WorldWideScience

Sample records for adopt molecular properties

  1. Innovation adoption processes for third party property management companies

    Energy Technology Data Exchange (ETDEWEB)

    Shockman, Chris; Piette, Mary Ann

    2000-07-01

    Innovation adoption studies have never been applied to third party property management companies. These companies manage buildings for a fee as their primary business. Property management companies are influential in the adoption process for new technologies because they act as gatekeepers for technical information. This study analyzes radical and routine adoption process that are found in large, professionally operated property management companies. The process is explicated. The technical managers, and their role as technology gate keepers, are described. The distinction to the technical managers between routine and radical technology is that routine technologies do something in a new way and radical technologies do something new. Observations concerning evaluation and adoption of information technologies are described. The findings suggest methods of successfully tailoring and introducing technologies to this market.

  2. Modeling of molecular properties

    CERN Document Server

    Comba, Peter

    2011-01-01

    Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28

  3. Adoption of lean principles in a high-volume molecular diagnostic microbiology laboratory.

    Science.gov (United States)

    Mitchell, P Shawn; Mandrekar, Jayawant N; Yao, Joseph D C

    2014-07-01

    Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved.

  4. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE-D...

  5. Nanofriction properties of molecular deposition films

    Institute of Scientific and Technical Information of China (English)

    王强斌; 高芒来; 张嗣伟

    2000-01-01

    The nanofriction properties of Au substrate and monolayer molecular deposition film and multilayer molecular deposition films on Au substrate and the molecular deposition films modified with alkyl-terminal molecule have been investigated by using an atomic force microscope. It is concluded that ( i ) the deposition of molecular deposition films on Au substrate and the modification of alkyl-terminal molecule to the molecular deposition films can reduce the frictional force; (ii) the molecular deposition films with the same terminal exhibit similar nanofriction properties, which has nothing to do with the molecular chain-length and the layer number; (iii) the unstable nanofriction properties of molecular deposition films are contributed to the active terminal of the molecular deposition film, which can be eliminated by decorating the active molecular deposition film with alkyl-terminal molecule, moreover, the decoration of alkyl-terminal molecule can lower the frictional force conspicuously; (iv) the relat

  6. Fluctuation Solution Theory Properties from Molecular Simulation

    DEFF Research Database (Denmark)

    Abildskov, Jens; Wedberg, R.; O’Connell, John P.

    2013-01-01

    The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...... thermodynamic properties of solutions...

  7. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  8. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  9. Molecular and structural analysis of viscoelastic properties

    Science.gov (United States)

    Yapp, Rebecca D.; Kalyanam, Sureshkumar; Insana, Michael F.

    2007-03-01

    Elasticity imaging is emerging as an important tool for breast cancer detection and monitoring of treatment. Viscoelastic image contrast in breast lesions is generated by disease specific processes that modify the molecular structure of connective tissues. We showed previously that gelatin hydrogels exhibit mechanical behavior similar to native collagen found in breast tissue and therefore are suitable as phantoms for elasticity imaging. This paper summarizes our study of the viscoelastic properties of hydrogels designed to discover molecular-scale sources of elasticity image contrast.

  10. Collective properties of evolving molecular quasispecies

    Directory of Open Access Journals (Sweden)

    Manrubia Susanna C

    2007-07-01

    Full Text Available Abstract Background RNA molecules, through their dual appearance as sequence and structure, represent a suitable model to study evolutionary properties of quasispecies. The essential ingredient in this model is the differentiation between genotype (molecular sequences which are affected by mutation and phenotype (molecular structure, affected by selection. This framework allows a quantitative analysis of organizational properties of quasispecies as they adapt to different environments, such as their robustness, the effect of the degeneration of the sequence space, or the adaptation under different mutation rates and the error threshold associated. Results We describe and analyze the structural properties of molecular quasispecies adapting to different environments both during the transient time before adaptation takes place and in the asymptotic state, once optimization has occurred. We observe a minimum in the adaptation time at values of the mutation rate relatively far from the phenotypic error threshold. Through the definition of a consensus structure, it is shown that the quasispecies retains relevant structural information in a distributed fashion even above the error threshold. This structural robustness depends on the precise shape of the secondary structure used as target of selection. Experimental results available for natural RNA populations are in qualitative agreement with our observations. Conclusion Adaptation time of molecular quasispecies to a given environment is optimized at values of the mutation rate well below the phenotypic error threshold. The optimal value results from a trade-off between diversity generation and fixation of advantageous mutants. The critical value of the mutation rate is a function not only of the sequence length, but also of the specific properties of the environment, in this case the selection pressure and the shape of the secondary structure used as target phenotype. Certain functional motifs of RNA

  11. Wetting properties of molecularly rough surfaces

    Science.gov (United States)

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-09-01

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel's law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  12. Electronic transport properties of phenylacetylene molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Liu Wen; Cheng Jie; Yah Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound- (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism.The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V.The rectification effect is attributed to the asymmetry of the interface contacts.Moreover,at a bias voltage larger than 2.0 V,which is not referred to in a relevant experiment [Fang L,Park J Y,Ma H,Jan A K Y and Salmeron M 2007 Langmuir 23 11522],we find a negative differential resistance phenomenon.The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitais induced by the bias.

  13. Molecular orbitals for properties and spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Vincent [Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, 1 rue Blaise Pascal 67000 Strasbourg-France (France); Domingo, Alex [Quantum Chemistry and Physical Chemistry Celestijnenlaan 200f, 3001 Heverlee - Belgium (Belgium); Braunstein, Pierre; Danopoulos, Andreas; Monakhov, Kirill [Laboratoire de Chimie de Coordination, Institut de Chimie, Université de Strasbourg, 4 rue Blaise Pascal 67081 Strasbourg-France (France)

    2015-12-31

    The description and clarification of spectroscopies and properties goes through ab initio calculations. Wave function based calculations (CASSCF/CASPT2) are particularly appealing since they offer spectroscopic accuracy and means of interpretation. we performed such calculations to elucidate the origin of unusual structural changes and intramolecular electron transfer phenomenon. Based on optimized molecular orbitals and a reading of the multireference wave function, it is suggested that intimate interactions are likely to considerably modify the standard pictures. A so-called PIMA (polarization-induced metalâĹŠarene) interaction similar to the more familiar anion-π interaction is responsible for a significant deviation from sp{sup 3} geometry and an energetic stabilization of 50 kJ/mol in Cr(II) benzyl organometallic complexes. In a similar fashion, it is proposed that the energetic profile of the IVCT (inter valence charge transfer) exhibits strong similarities to the Marcus’ theory, suggesting a response behaviour of the ensemble of electrons as electron transfer occurs in Fe{sup 2+}/Fe{sup 3+} bimetallic compound. The electronic reorganization induced by the IVCT process accounts for 11.8 eV, a very large effect that reduces the transfer energy down to 0.89 eV, in very good agreement with experiments.

  14. Effect of Molecular Interactions between the Solid Wall and Liquid on the Flow Properties in Microtubes

    Institute of Scientific and Technical Information of China (English)

    BAO Fu-Bing; LIN Jian-Zhong

    2009-01-01

    The flow properties in microtubes, such as velocity profiles and pressure distributions, are different from those in macrotubes. We attribute this phenomenon to the molecular interactions between the solid wall and inner liquid. The apparent viscosity, which takes into consideration the molecular interactions, is introduced in the present study and the Navier-Stokes equations are solved. Water is adopted in the calculation. For the hydrophilic material wall, the water is more like to adhere to the wall. The velocity near the wall is smaller than that of conventional theory, while the centerline velocity and pressure gradients are much larger. Such a phenomenon becomes much more obvious with the decrease in tube diameter.

  15. Coal-based carbons with molecular sieve properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, A.M.; Youssef, A.M.; Tollan, K.A. (Mansoura Univ. (Egypt))

    1991-01-01

    Carbon molecular sieves are used extensively in gas chromatography for the separation of permanent gases and light hydrocarbons. Carbon molecular sieves also find commercial application for the manufacture of pure hydrogen from hydrogen-rich gases such as coke-oven gas, and for the separation of air by the pressure-swing adsorption technique. The objective of this investigation was to prepare carbons from Maghara coal, recently available on the commercial market. Coal-based carbons, if they possess molecular sieve properties, are superior to molecular sieve carbons from agricultural by-products because they have more satisfactory mechanical properties.

  16. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    KAUST Repository

    Botiz, Ioan

    2014-03-19

    It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.

  17. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Ioan Botiz

    2014-03-01

    Full Text Available It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties.

  18. Efficient combinatorial filtering for desired molecular properties of reaction products.

    Science.gov (United States)

    Shi, S; Peng, Z; Kostrowicki, J; Paderes, G; Kuki, A

    2000-01-01

    Two combinatorial filtering methods for efficiently selecting reaction products with desired properties are presented. The first, "direct reactants" method is applicable only to those molecular properties that are strictly additive or approximately additive, with relatively small interference between neighboring fragments. This method uses only the molecular properties of reactants. The second, "basis products" method can be used to filter not only the strictly additive properties but also the approximately additive molecular properties where a certain degree of mutual influence occurs between neighboring fragments. This method requires the molecular properties of the "basis products," which are the products formed by combining all the reactants for a given reaction component with the simplest set of complementary reactant partners. There is a one-to-one correspondence between the reactants and the "basis products." The latter is a product representation of the former. High efficiency of both methods is enhanced further by a tree-sorting and hierarchical selection algorithm, which is performed on the reaction components in a limited space determined systematically from the filtering criteria. The methods are illustrated with product logPs, van der Waals volumes, solvent accessible surface areas, and other product properties. Good results are obtained when filtering for a number of important molecular properties in a virtual library of 1.5 billion.

  19. Molecular clips based on propanediurea : synthesis and physical properties

    NARCIS (Netherlands)

    Jansen, Robertus Johannes

    2002-01-01

    This thesis describes the synthesis and physical properties of a series of molecular clips derived from the concave molecule propanediurea. These molecular clips are cavity-containing receptors that can bind a variety of aromatic guests. This binding is a result of hydrogen bonding and pi-pi stackin

  20. OPTICAL-PROPERTIES OF DISORDERED MOLECULAR AGGREGATES - A NUMERICAL STUDY

    NARCIS (Netherlands)

    FIDDER, H; KNOESTER, J; WIERSMA, DA

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  1. Optical properties of disordered molecular aggregates : A numerical study

    NARCIS (Netherlands)

    Fidder, Henk; Knoester, Jasper; Wiersma, Douwe A.

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  2. Excited-State Properties of Molecular Solids from First Principles

    Science.gov (United States)

    Kronik, Leeor; Neaton, Jeffrey B.

    2016-05-01

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  3. Rheological properties of poly (vinylpiyrrolidone) as a function of average molecular weight and its applications

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Ragnar;

    characterized regarding their viscosimetric properties in ethanol. Average molecular weights (Mw, Mn, and Mz) have been determined by gel permeation chromatography (GPC), and then used in a numerical method to evaluate the viscosity average molecular weight (Mv) via the Mark-Houwink-Sakurada (MHS) equation......Polyvinylpyrrolidone (PVP) is an attractive material due to its solubility in aqueous and organic solvents, excellent film forming capability, and its ability to act as a dispersant in colloidal suspensions and slurries. These characteristics of PVP have led to its use in a large variety....... The MHS equation relates the intrinsic viscosity [η] of a polymer in a given solvent at fixed temperature to the molecular weight. The adopted method also enables for the evaluation of the two MHS equation parameters (a and K), and of the polydispersity correction factor (qMHS). The intrinsic viscosity...

  4. Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach

    Indian Academy of Sciences (India)

    P Subba Rao; Sunil Anandatheertha; G Narayana Naik; G Gopalakrishnan

    2015-06-01

    Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon–Carbon covalent bond and two types of Carbon–Carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness’s are assigned to spring elements in the finite element model of the CNT. The geometry of CNT is built using a macro that is developed for the finite element analysis software. The finite element model of the CNT is constructed, appropriate boundary conditions are applied and the behavior of mechanical properties of CNT is studied.

  5. Studies of molecular properties of polymeric materials

    Science.gov (United States)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  6. First Passage Properties of Molecular Spiders

    CERN Document Server

    Semenov, Oleg; Stefanovic, Darko

    2013-01-01

    Molecular spiders are synthetic catalytic DNA-based nanoscale walkers. We study the mean first passage time for abstract models of spiders moving on a finite two-dimensional lattice with various boundary conditions, and compare it with the mean first passage time of spiders moving on a one-dimensional track. We evaluate by how much the slowdown on newly visited sites, owing to catalysis, can improve the mean first passage time of spiders and show that in one dimension, when both ends of the track are an absorbing boundary, the performance gain is lower than in two dimensions, when the absorbing boundary is a circle; this persists even when the absorbing boundary is a single site.

  7. In Silico Study of Ceftaroline’s Molecular Properties

    Directory of Open Access Journals (Sweden)

    Elso Manuel Cruz Cruz

    2011-03-01

    Full Text Available Background: Ceftaroline is the latest developed cephalosporin. Its molecular modeling can help deepening the structural bases underpinning its pharmacological characteristics. Objective: to model structural and electronic properties of the ceftaroline. Method: a theoretical study using quantum mechanics methods was conducted in order to model the structure and electronic properties of the ceftaroline. Molecular geometry was optimized with semiempirical calculations according to parameterized model # 3. Molecular properties were calculated according to the Density Functional Theory. Densities of atomic charges and orbital borders were analyzed and compared to the ceftobiprole modeling. Results: the ceftaroline has a more compact and less elongated three-dimensional structure than the ceftobiprole. The positive charges densities on the carbonyl carbon are slightly lower than their equivalents in the ceftobiprole. Conclusions: an ethyl presence in the ceftaroline oxime group modifies its spatial configuration which makes it more compact and may influence its antibacterial action.

  8. Transport properties of a novel molecular rotor

    Science.gov (United States)

    Xue, Mei; Wang, K. L.; Kabehie, Sanaz; Zink, Jeffrey I.

    2008-03-01

    Rotary motion around a molecular axis has been controlled by electron transfer process and by photoexcitation. The basis of the motion is intramolecular rotation of a ligand (3,8-di-ethynyltrityl-1, 10-phenanthroline) around a copper axle. The asymmetric copper system is synthesized by immobilizing a ``stator'' to a silicon support. The ``rotator,'' 3,8-di-ethynyltrityl-1, 10-phenanthroline is complexed to the metal center, Cu (I) or Cu (II) serving as an ``axle''. The Cu (I) system structure is tetrahedral, but that of Cu (II) is square planar. The interconversion of the two provides the basis for controlled, rotational motion. Hysteresis is observed in the different region of the applied voltage for different stators. The peak of the bisP-Si shifts to the left compared to that of the phen-Si stator because of the larger energy gap of phen-Si. The energy states of the Cu (I) and Cu (II) are extracted from the transport measurement results.

  9. Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters

    Science.gov (United States)

    Kolobkova, E. V.; Kukushkin, D. S.; Nikonorov, N. V.; Sidorov, A. I.; Shakhverdov, T. A.

    2015-02-01

    It is experimentally shown that, prior to the formation of CdSe quantum dots in fluorophosphate glasses with cadmium and selenium ions in the process of synthesis, subnanosized molecular clusters (CdSe) n are formed, which exhibit luminescence in the visible spectral region upon UV excitation. Heat treatment of the glasses increases the size of molecular clusters and makes their optical properties closer to the optical properties of CdSe semiconductor quantum dots. An increase in the sample temperature from 20 to 250°C leads to reversible thermal quenching of the luminescence.

  10. Soy protein isolate molecular level contributions to bulk adhesive properties

    Science.gov (United States)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  11. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  12. A Darwinian view of metabolism: molecular properties determine fitness.

    Science.gov (United States)

    Firn, Richard D; Jones, Clive G

    2009-01-01

    Why do organisms make the types of chemicals that they do? Evolutionary theory tells us that individuals within populations will be subject to mutation and that some of those mutations will be enzyme variants that make new chemicals. A mutant making a novel chemical for that species will only survive in the population if the 'cost' of making the new chemical is outweighed by the benefits that result from making that molecule. The benefits, or adverse consequences, that a novel chemical X can confer to the individual organism are not a property of the simple existence of X in the cell but can be traced to one of the multiple properties that X will possess because of its molecular structure. By considering only three basic types of molecular property and by considering how selection pressures will differ for each kind of property, it is possible to account for much of the chemical diversity made by organisms. Such an evolutionary model can also explain why the properties of enzymes will differ depending on the molecular properties of the chemicals they make, and why the widely accepted terms 'primary metabolism' and 'secondary metabolism' have been so misleading and unsatisfactory.

  13. Interfacial Properties of an Ionic Liquid by Molecular Dynamics

    NARCIS (Netherlands)

    Heggen, B.; Zhao, W.; Leroy, F.; Dammers, A.T.; Müller-Plathe, F.

    2010-01-01

    We studied the influence of a liquid-vapor interface on dynamic properties like reorientation and diffusion as well as the surface tension of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) by molecular dynamics simulations. In the interfacial region, reorientation of

  14. Adsorption properties of the SAPO-5 molecular sieve

    KAUST Repository

    Hu, Enping

    2010-09-09

    The adsorption properties of an aluminophosphate molecular sieve, SAPO-5, were measured for a number of gases and vapors, including N2, water, isopropanol, and xylenes. The data showed that SAPO-5 is quite hydrophobic and has a strong selectivity of o-xylene over its isomers m- and p-xylene. © 2010 American Chemical Society.

  15. Electrical properties of molecular crystals; Proprietes electriques des cristaux moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Barraud, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [French] Cette etude bibliographique resume les proprietes electriques des cristaux moleculaires: structure des cristaux moleculaires, mecanismes de transport et d'excitation des porteurs de charge et differences avec les semiconducteurs mineraux. Les principaux resultats sur la conductibilite electrique des cristaux moleculaires les plus etudies y sont exposes, ainsi que les proprietes optiques et photoelectriques de ces cristaux. Enfin les differents types de mesures electriques utilisees sont passees en revue ainsi que les limites de chaque methode. (auteur)

  16. Calculation of nonlinear optical properties of molecular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yartsev, V. M.; Marcano O, A. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    Effects of electronic correlation and electron-intramolecular vibration coupling on the non-linear optical properties are studied. The Hubbard Hamiltonian is used for explicit treatment of electronic correlation in molecular dimmer. The static polarizability and the static second hyper polarizability {gamma} are calculated and their dependences on the model parameters are analyzed. The role of interaction between ion-radical complexes is considered within the model of two parallel dimers. [Spanish] Se estudian los efectos de correlacion y el acoplamiento del electron con las vibraciones moleculares sobre las propiedades opticas no lineales de agregados moleculares. Se utiliza un hamiltoniano de tipo Hubbard para el tratamiento explicito de la correlacion electronica en un dimero molecular. Se calculan la polarizabilidad estatica {alpha} y la hiperpolarizabilidad de segundo orden {gamma} al igual que se analizan sus dependencias de los parametros del modelo. Se estudia ademas el papel de la interaccion entre complejos ino-radical dentro del modelo de dos dimeros paralelos.

  17. Electronic Properties of Nano and Molecular Quantum Devices

    CERN Document Server

    Al-Owaedi, Oday Arkan Abbas

    2016-01-01

    The exploring and understanding the electronic properties of molecules connected to metallic leads is a vital part of nanoscience if molecule is to have a future. This thesis documents a study for various families of organic and organometallic molecules, which offer unique concepts and new insights into the electronic properties of molecular junctions. Different families of molecules were studied using a combination of density functional theory DFT and nonequilibrium Greens function formalism of transport theory.The main results of this thesis are as follows. A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo phenyleneethynylene OPE type molecules possessing three aromatic rings was investigated both theoretically and experimentally. The theoretical and experimental studies of conductance and the decay of conductance as a function of molecular length within a homologous series of oligoynes. The single molecule conductances of a series of bis-terpyridine com...

  18. Machine Learning of Molecular Electronic Properties in Chemical Compound Space

    CERN Document Server

    Montavon, Grégoire; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of \\textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \\emph{ab initio} methods, \\emph{i.e.} nucle...

  19. Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies.

    Science.gov (United States)

    Choudhury, Rajib; Barman, Arghya; Prabhakar, Rajeev; Ramamurthy, V

    2013-01-10

    In this study we have examined the conformational preference of phenyl-substituted hydrocarbons (alkanes, alkenes, and alkynes) of different chain lengths included within a confined space provided by a molecular capsule made of two host cavitands known by the trivial name "octa acid" (OA). One- and two-dimensional (1)H NMR experiments and molecular dynamics (MD) simulations were employed to probe the location and conformation of hydrocarbons within the OA capsule. In general, small hydrocarbons adopted a linear conformation while longer ones preferred a folded conformation. In addition, the extent of folding and the location of the end groups (methyl and phenyl) were dependent on the group (H(2)C-CH(2), HC═CH, and C≡C) adjacent to the phenyl group. In addition, the rotational mobility of the hydrocarbons within the capsule varied; for example, while phenylated alkanes tumbled freely, phenylated alkenes and alkynes resisted such a motion at room temperature. Combined NMR and MD simulation studies have confirmed that molecules could adopt conformations within confined spaces different from that in solution, opening opportunities to modulate chemical behavior of guest molecules.

