous event based on WHO/DFID Vision 2030 were quantified and added to the database. Finally, country-level adaptive capacity was drawn from the "readiness" parameter of the Global Adaptation Index (GaIn). ArcGIS Model Builder and Python were used to automate the addition of datasets. This presentation will report on the results of this analysis, the first credible attempt to assess the vulnerability of global drinking water access to climate-related hazardous events. This analysis has yielded country-level scores and maps displaying the ranking of exposure score (for flood, drought, cyclone, and all three in aggregate) and the corresponding country-level vulnerability scores and rankings incorporating the impact of drinking water technologies and adaptive capacity (Figure 1).

  13. Connecting climate model projections of global temperature change with the real world

    Science.gov (United States)

    Hawkins, Ed; Sutton, Rowan

    2016-04-01

    Current state-of-the-art global climate models produce different values for Earth's mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. We discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections and highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.

  14. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  15. Shifting Global Climate Governance: Creating Long-Term Goals Through UNFCCC Article 2

    Directory of Open Access Journals (Sweden)

    P. Brian Fisher

    2011-12-01

    Full Text Available I argue that the long-term risk of global climate change has been mischaracterized as an environmental issue, and therefore, solutions based solely on national emission targets will be ineffective. Thus, this paper argues for establishing long-term goals emphasizing both adaptation and clean energy to generate equitable and effective global climate policy that addresses this fundamental threat. This requires defining and operationalizing the overall objective contained in Article 2 of the United Nations Framework Convention on Climate Change. A second key aspect to operationalizing Article 2 is to understand those ‘particularly vulnerable’ as declared in the Article and in various climate agreements. Once operationalized, these long-term objectives can be achieved through approaches that emphasize the development of clean energy (and concomitant technology, and adaptation within vulnerable communities in their local context. It necessitates dropping formal mechanisms at the current core of the regime designed to regulate national emissions, and instead build the core of the regime around the ‘stabilization’ of both the climate system through clean energy and vulnerable people through effective adaptation.

  16. Changes in Wave Climate from a Multi-model Global Statistical projection approach.

    Science.gov (United States)

    Camus, Paula; Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    Despite their outstanding relevance in coastal impacts related to climate change (i.e. inundation, global beach erosion), ensemble products of global wave climate projections from the new Representative Concentration Pathways (RCPs) described by the IPCC are rather limited. This work shows a global study of changes in wave climate under several scenarios in which a new statistical method is applied. The method is based on the statistical relationship between meteorological conditions over the geographical area of wave generation (predictor) and the resulting wave characteristics for a particular location (predictand). The atmospheric input variables used in the statistical method are sea level pressure anomalies and gradients over the spatial and time scales information characterized by ESTELA maps (Perez et al. 2014). ESTELA provides a characterization of the area of wave influence of any particular ocean location worldwide, which includes contour lines of wave energy and isochrones of travel time in that area. Principal components is then applied over the sea level pressure information of the ESTELA region in order to define a multi-regression statistical model based on several data mining techniques. Once the multi-regression technique is defined and validated from historical information of atmospheric reanalysis (predictor) and wave hindcast (predictand) this method has been applied by using more than 35 Global Climate Models from CMIP5 to estimate changes in several parameters of the sea state (e.g. significant wave height, peak period) at seasonal and annual scale during the last decades of 21st century. The uncertainty of the estimated wave climate changes in the ensemble is also provided and discussed.

  17. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    Science.gov (United States)

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  18. Quantification of increased flood risk due to global climate change for urban river management planning.

    Science.gov (United States)

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  19. Long-term ERP time series as indicators for global climate variability and climate change

    Science.gov (United States)

    Lehmann, E.; Grötzsch, A.; Ulbrich, U.; Leckebusch, G. C.; Nevir, P.; Thomas, M.