  20. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    Science.gov (United States)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  1. Properties of Diffuse Molecular Gas in the Magellanic Clouds

    Science.gov (United States)

    Welty, Daniel

    2012-10-01

    Studies of the interstellar medium in the lower-metallicity Magellanic Clouds explore somewhat different environmental conditions from those typically probed in our own Galactic ISM. Recent studies based on optical/UV spectra of SMC and LMC targets, for example, have revealed unexpected differences in gas-phase abundance patterns {for various atomic and molecular species} and have begun to explore the effects of differences in metallicity on the atomic-to-molecular transition and resulting molecular fraction f{H_2} - a key aspect in the formation of molecular clouds. We propose a more detailed study of the abundances, depletions, and local physical conditions characterizing diffuse molecular material in the Magellanic Clouds, using STIS E140H and E230M spectra of two sight lines with N{H_2} > 10^20 cm^-2 {both probing the outskirts of molecular clouds seen in CO emission}. The two STIS settings will include lines from various neutral and ionized species {with a range in depletion behavior}, several C I multiplets, and several bands of CO and C_2. By probing and characterizing the atomic-to-molecular transition in the Magellanic Clouds, we will address key issues regarding the effects of differences in metallicity on the relationship between the atomic and molecular gas in galaxies; on cloud structure, physical conditions, and diffuse cloud chemistry; and on the composition and properties of interstellar dust. The results of this project should thus aid in the interpretation of observations of atomic and molecular material in more distant low-metallicity systems.

  2. Electronic transport properties of a quinone-based molecular switch

    Science.gov (United States)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  3. Nonlinear thermoelectric properties of molecular junctions with vibrational coupling

    DEFF Research Database (Denmark)

    Leijnse, Martin Christian; Wegewijs, M. R.; Flensberg, Karsten

    2010-01-01

    We present a detailed study of the nonlinear thermoelectric properties of a molecular junction, represented by a dissipative Anderson-Holstein model. A single-orbital level with strong Coulomb interaction is coupled to a localized vibrational mode and we account for both electron and phonon...... exchange with both electrodes, investigating how these contribute to the heat and charge transports. We calculate the efficiency and power output of the device operated as a heat to electric power converter in the regime of weak tunnel coupling and phonon exchange rate and identify the optimal operating...... conditions, which are found to be qualitatively changed by the presence of the vibrational mode. Based on this study of a generic model system, we discuss the desirable properties of molecular junctions for thermoelectric applications....

  4. Molecular Dynamics Simulation on thermodynamic Properties and Transport Coefficients

    Institute of Scientific and Technical Information of China (English)

    D.X.Xiong

    1996-01-01

    Moecular dynamics simulation (MDS) is used to study the thermodynamic properties and transport coefficients of an argon system with Lennend-Jones potential.The results on the velocity distribution,mean free path,mean collison time,specific heat and self0diffusion coefficient agree well with the existing theoretical /experimental data,It shows that molecular dynamics method is another bridge to connect microworld and macreoworld.

  5. Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivative

    KAUST Repository

    Li, Min

    2015-10-14

    The molecular self-assembly behaviour of 2,2’-Bis-(4-hexyloxyphenyl)-bi-1,3,4-oxadiazole (BOXD-6) in solution, on surfaces and in bulk crystals, and its photo-physical properties were studied via a combination of experimental techniques and theoretical calculations. It is found that BOXD-6 molecules self-assemble into both H- and J-aggregates at moderate concentration (~10-4 M) and then transit to exclusive J-aggregates at higher concentration (~10-3 M) in tetrahydrofuran. In H-aggregation (α polymorph), BOXD-6 adopts a linear conformation and forms a one- dimensional layered structure; in J-aggregation (β polymorph), it adopts a Z-shaped conformation and form a more ordered two-dimensional layered structure. A π-stacking structure is observed in both cases, and adjacent molecules in the J-aggregation show larger displacement along the molecular long axis direction than that in H-aggregation. Although J-aggregates are almost the only component in concentrated solutions (10-3 M), both H- and J-aggregates can be obtained if concentrated solution is transformed onto substrates through a simple drop-casting method. Such a phase transition during film formation can be easily avoided by adding water as precipitator; a film with pure J-aggregates is then obtained. In order to get more information on molecular self-assembly, intermolecular interaction potential energy surfaces (PES) were evaluated via theoretical calculations at the DFT level (M062x/6-31G**). The PES not only confirm the molecular stacking structures found in crystals but also predict some other likely structures, which will be the target of future experiments.

  6. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties.

    Science.gov (United States)

    Wolf, Alexander; Reiher, Markus

    2006-02-14

    Recent advances in the theory of the infinite-order Douglas-Kroll-Hess (DKH) transformation of the Dirac Hamiltonian require a fresh and unified view on the calculation of atomic and molecular properties. It is carefully investigated how the four-component Dirac Hamiltonian in the presence of arbitrary electric and magnetic potentials is decoupled to two-component form. In order to cover the whole range of electromagnetic properties on the same footing, a consistent description within the DKH theory is presented. Subtle distinctions are needed between errors arising from any finite-order DKH scheme and effects due to oversimplified and thus approximate decoupling strategies for the Dirac operator, which will, though being numerically negligible in most cases, still be visible in the infinite-order limit of the two-component treatment. Special focus is given to the issue, whether the unitary DKH transformations to be applied to the Dirac Hamiltonian should depend on the property under investigation or not. It is explicitly shown that up to third order in the external potential the transformed property operator is independent of the chosen parametrization of the unitary transformations of the generalized DKH scheme. Since the standard DKH protocol covers the transformation of one-electron integrals only, the presentation is developed for one-electron properties for the sake of brevity. Nevertheless, all findings for the calculation of one-electron properties within a two-component framework presented here also hold for two-electron properties as well.

  7. Three decades of structure- and property-based molecular design.

    Science.gov (United States)

    Müller, Klaus

    2014-01-01

    Roche has pioneered structure- and property-based molecular design to drug discovery. While this is an ongoing development, the past three decades feature key events that have revolutionized the way drug discovery is conducted in Big Pharma industry. It has been a great privilege to have been involved in this transformation process, to have been able to collaborate with, direct, guide, or simply encourage outstanding experts in various disciplines to build and further develop what has become a major pillar of modern small-molecule drug discovery. This article is an account of major events that took place since the early decision of Roche to implement computer-assisted molecular modeling 32 years ago and is devoted to the key players involved. It highlights the internal build-up of structural biology, with protein X-ray structure determination at its core, and the early setup of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries. These developments were accompanied by the rise of miniaturized parallel compound property analytics which resulted in a major paradigm shift in medicinal chemistry from linear to multi-dimensional lead optimization. The rapid growth of huge collections of property data stimulated the development of various novel data mining concepts with 'matched molecular pair' analysis and novel variants thereof playing crucial roles. As compound properties got more prominent in molecular design, exploration of specific structural motifs for property modulation became a research activity complementary to target-oriented medicinal chemistry. The exploration of oxetane is given as an example. For the sake of brevity, this account cannot detail all further developments that have taken place in each individual area of

  8. Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

    KAUST Repository

    Zhang, Chen

    2012-08-16

    We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C 4H 10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C 4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C 4H 8/iso-C 4H 10 of 180 and n-C 4H 10/iso-C 4H 10 of 2.5 × 10 6. These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites. © 2012 American Chemical Society.

  9. Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes

    Science.gov (United States)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Boldyrev, Ivan A.; Efremov, Roman G.

    2014-12-01

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and ``branched'' hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.

  10. Molecular properties,functions,and potential applications of NAD kinases

    Institute of Scientific and Technical Information of China (English)

    Feng Shi; Yongfu Li; Ye Li; Xiaoyuan Wang

    2009-01-01

    NAD kinase catalyzes the phosphorylation of NAD(H)to form NADP(H),using ATP as phosphoryl donor.It is the only key enzyme leading to the de novo NADP+/NADPH biosynthesis.Coenzymes such as NAD(H)and NADP(H)are known for their important functions.Recent studies have partially demonstrated that NAD kinase plays a crucial role in the regulation of NAD(H)/NADP(H)conversion.Here,the molecular properties,physiologic functions,and potential applications of NAD kinase are discussed.

  11. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    Science.gov (United States)

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized.

  12. Property Integration - A New Approach for Simultaneous Solution of Process and Molecular Design Problems

    DEFF Research Database (Denmark)

    concepts are employed to identify optimal properties without commitment to specific species. Subsequently, group contribution methods and molecular design techniques are employed to solve the reverse property prediction problem to design molecules possessing the optimal properties....

  13. Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal α-RDX

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin R.

    2017-01-01

    We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters such as the elastic constants, the lattice parameters, the thermal expansion coefficients, the stacking fault energy and the critical stress for the motion of a dislocation (the Peierls-Nabarro stress). The values of these parameters evaluated with the fully refined, fully flexible atomistic model of the crystal are taken as reference. It is observed that the elastic constants, the lattice parameters and their dependence on pressure, and the thermal expansion coefficient can be accurately predicted with models that consider the NO2 and CH2 groups rigid, and the N-N bonds and the bonds of the triazine ring inextensible. Eliminating the dihedral flexibility of the ring leads to larger errors. The model in which the entire molecule is considered rigid or is mapped to a blob leads to even larger errors. Only the fully flexible, reference model provides accurate values for the stacking fault energy and the Peierls-Nabarro critical stress. Removing any component of the molecular flexibility leads to large errors in these parameters. These results also provide guidance for the development of coarse grained models of molecular crystals.

  14. Recommendations on adopting the values and correlations for calculating the thermophysical and kinetic properties of liquid lead

    Science.gov (United States)

    Savchenko, I. V.; Lezhnin, S. I.; Mosunova, N. A.

    2015-06-01

    Recent years have seen an essentially increased interest in studying the properties of liquid lead, which is primarily connected with the possibility of using it as coolant in nuclear power installations, first of all, in reactors based on fission of heavy nuclei by fast neutrons. The article presents an analysis of published data on the thermophysical and kinetic properties of lead in liquid state, the results of which served as a basis for selecting and recommending correlations to be used in carrying out scientific and engineering calculations. A general assessment of the state of experimental investigations into the thermophysical properties of liquid lead is presented. The presented value of lead solidification temperature is the maximally reliable one. The data on the boiling temperature, melting and vaporization enthalpies, and saturated vapor pressure have been determined with satisfactory accuracy. The published data on the liquid lead heat capacity differ considerably from each other; therefore, the recommended values should be experimentally checked and determined more exactly. The available experimental data on surface tension density, volumetric expansion coefficient, sound velocity, viscosity, and thermal conductivity do not cover the entire range of liquid phase existence temperatures. The temperature region above 1200 K and the crystal-liquid phase transition region are the least studied ones. Additional investigations of these properties in the above-mentioned temperature intervals are necessary. The question about the influence of impurities on the thermophysical properties of lead still remains to be answered and requires experimental investigations.

  15. Transport Properties of Fluids in Micropores by Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    LIU, Ying-Chun(刘迎春); WANG, Qi(王琦); Lü, Ling-Hong(吕玲红)

    2004-01-01

    The transport properties of fluid argon in micropores, i.e. diffusivity and viscosity, were studied by molecular dynamics simulations. The effects of pore width, temperature and density on diffusivity and viscosity were analyzed in micropores with pore widths from 0.8 to 4.0 nm. The results show that the diffusivity in micropores is much lower than the bulk diffusivity, and it decreases as the pore width decreases; but the viscosity in micropores is significantly larger than the bulk one, and it increases sharply in narrow micropores. The diffusivity in channel parallel direction is obviously larger than that in channel perpendicular direction. The temperature and density are important factors that obviously affect diffusivity and viscosity in micropores.

  16. Molecular dynamics simulation of thermodynamic properties of YAG

    Institute of Scientific and Technical Information of China (English)

    Chen Jun; Chen Dong-Quan; Zhang Jing-Lin

    2007-01-01

    In this paper we study the thermodynamic properties of Y3Al5O12 (YAG) by using molecular dynamic method combined with two- and three-body potentials. The dependences of melting process, elastic constant and diffusion coefficient on temperature of crystal YAG are simulated and compared with the experimental results. Our results show that anion O has the biggest self-diffusivity and cation Y has the smallest self-diffusivity in a crystal YAG. The calculated diffusion activation energies of ions O, Al and Y are 282.55, 439.46, 469.71k J/mol, respectively. Comparing with experimental creep activation energy of YAG confirms that cation Y can restrict the diffusional creep rate of crystal YAG.

  17. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  18. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, magnetic, and optical properties of subnanometer Au N and AuN-1Gd1 gas phase clusters (N = 2 to 8) are systematically investigated in the framework of (time-dependent) density functional theory, using the B3LYP hybrid exchange correlation functional. The size dependent evolution of the gap between the highest occupied and lowest unoccupied molecular orbitals, the magnetism, and the absorption spectra are studied. The simultaneous appearance of large magnetic moments, significant band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  19. Three decades of structure- and property-based molecular design

    DEFF Research Database (Denmark)

    Müller, Klaus

    2014-01-01

    of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries......Roche has pioneered structure- and property-based molecular design to drug discovery. While this is an ongoing development, the past three decades feature key events that have revolutionized the way drug discovery is conducted in Big Pharma industry. It has been a great privilege to have been...... involved in this transformation process, to have been able to collaborate with, direct, guide, or simply encourage outstanding experts in various disciplines to build and further develop what has become a major pillar of modern small-molecule drug discovery. This article is an account of major events...

  20. Molecular weight effects on interfacial properties of linear and ring polymer melts: A molecular dynamics study

    Science.gov (United States)

    Meddah, Chahrazed; Milchev, Andrey; Sabeur, Sid Ahmed; Skvortsov, Alexander M.

    2016-11-01

    Using molecular dynamics simulations, we study and compare the pressure, P, and the surface tension, γ , of linear chains and of ring polymers at the hard walls confining both melts into a slit. We examine the dependence of P and γ on the length (i.e., molecular weight) N of the macromolecules. For linear chains, we find that both pressure and surface tension are inversely proportional to the chain length, P (N ) -P (N →∞ ) ∝N-1,γ (N ) -γ (N →∞ ) ∝N-1 , irrespective of whether the confining planes attract or repel the monomers. In contrast, for melts comprised of cyclic (ring) polymers, neither the pressure nor the surface tension is found to depend on molecular weight N for both kinds of wall-monomer interactions. While other structural properties as, e.g., the probability distributions of trains and loops at impenetrable walls appear quantitatively indistinguishable, we observe an amazing dissimilarity in the probability to find a chain end or a tagged monomer of a ring at a given distance from the wall in both kinds of polymeric melts. In particular, we demonstrate that the conformational equivalence of linear chains in a confined melt to a single chain under conditions of critical adsorption to a planar surface, established two decades ago, does also hold for ring polymers in a melt of linear chains. This analogy does not hold, however, for linear and ring chains in a confined melt of ring chains.

  1. Molecular Fundaments of Mechanical Properties of Spider Silk

    Institute of Scientific and Technical Information of China (English)

    潘志娟; 刘敏; 李春萍; 李栋高; 盛家镛

    2003-01-01

    Dragline,framework and cocoon silk fibers of Araneus Ventricosus were used for this study.To investigate the microstructure mechanisms of stress-strain behavior of spider silk,firstly,amino acid compositions were analyzed and molecular conformations and crystallinity were measured with Raman spectra and X-ray diffraction respectively.The results showed that there were more amino acids with large side groups and polar ones in spider silk than those of Bombyx silk,and the amino acid distribution varied with different spider silk.The molecular structures were mainly α-helix and β-sheet,and random coil and β-turn existed as well.The proportions and arrangement of these conformations of dragline silk were different from framework and cocoon silk fibers.Microstructure was one of important factors of excellent mechanical properties of spider silk.Crystallinity of spider silk was very low,which implied that the roles of crystal on spider silk were not as great as other protein fibers.

  2. Dust properties inside molecular clouds from coreshine modeling and observations

    CERN Document Server

    Lefèvre, Charlène; Juvela, Mika; Paladini, Roberta; Lallement, Rosine; Marshall, D J; Andersen, Morten; Bacmann, Aurore; Mcgee, Peregrine M; Montier, Ludovic; Noriega-Crespo, Alberto; Pelkonen, V -M; Ristorcelli, Isabelle; Steinacker, Jürgen

    2014-01-01

    Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 $\\mu$m that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observation...

  3. Molecular mechanical properties of short-sequence peptide enzyme mimics.

    Science.gov (United States)

    Takahashi, Tsukasa; Vo Ngo, Bao C; Xiao, Leyang; Arya, Gaurav; Heller, Michael J

    2016-01-01

    While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics.

  4. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  5. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  6. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun

    2006-01-01

    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  7. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    Science.gov (United States)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  8. The Resolved Properties of Extragalactic Giant Molecular Clouds

    CERN Document Server

    Bolatto, Alberto D; Rosolowsky, Erik; Walter, Fabian; Blitz, Leo

    2008-01-01

    We use high spatial resolution observations of CO to systematically measure the resolved size-line width, luminosity-line width, luminosity-size, and the mass-luminosity relations of Giant Molecular Clouds (GMCs) in a variety of extragalactic systems. Although the data are heterogeneous we analyze them in a consistent manner to remove the biases introduced by limited sensitivity and resolution, thus obtaining reliable sizes, velocity dispersions, and luminosities. We compare the results obtained in dwarf galaxies with those from the Local Group spiral galaxies. We find that extragalactic GMC properties measured across a wide range of environments are very much compatible with those in the Galaxy. We use these results to investigate metallicity trends in the cloud average column density and virial CO-to-H2 factor. We find that these measurements do not accord with simple predictions from photoionization-regulated star formation theory, although this could be due to the fact that we do not sample small enough s...

  9. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  10. Questions about Adoption

    Science.gov (United States)

    ... more about their How-to-Adopt and Adoption Parenting Network . Q: What are the different types of adoption? A: Children can be adopted through the national public child welfare system, private ...

  11. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.

    Science.gov (United States)

    Mehere, Prajwalini; Han, Qian; Lemkul, Justin A; Vavricka, Christopher J; Robinson, Howard; Bevan, David R; Li, Jianyong

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  12. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  13. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  14. Cooperative effects enhance the transport properties of molecular spider teams

    CERN Document Server

    Rank, Matthias; Frey, Erwin

    2013-01-01

    Molecular spiders are synthetic molecular motors based on DNA nanotechnology. While natural molecular motors have evolved towards very high efficiency, it remains a major challenge to develop efficient designs for man-made molecular motors. Inspired by biological motor proteins like kinesin and myosin, molecular spiders comprise a body and several legs. The legs walk on a lattice that is coated with substrate which can be cleaved catalytically. We propose a novel molecular spider design in which n spiders form a team. Our theoretical considerations show that coupling several spiders together alters the dynamics of the resulting team significantly. Although spiders operate at a scale where diffusion is dominant, spider teams can be tuned to behave nearly ballistic, which results in fast and predictable motion. Based on the separation of time scales of substrate and product dwell times, we develop a theory which utilises equivalence classes to coarse-grain the micro-state space. In addition, we calculate diffus...

  15. Computer modeling of properties of complex molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulkova, E.Yu. [Moscow State University of Technology “STANKIN”, Vadkovsky per., 1, Moscow 101472 (Russian Federation); Khrenova, M.G.; Polyakov, I.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); Nemukhin, A.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334 (Russian Federation)

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  16. The Symmetry Properties of Linear Combination Coefficients for Molecular Orbitals of Diatomic Molecules

    Institute of Scientific and Technical Information of China (English)

    Metin Orbay; Telhat Ozdogan

    2003-01-01

    In this paper, the symmetry properties of linear combination coefficients for molecular orbitals of diatomicmolecules, using Slater type orbitals, are presented with the help of the symmetry operations in group theory. In order totest the presented symmetry properties, the linear combination coefficients of molecular orbitalsfor the ground electronicstate of pilot molecules F2 and CO are calculated using constructed computer programs for Hartree-Fock-Roothaanequation. It is seen that the obtained computing results satisfy the presented symmetry properties.

  17. Electronic properties of organic monolayers and molecular devices

    Indian Academy of Sciences (India)

    D Vuillaume; S Lenfant; D Guerin; C Delerue; C Petit; G Salace

    2006-07-01

    We review some of our recent experimental results on charge transport in organic nanostructures such as self-assembled monolayer and monolayers of organic semiconductors. We describe a molecular rectifying junction made from a sequential self-assembly on silicon. These devices exhibit a marked current–voltage rectification behavior due to resonant transport between the Si conduction band and the molecule highest occupied molecular orbital of the molecule. We discuss the role of metal Fermi level pinning in the current–voltage behavior of these molecular junctions. We also discuss some recent insights on the inelastic electron tunneling behavior of Si/alkyl chain/metal junctions.

  18. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.

    Science.gov (United States)

    Autschbach, Jochen; Srebro, Monika

    2014-08-19

    Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the

  19. Effect of Chemical Structure on Molecular Properties of Hyperbranched Polycarbosilanes

    Institute of Scientific and Technical Information of China (English)

    E.Tarabukina; A.Shpyrkov; A.Amirova; E.Tarasova; N.Shumilkina; A.Filippov; A.Muzafarov

    2007-01-01

    1 Results In spite of the increased interest to the synthesis of hyperbranched polymers,there is a lack of studies of conformational properties of their macromolecules.Structural features of hyperbranched polymers are responsible for new properties that distinguish them from linear compounds and open unique possibilities for their applications.The knowledge of the "structure-properties" relationships is of fundamental value,it also can be helpful when developing new technologies and new materials. The g...

  20. Molecular simulation studies on thermophysical properties with application to working fluids

    CERN Document Server

    Raabe, Gabriele

    2017-01-01

    This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

  1. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  2. Opto-Electronic Properties of Conjugated Molecular Wires

    NARCIS (Netherlands)

    Grozema, F.C.

    2003-01-01

    Conjugated polymers are of considerable current interest because of their semi-conducting and light-emitting properties. These properties, combined with their relatively low cost and good processability as compared to inorganic semiconductors, make them attractive candidates for application in plast

  3. Cosmic rays as regulators of molecular cloud properties

    CERN Document Server

    Padovani, Marco; Galli, Daniele

    2014-01-01

    Cosmic rays are the main agents in controlling the chemical evolution and setting the ambipolar diffusion time of a molecular cloud. We summarise the processes causing the energy degradation of cosmic rays due to their interaction with molecular hydrogen, focusing on the magnetic effects that influence their propagation. Making use of magnetic field configurations generated by numerical simulations, we show that the increase of the field line density in the collapse region results in a reduction of the cosmic-ray ionisation rate. As a consequence the ionisation fraction decreases, facilitating the decoupling between the gas and the magnetic field.