    2009-04-01

    This study assesses whether variations in observed Earth orientation parameters (EOPs, IERS) such as length-of day (LOD EOP C04) and polar motion (PM EOP C04) can be applied as climate indicators. Data analyses suggest that observed EOPs are differently affected by parameters associated with the atmosphere and ocean. On interannual time scales the varying ocean-atmosphere effects on EOPs are in particular pronounced during episodes of the coupled ocean-atmosphere phenomenon El Niño-Southern Oscillation (ENSO). Observed ENSO anomalies of spatial patterns of parameters affected by atmosphere and ocean (climate indices and sea surface temperatures) are related to LOD and PM variability and associated with possible physical background processes. Present time analyses (1962 - 2000) indicate that the main source of the varying ENSO signal on observed LOD can be associated with anomalies of the relative angular momentum (AAM) related to variations in location and strength of jet streams of the upper troposphere. While on interannual time scales observed LOD and AAM are highly correlated (r=0.75), results suggest that strong El Niño events affect the observed LOD - AAM relation differently strong (explained variance 71%- 98%). Accordingly, the relation between AAM and ocean sea surface temperatures (SST) in the NIÑO 3.4 region differs (explained variances 15%-73%). Corresponding analysis is conducted on modelled EOPs (ERA40 reanalysis, ECHAM5-OM1) to obtain Earth rotation parameters undisturbed by core-mantle activities, and to study rotational variations under climate variability and change. A total of 91 strong El Niño events are analysed in coupled ocean-atmosphere ECHAM5-OM1 scenarios concerning the 20th century (20C), climate warming (A1B) and pre-industrial climate variability. Analyses on a total of 61 strong El Niño events covering a time period of 505 simulation years under pre-industrial climate conditions indicate a range of El Niño events with a strong or

  20. Adopting an ethical approach to global health training: the evolution of the Botswana - University of Pennsylvania partnership.

    Science.gov (United States)

    Dacso, Matthew; Chandra, Amit; Friedman, Harvey

    2013-11-01

    Global health training opportunities for medical students and residents have proliferated in recent years. These short-term elective rotations allow trainees to learn about global health issues by participating in various aspects of education and health care in resource-limited settings. Recently published consensus-based ethical guidelines have suggested considerations for the design of international electives that address the activities of host and sending sites, visiting students and residents, and sponsors.The authors analyze the value of global health training opportunities for medical students, residents, faculty, host and sending institutions, and other stakeholders from the perspective of the Botswana-University of Pennsylvania Partnership, a program that has provided global health experiences for health care trainees for more than 10 years. Drawing from the Working Group on Ethics Guidelines for Global Health Training framework, they illustrate the ethical and logistical challenges faced by the program's organizers and the solutions that they implemented alongside their host site partners. They conclude with a summary of recommendations to guide implementation of ethically sound international health electives in resource-limited settings.

  1. Galactic Cosmic Rays and Insolation are the Main Drivers of Global Climate of the Earth

    CERN Document Server

    Rusov, V D; Glushkov, A V; Vaschenko, V N; Pavlovich, V N; Zelentsova, T N; Mihalys, O T; Tarasov, V A; Kolos, A

    2005-01-01

    An energy-balance model of global climate, which takes into account a nontrivial role of galactic cosmic rays, is developed. The model is described by the fold catastrophe equation relative to increment of temperature, where galactic cosmic rays and insolation are control parameters. The comparison of the results of a computer simulation of time-dependent solution of the presented model and oxygen isotope records of deep-sea core V28-238 over the past 730 kyr are presented. The climate evolution in future 100 kyr is also predicted.

  2. Global late Quaternary megafauna extinctions linked to humans, not climate change

    DEFF Research Database (Denmark)

    Sandom, Christopher James; Faurby, Søren; Sandel, Brody Steven

    2014-01-01

    on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played...... by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong...