  4. Molecular dynamics simulation for mechanical properties of CNT/Polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Yang Qingsheng [Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124 (China)], E-mail: jiajia2007@emails.bjut.edu.cn, E-mail: qsyang@bjut.edu.cn

    2009-09-01

    The pull-out process of the carbon nanotube from polyethylene was simulated by molecular dynamics method. A model of a carbon nanotube in polyethylene was established. In the simulation, Adaptive Intermolecular Reactive Empirical Bond Order(ARIEBO) potential was adopted to describe the interaction of C-C and C-H in the carbon nanotube and polymer, and Lennard-Jones pair potential was used to describe the interaction between the carbon nanotube and polymer; NVT ensemble was adopted in the whole simulation and Nose-Hoover method was used to control the temperature at absolute zero, which avoided the influence induced by thermal activation; Verlet algorithm was used to solve molecular dynamics equations in the procedure of simulation. The deformation and forces on interfaces between the carbon nanotube and polymer was analyzed by simulating the process of pulling-out of the carbon nanotube from polyethylene.

  5. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  6. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  7. Visualizing global properties of a molecular dynamics trajectory.

    Science.gov (United States)

    Zhou, Hao; Li, Shangyang; Makowski, Lee

    2016-01-01

    Molecular dynamics (MD) trajectories are very large data sets that contain substantial information about the dynamic behavior of a protein. Condensing these data into a form that can provide intuitively useful understanding of the molecular behavior during the trajectory is a substantial challenge that has received relatively little attention. Here, we introduce the sigma-r plot, a plot of the standard deviation of intermolecular distances as a function of that distance. This representation of global dynamics contains within a single, one-dimensional plot, the average range of motion between pairs of atoms within a macromolecule. Comparison of sigma-r plots calculated from 10 ns trajectories of proteins representing the four major SCOP fold classes indicates diversity of dynamic behaviors which are recognizably different among the four classes. Differences in domain structure and molecular weight also produce recognizable features in sigma-r plots, reflective of differences in global dynamics. Plots generated from trajectories with progressively increasing simulation time reflect the increased sampling of the structural ensemble as a function of time. Single amino acid replacements can give rise to changes in global dynamics detectable through comparison of sigma-r plots. Dynamic behavior of substructures can be monitored by careful choice of interatomic vectors included in the calculation. These examples provide demonstrations of the utility of the sigma-r plot to provide a simple measure of the global dynamics of a macromolecule.

  8. Molecular chain properties of poly(N-isopropyl acrylamide)

    Institute of Scientific and Technical Information of China (English)

    曾钫; 童真

    1999-01-01

    A series of poly( N-isopropyl acrylamide) (PNIPAM) samples with molecular weight ranging from 2.23×104 to 130×104 and molecular weight distribution Mw/Mn≤1.28 were obtained by free radical polymerization and repeat precipitation fractionation. The molecular weight Mw, second virial coefficient A2 as well as the mean-square-root radius of gyration 〈S2〉 for PNIPAM samples in tetrahydrofuran (THF) were determined by light scattering, and the relations were estimated at A2 ∞ Mw0.25) and 〈S2〉1/2=1.56×10-9 Mw0.56. The intrinsic viscosity for THF solution and methanol solution of PNIPAM samples was measured and the Mark-Houwink equations were obtained as [η]=6.90×10-5 M0/73 (THF solution) and [η]=1.07×10-4 M0.71 (methanol solution). The above results indicate that both THF and methanol are good solvents for PNIPAM. The limit characteristic ratio C∞ for PNIPAM in the two solutions was determined to be 10.6 by using Kurata-Stockmayer equation, indicating that the f

  9. Allergenicity of bony and cartilaginous fish - molecular and immunological properties.

    Science.gov (United States)

    Stephen, J N; Sharp, M F; Ruethers, T; Taki, A; Campbell, D E; Lopata, A L

    2017-03-01

    Allergy to bony fish is common and probably increasing world-wide. The major heat-stable pan-fish allergen, parvalbumin (PV), has been identified and characterized for numerous fish species. In contrast, there are very few reports of allergic reactions to cartilaginous fish despite widespread consumption. The molecular basis for this seemingly low clinical cross-reactivity between these two fish groups has not been elucidated. PV consists of two distinct protein lineages, α and β. The α-lineage of this protein is predominant in muscle tissue of cartilaginous fish (Chondrichthyes), while β-PV is abundant in muscle tissue of bony fish (Osteichthyes). The low incidence of allergic reactions to ingested rays and sharks is likely due to the lack of molecular similarity, resulting in reduced immunological cross-reactivity between the two PV lineages. Structurally and physiologically, both protein lineages are very similar; however, the amino acid homology is very low with 47-54%. Furthermore, PV from ancient fish species such as the coelacanth demonstrates 62% sequence homology to leopard shark α-PV and 70% to carp β-PV. This indicates the extent of conservation of the PV isoforms lineages across millennia. This review highlights prevalence data on fish allergy and sensitization to fish, and details the molecular diversity of the two protein lineages of the major fish allergen PV among different fish groups, emphasizing the immunological and clinical differences in allergenicity.

  10. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei

    2015-01-01

    Objective:To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods:Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP) with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q) and time were observed. Results: MIP was prepared successfully by nimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of speciifc recognition performance on nimodipine. The static adsorption distribution coefifcient (KD) was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer. Conclusion:Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  11. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  12. A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices

    Institute of Scientific and Technical Information of China (English)

    Morteza Atabati; Reza Emamalizadeh

    2013-01-01

    Many structure-property/activity studies use graph theoretical indices,which are based on the topological properties of a molecule viewed as a graph.Since topological indices can be derived directly from the molecular structure without any experimental effort,they provide a simple and straightforward method for property prediction.In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (x),modified molecular connectivity indices (mx(1)h) and valance molecular connectivity indices (mxv),with mxv calculated using the hydrogen perturbation.A stepwise Multiple Linear Regression (MLR) method was used to select the best indices.The predicted flash points are in good agreement with the experimental data,with the average absolute deviation 4.3 K.

  13. Molecular dynamics simulation of thermodynamical properties of copper clusters

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Min; Wang Xin-Qiang; Yang Yuan-Yuan

    2007-01-01

    The melting and freezing processes of CuN (N = 180, 256, 360, 408, 500, 628 and 736) nanoclusters are simulated by using micro-canonical molecular dynamics simulation technique. The potential energies and the heat capacities as a function of temperature are obtained. The results reveal that the melting and freezing points increase almost linearly with the atom number in the cluster increasing. All copper nanoclusters have negative heat capacity around the melting and freezing points, and hysteresis effect in the melting/freezing transition is derived in CuN nanoclusters for the first time.

  14. Thermal transport properties of uranium dioxide by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taku; Sinnott, Susan B. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Tulenko, James S. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Grimes, Robin W. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Schelling, Patrick K. [AMPAC and Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: sphil@mse.ufl.edu

    2008-04-30

    The thermal conductivities of single crystal and polycrystalline UO{sub 2} are calculated using molecular dynamics simulations, with interatomic interactions described by two different potential models. For single crystals, the calculated thermal conductivities are found to be strongly dependent on the size of the simulation cell. However, a scaling analysis shows that the two models predict essentially identical values for the thermal conductivity for infinite system sizes. By contrast, simulations with the two potentials for identical fine polycrystalline structures yield estimated thermal conductivities that differ by a factor of two. We analyze the origin of this difference.

  15. Optical and transport properties of complex molecular systems

    OpenAIRE

    2009-01-01

    Esta Tesis presenta el estudio de las propiedades ópticas y de transporte de sistemas de baja dimensionalidad a través de modelos de enlace fuerte. Nuestro trabajo se centra en dos tipos de sistemas: agregados moleculares lineales y moléculas de ADN.En los Capítulos 2, 3 y 4 se estudian las propiedades de localización de un Hamiltoniano de Frenkel desordenado unidimensional. El desorden se introduce en las energías de sitio y es correlacionado de largo alcance. Para correlaciones fuertes, se ...

  16. Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties

    DEFF Research Database (Denmark)

    O’Connell, John P.; Abildskov, Jens

    2013-01-01

    Fluctuation Solution Theory provides relationships between integrals of the molecular pair total and direct correlation functions and the pressure derivative of solution density, partial molar volumes, and composition derivatives of activity coefficients. For dense fluids, the integrals follow...... for densities and gas solubilities, including ionic liquids and complex mixtures such as coal liquids. The approach is especially useful in systems with strong nonidealities. This chapter describes successful application of such modeling to a wide variety of systems treated over several decades and suggests how...

  17. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein.

    Science.gov (United States)

    Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A; Bevan, David R

    2016-08-01

    The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.

  18. Acoustic properties in glycerol glass-former: Molecular dynamics simulation

    Science.gov (United States)

    Busselez, Remi; Pezeril, Thomas; Institut des Materiaux et Molecules du Mans Team

    2013-03-01

    Study of high-frequency collective dynamics around TeraHertz region in glass former has been a subject of intense investigations and debates over the past decade. In particular, the presence of the Boson peak characteristic of glassy material and its relation to other glass anomalies. Recently, experiments and simulations have underlined possible relation between Boson peak and transverse acoustic modes in glassy materials. In particular, simulations of simple Lennard Jones glass former have shown a relation between Ioffe-Regel criterion in transverse modes and Boson peak. We present here molecular dynamics simulation on high frequency dynamics of glycerol. In order to study mesoscopic order (0.5-5nm-1), we made use of large simulation box containing 80000 atoms. Analysis of collective longitudinal and transverse acoustic modes shows striking similarities in comparison with simulation of Lennard-Jones particles. In particular, it seems that a connection may exist between Ioffe-Regel criterion for transverse modes and Bose Peak frequency. However,in our case we show that this connection may be related with structural correlation arising from molecular clusters.

  19. Adopted Children and Discipline

    Science.gov (United States)

    ... Life Listen Español Text Size Email Print Share Adopted Children & Discipline Page Content Article Body Some parents are hesitant to discipline the child they have adopted. They may set fewer limits than they would ...

  20. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ulman, Kanchan [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Sheikh Saqr Laboratory, ICMS, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Delin, Anna [Department of Materials and Nanophysics, School of Information and Communication Technology, Electrum 229, Royal Institute of Technology (KTH), SE-16440 Kista (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); SeRC (Swedish e-Science Research Center), KTH, SE-10044 Stockholm (Sweden)

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  1. Calculation of the molecular properties of five cephalosporins: cephradine, cephalexin, cefadroxil, cefprozil and ceftobiprole

    Directory of Open Access Journals (Sweden)

    Elso Manuel Cruz Cruz

    2010-11-01

    Full Text Available Background: The side chains attached to the 7-amino cephalosporanic acid, the structural basis of cephalosporin, condition its molecular properties and cause differences in its pharmacological action. Molecular modeling contributes to further knowledge about this relationship. Objective: To calculate structural and electronic properties of five cephalosporins: cephradine, cephalexin, cefadroxil, cefprozil and ceftobiprole. Methods: A theoretical study using quantum mechanics methods to model the structure and electronic properties of the cephalosporins listed above was conducted. Molecular geometries were optimized with semi-empirical calculations, according to the parameterized number three model. The molecular properties were calculated following the density functional theory. The densities of atomic charges and the frontier orbitals were analyzed. Comparisons were established to measure the effect of substituents on the properties of the beta-lactam ring. All calculations were run on personal computers belonging to the Medical Sciences University of Las Tunas, from November 2009 to March 2010. Results: The structural parameters of the beta-lactam ring do not change as a result of changes in the side chains. The ring has a marked tendency to planarity. The ceftobiprole is different from the rest of the cephalosporins in the spatial disposition of the side chain, which facilitates access to the carbonyl carbon. There are no significant variations in the charge densities, especially in the positive charge of this carbon. Conclusions: The structure and electronic properties of the beta-lactam ring have no significant changes among modeled cephalosporins. The three dimensional structure of ceftobiprole favors a higher reactivity.

  2. Properties of hot liquid cerium by LDA + U molecular dynamics.

    Science.gov (United States)

    Siberchicot, Bruno; Clérouin, Jean

    2012-11-14

    We present ab initio simulations of liquid cerium in the framework of the LDA + U formulation. The liquid density has been determined self-consistently by searching for the zero pressure equilibrium state at 1320 K with the same set of parameters (U and J) and occupation matrices as those optimized for the γ phase. We have computed static and transport properties. The liquid produced by the simulations appears more structured than the available measurements. This raises questions regarding the ability of the theory to describe such a complex liquid. Conductivity calculations and temperature dependences are nevertheless in reasonable agreement with data.

  3. Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard

    2016-01-01

    We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotr......We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges...... embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable....

  4. Polarizabilities and Other Properties of the td Muons Molecular Ion

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Wavefunctions of Hylleraas type were used earlier to calculate energy levels of muonic systems. Recently, we found in the case of the molecular ions H2+, D2+ and HD+ that it was necessary to include high powers of the internuclear distance in the Hylleraas functions to localize the nuclear motion when treating the ions as three-body systems without invoking the Born-Oppenheimer approximation. We try the same approach in a muonic system, td(mu-). Improved convergence is obtained for J = 0 and 1 states for shorter expansions when we use this type of generalized Hylleraas function, but as the expansion length increases the high powers are no longer useful. We obtain good energy values for the two lowest J = 0 and J = 1 states and compare them with the best earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability of the ground state is then calculated using second-order perturbation theory with intermediate J = 1 pseudostates. It should be possible to measure the polarizability by observing Rydberg states of atoms with td(mu-) acting as the nucleus.

  5. PIEZOELECTRIC PROPERTIES OF SINGLE-STRAND DNA MOLECULAR BRUSH BIOLAYERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc.,the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to establish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process.

  6. LARGE-SCALE TOPOLOGICAL PROPERTIES OF MOLECULAR NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Bio-molecular networks lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as gene duplications and single gene mutations. As a result individual connections in these networks are characterized by a large degree of randomness. One may wonder which connectivity patterns are indeed random, while which arose due to the network growth, evolution, and/or its fundamental design principles and limitations? Here we introduce a general method allowing one to construct a random null-model version of a given network while preserving the desired set of its low-level topological features, such as, e.g., the number of neighbors of individual nodes, the average level of modularity, preferential connections between particular groups of nodes, etc. Such a null-model network can then be used to detect and quantify the non-random topological patterns present in large networks. In particular, we measured correlations between degrees of interacting nodes in protein interaction and regulatory networks in yeast. It was found that in both these networks, links between highly connected proteins are systematically suppressed. This effect decreases the likelihood of cross-talk between different functional modules of the cell, and increases the overall robustness of a network by localizing effects of deleterious perturbations. It also teaches us about the overall computational architecture of such networks and points at the origin of large differences in the number of neighbors of individual nodes.

  7. In Silico Study of Ceftaroline’s Molecular Properties Estudio in silico de propiedades moleculares del ceftaroline

    Directory of Open Access Journals (Sweden)

    Elso Manuel Cruz Cruz

    2011-03-01

    Full Text Available Background: Ceftaroline is the latest developed cephalosporin. Its molecular modeling can help deepening the structural bases underpinning its pharmacological characteristics. Objective: to model structural and electronic properties of the ceftaroline. Method: a theoretical study using quantum mechanics methods was conducted in order to model the structure and electronic properties of the ceftaroline. Molecular geometry was optimized with semiempirical calculations according to parameterized model # 3. Molecular properties were calculated according to the Density Functional Theory. Densities of atomic charges and orbital borders were analyzed and compared to the ceftobiprole modeling. Results: the ceftaroline has a more compact and less elongated three-dimensional structure than the ceftobiprole. The positive charges densities on the carbonyl carbon are slightly lower than their equivalents in the ceftobiprole. Conclusions: an ethyl presence in the ceftaroline oxime group modifies its spatial configuration which makes it more compact and may influence its antibacterial action.Fundamento: El ceftaroline es la más novedosa cefalosporina que se ha desarrollado. Su modelación molecular permitirá profundizar en las bases estructurales que sustentan sus características farmacológicas. Objetivo: modelar propiedades estructurales y electrónicas del ceftaroline. Método: se realizó un estudio teórico con métodos de la mecánica cuántica para modelar la estructura y propiedades electrónicas del ceftaroline. Se optimizó la geometría molecular con cálculos semiempíricos, según el modelo parametrizado 3. Las propiedades moleculares se calcularon a partir de la teoría del funcional de la densidad. Se analizaron las densidades de cargas atómicas y los orbitales de frontera. Se comparó con la modelación del ceftobiprole. Resultados: el ceftaroline tiene una estructura

  8. Relationship between molecular structure and tribological properties of phosphazene lubricants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cyclotriphosphazene lubricants were synthesized and the relationship between theirstructures and tribological properties was investigated using an Optimol SRV oscillating frictionand wear tester and one-way reciprocating friction tester. It was found that aryloxyphosphazenewith polar substituent as a lubricant of steel/steel and steel/aluminum pair gave low wear, whilearyloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. Phosphazeneprovides poor lubricity for steel/aluminum system under low load (0.5-3 N). The XPS analyticalresults of the antiwear films generated on the steel and aluminum surface indicate that phos-phazene reacted with steel or aluminum counterface and formed a surface protecting film consist-ing of fluoride and organic compounds containing O, C, F, N, P during friction. This contributes tcreduce the friction and wear of steel/aluminum system.

  9. Molecular dynamics simulations on surface properties of silicon dioxide melts

    CERN Document Server

    Röder, A

    2000-01-01

    In the present thesis the surface properties of a silicon dioxide melt were studied. As first systems drops (i.e. sytems without periodic boundary conditions) of N=432, 1536, as well as 4608 atoms were considered. The second analyzed geometry corresponds to that of a thin film, i. e. periodic boundary conditions in x- and y-direction were present, while in z-direction one had a free surface. In this case a system of N=1152 atoms was considered. As model potential the two-body potential proposed by Beest, Kramer, and van Santen was applied. For both geometries five temperatures were considered, which lied in the range of 3000 K

  10. Molecular properties of psychopharmacological drugs determining non-competitive inhibition of 5-HT3A receptors.

    Science.gov (United States)

    Kornhuber, Johannes; Terfloth, Lothar; Bleich, Stefan; Wiltfang, Jens; Rupprecht, Rainer

    2009-06-01

    We developed a structure-property-activity relationship (SPAR)-model for psychopharmacological drugs acting as non-competitive 5-HT(3A) receptor antagonists by using a decision-tree learner provided by the RapidMiner machine learning tool. A single molecular descriptor, namely the molecular dipole moment per molecular weight (mu/MW), predicts whether or not a substance non-competitively antagonizes 5-HT-induced Na(+) currents. A low mu/MW is compatible with drug-cumulation in apolar lipid rafts. This study confirms that size-intensive descriptors allow the development of compact SPAR models.

  11. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  12. Molecular properties of steroids involved in their effects on the biophysical state of membranes.

    Science.gov (United States)

    Wenz, Jorge J

    2015-10-01

    The activity of steroids on membranes was studied in relation to their ordering, rigidifying, condensing and/or raft promoting ability. The structures of 82 steroids were modeled by a semi-empirical procedure (AM1) and 245 molecular descriptors were next computed on the optimized energy conformations. Principal component analysis, mean contrasting and logistic regression were used to correlate the molecular properties with 212 cases of documented activities. It was possible to group steroids based on their properties and activities, indicating that steroids having similar molecular properties have similar activities on membranes. Steroids having high values of area, partition coefficient, volume, number of rotatable bonds, molar refractivity, polarizability or mass displayed ordering, rigidifying, condensing and/or raft promoting activity on membranes higher than those steroids having low values in such molecular properties. After a variable selection procedure circumventing correlation problems among descriptors, area and log P were found as the most relevant properties in governing and predicting the activity of steroids on membranes. A logistic regression model as a function of the area and log P of the steroids is proposed, which is able to predict correctly 92.5% of the cases. A rationale of the findings is discussed.

  13. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  14. The molecular properties of nitrobenzanthrone isomers and their mutagenic activities.

    Science.gov (United States)

    Ostojić, Bojana D; Stanković, Branislav; Ðorđević, Dragana S

    2014-06-01

    The mutagenic activity of five mono-substituted nitrobenzanthrones (NBA) has been determined in the Ames assay (Takamura-Enya et al., 2006). In the present study, a theoretical investigation of the electronic properties of all mono-substituted NBA isomers and their relation to mutagenic activity are presented. Equilibrium geometries, vertical ionization potentials (VIP), vertical electron affinities (VEA), relative energies, dipole moments and electronic dipole polarizabilities, and the IR and Raman spectra of NBA isomers calculated by Density Functional Theory (DFT) methods are presented. The position of the nitro group affects the spectral features of the IR and Raman spectra of the NBA isomers. The results show that a good linear relationship exists between the summation of Raman activities (∑ARaman) over all the 3N-6 vibrational modes and the mutagenic activity of the NBA isomers in Salmonella typhimurium strains. The spectroscopic results suggest that the unknown mutagenic activities of 4-NBA, 5-NBA, 6-NBA, 8-NBA and 10-NBA are predicted to follow the order 4-NBA>10-NBA>5-NBA>8-NBA>6-NBA.

  15. Molecular design of seed storage proteins for enhanced food physicochemical properties.

    Science.gov (United States)

    Tandang-Silvas, Mary Rose G; Tecson-Mendoza, Evelyn Mae; Mikami, Bunzo; Utsumi, Shigeru; Maruyama, Nobuyuki

    2011-01-01

    Seed storage proteins such as soybean globulins have been nutritionally and functionally valuable in the food industry. Protein structure-function studies are valuable in modifying proteins for enhanced functionality. Recombinant technology and protein engineering are two of the tools in biotechnology that have been used in producing soybean proteins with better gelling property, solubility, and emulsifying ability. This article reviews the molecular basis for the logical and precise protein designs that are important in obtaining the desired improved physicochemical properties.