  3. Climate change, conflict and development in Sudan: global neo-Malthusian narratives and local power struggles.

    Science.gov (United States)

    Verhoeven, Harry

    2011-01-01

    Dystopian accounts of climate change posit that it will lead to more conflict, causing state failure and mass population movements. Yet these narratives are both theoretically and empirically problematic: the conflict–environment hypothesis merges a global securitization agenda with local manipulations of Northern fears about the state of planetary ecology. Sudan has experienced how damaging this fusion of wishful thinking, power politics and top-down development can be. In the 1970s, global resource scarcity concerns were used locally to impose the fata morgana of Sudan as an Arab-African breadbasket: in the name of development, violent evictions of local communities contributed to Sudan's second civil war and associated famines. Today, Darfur has been labelled ‘the world's first climate change conflict’, masking the long-term political-economic dynamics and Sudanese agency underpinning the crisis. Simultaneously, the global food crisis is instrumentalized to launch a dam programme and agricultural revival that claim to be African answers to resource scarcity. The winners, however, are Sudan's globalized Islamist elites and foreign investors, whilst the livelihoods of local communities are undermined. Important links exist between climatic developments and security, but global Malthusian narratives about state failure and conflict are dangerously susceptible to manipulations by national elites; the practical outcomes decrease rather than increase human security. In the climate change era, the breakdown of institutions and associated violence is often not an unfortunate failure of the old system due to environmental shock, but a strategy of elites in wider processes of power and wealth accumulation and contestation.

  4. Confronting the Global Climate Response to Black Carbon Aerosols with its Uncertainty

    Science.gov (United States)

    Mahajan, S.; Kovilakam, M.

    2015-12-01

    Black carbon aerosols (BC) modulate global temperatures and the hydrological cycle as well as regional climate. However, their radiative forcing is not well-constrained observationally and recent estimates of just the direct forcing ranges from 0.08 to 1.27 W/m2 - the upper limits of which puts BC second only to carbon dioxide in terms of radiative forcing. Consequently, the climate impacts of these heterogeneous short-lived forcing agents are highly uncertain. To establish the uncertainty in the climate response to BC, we conduct a suite of idealized experiments with the DOE/NCAR CESM1.0 model with the atmosphere component (CAM4) coupled to a Slab Ocean Model (SOM) forced separately with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing. We find that the increase in BC results in global warming - with a sensitivity of 0.22 K/W/m2 including the semi-direct effects, decrease in global precipitation - despite the increase in global temperatures, a northwards shift of the ITCZ - along with an increase in cross-equatorial southwards energy transport, tropical expansion in the Northern Hemisphere - associated with BC induced mid-latitude warming, and an increase in precipitation during the Indian Monsoons - with the enhancement of the meridional tropospheric gradient, among other responses. Further, these global responses are near-linear functions of the increase in BC concentration, suggesting that the climate response to BC aerosols can be readily estimated if the uncertainty in BC can be constrained.

  5. The Drivers of Climate Change -- Tracking Global Greenhouse Gas Trends and their Warming Influence

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Montzka, S. A.; Dlugokencky, E. J.; Hall, B. D.; Masarie, K. A.; Elkins, J. W.; Dutton, G. S.; Miller, B. R.

    2014-12-01

    Of the National Physical Climate Indicators, two stand out as primary drivers of climate change - the Global Monthly Average of Carbon Dioxide Concentration and the Annual Greenhouse Gas Index. Both of these are products of high quality, long-term, globally distributed monitoring of greenhouse gases in the atmosphere. To support monitoring of the trends of these gases over decades, NOAA maintains the WMO World Calibration Scales for the major contributors to radiative forcing and its own universally accepted scales for most of the minor greenhouse gases. Maintenance of these scales over time ensures the consistency of measurements from decade to decade. Further quality control through use of internal and external comparisons of on-going measurements places tight constraints on spatial and temporal bias. By far the most influential greenhouse gas contributing to radiative forcing is carbon dioxide (CO2). Its amount at Mauna Loa is reported on-line daily and its global trend updated monthly on NOAA's global monitoring website and at climate.gov. This is one of the most closely watched records of atmospheric composition, as its accelerating rate of increase is a constant reminder that society has yet to deal successfully with its emissions of this gas. Much of CO2 emitted remains in the atmosphere for 1000s of years, which is why it is of substantial concern. But atmospheric CO2 is not alone in warming the planet and driving climate change. Many other gases contribute in a lesser way to this long-term trend and are captured along with CO2 in NOAA's Annual Greenhouse Gas Index (AGGI). The AGGI is a normalized compilation of the radiative forcing (RF) of five major long-lived greenhouse gases (96% of RF) and 15 minor gases (4% of RF). Because it does not include short lived gases (living in. This presentation discusses the development of these two indexes and their national and global use.