  16. Thermophysical properties of undercooled alloys: an overview of the molecular simulation approaches.

    Science.gov (United States)

    Lv, Yong J; Chen, Min

    2011-01-10

    We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed.

  17. Thermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches

    Directory of Open Access Journals (Sweden)

    Min Chen

    2011-01-01

    Full Text Available We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed.

  18. Molecularly Imprinted Polymer Theophylline Retention and Molecular Recognition Properties in Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    Cai Ling-shuang; Wu Cai-ying; Mei Su-rong; Zeng Zao-rui

    2004-01-01

    Molecular imprinting of theophylline in poly (methacrylic acid- ethylene dimethacrylate) as CEC stationary phases was synthesized by an in situ photo-initiated polymerization reaction. The effect of electrolyte Ph on xanthine derivatives and the stability of MIP column performance were investigated, the relative standard deviation (DRs) of migration time of five consecutive runs on MIP column was in the range of 2. 2%-3. 1%. The reproducibility of migration time column to column of M(A) was in the range of 3.8%-4.9%.The highest column efficiency was more than 140000 plates per meter. The MIP capillaries had showed better selective for theophylline, which comparing with the reference column.The urine sample was separated by spiked 5×10-4 mol ·L-1 theophylline.

  19. Understanding mechanical properties of polymer nanocomposites with molecular dynamics simulations

    Science.gov (United States)

    Sen, Suchira

    Equilibrium Molecular Dynamics (MD) simulations are used extensively to study various aspects of polymer nanocomposite (PNC) behavior in the melt state---the key focus is on understanding mechanisms of mechanical reinforcement. Mechanical reinforcement of the nanocomposite is believed to be caused by the formation of a network-like structure---a result of polymer chains bridging particles to introduce network elasticity. In contrast, in traditional composites, where the particle size range is hundreds of microns and high loadings of particle are used, the dominant mechanism is the formation of a percolated filler structure. The difference in mechanism with varying particle sizes, at similar particle loading, arises from the polymer-particle interfacial area available, which increases dramatically as the particle size decreases. Our interest in this work is to find (a) the kind of polymer-particle interactions necessary to facilitate the formation of a polymer network in a nanocomposite, and (b) the reinforcing characteristics of such a polymer network. We find that very strong polymer-particle binding is necessary to create a reinforcing network. The strength of the binding has to be enough to immobilize polymer on the particle surface for timescales comparable and larger than the terminal relaxation time of the stress of the neat melt. The second finding, which is a direct outcome of very strong binding, is that the method of preparation plays a critical role in determining the reinforcement of the final product. The starting conformations of the polymer chains determine the quality of the network. The strong binding traps the polymer on the particle surface which gets rearranged to a limited extent, within stress relaxation times. Significant aging effects are seen in system relaxation; the inherent non-equilibrium consequences of such strong binding. The effect of the polymer immobilization slows down other relaxation processes. The diffusivity of all chains is

  20. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties.

    Science.gov (United States)

    Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C

    2015-04-28

    Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials.

  1. Molecular structure based property modeling: Development/ improvement of property models through a systematic property-data-model analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol Shivajirao; Sarup, Bent; Sin, Gürkan;

    2013-01-01

    to a wide range of properties of pure compounds. In this work, however, the application of the method is illustrated for the property modeling of normal melting point, enthalpy of fusion, enthalpy of formation, and critical temperature. For all the properties listed above, it has been possible to achieve......The objective of this work is to develop a method for performing property-data-model analysis so that efficient use of knowledge of properties could be made in the development/improvement of property prediction models. The method includes: (i) analysis of property data and its consistency check......; (ii) selection of the most appropriate form of the property model; (iii) selection of the data-set for performing parameter regression and uncertainty analysis; and (iv) analysis of model prediction errors to take necessary corrective steps to improve the accuracy and the reliability of property...

  2. Crystal Properties and Radiation Effects in Solid Molecular Hydrogens

    Energy Technology Data Exchange (ETDEWEB)

    Kozioiziemski, B

    2000-09-01

    The crystal lattice structure, growth shapes and helium generated by beta-decay of solid deuterium-tritium (D-T) mixtures have been studied. Understanding of these D-T properties is important for predicting and optimizing the target design of the National Ignition Facility (NIF). Raman spectroscopy showed the D-T crystal structure is hexagonal close packed, common to the non-tritiated isotopes. The isotopic mixtures of both tritiated and non-tritiated species broadens the rotational transitions, especially of the lighter species in the mixture. The vibrational frequencies of each isotope is shifted to higher energy in the mixture than the pure components. The J = 1-0 population decreases exponentially with a 1/e time constant which rapidly increases above 10.5 K for both D{sub 2} and T{sub 2} in D-T. The conversion rate is nearly constant from 5 K to 10 K for both D{sub 2} and T{sub 2} at 7.1 hours and 2.1 hours, respectively. The smoothing of D-T layers by beta decay heating is limited by the crystal surface energy. Deuterium and hydrogen-deuteride crystals were grown at a number of temperatures below the triple point to determine the surface energy and roughening transition. Several distinct crystal shapes were observed on a number of different substrates. The a facet roughens between 0.9 T{sub TP} and T{sub TP}, while the c facet persists up to the melting temperature. This is very different from the behavior of the other rare gas crystals which grow completely rounded above 0.8 T{sub TP}. Helium bubbles formed as a product of the beta decay were observed using optical microscopy and the diffusion of smaller bubbles measured with dynamic light scattering. Bubble diffusion coefficients as high as 2.0 x 10{sup -16} m{sup 2}/s were measured for 10-50 nm bubbles. The bubbles move in response to a thermal gradient, with speeds between 1 {micro}m/hour and 100 {micro}m/hour for thermal gradients and temperatures appropriate to NIF targets.

  3. The claim from adoption.

    Science.gov (United States)

    Petersen, Thomas Sobirk

    2002-08-01

    In this article several justifications of what I call 'the claim from adoption' are examined. The claim from adoption is that, instead of expending resources on bringing new children into the world using reproductive technology and then caring for these children, we ought to devote these resources to the adoption and care of existing destitute children. Arguments trading on the idea that resources should be directed to adoption instead of assisted reproduction because already existing people can benefit from such a use of resources whereas we cannot benefit individuals by bringing them into existence are rejected. It is then argued that a utilitarian argument proposed by Christian Munthe that supports the claim from adoption in some situations should be rejected because the support it offers does not extend to certain situations in which it seems morally obvious that resources should be expended on adoption rather than assisted reproduction. A version of the Priority View improves upon Munthe's utilitarianism by supporting the claim from adoption in the cases in which Munthe's argument failed. Some allegedly counterintuitive implications of the Priority View are then discussed, and it is concluded that the Priority View is more plausible than utilitarianism. In a concluding section on policy issues it is argued that, even though the claim from adoption can be justified in a variety of situations, it does not follow that, in these situations, governments should direct resources away from assisted reproduction and towards adoption.

  4. Dielectric properties of crystalline organic molecular films in the limit of zero overlap

    Energy Technology Data Exchange (ETDEWEB)

    D’Avino, Gabriele, E-mail: gabriele.davino@gmail.com [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, BE-7000 Mons, Belgium and Department of Physics, University of Liège, Allée du 6 Août 17, BE-4000 Liège (Belgium); Vanzo, Davide; Soos, Zoltán G., E-mail: soos@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-01-21

    We present the calculation of the static dielectric susceptibility tensor and dipole field sums in thin molecular films in the well-defined limit of zero intermolecular overlap. Microelectrostatic and charge redistribution approaches are applied to study the evolution of dielectric properties from one to a few molecular layers in films of different conjugated molecules with organic electronics applications. Because of the conditional convergence of dipolar interactions, dipole fields depend on the shape of the sample and different values are found in the middle layer of a thick film and in the bulk. The shape dependence is eliminated when depolarization is taken into account, and the dielectric tensor of molecular films converges to the bulk limit within a few molecular layers. We quantify the magnitude of surface effects and interpret general trends among different systems in terms of molecular properties, such as shape, polarizability anisotropy, and supramolecular organization. A connection between atomistic models for molecular dielectrics and simpler theories for polarizable atomic lattices is also provided.

  5. Prediction of human clearance based on animal data and molecular properties.

    Science.gov (United States)

    Huang, Wenkang; Geng, Lv; Deng, Rong; Lu, Shaoyong; Ma, Guangli; Yu, Jianxiu; Zhang, Jian; Liu, Wei; Hou, Tingjun; Lu, Xuefeng

    2015-11-01

    Human clearance is often predicted prior to clinical study from in vivo preclinical data by virtue of interspecies allometric scaling methods. The aims of this study were to determine the important molecular descriptors for the extrapolation of animal data to human clearance and further to build a model to predict human clearance by combination of animal data and the selected molecular descriptors. These important molecular descriptors selected by genetic algorithm (GA) were from five classes: quantum mechanical, shadow indices, E-state keys, molecular properties, and molecular property counts. Although the data set contained many outliers determined by the conventional Mahmood method, the variation of most outliers was reduced significantly by our final support vector machine (SVM) model. The values of cross-validated correlation coefficient and root-mean-squared error (RMSE) for leave-one-out cross-validation (LOOCV) of the final SVM model were 0.783 and 0.305, respectively. Meanwhile, the reliability and consistency of the final model were also validated by an external test set. In conclusion, the SVM model based on the molecular descriptors selected by GA and animal data achieved better prediction performance than the Mahmood method. This approach can be applied as an improved interspecies allometric scaling method in drug research and development.

  6. Global and local properties used as analyses tools for molecular-dynamics simulations

    Science.gov (United States)

    Bachlechner, Martina E.; Anderson, Jonas T.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Schiffbauer, Jarrod E.; Burky, Melissa R.; Ducatman, Samuel C.; Guffey, Eric J.; Serrano Ramos2, Fernando

    2006-03-01

    Molecular dynamics simulations have been used to study mechanical failure in realistic interface materials. Averaging over the individual atoms' contributions yields local and global information including displacements, bond angles, strains, stress tensor components, and pair distribution functions. A combined analysis of global and local properties facilitates detailed insight in the mechanisms of failure, which will eventually guide on how to prevent failure of interfaces.

  7. A discrete solvent reaction field model for calculating molecular linear response properties in solution

    NARCIS (Netherlands)

    Jensen, L; van Duijnen, PT; Snijders, JG

    2003-01-01

    A discrete solvent reaction field model for calculating frequency-dependent molecular linear response properties of molecules in solution is presented. The model combines a time-dependent density functional theory (QM) description of the solute molecule with a classical (MM) description of the discr

  8. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  9. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca [Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  10. The use of molecular dynamics for the study of solution properties of guar gum

    Science.gov (United States)

    Laguna, M. Teresa R.; Tarazona, M. Pilar; Saiz, Enrique

    2003-07-01

    Size exclusion chromatography with dual detection, i.e., employing a refractive index, concentration sensitive, detector together with a multiangle light scattering detector which is sensitive to molecular size, has been applied to study the solution properties of guar gum in water with different concentrations of K2SO4 at 25 °C. The analysis of a single highly polydisperse sample is enough for obtaining calibration curves for molecular weight and radius of gyration and the scaling law coefficients. The influence of the ionic strength on the conformational properties of the polymer can also be analyzed. Moreover, unperturbed dimensions can be obtained by extrapolation of the values measured in a good solvent. The value of the characteristic ratio of the unperturbed dimensions thus obtained is Cn=0/nl2≈19±1. A theoretical analysis is also included. Thus, molecular dynamics procedures were employed to analyze the conformational properties of an oligomer of guar gum under different conditions; namely, standing alone in vacuo, in bulk solid state and in water solution, both with and without salt. These conformational properties were then employed to compute molecular dimensions of Monte Carlo generated chains with different lengths according to standard procedures of the matrix multiplication scheme, thus allowing the evaluation of both perturbed and unperturbed dimensions which are in very good agreement with the experimental values. Moreover our result permits the explanation of the discrepancies among experimental and theoretical values reported in the literature.

  11. Determination of Physical Properties of Energetic Ionic Liquids Using Molecular Simulations

    Science.gov (United States)

    2006-12-31

    Mexicano del Petr6leo, Mexico City, Mexico, October 22, 2004; "Development of New Molecular Dynamics Sampling Methods for Phase Equilibria Calculations...Properties and Toxicology of Ionic Liquids", Ionic Liquids Workshop "Background, State-of-the- Art and Academic/Industrial Applications", University

  12. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    Science.gov (United States)

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  13. Immunoenhancing properties of the anti-tumor effects of adoptively transferred T cells with chemotherapeutic cyclophosphamide by co-administration of bone marrow cells

    Directory of Open Access Journals (Sweden)

    Mohamed L. Salem

    2015-10-01

    Full Text Available In this study we aimed to determine the anti-tumor efficacy of co-treatment of adoptively transferred T cells with bone marrow either harvested from naïve mice or G-CSF activated after treatment with the anti-cancer drug cyclophosphamide (CTX as a source enriched in stem cells. CTX-treated Swiss Albino (CD-1 mice were injected with 2 × 105 Ehrlich ascetic carcinoma (EAC cell line and then adoptively transferred with in vitro co-activated T cells with or without bone marrow one day post CTX treatment. All mice were vaccinated with tumor lysate and Hiltonol®. The results showed that co-transfer of activated T cells with bone marrow provided the highest antitumor effect and induced marked increase in numbers of splenocytes, leucocytes and bone marrow cells. Interestingly, T cells derived from EAC tumor-bearing host induced higher effects than those from normal mice. In sum, our data suggest that combination of CTX and activated transferred T cells with bone marrow induces proliferation and expansion of immune cells, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies.

  14. Comparison of frozen-density embedding and discrete reaction field solvent models for molecular properties.

    Science.gov (United States)

    Jacob, Christoph R; Neugebauer, Johannes; Jensen, Lasse; Visscher, Lucas

    2006-05-28

    We investigate the performance of two discrete solvent models in connection with density functional theory (DFT) for the calculation of molecular properties. In our comparison we include the discrete reaction field (DRF) model, a combined quantum mechanics and molecular mechanics (QM/MM) model using a polarizable force field, and the frozen-density embedding (FDE) scheme. We employ these solvent models for ground state properties (dipole and quadrupole moments) and response properties (electronic excitation energies and frequency-dependent polarizabilities) of a water molecule in the liquid phase. It is found that both solvent models agree for ground state properties, while there are significant differences in the description of response properties. The origin of these differences is analyzed in detail and it is found that they are mainly caused by a different description of the ground state molecular orbitals of the solute. In addition, for the calculation of the polarizabilities, the inclusion of the response of the solvent to the polarization of the solute becomes important. This effect is included in the DRF model, but is missing in the FDE scheme. A way of including it in FDE calculations of the polarizabilities using finite field calculations is demonstrated.

  15. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  16. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  17. The Danish Adoption Register

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-01-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia.......The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia....

  18. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    Science.gov (United States)

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties.

  19. Genetic optimization of training sets for improved machine learning models of molecular properties

    CERN Document Server

    Browning, Nicholas J; von Lilienfeld, O Anatole; Röthlisberger, Ursula

    2016-01-01

    The training of molecular models of quantum mechanical properties based on statistical machine learning requires large datasets which exemplify the map from chemical structure to molecular property. Intelligent a priori selection of training examples is often difficult or impossible to achieve as prior knowledge may be sparse or unavailable. Ordinarily representative selection of training molecules from such datasets is achieved through random sampling. We use genetic algorithms for the optimization of training set composition consisting of tens of thousands of small organic molecules. The resulting machine learning models are considerably more accurate with respect to small randomly selected training sets: mean absolute errors for out-of-sample predictions are reduced to ~25% for enthalpies, free energies, and zero-point vibrational energy, to ~50% for heat-capacity, electron-spread, and polarizability, and by more than ~20% for electronic properties such as frontier orbital eigenvalues or dipole-moments. We...

  20. Molecular Structures and Mechanical Properties of Microbe Rapid Coagulation Natural Rubber

    Institute of Scientific and Technical Information of China (English)

    LIANG Yue; HUANG Mao-Fang; ZENG Zong-Qiang

    2011-01-01

    In this work,molecular structures,dynamic mechanical properties and glass transition temperatures of microbe coagulated natural rubber(NR) samples were analyzed by using pyrolysis gas chromatography-mass spectrometry(py-GC/MS),rubber process analyzer(RPA) and dynamic mechanical thermal analysis(DMA).And the cross-linked network structures and mechanical properties of the corresponding NR vulcanizates were further determined by using nuclear magnetic resonance(NMR) crosslink density spectrometer(XLDS-15) and universal testing machines.The results show that NR raw rubber produced by rapidly coagulated with microorganism exhibits a simple molecular structure composition and good dynamic mechanical properties,and the corresponding NR vulcanizates possess the aggregation structure of high cross-linked density,a high glass transition temperature of-61.5 ℃ and high mechanical properties(tensile strength reaches 25.2 MPa),as compared with that coagulated with acetic acid.

  1. The Properties of Bound and Unbound Molecular Cloud Populations Formed in Galactic Disc Simulations

    CERN Document Server

    Ward, Rachel L; Wadsley, James; Sills, Alison; Couchman, H M P

    2015-01-01

    We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing enve...

  2. Tuning structural and mechanical properties of two-dimensional molecular crystals: the roles of carbon side chains.

    Science.gov (United States)

    Cun, Huanyao; Wang, Yeliang; Du, Shixuan; Zhang, Lei; Zhang, Lizhi; Yang, Bing; He, Xiaobo; Wang, Yue; Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu; Ouyang, Min; Hofer, Werner A; Pennycook, Stephen J; Gao, Hong-jun

    2012-03-14

    A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties.

  3. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  4. The Molecule Calculator: A web-server for fast quantum mechanics-based estimation of molecular properties

    CERN Document Server

    Jensen, Jan H

    2013-01-01

    A new web-server called The Molecule Calculator (MolCalc) is presented. The entry page is a molecular editor (JSmol) for interactive molecule building. The resulting structure can then be used to estimate molecular properties such as heats of formation and other thermodynamic properties, vibrational frequencies and vibrational modes, and molecular orbitals and orbital energies. These properties are computed using the GAMESS program at either the RHF/STO-3G (orbitals and orbital energies) or PM3 level of theory (all other properties) in a matter of seconds or minutes depending on the size of the molecule. The results, though approximate, can help students develop a "chemical intuition" about how molecular structure affects molecular properties, without performing the underlying calculations by hand, a near impossible task for all but the simplest chemical systems.

  5. Molecular states in double quantum wells: nanochemistry for metatmaterials with new optical properties

    Science.gov (United States)

    Gutierrez, Rafael M.; Castañeda, Arcesio

    2009-08-01

    Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.

  6. Computational nanochemistry study of the molecular structure and properties of ethambutol.

    Science.gov (United States)

    Salgado-Morán, Guillermo; Ruiz-Nieto, Samuel; Gerli-Candia, Lorena; Flores-Holguín, Norma; Favila-Pérez, Alejandra; Glossman-Mitnik, Daniel

    2013-09-01

    The M06 family of density functionals was employed to calculate the molecular structure and properties of the ethambutol molecule. Besides determination of molecular structures, UV-vis spectra were computed using TD-DFT in the presence of a solvent and the results compared with available experimental data. The chemical reactivity descriptors were calculated through conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to Fukui function indices. A comparison between the descriptors calculated through vertical energy values and those arising from Koopmans' theorem approximation were performed in order to check the validity of the latter procedure.

  7. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  8. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface....... However, we found that the corresponding change in the bending rigidity is nonmonotonic. Specifically, we found that the bending rigidity decreases with increasing surfactant interfacial coverage for small surfactant interface coverages, but then it increases as the surfactant interface coverage...

  9. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis.

    Science.gov (United States)

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Sreedhar, Remya; Giridharan, Vijayasree V; Watanabe, Kenichi

    2016-04-01

    Atopic dermatitis (AD) is an inflammatory skin disease. Over the past few decades, AD has become more prevalent worldwide. Quercetin, a naturally occurring polyphenol, shows antioxidant, anti-inflammatory, and antiallergic activities. Several recent clinical and preclinical findings suggest quercetin as a promising natural treatment for inflammatory skin diseases. Significant progress in elucidating the molecular mechanisms underlying the anti-AD properties of quercetin has been achieved in the recent years. Here, we discuss the use of quercetin as treatment for AD, with a particular focus on the molecular basis of its effect. We also briefly discuss the approaches to improve the bioavailability of quercetin.

  10. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    Science.gov (United States)

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  11. The Colorado Adoption Project.

    Science.gov (United States)

    Plomin, R; DeFries, J C

    1983-04-01

    This report provides an overview of the Colorado Adoption Project (CAP), a longitudinal, prospective, multivariate adoption study of behavioral development. Examples of the types of analyses that can be conducted using this design are presented. The examples are based on general cognitive-ability data for adoptive, biological, and control parents; assessments of their home environment; and Bayley Mental Development Index scores for 152 adopted children and 120 matched control children tested at both 1 and 2 years of age. The illustrative analyses include matched control children tested at both 1 and 2 years of age. The illustrative analyses include examination of genetic and environmental sources of variance, identification of environmental influence devoid of genetic bias, assessment of genotype-environment interaction and correlation, and analyses of the etiology of change and continuity in development.

  12. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  13. Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Qi-lin Xiong

    2015-10-01

    Full Text Available The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs, single-walled carbon nanotubes (SWCNTs, and their hybrid structures (SWBN-CNTs are investigated using molecular dynamics (MD simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs, including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X and the angles of bonds.

  14. Becoming an Adoptive Parent

    DEFF Research Database (Denmark)

    McIlvenny, Paul; Raudaskoski, Pirkko Liisa

    , we trace how adopters publicly narrate their own experiences and problems with fertility and with adoption, as well as how they construct their personal websites, network with others locally and internationally, orient to other ‘sites’ or sources of information, share advice and create 'public goods...... those practices which may precipitate a 'call for help' to distant actors, such as social welfare provision or counselling services....

  15. Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates.