  6. U.S. Global Climate Change Impacts Report, Overview of Sectors

    Science.gov (United States)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in

  7. Using student generated blogs to create a global perspective on climate change

    Science.gov (United States)

    Schuenemann, K. C.

    2012-12-01

    Students in an introductory Global Climate Change college course develop a global perspective on climate change causes, impacts, and mitigation through the use of student generated content in the form of blogging. The students are from diverse backgrounds and mostly non-science majors. They each create a blog for an assigned country. They are immersed in active learning through daily activities that teach them to use numerical data to create and analyze graphs for their blogs. Students are familiarized with other science skills as well, such as how to critically evaluate their sources. This method of using student generated content and active learning encourages students to immerse themselves in the viewpoint of people living in other countries. This creates a tangible understanding of the global stakes of climate change and fosters an emotional involvement in what otherwise might have been an abstract or intimidating topic. The front page of the course blog opens with a world map and a feed from each student's blog. Upon clicking on a country on the world map, the reader is taken to the blog page created by the student in charge of that country. The United States is reserved as a sample page created by the instructor. Throughout the semester, students follow a series of assignments that build their knowledge of the geography, climate, and culture of their assigned country, and these appear as tabs, or informational pages, on their blog. Students are taught to use Excel and they each create temperature and precipitation graphs that compare the climate of a city in their assigned country to that of their home city. Students then write their first blog post on their country's contribution to climate change and how that compares to other countries in the world by importing carbon dioxide emissions data into Excel and creating their own graphs to be used as images in their blog post. The second blog post covers potential climate change impacts on their assigned country

  8. Climate-related global changes in the southern Caribbean: Trinidad and Tobago

    Science.gov (United States)

    Singh, Bhawan

    1997-10-01

    A climate change deriving from the atmospheric build up of greenhouse gases (GHG) is supposed to become evident by the middle of the next century. This GHG-induced climate change would supposedly lead to a global warming of about 2 to 4°C and a rise in mean sea level of about 60 cm towards the end of the next century. This study focuses on the field measurements and interpretations of a number of, supposedly, climate-driven regional changes, including shifts in climate and hydrology, coastal erosion and sedimentation, salinisation of coastal aquifers and estuaries, and also coral bleaching, in Trinidad and Tobago, in the southern Caribbean. The results show significant changes and shifts in temperature and rainfall, severe coastal erosion, approaching 2 to 4 m per year for certain beaches, appreciable salinisation of a number of coastal aquifers and an estuary along the Caroni swamp, in Trinidad, and what appears to be partial coral bleaching, at the Culloden Reef in Tobago. These field-observed regional changes may conceivably be interpreted as early signals of a GHG-induced climate change. However, in view of the uncertainty surrounding GHG-induced climate change and sea level rise and the limitations of our data, especially the length of record, caution must be exercised in the interpretation of these results.

  9. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    Science.gov (United States)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  10. Earth as Humans’ Habitat: Global Climate Change and the Health of Populations

    Directory of Open Access Journals (Sweden)

    Anthony J McMichael

    2014-01-01

    Full Text Available Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction.

  11. Earth as humans' habitat: global climate change and the health of populations.

    Science.gov (United States)

    McMichael, Anthony J

    2014-01-01

    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth's life-supporting natural systems now exceed the planet's bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction.

  12. Climate-related global changes in the southern Caribbean. Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhawan [Department of Geography, University of Montreal, Montreal, QU (Canada)

    1997-10-30

    A climate change deriving from the atmospheric build up of greenhouse gases (GHG) is supposed to become evident by the middle of the next century. This GHG-induced climate change would supposedly lead to a global warming of about 2 to 4C and a rise in mean sea level of about 60 cm towards the end of the next century. This study focuses on the field measurements and interpretations of a number of, supposedly, climate-driven regional changes, including shifts in climate and hydrology, coastal erosion and sedimentation, salinisation of coastal aquifers and estuaries, and also coral bleaching, in Trinidad and Tobago, in the southern Caribbean. The results show significant changes and shifts in temperature and rainfall, severe coastal erosion, approaching 2 to 4m per year for certain beaches, appreciable salinisation of a number of coastal aquifers and an estuary along the Caroni swamp, in Trinidad, and what appears to be partial coral bleaching, at the Culloden Reef in Tobago. These field-observed regional changes may conceivably be interpreted as early signals of a GHG-induced climate change. However, in view of the uncertainty surrounding GHG-induced climate change and sea level rise and the limitations of our data, especially the length of record, caution must be exercised in the interpretation of these results

  13. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    Science.gov (United States)

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well.

  14. An Appraisal on the Earlier Euro Adoption by the New Member States in the Frame of the Current Global Economic and Financial Crisis

    Directory of Open Access Journals (Sweden)

    Floarea Iordache

    2010-06-01

    Full Text Available The pathway of the new member states towards the euro area was stopped, but not modified by the current world economic crisis. Their inflation declined but the fiscal status suffered. On the verge of thefinancial crisis, the European Central Bank overruled the Central and Eastern European member states’ intentions for an earlier adoption of the euro, requiring compliance with the Maastricht criteria. The objective of this paper is to analyze the main proposed solutions and to draw attention on the most suitable ones in keeping with the particular features of these countries. Our conclusion is that fast results on the euro adoption will definitely depend on the fiscal consolidation, the soundness of global economic rehabilitation, the capital availability, and the domestic policies. The nature of the approached problems and the authors’ experience recommend this study, both for researchers and practitioners.

  15. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  16. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    Science.gov (United States)

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  17. Records from Lake Qinghai: Holocene climate history of Northeastern Tibetan Plateau linking to global change

    Science.gov (United States)

    An, Z.; Colman, S.; Zhou, W.; Brown, E.; Li, X.; Jull, T.; Wang, S.; Liu, W.; Sun, Y.; Lu, X.; Song, Y.; Chang, H.; Cai, Y.; Xu, H.; Wang, X.; Liu, X.; Wu, F.; Han, Y.; Cheng, P.; Ai, L.; Wang, Z.; Qiang, X.; Shen, J.; Zhu, Y.; Wu, Z.; Liu, X.

    2008-12-01

    Lake Qinghai (99°36'-100°16'E, 36°32'-37°15'N ) of the north eastern margin of Tibet Plateau is the largest inland lake of China. It sits on the transitional zone of Asian monsoon- arid areas, receives influences of Asian monsoons and Westerlies, thus sensitive to global climate changes. Although previous studies had investigated Holocene climate change of Lake Qinghai area, it is rare to see precise Holocene climatic sequences of Lake Qinghai, nor in-depth discussions on controlling factors of Lake Qinghai climate changes. In Year 2005, with support from ICDP, Chinese Academy of Sciences (CAS), Chinese Ministry of Science and Technology (MOST) and National Science Foundation of China (NSFC), Drilling, Observation and Sampling of the Earths Continental Crust Corporation (DOSECC) and Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) took a series of shallows cores from the southern basin of Lake Qinghai. West sub-basin sediments display Holocene lacustrine feature for the upper 5m, while the 5-18m are interbeded sediments of shallow lake, eolian-lacustrine and eolian loess. Chinese and US scientists with support from NSFC, MOST, CAS and NSF analysed 1F core from west sub-basin depocenter of the south basin with multiple physical, chemical, biological approaches. By comparing with modern process observation records, we obtained proxies that respectfully reflect precipitation, temperature and lake salinity changes, etc., reconstructed high resolution time sequences of magnetic susceptibility, colour scale, grain size, Corg, C/N, δ13Corg, carbonate, δ13C and δ18O of carbonate and ostracodes, elements, char-soot,Uk'37 and %C37:4 as well as pollen of the last 13Ka. They indicate the climatic change history of Lake Qinghai since past 13Ka, and agreeable evidences are found from adjacent tree ring and stalagmite records. Comparison of Lake Qinghai Holocene climate change sequence with those from high altitude ice core, stalagmites and ocean

  18. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  19. Climate change from the perspective of the surface energy balance and global hydrologic cycle

    Science.gov (United States)

    Ramaswamy, V.; Ming, Y.; Schwarzkopf, M. D.