    Science.gov (United States)

    Loryan, Irena; Sinha, Vikash; Mackie, Claire; Van Peer, Achiel; Drinkenburg, Wilhelmus H; Vermeulen, An; Heald, Donald; Hammarlund-Udenaes, Margareta; Wassvik, Carola M

    2015-02-01

    In the present work we sought to gain a mechanistic understanding of the physicochemical properties that influence the transport of unbound drug across the blood-brain barrier (BBB) as well as the intra- and extracellular drug exposure in the brain. Interpretable molecular descriptors that significantly contribute to the three key neuropharmacokinetic properties related to BBB drug transport (Kp,uu,brain), intracellular accumulation (Kp,uu,cell), and binding and distribution in the brain (Vu,brain) for a set of 40 compounds were identified using partial least-squares (PLS) analysis. The tailoring of drug properties for improved brain exposure includes decreasing the polarity and/or hydrogen bonding capacity. The design of CNS drug candidates with intracellular targets may benefit from an increase in basicity and/or the number of hydrogen bond donors. Applying this knowledge in drug discovery chemistry programs will allow designing compounds with more desirable CNS pharmacokinetic properties.

  16. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Koji; Shimozaki

    2014-01-01

    Neural stem cells(NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.

  17. Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties.

    Science.gov (United States)

    Beerepoot, Maarten T P; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2016-04-12

    We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotropic polarizabilities averaged over a large number of geometries of solvent molecules. The use of averaged parameters reduces the computational cost to obtain the embedding potential, which can otherwise be a rate-limiting step in calculations involving large environments. The parameters are evaluated by analyzing the quality of the resulting molecular electrostatic potentials with respect to full QM potentials. We show that a combination of geometry-specific parameters for solvent molecules close to the QM region and averaged parameters for solvent molecules further away allows for efficient polarizable embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable.

  18. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  19. Nanostructured organic and inorganic thin films with novel molecular recognition properties

    Science.gov (United States)

    Twardowski, Mariusz Z.

    An important theme in surface/interface science is the development of molecular level understandings of interactions at solid-liquid interfaces. The study of molecular recognition at such interfaces is well suited for modeling with self-assembled monolayers of alkanethiols (SAMs). For optimal studies, the SAM must be defect-free. Towards this end, a chemical treatment of the gold substrate was developed, consisting of a sequential treatment in "piranha" followed by dilute aqua regia. We found that the SAMs assembled on these treated substrates had exceptional barrier properties as measured by cyclic voltammetry(CV). X-ray diffraction(XRD) indicated that oxidative treatment induces significant bulk recrystallization of the metal. The dynamics suggest that recrystallization results from preferential dissolution of Au and/or impurities present at grain boundaries, leading to unpinning and merger into larger grains. Supported lipid layers were formed via fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to mixed SAMs containing ferrocene-functionalized hexadecanethiol chains(FcCO 2C16SH). The structures were characterized by several methods, including CV, ellipsometry and surface plasmon resonance(SPR). Studies revealed that the adsorbed DMPC strongly influences the interactions of the tethered ferrocene groups with secondary aqueous molecular redox probes. Permselective properties are seen. We believe that molecular scale defect structures in the adsorbed DMPC layer confer these molecular discrimination properties. Unilamellar vesicles of DMPC and varying quantities of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt)(DMPG) were used to deposit lipid bilayer assemblies on SAMs. The coverages of the layers were measured with SPR and decreased with increasing DMPG. The assembly is reversible and the lipid adlayer removable with ethanol. Effects of the adsorbed lipid layer on the electrochemical interactions of the

  20. Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

    Directory of Open Access Journals (Sweden)

    Hrabina J.

    2014-08-01

    Full Text Available We present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging.

  1. Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers.

    Science.gov (United States)

    Fernández, Jorge; Amestoy, Hegoi; Sardon, Haritz; Aguirre, Miren; Varga, Aitor Larrañaga; Sarasua, Jose-Ramon

    2016-12-01

    Poly(ethylene brassylate) (PEB) is a biodegradable polyester that nowadays is of particular interest owing to its poly(ε-caprolactone)-like properties (with a Tg at -30°C and a Tm at 70°C) and the low-cost of its monomer. However, it is not simple to achieve high molar masses with conventional catalysts. In this work, high molar mass PEBs, characterized by SEC-MALS, were successfully synthesized using triphenyl bismuth (Ph3Bi) as catalyst. Then, with the aim of evaluating the impact of the molecular weight on the physical properties, several PEBs ranging from 27 to 247kgmol(-1) were prepared. It was demonstrated that above a Mw of 90Kgmol(-1), PEB behaved in a constant manner. PEBs with lower molecular weight (20MPa.

  2. Chapter 6 – Computer-Aided Molecular Design and Property Prediction

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Zhang, L.; Kalakul, Sawitree

    2017-01-01

    to meet the global challenges of resources, competition, and demand. Design/development of these products mostly follows experiment-based trial and error approaches. With the availability of reliable property prediction models, however, computer-aided techniques have become popular, at least...... for the initial stages of the design/development process. Therefore, computer-aided molecular design and property prediction techniques are two topics that play important roles in chemical product design, analysis, and application. In this chapter, an overview of the concepts, methods, and tools related...... to these two topics are given. In addition, a generic computer-aided framework for the design of molecules, mixtures, and blends is presented. The application of the framework is highlighted for molecular products through two case studies involving the design of refrigerants and surfactants....

  3. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tran Nguyen, E-mail: lantran@ims.ac.jp

    2014-01-15

    Highlights: • Transport properties of molecular junction having direct binding of aromatic ring to electrode have been investigated. • The conductance of junction with sp-type electrode is higher than that of junction with sd-type electrode. • The rectifying mechanism critically depends on the nature of benzene–electrode coupling. • The p–n junction-like can be obtained even without heteroatom doping. • The negative differential resistance effect was observed for the case of sp-type electrode. - Abstract: We have used the non-equilibrium Green’s function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene–electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p–n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  4. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  5. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collins, Lee A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  6. Molecular response properties from a Hermitian eigenvalue equation for a time-periodic Hamiltonian.

    Science.gov (United States)

    Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul

    2015-03-21

    The time-dependent Schrödinger equation for a time-periodic perturbation is recasted into a Hermitian eigenvalue equation, where the quasi-energy is an eigenvalue and the time-periodic regular wave function an eigenstate. From this Hermitian eigenvalue equation, a rigorous and transparent formulation of response function theory is developed where (i) molecular properties are defined as derivatives of the quasi-energy with respect to perturbation strengths, (ii) the quasi-energy can be determined from the time-periodic regular wave function using a variational principle or via projection, and (iii) the parametrization of the unperturbed state can differ from the parametrization of the time evolution of this state. This development brings the definition of molecular properties and their determination on par for static and time-periodic perturbations and removes inaccuracies and inconsistencies of previous response function theory formulations. The development where the parametrization of the unperturbed state and its time evolution may differ also extends the range of the wave function models for which response functions can be determined. The simplicity and universality of the presented formulation is illustrated by applying it to the configuration interaction (CI) and the coupled cluster (CC) wave function models and by introducing a new model-the coupled cluster configuration interaction (CC-CI) model-where a coupled cluster exponential parametrization is used for the unperturbed state and a linear parametrization for its time evolution. For static perturbations, the CC-CI response functions are shown to be the analytical analogues of the static molecular properties obtained from finite field equation-of-motion coupled cluster (EOMCC) energy calculations. The structural similarities and differences between the CI, CC, and CC-CI response functions are also discussed with emphasis on linear versus non-linear parametrizations and the size-extensivity of the obtained

  7. Properties of Ga1-xMnxN Epilayers Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Marcet, S.; Bellet, E.; Biquard, X.; Bougerol, C.; Cibert, J.; Ferrand, D.; Giraud, R.; Halley, D.; Kulatov, E.; Kuroda, S.; Mariette, H.; Titov, A.

    2005-06-01

    Wurtzite (Ga,Mn)N epilayers were grown by plasma-assisted molecular beam epitaxy. Mn incorporation strongly depends on growth conditions. Infrared optical absorption shows absorption bands related to neutral Mn acceptor A0 at 1.412 eV and 1.43 eV. Magnetic circular dichroism spectroscopyat the band gap edge, in agreement with magnetization data, exhibits temperature and magnetic field dependence revealing paramagnetic properties of Mn-doped GaN.

  8. Sheep prions with molecular properties intermediate between classical scrapie, BSE and CH1641-scrapie

    OpenAIRE

    Langeveld, Jan P. M.; Jacobs, Jorg G; Erkens, Jo H.F.; Baron, Thierry; Andreoletti, Olivier; Yokoyama, Takahashi; Van Keulen, Lucien J. M.; van Zijderveld, Fred G.; Davidse, Aart; Hope, Jim; Tang, Yue; Bossers, Alex

    2014-01-01

    Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641–a rare scrapie variant–could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑as...

  9. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.

    Science.gov (United States)

    Ooyama, Yousuke; Harima, Yutaka

    2012-12-21

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO(2), ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident-solar-light-to-electricity conversion efficiency and low cost of production. To develop high-performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light-harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch-making molecular design of organic dyes for high photovoltaic performance and long-term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.

  10. First-principle studies of I-V properties of a molecular wire

    Institute of Scientific and Technical Information of China (English)

    王传奎; 李红海; 李英德; 罗毅; 付英

    2003-01-01

    The elastic scattering Green function method has been developed to describe the I-V characteristics of molecular wires. The molecular electronic structure and the interaction between the molecule and the gold surface are two key factors for the charge transport properties of molecular wires in the formulas. An ab initio calculation at the hybrid density functional theory level is carried out to obtain the electronic structure of 4-4′-dimercaptodibenzene molecule. The frontier orbit theory and the perturbation theory are employed to determine the constant of the interaction energy between molecule and surface quantitatively. The numerical results show that the bonding between the sulfur atom and the gold atoms corresponds mainly to the covalent bond. Some molecular orbits are extended over molecule and gold cluster that certainly give channels for the charge transport, other molecular orbits are localized and the charge transport can take place by tunnel mechanism. At zero bias region, there exists a current gap. With the increasing bias, the conductance of the wire takes a shape of plateaus.

  11. The properties of bound and unbound molecular cloud populations formed in galactic disc simulations

    Science.gov (United States)

    Ward, Rachel L.; Benincasa, Samantha M.; Wadsley, James; Sills, Alison; Couchman, H. M. P.

    2016-01-01

    We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing envelope of unstable masses as a function of radius, resulting in the formation of smaller, lower mass fragments in the outer disc. We also show that the star formation rate is affected by the environment of the parent cloud, and is particularly influenced by the underlying surface density profile of the gas throughout the disc. Our work highlights the strengths of using galaxy-scale simulations to understand the formation and evolution of cloud properties - and the star formation within them - in the context of their environment.

  12. The Effect of Boron on the Properties of Glucomannan: An Experimental and Molecular Dynamics Simulation Study

    Institute of Scientific and Technical Information of China (English)

    PANG Jie; SUN Yu-Jing; LI Bin; TIAN Shi-Ping; CHEN Shao-Jun

    2005-01-01

    The effect of boron on the properties of Konjac Glucomanan (KGM) has been investigated by the method of experiment and molecular dynamic simulation. Upon analysis, the property and structure of KGM are apt to be affected by boron and structural reasons for property change were discussed. In detail, the addition low concentration borax can increase the systematic inherent viscosity, by contrast, high concentration borax has opposite effect on the viscosity. When adding borax, the micropores on KGM film surface decrease or disappear, leading to more compact and uniform on the film surface. The structure of KGM-Boron complex is described as the coor- dination reaction between KGM and boron. The main reaction points are hydroxyl group on C(6) position of sugar as well as those on C(2) and C(3) positions of mannose with two kinds of com- plexes formation: B-K2 and KB-K. And KB-K mainly consists of g-b-m.

  13. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  14. Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials

    Science.gov (United States)

    Xu, L.; Zheng, Y.; Yan, Z.; Zhang, W.; Shi, J.; Zhou, F.; Zhang, X.; Wang, J.; Zhang, J.; Liu, B.

    2016-05-01

    Fluorinated graphene (FG)/ultra-high molecular weight polyethylene (UHMWPE) composites were successfully prepared by ultrasonic dispersion and liquid thermoforming method. The mechanical and tribological properties of pure UHMWPE and FG/UHMWPE composites were investigated using micro-hardness tester and high-speed reciprocating friction tester. The results showed that: adding FG could not only increase the micro-hardness of the composites, but also decrease the wear volume of the composite significantly. The friction coefficients of the composites were also reduced with the increasing of FG content. In addition, the MC3T3-E1 cells adhered and grew well on the surface of the FG/UHMWPE composites as observed by SEM and fluorescence microscope, indicating the addition of FG did not affect the morphology and activity of the cells. The FG/UHMWPE composites exhibited excellent mechanical properties, tribological properties and biocompatibility, which could be used as the potential artificial joint replacement material.

  15. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz

    2016-12-01

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates.

  16. Molecular dynamics simulations of highly cross-linked polymer networks: prediction of thermal and mechanical properties

    Science.gov (United States)

    Shenogina, Natalia; Tsige, Mesfin; Mukhopadhyay, Sharmila; Patnaik, Soumya

    2012-02-01

    We use all-atom molecular dynamics (MD) simulations to predict the mechanical and thermal properties of thermosetting polymers. Atomistic simulation is a promising tool which can provide detailed structure-property relationships of densely cross-linked polymer networks. In this work we study the thermo-mechanical properties of thermosetting polymers based on amine curing agents and epoxy resins and have focused on the DGEBA/DETDA epoxy system. At first we describe the modeling approach to construction of realistic all-atom models of densely cross-linked polymer matrices. Subsequently, a series of atomistic simulations was carried out to examine the simulation cell size effect as well as the role of cross-linking density and chain length of the resin strands on thermo-mechanical properties at different temperatures. Two different methods were used to deform the polymer networks. Both static and dynamic approaches to calculating the mechanical properties were considered and the thermo-mechanical properties obtained from our simulations were found in reasonable agreement with experimental values.

  17. EFFECT OF MOLECULAR WEIGHT OF PDMS ON MORPHOLOGY AND MECHANICAL PROPERTIES OF PP/PDMS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ze-yong Zhao; Wei-wei Yap; Rong-ni Du; Qin Zhang; Qiang Fu; Ze-hao Qiu; Su-lan Yuan

    2009-01-01

    A series of polydimethylsiloxane (PDMS) with varied molecular weights (Mw = 3x106,1x106 and 0.5x106)were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed that the addition of PDMS with lower MW would lead to a more significant increase in impact strength of the blends compared with the blends with higher MW ones,while the influence of the molecular weight on tensile strengths of the blends was relatively small in the MW range studied.Differential scanning calorimetry (DSC) results also showed that the crystallization temperature of PP was increased with decreasing PDMS MW,indicating a better nucleation capability of lower MW of PDMS.Melting flow rate (MFR)measurements indicated that the processibility of PP could be enhanced by adding PDMS,and again the lower MW PDMS resulted in better data.Our work demonstrates that not only the processibility but also the mechanical properties of PP could be enhanced to a more significant degree by using low MW PDMS than the higher ones.

  18. Molecular tailoring approach for exploring structures, energetics and properties of clusters

    Indian Academy of Sciences (India)

    Shridhar R Gadre; K V Jovan Jose; Anuja P Rahalkar

    2010-01-01

    Molecular Tailoring Approach (MTA) is a method developed for enabling ab initio calculations on prohibitively large molecules or atomic/molecular clusters. A brief review of MTA, a linear scaling technique based on set inclusion and exclusion principle, is provided. The Molecular Electrostatic Potential (MESP) of smaller clusters is exploited for building initial geometries for the larger ones, followed by MTA geometry optimization. The applications of MTA are illustrated with a few test cases such as (CO2) and Li clusters employing Density Functional theory (DFT) and a nanocluster of orthoboric acid at the Hartree-Fock (HF) level. Further, a discussion on the geometries and energetics of benzene tetramers and pentamers, treated at the Møller-Plesset second order (MP2) perturbation theory, is given. MTA model is employed for evaluating some cluster properties viz. adiabatic ionization potential, MESP, polarizability, Hessian matrix and infrared frequencies. These property evaluations are carried out on a series of test cases and are seen to offer quite good agreement with those computed by an actual calculation. These case studies highlight the advantages of MTA model calculations vis-à-vis the actual ones with reference to the CPU-time, memory requirements and accuracy.

  19. Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions

    Science.gov (United States)

    Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.

    2016-10-01

    The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.

  20. Beyond the adoption/ non-adoption dichotomy: the impact of innovation characteristics on potential adopters' transition through adoption process stages

    NARCIS (Netherlands)

    Agarwal, M.K.; Frambach, R.T.

    2002-01-01

    Research on innovation adoption has suffered from a bias towards understanding the factors that affect the dichotomous adoption/non-adoption decision.Much less attention is devoted to the question why potential adopters fail to progress to the adoption stage from earlier stages in the decision makin

  1. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    Science.gov (United States)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  2. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  3. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Science.gov (United States)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  4. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Carran, Richard S.; Ghosh, Arun, E-mail: Arun.Ghosh@agresearch.co.nz; Dyer, Jolon M.

    2013-12-15

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na{sup +} and Ca{sup 2+} exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  5. Using CO line ratios to trace the physical properties of molecular clouds

    Science.gov (United States)

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Shetty, Rahul; Klessen, Ralf S.

    2017-02-01

    The carbon monoxide (CO) rotational transition lines are the most common tracers of molecular gas within giant molecular clouds (MCs). We study the ratio (R2-1/1-0) between CO's first two emission lines and examine what information it provides about the physical properties of the cloud. To study R2-1/1-0, we perform smooth particle hydrodynamic simulations with time-dependent chemistry (using GADGET-2), along with post-process radiative transfer calculations on an adaptive grid (using RADMC-3D) to create synthetic emission maps of a MC. R2-1/1-0 has a bimodal distribution that is a consequence of the excitation properties of each line, given that J = 1 reaches local thermal equilibrium while J = 2 is still sub-thermally excited in the considered clouds. The bimodality of R2-1/1-0 serves as a tracer of the physical properties of different regions of the cloud, and it helps constrain local temperatures, densities and opacities. Additionally, this bimodal structure shows an important portion of the CO emission comes from diffuse regions of the cloud, suggesting that the commonly used conversion factor of R2-1/1-0 ∼ 0.7 between both lines may need to be studied further.

  6. Spectral properties of molecular iodine absorption cells filled to saturation pressure

    Science.gov (United States)

    Hrabina, Jan; Sarbort, Martin; Cip, Ondrej; Lazar, Josef

    2014-05-01

    The absorption cells - optical frequencies references - represent the crucial part of setups for practical realization of the meter unit - highly stable laser standards, where varied laser sources are frequency locked to the selected absorption transitions. Furthermore, not only in the most precise laboratory instruments, but also in less demanding interferometric measuring setups the frequency stabilization of the lasers throught the absorption in suitable media ensure the direct traceability to the fundamental standard of length. We present the results of measurement and evaluation of spectral properties of molecular iodine absorption cells filled to saturation pressure of absorption media. A set of cells filled with different amounts of molecular iodine was prepared and an agreement between expected and resulting spectral properties of these cells was observed and evaluated. The cells made of borosilicate glass instead of common fused silica were tested for their spectral properties in greater detail with special care for the absorption media purity - the measured hyperfine transitions linewidths were compared to cells traditionally made of fused silica glass with well known iodine purity. The usage of borosilicate glass material represents easier manufacturing process and also significant costs reduction but a great care must be taken to control/avoid the risk of absorption media contamination. An approach relying on measurement of linewidth of the hyperfine transitions is proposed and discussed.

  7. UManSysProp: an online facility for molecular property prediction and atmospheric aerosol calculations

    Directory of Open Access Journals (Sweden)

    D. Topping

    2015-11-01

    Full Text Available In this paper we describe the development and application of a new web based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk, for automating predictions of molecular and atmospheric aerosol properties. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic–organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles; absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES strings and UManSysProp will automatically extract the relevant information for calculations. Built using open source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web-interface, or can be accessed using the user's own code via a JSON API. In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.

  8. Communication through molecular bridges: different bridge orbital trends result in common property trends.

    Science.gov (United States)

    Proppe, Jonny; Herrmann, Carmen

    2015-02-05

    Common trends in communication through molecular bridges are ubiquitous in chemistry, such as the frequently observed exponential decay of conductance/electron transport and of exchange spin coupling with increasing bridge length, or the increased communication through a bridge upon closing a diarylethene photoswitch. For antiferromagnetically coupled diradicals in which two equivalent spin centers are connected by a closed-shell bridge, the molecular orbitals (MOs) whose energy splitting dominates the coupling strength are similar in shape to the MOs of the dithiolated bridges, which in turn can be used to rationalize conductance. Therefore, it appears reasonable to expect the observed common property trends to result from common orbital trends. We illustrate based on a set of model compounds that this assumption is not true, and that common property trends result from either different pairs of orbitals being involved, or from orbital energies not being the dominant contribution to property trends. For substituent effects, an effective modification of the π system can make a comparison difficult.

  9. Molecular design, synthesis and physical properties of novel Cytisine-derivatives - Experimental and theoretical study

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2013-02-01

    The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.

  10. Using CO line ratios to trace the physical properties of molecular clouds

    CERN Document Server

    Peñaloza, Camilo H; Glover, Simon C O; Shetty, Rahul; Klessen, Ralf S

    2016-01-01

    The carbon monoxide (CO) rotational transition lines are the most common tracers of molecular gas within giant molecular clouds (MCs). We study the ratio ($R_{2-1/1-0}$) between CO's first two emission lines and examine what information it provides about the physical properties of the cloud. To study $R_{2-1/1-0}$ we perform smooth particle hydrodynamic simulations with time dependent chemistry (using GADGET-2), along with post-process radiative transfer calculations on an adaptive grid (using RADMC-3D) to create synthetic emission maps of a MC. $R_{2-1/1-0}$ has a bimodal distribution that is a consequence of the excitation properties of each line, given that $J=1$ reaches local thermal equilibrium (LTE) while $J=2$ is still sub-thermally excited in the considered clouds. The bimodality of $R_{2-1/1-0}$ serves as a tracer of the physical properties of different regions of the cloud and it helps constrain local temperatures, densities and opacities. Additionally this bimodal structure shows an important porti...

  11. Carbon molecular sieves from carbon cloth: Influence of the chemical impregnant on gas separation properties

    Science.gov (United States)

    Rodríguez-Blanco, G.; Giraldo, L.; Moreno-Piraján, J. C.

    2010-06-01

    Carbon materials with molecular sieve properties (CMS) were prepared by pyrolysis of cotton fabrics by chemical activation procedures. To evaluate the changes in the chemical and textural properties, the impregnants AlCl 3, ZnCl 2 and H 3PO 4 were used at 1123 K. The materials were characterized using adsorption of nitrogen and carbon dioxide, TPD, and immersion calorimetry in C 6H 6. Adsorption kinetics of O 2, N 2, CO 2, CH 4, C 3H 8 and C 3H 6 were measured in all the prepared materials to determine their behaviour as molecular sieves. The results confirm that the chemical used as impregnant has a significant effect on the resulting CMS separation properties. All materials exhibit microporosity and low oxygen surface group contents; however, the sample impregnated with zinc chloride, with an immersion enthalpy value of 66.4 J g -1 in benzene, exhibits the best performance in the separation of CH 4-CO 2 and C 3H 8-C 3H 6 at 273 K.

  12. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications.

    Science.gov (United States)

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.

  13. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  14. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  15. Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics

    Science.gov (United States)

    Whitfield, T. W.; Crain, J.; Martyna, G. J.

    2006-03-01

    In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.

  16. MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hsi-An; Sorai, Kazuo [Department of Physics, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Kuno, Nario [Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Koda, Jin [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Hirota, Akihiko [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Kaneko, Hiroyuki, E-mail: hapan@astro1.sci.hokudai.ac.jp [Nobeyama Radio Observatory, NAOJ, Minamimaki, Minamisaku, Nagano 384-1305 (Japan)

    2015-12-10

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1) the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.

  17. Confinement properties of 2D porous molecular networks on metal surfaces

    Science.gov (United States)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  18. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    Science.gov (United States)

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  19. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications.

    Science.gov (United States)

    Liu, Xiaogang; Cole, Jacqueline M; Waddell, Paul G; Lin, Tze-Chia; Radia, Jignesh; Zeidler, Anita

    2012-01-12

    Coumarin derivatives are used in a wide range of applications, such as dye-sensitized solar cells (DSCs) and dye lasers, and have therefore attracted considerable research interest. In order to understand the molecular origins of their optoelectronic properties, molecular structures for 29 coumarin laser dyes are statistically analyzed. To this end, data for 25 compounds were taken from the Cambridge Structural Database and compared with data for four new crystal structures of coumarin laser dyes [Coumarin 487 (C(19)H(23)NO(2)), Coumarin 498 (C(16)H(17)NO(4)S), Coumarin 510 (C(20)H(18)N(2)O(2)), and Coumarin 525 (C(22)H(18)N(2)O(3))], which are reported herein. The competing contributions of different resonance states to the bond lengths of the 4- and 7-substituted coumarin laser dyes are computed based on the harmonic oscillator stabilization energy model. Consequently, a positive correlation between the contribution of the para-quinoidal resonance state and the UV-vis peak absorption wavelength of these coumarins is revealed. Furthermore, the perturbations of optoelectronic properties, owing to chemical substituents in these coumarin laser dyes, are analyzed: it is found that their UV-vis peak absorption and lasing wavelengths experience a red shift, as the electron-donating strength of the 7-position substituent increases and/or the electron-withdrawing strength of the 3- or 4-position substituent rises; this conclusion is corroborated by quantum-chemical calculations. It is also revealed that the closer the relevant substituents align with the direction of the intramolecular charge transfer (ICT), the larger the spectral shifts and the higher the molar extinction coefficients of coumarin laser dyes. These findings are important for understanding the ICT mechanism in coumarins. Meanwhile, all structure-property correlations revealed herein will enable knowledge-based molecular design of coumarins for dye lasers and DSC applications.

  20. History, Classification, Molecular Structure and Properties of Dendrimers which are a New Concept in Textile

    Directory of Open Access Journals (Sweden)

    Osman NAMIRTI

    2011-02-01

    Full Text Available Over the last 20 years polymer chemistry has created a number of non-lineer structures and introduction of a large number of branches during the polymer synthesis leads to obtain molecules with many end groups. Two types of these polymers are regularly branched "dendrimers" and "hyperbranched polymers" where branching is formed randomly. In this article knowledge about history, classification, molecular structure and properties of dendrimers which have found various application areas also in textile due to their special structures is given.

  1. Scattering properties of gas molecules on self-assembled monolayers using molecular dynamics simulation

    Science.gov (United States)

    Takeuchi, Hideki

    2016-11-01

    The scattering properties of argon gas molecules on the SAM (self-assembled monolayer) surface which consists of 1-propanethiol molecules chemically adsorbed on a gold surface have been investigated by using the molecular dynamics method. The trapping probability, the angular distribution and the angular scattering distribution for the gas molecule have been obtained for various incident energies and angles. It is shown that the trapping probability decreases with increasing the incident energy. The angular distribution for small incident angle is almost close to the cosine distribution. In addition, the partial accommodation coefficients of tangential momentum and energy for gas molecules are discussed.

  2. Metal cluster structures and properties from Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Calaminici, Patrizia, E-mail: pcalamin@cinvestav.mx; Köster, Andreas M., E-mail: pcalamin@cinvestav.mx; Vásquez-Pérez, José Manuel, E-mail: pcalamin@cinvestav.mx; Martínez, Gabriel Ulises Gamboa, E-mail: pcalamin@cinvestav.mx [Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-01-22

    Density functional theory (DFT) Born-Oppenheimer molecular dynamics (BOMD) simulations of metal clusters are presented. The calculations have been performed with the deMon2k [1] code employing all-electron basis sets and local and non-local functionals. The capability to perform reasonable long (∼ 100 ps) first-principle BOMD simulations in order to explore potential energy landscape of metallic clusters will be presented [2,3]. The evolution of the cluster structures and properties, such as polarizability and heat capacity, with temperature is discussed.

  3. Properties of hadron and quark matter studied with a molecular dynamics

    CERN Document Server

    Akimura, Y; Yoshinaga, N; Chiba, S

    2005-01-01

    We study the hadron-quark phase transition in a molecular dynamics (MD) of quark degrees of freedom. The hadron state at low density and temperature, and the deconfined quark state at high density and temperature are observed in our model. We investigate the equations of state and draw the phase-diagram at wide baryon density and temperature range. We also discuss the transport property, e.g. viscosity, of $q\\bar{q}$ matter. It is found that the ratio of the shear viscosity to the entropy density is less than one for quark matter.

  4. Adoption, nation, migration

    DEFF Research Database (Denmark)

    Müller, Anders Riel

    2013-01-01

    Som transnationalt adopteret vokser man ofte op med en fortælling om, at man er født i et fattigt land. Og at ens første forældre var fattige eller oplevede så store problemer, at de ikke så andre muligheder end at afgive en til adoption. Det er en historie, man bliver fortalt igen og igen. Og so...

  5. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    Science.gov (United States)

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic

  6. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  7. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  8. NATO Advanced Research Workshop on Geometrical Derivatives of Energy Surfaces and Molecular Properties

    CERN Document Server

    Simons, Jack

    1986-01-01

    The development and computational implementation of analytical expres­ sions for the low-order derivatives of electronic energy surfaces and other molecular properties has undergone rapid growth in recent years. It is now fairly routine for chemists to make use of energy gradient information in locating and identifying stable geometries and transition states. The use of second analytical derivative (Hessian or curvature) expressions is not yet routine, and third and higher energy derivatives as well as property (e.g., dipole moment, polarizability) derivatives are just beginning to be applied to chemical problems. This NATO Advanced Research Workshop focused on analyzing the re­ lative merits of various strategies for deriving the requisite analyti­ cal expressions, for computing necessary integral derivatives and wave­ function parameter derivatives, and for efficiently coding these expres­ sions on conventional scalar machines and vector-oriented computers. The participant list contained many scientist...

  9. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junhua, E-mail: junhua.zhao@uni-weimar.de [Jiangsu Province Key Laboratory of Advanced Manufacturing Equipment and Technology of Food, Jiangnan University, 214122 Wuxi (China); Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Jiang, Jin-Wu, E-mail: jwjiang5918@hotmail.com [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Seoul (Korea, Republic of)

    2013-12-02

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS{sub 2}) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS{sub 2}. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  10. Protein Fibrillar Nanopolymers: Molecular-Level Insights into Their Structural, Physical and Mechanical Properties

    Science.gov (United States)

    Trusova, Valeriya M.

    2015-09-01

    Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.

  11. Evaluation of collective transport properties of ionic melts from molecular dynamics simulations

    Indian Academy of Sciences (India)

    Manish Agarwal; Charusita Chakravarty

    2009-09-01

    Molecular dynamics simulations of beryllium fluoride (BeF2) have been carried out in the canonical (NVT) ensemble using a rigid-ion potential model. The Green-Kubo formalism has been applied to compute viscosities and ionic conductivities of BeF2 melt. The computational parameters critical for reliably estimating these collective transport properties are shown to differ significantly for viscosity and ionic conductivity. In addition to the equilibrium values of these transport properties, structural relaxation times as well as high-frequency IR-active modes are computed from the pressure and charge-flux auto correlation functions (ACFs) respectively. It is shown that a network-forming ionic melt, such as BeF2, will display persistent oscillatory behaviour of the integral of the charge-flux ACF. By suitable Fourier transformation, one can show that these persistent oscillations correspond to highfrequency, infra-red active vibrations associated with local modes of the network.

  12. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    Science.gov (United States)

    Rozas, R. E.; Demiraǧ, A. D.; Toledo, P. G.; Horbach, J.

    2016-08-01

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss the validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.

  13. Correlation Between Pyrolysis Atmosphere and Carbon Molecular Sieve Membrane Performance Properties

    KAUST Repository

    Kiyono, Mayumi

    2011-01-01

    Carbon molecular sieve (CMS) membranes have attractive separation performance properties, greatly exceeding an "upper bound" trade-off curve of polymeric membrane performance. CMS membranes are prepared by pyrolyzing polymers, well above their glass transition temperatures. Multiple factors, such as polymer precursor and pyrolysis protocol, are known to affect the separation performance. In this study, a correlation observed between pyrolysis atmosphere and CMS separation performance properties is discussed. Specifically, oxygen exposure during the pyrolysis process is the focus. The theory and details of the oxygen exposure and development of a new CMS preparation method using oxygen as a "dopant" will be described with a strong correlation observed with separation performance for CMS membranes prepared with various polymer precursors. In addition, study of possible mass transfer limitations on the oxygen "doping" process will be described to clarify the basis for the equilibrium-based interpretation of doping data. The method is also explored by changing the pyrolysis temperature. © 2011 Elsevier B.V.

  14. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation

    Science.gov (United States)

    Chen, L.; Fan, J. L.; Gong, H. R.

    2017-03-01

    Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.

  15. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Science.gov (United States)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  16. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    Directory of Open Access Journals (Sweden)

    Orozco Gustavo A.

    2014-09-01

    Full Text Available Using molecular simulation techniques such as Monte Carlo (MC and molecular dynamics (MD, we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA. Different amine molecules have been studied, including n-ButylAmine, di-n-ButylAmine, tri-n-ButylAmine and 1,4-ButaneDiAmine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-ButylAmine and n-heptane-n-ButylAmine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-ButylAmine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N2O and nitrogen (N2 in an aqueous solutions of n-ButylAmine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines.

  17. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Baptiste Legrand

    Full Text Available Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD. It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.

  18. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Sorana-Daniela Bolboacă

    2007-03-01

    Full Text Available The aim of the paper is to present the results obtained by utilization of an originalapproach called Molecular Descriptors Family on Structure-Property (MDF-SPR andStructure-Activity Relationships (MDF-SAR applied on classes of chemical compoundsand its usefulness as precursors of models elaboration of new compounds with betterproperties and/or activities and low production costs. The MDF-SPR/MDF-SARmethodology integrates the complex information obtained from compound’s structure inunitary efficient models in order to explain properties/activities. The methodology has beenapplied on a number of thirty sets of chemical compounds. The best subsets of moleculardescriptors family members able to estimate and predict property/activity of interest wereidentified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR modelswere validated through internal and/or external validation methods. The estimation andprediction abilities of the MDF-SPR/MDF-SAR models were compared with previousreported models by applying of correlated correlation analysis, which revealed that theMDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodologyopens a new pathway in understanding the relationships between compound’s structure andproperty/activity, in property/activity prediction, and in discovery, investigation andcharacterization of new chemical compounds, more competitive as costs andproperty/activity, being a method less expensive comparative with experimental methods.

  19. Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: differences in fluorescence properties with chlorophyll replacement.

    Science.gov (United States)

    Mimuro, Mamoru; Murakami, Akio; Tomo, Tatsuya; Tsuchiya, Tohru; Watabe, Kazuyuki; Yokono, Makio; Akimoto, Seiji

    2011-05-01

    A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.

  20. Molecular and pharmacokinetic properties of 222 commercially available oral drugs in humans.

    Science.gov (United States)

    Sakaeda, T; Okamura, N; Nagata, S; Yagami, T; Horinouchi, M; Okumura, K; Yamashita, F; Hashida, M

    2001-08-01

    This study was performed to determine the exclusion criteria that differentiate poorly absorbed drugs from good drug candidates, and to accelerate drug development by exclusion of unnecessary assessment. The molecular and pharmacokinetic properties of 222 commercially available oral drugs were tabulated and their correlations were analyzed. The exclusion criteria obtained were 1) a molecular weight of more than 500, and 2) a ClogP value of more than 5. Exceptions to molecular weight criteria were compounds with a sugar moiety, high atomic weight, and large cyclic structure. It was also suggested that being a substrate for MDRI (P-glycoprotein) does not always result in poor bioavailability, and that drug development by chemical modification of a seed or lead compound with quantitative structure activity relationship analysis can result in lower bioavailability, higher bound fraction and lower urinary excretion, which would hamper later development processes and might result in considerable drug-drug interaction. The criteria should be adjusted according to the pharmacological profiles of the agents in question and depending on the estimated profit, but ignoring these criteria may result in a significant waste of time and money during drug development.

  1. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    Science.gov (United States)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  2. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    Directory of Open Access Journals (Sweden)

    Yuan-Jie Zhang

    Full Text Available Dehydroascorbate reductase (DHAR, which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens and eudicots (e.g. Arabidopsis thaliana. In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  3. Structural parameters, molecular properties, and biological evaluation of some terpenes targeting Schistosoma mansoni parasite.

    Science.gov (United States)

    Mafud, Ana C; Silva, Marcos P N; Monteiro, Daniela C; Oliveira, Maria F; Resende, João G; Coelho, Mayara L; de Sousa, Damião P; Mendonça, Ronaldo Z; Pinto, Pedro L S; Freitas, Rivelilson M; Mascarenhas, Yvonne P; de Moraes, Josué

    2016-01-25

    The use of natural products has a long tradition in medicine, and they have proven to be an important source of lead compounds in the development of new drugs. Among the natural compounds, terpenoids present broad-spectrum activity against infective agents such as viruses, bacteria, fungi, protozoan and helminth parasites. In this study, we report a biological screening of 38 chemically characterized terpenes from different classes, which have a hydroxyl group connected by hydrophobic chain or an acceptor site, against the blood fluke Schistosoma mansoni, the parasite responsible for schistosomiasis mansoni. In vitro bioassays revealed that 3,7-dimethyl-1-octanol (dihydrocitronellol) (10) was the most active terpene (IC50 values of 13-52 μM) and, thus, we investigated its antischistosomal activity in greater detail. Confocal laser scanning microscopy revealed that compound 10 induced severe tegumental damage in adult schistosomes and a correlation between viability and tegumental changes was observed. Furthermore, we compared all the inactive compounds with dihydrocitronellol structurally by using shape and charge modeling. Lipophilicity (miLogP) and other molecular properties (e.g. molecular polar surface area, molecular electrostatic potential) were also calculated. From the 38 terpenes studied, compound 10 is the one with the greatest flexibility, with a sufficient apolar region by which it may interact in a hydrophobic active site. In conclusion, the integration of biological and chemical analysis indicates the potential of the terpene dihydrocitronellol as an antiparasitic agent.

  4. Molecular determinants responsible for sedative and non-sedative properties of histamine H₁-receptor antagonists.

    Science.gov (United States)

    Uesawa, Yoshihiro; Hishinuma, Shigeru; Shoji, Masaru

    2014-01-01

    There is argument whether non-sedative properties of histamine H1-receptor antagonists (antihistamines) are determined by their active extrusions from the brain via P-glycoprotein or their restricted penetration through the blood-brain barrier. We have reported that sedative and non-sedative antihistamines can be well discriminated by measuring changes in their binding to H1 receptors upon receptor internalization in intact cells, which depends on their membrane-penetrating ability. In this study, molecular determinants responsible for sedative and non-sedative properties of antihistamines were evaluated by quantitative structure-activity relationship (QSAR) analyses. Multiple regression analyses were applied to construct a QSAR model, taking internalization-mediated changes in the binding of antihistamines as objective variables and their structural descriptors as explanatory variables. The multiple regression model was successfully constructed with two explanatory variables, i.e., lipophilicity of the compounds at physiological pH (logD) and mean information content on the distance degree equality (IDDE) (r(2) = 0.753). The constructed model discriminated between sedative and non-sedative antihistamines with 94% accuracy for external validation. These results suggest that logD and IDDE concerning lipophilicity and molecular shapes of compounds, respectively, predominantly determine the membrane-penetrating ability of antihistamines for their side effects on the central nervous system.

  5. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng; ZHANG Ying; WANG Pei-Ji; ZHANG Zhong

    2011-01-01

    @@ Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbonnanotube-based molecular junction.Obvious rectifying behavior is observed and it is strongly dependent on the doping site.The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer.Moreover, the rectifying performance can be further improved by adjusting the distance between the Cso nanotube caps.%Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C60 nanotube caps.

  6. Transport properties of liquid para-hydrogen: The path integral centroid molecular dynamics approach

    Science.gov (United States)

    Yonetani, Yoshiteru; Kinugawa, Kenichi

    2003-11-01

    Several fundamental transport properties of a quantum liquid para-hydrogen (p-H2) at 17 K have been numerically evaluated by means of the quantum dynamics simulation called the path integral centroid molecular dynamics (CMD). For comparison, classical molecular dynamics (MD) simulations have also been performed under the same condition. In accordance with the previous path integral simulations, the calculated static properties of the liquid agree well with the experimental results. For the diffusion coefficient, thermal conductivity, and shear viscosity, the CMD predicts the values closer to the experimental ones though the classical MD results are far from the reality. The agreement of the CMD result with the experimental one is especially good for the shear viscosity with the difference less than 5%. The calculated diffusion coefficient and the thermal conductivity agree with the experimental values at least in the same order. We predict that the ratio of bulk viscosity to shear viscosity for liquid p-H2 is much larger than classical van der Waals simple liquids such as rare gas liquids.

  7. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations.

    Science.gov (United States)

    Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M

    2015-06-15

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  8. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng

    2012-01-01

    Based on the nonequilibrium Green's function method and density functional theory calculations,we theoretically investigate the electronic transport properties of an anthraquinone-based molecular switch with carbon nanotube electrodes.The molecules that comprise the switch can convert between reduced hydroquinone (HQ) and oxidized anthraquinne (AQ) states via redox reactions.Our results show that the on-off ratio is increased one order of magnitude when compared to the case of gold electrodes.Moreover,an obvious negative differential resistance behavior at much low bias (0.07 V) is observed in the HQ form.%Based on the nonequilihrium Green's function method and density functional theory calculations, we theoretically investigate the electronic transport properties of an anthraquinone-based molecular switch with carbon nanotube electrodes. The molecules that comprise the switch can convert between reduced hydroquinone (HQ) and oxidized anthraquinne (AQ) states via redox reactions. Our results show that the on-off ratio is increased one order of magnitude when compared to the case of gold electrodes. Moreover, an obvious negative differential resistance behavior at much low bias (0.07 V) is observed in the HQ form.

  9. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  10. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties.

    Science.gov (United States)

    Martí, J; Nagy, G; Guàrdia, E; Gordillo, M C

    2006-11-30

    Electric and dielectric properties and microscopic dynamics of liquid water confined between graphite slabs are analyzed by means of molecular dynamics simulations for several graphite-graphite separations at ambient conditions. The electric potential across the interface shows oscillations due to water layering, and the overall potential drop is about -0.28 V. The total dielectric constant is larger than the corresponding value for the bulklike internal region of the system. This is mainly due to the preferential orientations of water nearest the graphite walls. Estimation of the capacitance of the system is reported, indicating large variations for the different adsorption layers. The main trend observed concerning water diffusion is 2-fold: on one hand, the overall diffusion of water is markedly smaller for the closest graphite-graphite separations, and on the other hand, water molecules diffuse in interfaces slightly slower than those in the bulklike internal areas. Molecular reorientational times are generally larger than those corresponding to those of unconstrained bulk water. The analysis of spectral densities revealed significant spectral shifts, compared to the bands in unconstrained water, in different frequency regions, and associated to confinement effects. These findings are important because of the scarce information available from experimental, theoretical, and computer simulation research into the dielectric and dynamical properties of confined water.

  11. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.