    2015-12-01

    Major changes have occurred in the radiative drive of the surface since preindustrial times owing to both changes in the emissions of greenhouse gases and aerosols. These are to be contrasted with the drive at the top-of-the-atmosphere. Using global climate models and multiple observations of the surface fluxes from various platforms, we discuss how the energy balance has evolved with time and the manner in which this has affected the hydrologic cycle, including an account of the critical uncertainties. We make use of the simulations performed with global climate models and used in the IPCC assessments to diagnose the factors that are principally responsible for the changes, the contrasting atmospheric mechanisms exerted by greenhouse gases and aerosols, and the relative roles of the atmospheric constituents.

  20. The Jormungand Global Climate State and Implications for the Neoproterozoic Snowball Paradox (Invited)

    Science.gov (United States)

    Abbot, D. S.; Voigt, A.; Koll, D.; Pierrehumbert, R. T.

    2010-12-01

    We present a previously undescribed global climate state, the Jormungand state, that is nearly ice-covered with a narrow (~10-15 degrees of latitude) strip of open ocean near the equator. This state is sustained by internal dynamics of the hydrological cycle and the cryosphere. There is a new bifurcation in global climate climate associated with the Jormungand state that leads to significant hysteresis. We investigate the Jormungand state in a coupled ocean-atmosphere GCM, in multiple atmospheric GCMs coupled to a mixed layer ocean run in an idealized configuration, and we make a simple modification to the Budyko-Sellers model so that it produces Jormungand states. We suggest that the Jormungand state may be a better model for the Neoproterozoic glaciations (~635 Ma and ~715 Ma) than either the hard Snowball or the Slushball models. A Jormungand state would have a large enough region of open ocean near the equator to explain the micropaleontological and molecular clock evidence that photosynthetic eukaryotes thrived both before and immediately after the Neoproterozoic episodes. Additionally, since there is significant hysteresis associated with the Jormungand state, it can explain the cap carbonate sequences, the oxygen isotopic evidence that suggests high CO2 values, and the various evidence that suggests lifetimes for the glaciations of 1 Myrs or more. Since there is not significant hysteresis associated with the Slushball model, the Slushball model cannot explain these observations. Finally, we note that although the Slushball and Jormungand models share the characteristic of open ocean in the tropics, the Jormungand state is produced by entirely different physics, is entered through a new bifurcation in global climate, and is associated with significant hysteresis. Bifurcation diagram of global climate in the CAM global climate model, run with no continents, a 50 m mixed layer with no ocean heat transport, an eccentricity of zero, and annually and diurnally

  1. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    Science.gov (United States)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2016-07-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  2. SIMULATING AND PREDICTING GLOBAL CLIMATIC ANOMALIES SUCH AS EL NINO AND LA NINA

    Directory of Open Access Journals (Sweden)

    Cherednychenko N. A.

    2015-06-01

    Full Text Available The paper discusses the modeling and prediction of the climate of our planet with the use of artificial intelligence AIDOS-X. We have developed a number of semantic information models, demonstrating the presence of the elements of similarity between the motion of the lunar orbit and the displacement of the instantaneous pole of the Earth. It was found that the movement of the poles of the Earth leading to the variations in the magnetic field, seismic events, as well as violations of the global atmospheric circulation and water, and particular to the emergence of episodes such as El Niño and La Niña. Through semantic information models studied some equatorial regions of the Pacific Ocean, as well as spatial patterns of temperate latitudes, revealed their relative importance for the prediction of global climatic disturbances in the tropical and temperate latitudes. The reasons of occurrence of El Niño Modoki and their relationship with the movement of elements of the lunar orbit in the long-term cycles are established. Earlier, we had made a forecast of the occurrence of El Niño episode in 2015. Based on the analysis of semantic models concluded that the expected El Niño classical type. On the basis of the prediction block AIDOS-X calculated monthly evolution scenario of global climate anomalies. In this paper, the analysis of the actual implementation forecast of El Niño since its publication in January 2015 - before June 2015. It is shown that the predicted scenario of climatic anomalies actually realized. Calculations of future climate scenarios with system «Aidos-X» recognition module indicate that further possible abnormal excess temperature indicators of surface ocean waters in regions Nino 1,2 and Nino3,4 for 2015 may be comparable with similar abnormalities in the catastrophic El Niño of 1997-1998.