    Science.gov (United States)

    Tanadchangsaeng, Nuttapol; Yu, Jian

    2012-11-01

    Glycerol is considered as an ideal feedstock for producing bioplastics via bacterial fermentation due to its ubiquity, low price, and high degree of reduction substrate. In this work, we study the yield and cause of limitation in poly(3-hydroxybutyrate) (PHB) production from glycerol. Compared to glucose-based PHB production, PHB produced by Cupriavidus necator grown on glycerol has a low productivity (0.92 g PHB/L/h) with a comparably low maximum specific growth rate of 0.11 h(-1) . We found that C. necator can synthesize glucose from glycerol and that the lithotrophical utilization of glycerol (non-fermentative substrate) or gluconeogenesis is an essential metabolic pathway for biosynthesis of cellular components. Here, we show that gluconeogenesis affects the reduction of cell mass, the productivity of biopolymer product, and the molecular chain size of intracellular PHB synthesized from glycerol by C. necator. We use NMR spectroscopy to show that the isolated PHB is capped by glycerol. We then characterized the physical properties of the isolated glycerol-based PHB with differential scanning calorimetry and tensile tests. We found that although the final molecular weight of the glycerol-based PHB is lower than those of glucose-based and commercial PHB, the thermal and mechanical properties of the biopolymers are similar.

  12. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    Science.gov (United States)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  13. Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties

    Directory of Open Access Journals (Sweden)

    Yi-Hsien Chen

    2015-03-01

    Full Text Available The availability of adult malignant glioma stem cells (GSCs has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG. Leveraging a neurofibromatosis 1 (Nf1 genetically engineered mouse LGG model, we report the isolation of CD133+ multi-potent low-grade glioma stem cells (LG-GSCs, which generate glioma-like lesions histologically similar to the parent tumor following injection into immunocompetent hosts. In addition, we demonstrate that these LG-GSCs harbor selective resistance to currently employed conventional and biologically targeted anti-cancer agents, which reflect the acquisition of new targetable signaling pathway abnormalities. Using transcriptomic analysis to identify additional molecular properties, we discovered that mouse and human LG-GSCs harbor high levels of Abcg1 expression critical for protecting against ER-stress-induced mouse LG-GSC apoptosis. Collectively, these findings establish that LGG cancer stem cells have unique molecular and functional properties relevant to brain cancer treatment.

  14. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Insup [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Gun-Woo [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Choi, Yoon-Jeong [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Mi-Sook [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Park, Yongdoo [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kyu-Back [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Kim, In-Sook [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Hwang, Soon-Jung [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Tae, Giyoong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2006-09-15

    We examined the effects of cross-linking molecular weights on the properties of a hyaluronic acid (HA)-poly(ethylene oxide) (PEO) hydrogel. Swelling behaviors, mechanical strength and rheological behaviors of the HA-PEO hydrogel were evaluated by employing different cross-linking molecular weights (100 kDa and 1.63 mDa) of the HAs in the hydrogel networks. The low molecular weight of HA was obtained in advance by treating high molecular weight HA with a hydrogen chloride solution. Methacrylation of HA was obtained by grafting aminopropylmethacrylate to its caroboxylic acid functional groups. While reduction of the HA molecular weights was confirmed by gel permeation chromatography, the degree of methacrylate grafting to the HA was measured by {sup 1}H-nuclear magnetic resonance. Synthesis of the HA-PEO hydrogel was successfully achieved via the Michael-type addition reaction between the methacrylate arm groups in the HA and the six thiol groups in PEO. The hydrogel formation was not dependent upon the HA molecular weights and its gelation behaviors were markedly different. Compared to the properties of the high molecular weight HA-based PEO one, the low molecular weight HA-based hydrogel induced quicker hydrogelation, as observed from the behaviors of the elastic and viscous modulus. Furthermore, the low molecular weight HA-based hydrogel demonstrated stronger mechanical properties as measured with a texture analyzer, lower water absorption as measured with a microbalance and smaller pore sizes on its surface and cross section as observed with scanning electron microscopy. The information about the effects of the cross-linking molecular weights of the gel network on the properties of the HA-based PEO hydrogel may lead to better design of hydrogels, especially in tissue engineering applications.

  15. Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Kolanu [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Kanaparthi, Ravi Kumar [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Department of Chemistry, Central University of Kerala, Reverside Transit Campus, Padanakkad, Nileshwar Kasaragod District - 671 314 Kerala (India); Kumar, Challa Kiran [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India)

    2014-09-15

    A novel molecular triad (AQ-(H{sub 3}){sub 2}) based on tritolylcorrole and anthraquinone having azomethine-bridge at the pyrrole-β position has been designed and synthesized by following a facile one step reaction. The molecular system, AQ-(H{sub 3}){sub 2} is characterized by elemental analysis, MALDI-MS, {sup 1}H-NMR, UV–Visible and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. In absorption spectra, prominent changes such as red-shift (∼7 nm) and broadening of the both Soret and Q-bands with respect to their monomer units were observed. The present study supported by density functional theory calculations manifest that there exists a negligible electronic communication in the ground state between the donor tritolylcorrole and acceptor anthraquinone of the triad. However, interestingly, in the triad AQ-(H{sub 3}){sub 2}, fluorescence emission of the tritolylcorrole quenched significantly (17–80%) compared to their monomeric units. The emission quenching is attributed to the excited state intramolecular photoinduced electron transfer from donor tritolylcorrole to acceptor anthraquinone and the electron transfer rates (k{sub ET}) are found in the range 4.1×10{sup 8} to 2.4×10{sup 9} s{sup −1} and are found to be solvent dependent. - Highlights: • Molecular triad based on corrole and anthraquinone having azomethine-bridge at pyrrole-β position. • Ground state properties showed that there exist minimum π–π interactions. • Excited state properties showed intramolecular photoinduced electron transfer from corrole to anthraquinone.

  16. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  17. Åben Adoption

    DEFF Research Database (Denmark)

    Jeldtoft, Nadia

    2007-01-01

    barn adopteres, jo mere stabil og uproblematisk bliver relationen mellem barn og adoptivforældre. Samtidig peger undersøgelserne på, at adoptioner med høj grad af åbenhed og kontakt mellem barn, adoptivforældrene og de biologiske forældre fungerer bedst. Hermed rokkes ved en udbredt forestilling om......Denne rapport er en systematisk forskningsoversigt over udenlandske erfaringer med adoption i forhold til anbringelse uden for hjemmet, fx familiepleje, institutionsanbringelse og hjemgivelse til de biologiske forældre. Konklusionerne i rapporten er overraskende entydige: Adopterede børn klarer sig...

  18. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  19. Sheep prions with molecular properties intermediate between classical scrapie, BSE and CH1641-scrapie.

    Science.gov (United States)

    Langeveld, Jan P M; Jacobs, Jorg G; Erkens, Jo H F; Baron, Thierry; Andréoletti, Olivier; Yokoyama, Takahashi; van Keulen, Lucien J M; van Zijderveld, Fred G; Davidse, Aart; Hope, Jim; Tang, Yue; Bossers, Alex

    2014-01-01

    Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641-a rare scrapie variant-could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑associated form of prion protein (PrP(res)) represents a powerful tool for quick discrimination purposes. In this study we examined 7 deviant ovine field cases of scrapie for some typical molecular aspects of PrP(res) found in CH1641‑scrapie, classical scrapie and BSE. One case was most close to scrapie with respect to molecular mass of its non-glycosylated fraction and N-terminally located 12B2‑epitope content. Two cases were unlike classical scrapie but too weak to differentiate between BSE or CH1641. The other 4 cases appeared intermediate between scrapie and CH1641 with a reduced molecular mass and 12B2‑epitope content, together with the characteristic presence of a second PrP(res) population. The existence of these 2 PrP(res) populations was further confirmed through deglycosylation by PNGaseF. The findings indicate that discriminatory diagnosis between classical scrapie, CH1641 and BSE can remain inconclusive with current biochemical methods. Whether such intermediate cases represent mixtures of TSE strains should be further investigated e.g. in bioassays with rodent lines that are varying in their susceptibility or other techniques suitable for strain typing.

  20. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD Method

    Directory of Open Access Journals (Sweden)

    Hui Yao

    2017-01-01

    Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.

  1. After adoption: dissolution or permanence?

    Science.gov (United States)

    Festinger, Trudy

    2002-01-01

    Results are presented on the whereabouts of 516 adopted children, based on a random sample of children adopted from placement in New York City in 1996. Data from interviews with adoptive parents were augmented by information from adoption subsidy records and state child tracking files, as well as interviews with caregivers of children whose adoptive parents were deceased. There were few dissolutions, but postadoption service needs were many.

  2. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.

    Science.gov (United States)

    Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria

    2006-01-01

    In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the

  3. Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight.

    Science.gov (United States)

    Baeza, Rosa; Sanchez, Cecilio Carrera; Pilosof, Ana M R; Patino, Juan M Rodríguez

    2004-08-01

    In the present work we have studied the characteristics of propylene glycol alginates (PGA) adsorption at the air-water interface and the viscoelastic properties of the films in relation to its foaming properties. To evaluate the effect of the degree of PGA esterification and viscosity, different commercial samples were studied--Kelcoloid O (KO), Kelcoloid LVF (KLVF) and Manucol ester (MAN). The temperature (20 degrees C) and pH (7.0) were maintained constant. For time-dependent surface pressure measurements and surface dilatational properties of adsorbed PGA at the air-water interface an automatic drop tensiometer was used. The foam was generated by whipping and then the foam capacity and stability was determined. The results reveal a significant interfacial activity for PGA due to the hydrophobic character of the propylene glycol groups. The kinetics of adsorption at the air-water interface can be monitored by the diffusion and penetration of PGA at the interface. The adsorbed PGA film showed a high viscoelasticity. The surface dilatational modulus depends on the PGA and its concentration in the aqueous phase. Foam capacity of PGA solutions increased in the order KO > MAN > KLVF, which followed the increase in surface pressure and the decrease in the viscosities of PGA solutions. The stability of PGA foams monitored by the drainage rate and collapse time follows the order MAN > KLVF > KO. The foam stability depends on the combined effect of molecular weight/degree of esterification of PGA, solution viscosity and viscoelasticity of the adsorbed PGA film.

  4. Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations

    Science.gov (United States)

    Karim, Mir; Kohale, Swapnil C.; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh

    2012-11-01

    We present a technique for the determination of viscoelastic properties of a medium by tracking the motion of an embedded probe particle by using molecular dynamics simulations. The approach involves the analysis of the simulated particle motion by continuum theory; it is shown to work in both passive and active modes. We demonstrate that, for passive rheology, an analysis based on the generalized Stokes-Einstein relationship is not adequate to obtain the values of the viscoelastic moduli over the frequency range studied. For both passive and active modes, it is necessary to account for the medium and particle inertia when analyzing the particle motion. For a polymer melt system consisting of short chains, the values calculated from the proposed approach are in good quantitative agreement with previous literature results that were obtained using completely different simulation approaches. The proposed particle rheology simulation technique is general and could provide insight into the characterization of the mechanical properties in biological systems, such as cellular environments and polymeric systems, such as thin films and nanocomposites that exhibit spatial variation in properties over the nanoscale.

  5. Variation in dust properties in a dense filament of the Taurus molecular complex (L1506)

    CERN Document Server

    Ysard, Nathalie; Ristorcelli, Isabelle; Juvela, Mika; Pagani, Laurent; Konyves, Vera; Spencer, Locke; White, Glenn; Zavagno, Annie

    2013-01-01

    We observed the L1506 filament, which is located in the Taurus molecular complex, with the Herschel PACS and SPIRE instruments. Our aim is to prove the variation in grain properties along the entire length of the filament. In particular, we want to determine above which gas density this variation arises and what changes in the grain optical properties/size distribution are required. We use the 3D radiative transfer code CRT, coupled to the dust emission and extinction code DustEM, to model the emission and extinction of the dense filament. We test a range of optical properties and size distributions for the grains: dust of the diffuse interstellar medium (interstellar PAHs and amorphous carbons and silicates) and both compact and fluffy aggregates. We find that the grain opacity has to increase across the filament to fit simultaneously the near-IR extinction and Herschel emission profiles of L1506. We interpret this change to be a consequence of the coagulation of dust grains to form fluffy aggregates. Grains...

  6. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  7. Process of adoption communication openness in adoptive families: adopters’ perspective

    Directory of Open Access Journals (Sweden)

    Maria Acciaiuoli Barbosa-Ducharne

    2016-01-01

    Full Text Available Abstract Communication about adoption is a family interaction process which is more than the simple exchange of information. Adoption communication can be characterized in terms of the level of openness of family conversations regarding the child’s past and the degree of the family’s adoption social disclosure. The objective of this study is to explore the process of adoption communication openness in Portuguese adoptive families by identifying the impact of variables related to the adoption process, the adoptive parenting and the adoptee. One hundred twenty five parents of children aged 3 to 15, who were adopted on average 4 years ago, participated in this study. Data was collected during home visits using the Parents Adoption Process Interview. A cluster analysis identified three different groups of families according to the level of adoption communication openness within the family and outside. The findings also showed that the process of the adoption communication openness started when parents decided to adopt, developed in parent-child interaction and was susceptible to change under professional intervention. The relevance of training given to prospective adopters and of professional practice based on scientific evidence is highlighted.

  8. Adopting EIL in China

    Institute of Scientific and Technical Information of China (English)

    王静

    2007-01-01

    In this paper, I state my views of the global spread of English. Through analysis of the reasons of the wide spread of EIL, I emphasize that adopting varieties of models is vitally important in relation to English teaching and learning in China, despite a number of obstacles still existing. British, American, Australian, Canada, or any other English should be taught compatibly. No matter what varieties we use, intelligibility is most important among people from other cultures with different linguistic background. Pedagogy should also be adjusted to follow the features of EIL aiming to facilitate learners' communication with people from a wide range of countries and to access the vast amount of information currently available in English. Therefore, supportive policy should be made to both raise all people's awareness of English used internationally and guarantee the need from education practice. Curriculum, without doubt, should include varieties of English in addition to British and American English.

  9. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair.

  10. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.

    Science.gov (United States)

    Xie, Jun Yu; Ding, Guang Hong; Karttunen, Mikko

    2014-03-01

    Membranes' response to lateral tension, and eventual rupture, remains poorly understood. In this study, pure dipalmitoylphosphatidylcholine (DPPC) lipid bilayers, under tension/pressure, were studied using molecular dynamics (MD) simulations. The irreversible membrane breakdown is demonstrated to depend on the amplitude of lateral tension, loading rate, and the size of the bilayer. In all of our simulations, -200bar lateral pressure was found to be enough to rupture lipid membrane regardless of the loading rate or the membrane size. Loading rate and membrane size had a significant impact on rupture. A variety of dynamic properties of lipid molecules, probability distribution of area per lipid particularly, have been determined, and found to be fundamental for describing membrane behavior in detail, thus providing the quantitative description for the requirement of membrane rupture.

  11. Adaption and application of the Green function method to research on molecular ultrathin film optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Setrajcic, Jovan P [Department of Physics, Faculty of Sciences, University of Novi Sad, Vojvodina (Serbia); Ilic, Dusan I; Markoski, Branko [Faculty of Technical Sciences, University of Novi Sad, Vojvodina (Serbia); Setrajcic, Ana J; Vucenovic, Sinisa M [Faculty of Medicine-Pharmacy, University of Novi Sad, Vojvodina (Serbia); Mirjanic, Dragoljub Lj [Faculty of Medicine, University of Banja Luka, Republic of Srpska (Bosnia and Herzegowina); Skipina, Blanka [Faculty of Technology, University of Banja Luka, Republic of Srpska (Bosnia and Herzegowina); Pelemis, Svetlana [Faculty of Technology Zvornik, University of East Sarajevo, Republic of Srpska (Bosnia and Herzegowina)], E-mail: idilic@EUnet.yu

    2009-07-15

    Interest in the study of the exciton subsystem in crystalline structures (in this case nanostructures, i.e. thin films) occurred because dielectric, optical, photoelectric and other properties of materials can be explained by means of it. The basic question to be solved concerning theoretical research into the spatially strongly bounded structures is the inability to apply the standard mathematical tools: differential equations and Fourier analysis. In this paper, it is shown how the Green function method can also be efficiently applied to crystalline samples so constrained that quantum size effects play a significant role on them. For the purpose of exemplification of this method's application, we shall consider a molecular crystal of simple cubic structure: spatially unbounded (bulk) and strongly bounded alongside one direction (ultrathin film)

  12. Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Caterine Daza Gomez

    2015-08-01

    Full Text Available The effect of synthesis conditions and niobium incorporation levels on the photocatalytic properties of Nb/MCM-41 molecular sieves was assessed. Niobium pentoxide supported on MCM-41 mesoporous silica was obtained using two methods: sol-gel and incipient impregnation, in each case also varying the percentage of niobium incorporation. The synthesized Nb-MCM-41 ceramic powders were characterized using the spectroscopic techniques of infrared spectroscopy (IR, Raman spectroscopy, X-ray diffraction (XRD, and transmission electron microscopy (TEM. The photodegradation capacity of the powders was studied using the organic molecule, methylene blue. The effect of both the method of synthesis and the percentage of niobium present in the sample on the photodegradation action of the solids was determined. The mesoporous Nb-MCM-41 that produced the greatest photodegradation response was obtained using the sol-gel method and 20% niobium incorporation.

  13. Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy

    Science.gov (United States)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Chou, W. C.; Shen, J. L.

    2017-02-01

    The optical properties of MgxZn1-xO films with x=0.03, 0.06, 0.08, and 0.11 grown by molecular beam epitaxy (MBE) have been studied by temperature-dependent photoluminescence (PL) measurement. It is presented that the full-width at half-maximum (FWHM) of the 12 K PL spectrum of MgZnO films increases with increasing Mg concentration and would deviate significantly from the simulation curve of Schubert model with higher Mg contents. The abnormal broader PL FWHM is inferred from larger compositional fluctuation by incorporating higher Mg contents, which results in larger effect of excitonic localization to induce more significant S-shaped behavior of the PL peak energy with temperature dependence. Additionally, the degree of localization increases as the linear proportion of the PL FWHM, indicating that the excitonic behavior in MgZnO films belong to the strong localization effect.

  14. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.).

    Science.gov (United States)

    López-Molina, Dorotea; Navarro-Martínez, María Dolores; Rojas Melgarejo, Francisco; Hiner, Alexander N P; Chazarra, Soledad; Rodríguez-López, José Neptuno

    2005-06-01

    A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.

  15. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Directory of Open Access Journals (Sweden)

    Wuwei Feng

    2015-11-01

    Full Text Available We have re-investigated growth and magnetic properties of Cr2CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr2CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr2CoGa Heusler phase, rather than Co2CrGa phase, constitutes the majority of the sample grown on GaAs(001 at 450 oC. The measured small spin moment of Cr2CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr2CoGa and the existence of the disorders and phase separation.

  16. Study of electrical properties of single GaN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Mozharov, A. M.; Komissarenko, F. E.; Vasiliev, A. A.; Bolshakov, A. D.; Moiseev, E. I.; Mukhin, M. S.; Cirlin, G. E.; Mukhin, I. S.

    2016-08-01

    Electrical properties of single GaN nanowires grown by means of molecular beam epitaxy with N-plasma source were studied. Ohmic contacts connected to single n-type GaN wires were produced by the combination of electron beam lithography, metal vacuum evaporation and rapid thermal annealing technique. The optimal annealing temperature to produce ohmic contacts implemented in the form of Ti/Al/Ti/Au stack has been determined. By means of 2-terminal measurement wiring diagram the conductivity of single NW has been obtained for NWs with different growth parameters. The method of MESFET measurement circuit layout of single GaN nanowires (NWs) has been developed. In accordance with performed numerical calculation, free carriers' concentration and mobility of single NWs could be independently estimated using MESFET structure.

  17. Rheological properties of salt-tolerant HPAM solutions with ultrahigh molecular weight

    Institute of Scientific and Technical Information of China (English)

    张敏革; 张吕鸿; 姜斌; 李鑫钢

    2008-01-01

    The rheological properties of salt-tolerant partially hydrolyzed polyacrylamide(HPAM)solutions with molecular of 2.5×107 g/mol at different concentrations were measured in steady-state shear flow mode by Haake Rheostress 150 rheometer.Three constitutive equations(Oldroyd four constant model,Guesekus model and FENE-P model) were used for describing the apparent viscosity and first normal stress difference.The apparent viscosity of salt-tolerant HPAM solutions appears a first Newtonian zone when the shear rate is approximately lower than 0.2 s-1.At high shear rate,the HPAM solutions show shear-thinning and elasticity.The results show that the FENE-P model has the best agreement between theoretical and experimental data within the available shear rate range.The material parameters are useful for numerical analysis of polymer solution flow fields.

  18. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    CERN Document Server

    Thomas, Robert E; Overy, Catherine; Knowles, Peter J; Alavi, Ali; Booth, George H

    2015-01-01

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, "replica" ensemble of walkers, whose population evolves in imaginary time independently from the first, and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality, and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where suf...

  19. Polar Vector Property of the Stationary State of Condensed Molecular Matter

    Directory of Open Access Journals (Sweden)

    Jürg Hulliger

    2014-10-01

    Full Text Available Crystalline phases undergoing 180\\(^{\\circ}\\ orientational disorder of dipolar entities in the seed or at growing (hkl faces will show a polar vector property described by \\(\\infty\\ /mm symmetry. Seeds and crystals develop a bi-polar state (\\(\\infty\\/mm, where domains related by a mirror plane m allow for a \\(\\infty\\ m symmetry in each domain. The polarity of domains is due to energetic favorable interactions at the object-to-nutrient interface. Such interactions are well reproduced by an Ising Hamiltonian. Two-dimensional Monte Carlo simulations performed for real molecules with full long-range interactions allow us to calculate the spatial distribution of the electrical polarization Pel. The investigation has been extended to liquid droplets made of dipolar entities by molecular dynamics simulations. We demonstrate the development of an m\\(\\bar{\\infty}\\   quasi bi-polar state leading to a charged surface.