  3. Advancing global hydro-climatological data archives to support climate change impact assessments on water resources

    Science.gov (United States)

    Saile, P.

    2012-12-01

    Climate variations and changing climate will very likely alter the rate and nature of hydrological processes and consequently affect water resources in many regions. Current General Circulation Models and downscaling methods that are increasingly used to assess changes in the water cycle and water resource vulnerabilities introduce a cascade of uncertainties that cannot realistically be dealt with at the moment and are too inaccurate to support improved decision-making for water management and for future water systems design. Therefore, water managers need not only improved hydrological and climate modelling and downscaling methods but also access to adequate hydro-meteorological monitoring networks. The Global Terrestrial Network for Hydrology (GTN-H), a joint effort by the World Meteorological Organization (WMO) and several global observing systems, aims at integrating in-situ and remote sensing hydrological observations with hydrological model results held by its partner institutions to support a wide range of hydrological applications including research of global and regional climate change. Adhering to the different needs of all data users (scientists, policy makes and other stakeholders) and bridging the gap between the distributed datasets, currently a new information system is being developed to enable web-based discovery, access and analysis of observation data and derived products served through GTN-H. This system is built on international standards published by the Open Geospatial Consortium (OGC) using open standardized web services, namely (1) Catalogue Services for data discovery, (2) Web Map Services for data visualization and (3) Web Feature Services, Web Coverage Services and Sensor Observation Services for data access. This presentation will give an overview about the GTN-H data archive and the design of the new information system including an outlook of its potential use for water related climate change impact assessments.

  4. Assessment Of The Impact Of ESA CCI Land Cover Information For Global Climate Model Simulations

    Science.gov (United States)

    Khlystova, Iryna G.; Loew, A.; Hangemann, S.; Defourny, P.; Brockmann, C.; Bontemps, S.

    2013-12-01

    Addressing the issues of climate change, the European Space Agency has recently initiated the Global Monitoring of an Essential Climate Variables program (ESA Climate Change Initiative). The main objective is to realize the full potential of the long-term global Earth Observation archives that ESA has established over the last thirty years. Due to well organized data access and transparency for the data quality, as well as long-term scientific and technical support, the provided datasets have become very attractive for the use in Earth System Modeling. The Max Plank Institute for Meteorology is contributing to the ESA CCI via the Climate Modeler User Group (CMUG) activities and is responsible for providing a modeler perspective on the Land Cover and Fire Essential Climate Variables. The new ESA land cover ECV has recently released a new global 300-m land cover dataset. This dataset is supported by an interactive tool which allows flexible horizontal re-scaling and conversion from currently accepted satellite specific land classes to the model- specific Plant Functional Types (PFT) categorization. Such a dataset is an ideal starting point for the generation of the land cover information for the initialization of model cover fractions. In this presentation, we show how the usage of this new dataset affects the model performance, comparing it to the standard model set-up, in terms of energy and water fluxes. To do so, we performed a number of offline land-system simulations with original standard JSBACH land cover information and with the new ESA CCI land cover product. We have analyzed the impact of land cover on a simulated surface albedo, temperature and energy fluxes as well as on the biomass load and fire carbon emissions.

  5. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Zhang, Yuqiang; Anenberg, Susan C.; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven; Skeie, Ragnhild; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, I. A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2013-09-01

    Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (-20 000 to 27 000) deaths yr-1 due to ozone and 2200 (-350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

  6. Predicting Climate Change using Response Theory: Global Averages and Spatial Patterns

    CERN Document Server

    Lucarini, Valerio; Ragone, Francesco

    2015-01-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O($10^5$) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting - at any lead time and in an ensemble sense - the change in climate properties resulting from increase in the concentration of CO$_2$ using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as their spatial patter...