  20. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita

    2010-10-06

    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  1. Relationship between Electric Spark Sensitivity of Cyclic Nitramines and Their Molecular Electronic Properties

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian-Ling; ZHI Chun-Yan; ZHAO Feng; FENG Shi-Quan; CHENG Xin-Lu

    2012-01-01

    On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken charges of nitro group, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen; the other contains the lowest unoccupied molecular orbital energy, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen. Using these two types of formulas, we calculate the electric spark sensitivity of these 14 cyclic nitramine molecules, and compare them with the experimental data and previous theoretical values. And our investigations show that the former type of formula is better than the latter on predicting the electric spark sensitivity for cyclic nitramine molecules.

  2. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.;

    2014-01-01

    of mean force (PMF) allowed us to dissect the elastic contribution. With this information, we calculated an effective linear spring constant of 44 +/- 4 kJ.nm-2.mol-1 for the DOPC membrane, in agreement with experimental estimates. The membrane deformation profile was determined independently during...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...... derived from the data is shown to match the solvation energy estimated from critical micelle formation constants. This methodology can be used to determine how changes in lipid composition or the presence of membrane modifiers can affect the elastic properties of a membrane at a local level....

  3. Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration.

    Science.gov (United States)

    Chen, Yuting; Wan, Liang; Zhang, Daopeng; Bian, Yongzhong; Jiang, Jianzhuang

    2011-06-01

    A series of six Bodipy derivatives, namely 4,4-difluoro-8-(4-amidophenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (1), 4,4-difluoro-8-(4-methylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (2), 4,4-difluoro-8-(4-nitrylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (3), 4,4-difluoro-8-(4-amidophenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,4-difluoro-8-(4-methylphenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (5), and 4,4-difluoro-8-(4-nitrylphenyl)-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (6) were structurally characterized by single crystal X-ray diffraction analysis. Two methyl substituents attached at C-1 and C-7 positions of boron-dipyrromethene (Bodipy) moiety in compounds 1-3 were revealed to prevent the free rotation of the benzene moiety, resulting in a molecular configuration with an almost orthogonal dihedral angle between the Bodipy and benzene moieties with the dihedral angle in the range of 81.14-88.56°. This is obviously different from that for 4-6 with a free-rotating benzene moiety relative to the Bodipy core due to the lack of two methyl substituents in the latter series of compounds, leading to an enhanced interaction between the Bodipy and benzene moieties for 4-6 in comparison with 1-3. The resulting larger HOMO-LUMO gap for 1-3 than 4-6 results in a blue-shifted absorption band for 1-3 relative to that for 4-6. Comparative studies over their fluorescence properties also disclose the blue-shifted fluorescence emission band and corresponding higher fluorescence quantum yield for 1-3 relative to those of 4-6, revealing the effect of molecular configuration on the spectroscopic properties of Bodipy derivatives. Comparison of the redox behaviors of these two series of Bodipy compounds provides additional support for this point. In addition, the electron-donating/withdrawing property of the para substituent of the benzene moiety was shown to exhibit a slight influence on the electronic absorption and

  4. Dirty H2 Molecular Clusters as the DIB Sources: Spectroscopic and Physical Properties

    Science.gov (United States)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K.

    2014-02-01

    We propose that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion (``seed''), embedded in a single-layer shell of H2 molecules (Bernstein et al. 2013). Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as CHCs (Contaminated H2 Clusters). CHC spectroscopy matches the diversity of observed DIB spectral profiles, and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~cm-sized, dirty H2 ice balls, called CHIMPs (Contaminated H2 Ice Macro-Particles), formed in cold, dense, Giant Molecular Clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain cm-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. Thus, CHCs offer a natural explanation to the anomalous microwave emission (AME) feature in the ~10-100 GHz spectral region.

  5. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    Science.gov (United States)

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  6. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    Energy Technology Data Exchange (ETDEWEB)

    García, Mario A., E-mail: marioifal@gmail.com [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Pérez, Liliam [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Paz, Nilia de la [Drugs Research and Development Center, Ave. 26 No. 1605, Havana (Cuba); González, Juan [Food Industry Research Institute, Carretera al Guatao km 3 1/2, Havana, CP 19200 (Cuba); Rapado, Manuel [Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana (Cuba); Casariego, Alicia [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba)

    2015-10-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with {sup 60}Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a {sup 60}Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm{sup 2} and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by {sup 60}Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction.

  7. Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage.

    Science.gov (United States)

    Kim, Sun Young; Jung, Young Jun; Shin, Mi Rim; Park, Jung Hoon; Nawkar, Ganesh M; Maibam, Punyakishore; Lee, Eun Seon; Kim, Kang-San; Paeng, Seol Ki; Kim, Woe Yeon; Lee, Kyun Oh; Yun, Dae-Jin; Kang, Chang Ho; Lee, Sang Yeol

    2012-01-01

    Peroxiredoxins (Prxs), which are classified into three isotypes in plants, play important roles in protection systems as peroxidases or molecular chaperones. The three Prx isotypes of Chinese cabbage, namely C1C-Prx, C2C-Prx, and C-PrxII, have recently been identified and characterized. The present study compares their molecular properties and biochemical functions to gain insights into their concerted roles in plants. The three Prx isotype genes were differentially expressed in tissue- and developmental stage-specific manners. The transcript level of the C1C-Prx gene was abundant at the seed stage, but rapidly decreased after imbibitions. In contrast, the C2C-Prx transcript was not detected in the seeds, but its expression level increased at germination and was maintained thereafter. The C-PrxII transcript level was mild at the seed stage, rapidly increased for 10 days after imbibitions, and gradually disappeared thereafter. In the localization analysis using GFP-fusion proteins, the three isotypes showed different cellular distributions. C1C-Prx was localized in the cytosol and nucleus, whereas C2C-Prx and C-Prx were found mainly in the chloroplast and cytosol, respectively. In vitro thiol-dependent antioxidant assays revealed that the relative peroxidase activities of the isotypes were CPrxII > C2C-Prx > C1C-Prx. C1C-Prx and C2C-Prx, but not C-PrxII, prevented aggregation of malate dehydrogenase as a molecular chaperone. Taken together, these results suggest that the three isotypes of Prx play specific roles in the cells in timely and spatially different manners, but they also cooperate with each other to protect the plant.

  8. Molecular Properties of Kiss1 Neurons in the Arcuate Nucleus of the Mouse

    Science.gov (United States)

    Gottsch, Michelle L.; Popa, Simina M.; Lawhorn, Janessa K.; Qiu, Jian; Tonsfeldt, Karen J.; Bosch, Martha A.; Kelly, Martin J.; Rønnekleiv, Oline K.; Sanz, Elisenda; McKnight, G. Stanley; Clifton, Donald K.; Palmiter, Richard D.

    2011-01-01

    Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein. The pattern of GFP expression in the brain of the knockin recapitulates what has been described earlier for Kiss1 in the male and female mouse, with prominent expression in the arcuate nucleus (ARC) (in both sexes) and the anteroventral periventricular nucleus (in females). Single-cell RT-PCR showed that the Kiss1 transcript is expressed in 100% of GFP-labeled cells, and the CreGFP transcript was regulated by estradiol in the same manner as the Kiss1 gene (i.e. inhibited in the ARC and induced in the anteroventral periventricular nucleus). We used this mouse to evaluate the biophysical properties of kisspeptin (Kiss1) neurons in the ARC of the female mouse. GFP-expressing Kiss1 neurons were identified in hypothalamic slice preparations of the ARC and patch clamped. Whole-cell (and loose attached) recordings revealed that Kiss1 neurons exhibit spontaneous activity and expressed both h- (pacemaker) and T-type calcium currents, and hyperpolarization-activated cyclic nucleotide-regulated 1–4 and CaV3.1 channel subtypes (measured by single cell RT-PCR), respectively. N-methyl-D-aspartate induced bursting activity, characterized by depolarizing/hyperpolarizing oscillations. Therefore, Kiss1 neurons in the ARC share molecular and electrophysiological properties of other CNS pacemaker neurons. PMID:21933870

  9. Phase-transition properties of glycerol-dipalmitate lipid bilayers investigated using molecular dynamics simulation.

    Science.gov (United States)

    Laner, Monika; Hünenberger, Philippe H

    2015-06-01

    The phase- and phase-transition properties of glycerol-dipalmitate (GDP) bilayer patches are investigated using molecular dynamics simulations. This permits to characterize the influence of introducing a second aliphatic lipid tail by comparison to previously reported simulations of glycerol-1-monopalmitate (GMP). To this purpose, a set of 67 simulations (up to 300ns duration) of 2×8×8GDP bilayer patches are performed, considering the two GDP isomers glycerol-1,3-dipalmitate (13GDP) and glycerol-1,2-dipalmitate (12GDP; racemic), two hydration levels (12GDP only), and temperatures in the range 250-370K. In agreement with experiment, the GDP simulations reveal an increase in the main transition temperature by about 25K relative to GMP, and the occurrence of non-bilayer phases at high temperatures (inverted-cylinder or stacked phases). Structurally, the GDP system tends to evidence a tighter packing of the chains, a reduced extent of tilting, increased order parameters and a reduced fluidity. These differences are easily interpreted in terms of two key changes in molecular properties when going from GMP to GDP: (i) the reduction of the headgroup polarity and hydration (from two free hydroxyl groups to a single one); (ii) the increase in the effective tail cross-section relative to the (hydrated) headgroup cross-section, conferring to GDP a particular wedge shape. These two effects contribute to the relative instability of the liquid-crystalline phase, the stability being recovered in nature when the diglyceride headgroup is functionalized by a bulky or/and polar substituent.

  10. Exotic optoelectronic properties of organic semiconductors with super-controlled nanoscale sizes and molecular shapes.

    Science.gov (United States)

    Hotta, Shu; Yamao, Takeshi; Katagiri, Toshifumi

    2014-03-01

    We present several aspects of thiophene/phenylene co-oligomers (TPCOs). TPCOs are regarded as a newly occurring class of organic semiconductors. These materials are synthesized by hybridizing thiophene and phenylene rings at the molecular level with their various mutual arrangements. These materials are characterized by the super-controlled nanoscale sizes and molecular shapes. These produce peculiar crystallographic structures and high-performance optical and electronic properties. The crystals of TPCOs were obtained through both vapor phase and liquid phase. In the TPCO crystals, the molecules take upright configuration. These cause large carrier mobilities of field-effect transistors and laser oscillations under optical excitations. Spectrally-narrowed emissions (SNEs) were also achieved under weak optical excitation using a mercury lamp. The light-emitting field-effect transistors using these crystals for an active layer have shown the current-injected SNEs when the device was combined with an optical cavity and operated by an alternating-current gate-voltage method. Thus the TPCO materials will play an important role in the future in the fields of nanoscale technology and organic semiconductor materials as well as their optoelectronic device applications.

  11. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2011-07-28

    The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing.

  12. Scaling Model of Low-Temperature Transport Properties for Molecular and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Vitaly B. Rogankov

    2015-01-01

    Full Text Available The universal scaling concept is applied to the low-temperature range of any liquid states and substances located between the melting (Tm and normal boiling (Tb points far away from the critical region. The physical reason to develop such approach is the revealed collapse of all low-temperature isotherms onto the single universal one argued by the model of fluctuational thermodynamics (FT proposed recently by author. The pressure reduced by the molecular parameters of the effective short-range Lennard-Jones (LJ potential depends here only on the reduced density. To demonstrate the extraordinary predictive abilities of the developed low-temperature scaling model it has been applied to the prediction of equilibrium and transport (kinetic and dynamic viscosity, self-diffusion, and thermal conductivity properties not only for molecular liquids but also for molten organic salts termed ionic liquids (ILs. The best argument in favor of the proposed methodology is the appropriate consistency with the scarce experiments prediction of transport coefficients for ILs on the base of universal scaling function constructed for the simplest LJ-like liquid argon. The only input data of any substance for prediction are the linear approximations of T-dependent density and isobaric heat capacity taken from the standard measurements at atmospheric pressure.

  13. Cold and warm atomic gas around the Perseus molecular cloud I: Basic Properties

    CERN Document Server

    Stanimirovic, Snezana; Lee, Min-Young; Heiles, Carl; Miller, Jesse

    2014-01-01

    (Abridged) Using the Arecibo Observatory we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases allowing us to estimate spin temperature (T_s) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual HI clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium, CNM and WNM) in and around Perseus are very similar to those found for random interstellar lines of sight sampled by the Millennium HI survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have on average a higher total HI column density and the CNM fraction, suggesting an enhanced amount of cold HI relative to an average interstellar field. Our estimated optical depth and spin temper...

  14. Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites

    Science.gov (United States)

    Srivastava, Ashish Kumar; Mokhalingam, A.; Singh, Akhileshwar; Kumar, Dinesh

    2016-05-01

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young's modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young's modulus of the Al matrix up to 77 % as compared to pure Al.

  15. Tetrahedra system Cu4OCl6daca4 : High-temperature manifold of molecular configurations governing low-temperature properties

    Science.gov (United States)

    Zaharko, O.; Mesot, J.; Salguero, L. A.; Valentí, R.; Zbiri, M.; Johnson, M.; Filinchuk, Y.; Klemke, B.; Kiefer, K.; Mys'Kiv, M.; Strässle, Th.; Mutka, H.

    2008-06-01

    The Cu4OCl6daca4 system composed of isolated Cu2+S=1/2 tetrahedra with antiferromagnetic exchange should exhibit the properties of a frustrated quantum spin system. Ab initio density functional theory calculations for electronic structure and molecular dynamics computations suggest a complex interplay between magnetic exchange, electron delocalization, and molecular vibrations. Yet, extensive experimental characterization of Cu4OCl6daca4 by means of synchrotron x-ray diffraction, magnetization, specific heat, and inelastic neutron scattering reveal that properties of the real material can be only partly explained by proposed theoretical models as the low-temperature properties seem to be governed by a manifold of molecular configurations coexisting at high temperatures.

  16. The Development and Study of Molecular Electronic Switches and their Field-Effect Transistor (FET) Device Properties

    Science.gov (United States)

    2015-02-27

    reviewed journals: Final Report: The Development and Study of Molecular Electronic Switches and their Field -Effect Transistor (FET) Device Properties...fabrication of nanostructures can serve as building blocks for molecular switching devices, organic light-emitting diodes (OLEDs), photovoltaic, field ...arrays, and photovoltaic cells. We are currently synthesizing the iodo-substituted perylene diimide (6) that will be cross -coupled to the above switch

  17. Higher-order molecular properties and excitation energies in single-reference and multireference coupled-cluster theory

    OpenAIRE

    Jagau, Thomas-Christian

    2012-01-01

    Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable...

  18. A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties.

    Science.gov (United States)

    Fu, Chia-Chun; Kulkarni, Pandurang M; Shell, M Scott; Leal, L Gary

    2012-10-28

    Coarse-graining (CG) techniques have recently attracted great interest for providing descriptions at a mesoscopic level of resolution that preserve fluid thermodynamic and transport behaviors with a reduced number of degrees of freedom and hence less computational effort. One fundamental question arises: how well and to what extent can a "bottom-up" developed mesoscale model recover the physical properties of a molecular scale system? To answer this question, we explore systematically the properties of a CG model that is developed to represent an intermediate mesoscale model between the atomistic and continuum scales. This CG model aims to reduce the computational cost relative to a full atomistic simulation, and we assess to what extent it is possible to preserve both the thermodynamic and transport properties of an underlying reference all-atom Lennard-Jones (LJ) system. In this paper, only the thermodynamic properties are considered in detail. The transport properties will be examined in subsequent work. To coarse-grain, we first use the iterative Boltzmann inversion (IBI) to determine a CG potential for a (1-φ)N mesoscale particle system, where φ is the degree of coarse-graining, so as to reproduce the radial distribution function (RDF) of an N atomic particle system. Even though the uniqueness theorem guarantees a one to one relationship between the RDF and an effective pairwise potential, we find that RDFs are insensitive to the long-range part of the IBI-determined potentials, which provides some significant flexibility in further matching other properties. We then propose a reformulation of IBI as a robust minimization procedure that enables simultaneous matching of the RDF and the fluid pressure. We find that this new method mainly changes the attractive tail region of the CG potentials, and it improves the isothermal compressibility relative to pure IBI. We also find that there are optimal interaction cutoff lengths for the CG system, as a function of

  19. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    Science.gov (United States)

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  20. [Comparative Study on the Molecular Structures and Spectral Properties of Ponceau 4R and Amaranth].

    Science.gov (United States)

    Zhang, Yong; Chen, Guo-qing; Zhu, Chun; Hu, Yang-jun

    2015-11-01

    The Edinburgh FLS920P steady-instantaneous fluorescence spectrometer was applied on the detection of the absorption and the emission spectra of ponceau 4R and amaranth, which are isomers to each other. After that, the spectral parameters of them were compared. Then, the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) were used on the optimization of ponceau 4R and amaranth under the ground and excited state, respectively, in order to compare the differences in configurations of them under different states. On the base of the results above, the absorption and emission spectra of the two isomers were calculated with TD-DFT, and the polarized continuum model (PCM) was applied on the base of 6-311++G (d, p). The fluorescence mechanism, the relationships between the properties of fluorescence spectra and the molecular geometry were all analyzed. The results shows that, the structures of the two molecules are non-planar, these two naphthalene rings are not co-planar, respectively, and there's hydrogen bond in amaranth. When the two isomers were on the ground state, the planarity of the naphthalene ring which exists the hydrogen bond mentioned above in amaranth is better than the corresponding part of ponceau 4R. The two isomers are nearly co-planar when they're on the excited state. The molecular structures of ponceau 4R and amaranth optimized above are basically reasonable, for the quantum chemistry calculation spectral results are agree with the experiments. The planarity of the naphthalene rings on the right side in ponceau 4R is worse than that in amaranth, the ponceau 4R molecule experienced more vibration and rotation from the excited to the ground state, lost more energy, which lead to the reduction of energy for emitting fluorescent photons. So ponceau 4R has longer fluorescence emission wave- length than amaranth. In this paper, the molecular structure information of ponceau 4R and amaranth were obtained, and the differences

  1. Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties

    Directory of Open Access Journals (Sweden)

    B. Arab

    2013-03-01

    Full Text Available In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA as resin and diethylenetriamine (DETA as curing agent. Calculation of the properties was performed using the constant-strain (static approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the results and also with experimental observations were made to find the most suitable force field for molecular dynamics simulation of polymer materials.

  2. The Texas Adoption Project: adopted children and their intellectual resemblance to biological and adoptive parents.

    Science.gov (United States)

    Horn, J M

    1983-04-01

    Intelligence test scores were obtained from parents and children in 300 adoptive families and compared with similar measures available for the biological mothers of the same adopted children. Results supported the hypothesis that genetic variability is an important influence in the development of individual differences for intelligence. The most salient finding was that adopted children resemble their biological mothers more than they resemble the adoptive parents who reared them from birth. A small subset of the oldest adopted children did not resemble their biological mothers. The suggestion that the influence of genes declines with age is treated with caution since other adoption studies report a trend in the opposite direction.

  3. Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water.

    Science.gov (United States)

    Comez, L; Paolantoni, M; Sassi, P; Corezzi, S; Morresi, A; Fioretto, D

    2016-07-07

    When a solute is dissolved in water, their mutual interactions determine the molecular properties of the solute on one hand, and the structure and dynamics of the surrounding water particles (the so-called hydration water) on the other. The very existence of soft matter and its peculiar properties are largely due to the wide variety of possible water-solute interactions. In this context, water is not an inert medium but rather an active component, and hydration water plays a crucial role in determining the structure, stability, dynamics, and function of matter. This review focuses on the collective dynamics of hydration water in terms of retardation with respect to the bulk, and of the number of molecules whose dynamics is perturbed. Since water environments are in a dynamic equilibrium, with molecules continuously exchanging from around the solute towards the bulk and vice versa, we examine the ability of different techniques to measure the water dynamics on the basis of the explored time scales and exchange rates. Special emphasis is given to the collective dynamics probed by extended depolarized light scattering and we discuss whether and to what extent the results obtained in aqueous solutions of small molecules can be extrapolated to the case of large biomacromolecules. In fact, recent experiments performed on solutions of increasing complexity clearly indicate that a reductionist approach is not adequate to describe their collective dynamics. We conclude this review by presenting current ideas that are being developed to describe the dynamics of water interacting with macromolecules.

  4. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    Science.gov (United States)

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  5. Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.

    Science.gov (United States)

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2014-01-01

    Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.

  6. Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Salt Mixtures

    Science.gov (United States)

    Baty, Austin; McIntyre, Peter; Sattarov, Akhdiyor; Sooby, Elizabeth

    2012-10-01

    The Accelerator Research Laboratory at Texas A&M is proposing a revolutionary design for accelerator-driven subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in spent nuclear fuel. The transuranics are the most enduring hazard of nuclear power, since they contain high radiotoxicity and have half-lives of a thousand to a million years. The ADSMS core is fueled by a homogeneous chloride-based molten salt mixture containing the chlorides of the transuranics and NaCl. Knowledge of the density, heat capacity, thermal conductivity, etc. of the salt mixtures is needed to accurately model the complex ADSMS system. There is a lack of experimental data on the density and transport properties of such mixtures. Molecular dynamics simulations using polarizable ion potentials are used to determine the density and heat capacity of these melts as a function of temperature. Green-Kubo methods are employed to calculate the electrical conductivity, thermal conductivity, and viscosity of the salt using the outputs of the model. Results for pure molten salt systems are compared to experimental data when possible to validate the potentials used. Here we discuss potential salt systems, their neutronic behavior, and the calculated transport properties.

  7. Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells.

    Directory of Open Access Journals (Sweden)

    Luciana Bruno

    Full Text Available The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ∼ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.

  8. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  9. Translocation Properties of Primitive Molecular Machines and Their Relevance to the Structure of the Genetic Code

    CERN Document Server

    Aldana, M; Larralde, H; Martínez-