  7. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta Pertoldi-Bianchi, Sandra; Hossain, Kamrul; Ren, Jingzheng;

    2015-01-01

    The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitates natural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in the Arctic Ocean. Climate change facilitates natural resource extractions and increases competition...... between states and can result in tensions, even military ones. This article investigates through a political and legal analysis the role of China as an emerging regulatory sea power in the Arctic Ocean given its assertive “energy hungry country behaviour” in the Arctic Ocean. The United Nations Convention...... on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal...

  8. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    Science.gov (United States)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  9. The coming health crisis: indirect health effects of global climate change.

    Science.gov (United States)

    Myers, Samuel S; Bernstein, Aaron

    2011-02-01

    Global climate change threatens the health of hundreds of millions of people. While much has been written about the direct impacts of climate change on health as a result of more severe storms, more intense heat stress, changes in the distribution of infectious disease, and reduced air quality, we are concerned that the indirect impacts of a disrupted climate system may be orders of magnitude more important in terms of the human suffering they cause. Because these indirect effects will result from changes in biophysical systems, which are inherently complex, there is significant uncertainty about their magnitude, timing, and location. However, the uncertainty that shrouds this issue should not be cause for complacency; rather it should serve as an organizing principle for adaptation to its ill effects.

  10. Trends in research on global climate change: A Science Citation Index Expanded-based analysis

    Science.gov (United States)

    Li, Jinfeng; Wang, Ming-Huang; Ho, Yuh-Shan

    2011-05-01

    This study was conceived to evaluate the global scientific output of climate change research over the past 18 years and to assess the characteristics of the research patterns, tendencies, and methods in the papers. Data were based on the online version of Science Citation Index Expanded from 1992 to 2009. Articles referring to climate change were assessed by distribution of source countries, source institutes, paper titles, author keywords, KeyWords Plus, abstracts, and the most cited articles in these years. By synthetic analysis of the four kinds of keywords, it was concluded that the items "temperature", "environment", "precipitation", "greenhouse gas", "risk", and "biodiversity" will be the foci of climate change research in the 21st century, while "model", "monitoring", and "remote sensing" will continue to be the leading research methods. A novel method, "phylogeography", may have a strong application potential in the near future.

  11. Global biogeophysical interactions between historical deforestation and climate through land surface albedo and interactive ocean

    Science.gov (United States)

    Wang, Ye

    2017-02-01

    Deforestation is expanding and accelerating into the remaining areas of undisturbed forest, and the quality of the remaining forests is declining today. Assessing the climatic impacts of deforestation can help to rectify this alarming situation. In this paper, how historical deforestation may affect global climate through interactive ocean and surface albedo is examined using an Earth system model of intermediate complexity (EMIC). Control and anomaly integrations are performed for 1000 years. In the anomaly case, cropland is significantly expanded since AD 1700. The response of climate in deforested areas is not uniform between the regions. In the background of a global cooling of 0.08 °C occurring with cooler surface air above 0.4 °C across 30° N to 75° N from March to September, the surface albedo increase has a global cooling effect in response to global-scale replacement of forests by cropland, especially over northern mid-high latitudes. The northern mid-latitude (30° N-60° N) suffers a prominent cooling in June, suggesting that this area is most sensitive to cropland expansion through surface albedo. Most regions show a consistent trend between the overall cooling in response to historical deforestation and its resulting cooling due to surface albedo anomaly. Furthermore, the effect of the interactive ocean on shaping the climate response to deforestation is greater than that of prescribed SSTs in most years with a maximum spread of 0.05 °C. This difference is more prominent after year 1800 than that before due to the more marked deforestation. These findings show the importance of the land cover change and the land surface albedo, stressing the necessity to analyze other biogeophysical processes of deforestation using interactive ocean.

  12. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Science.gov (United States)

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis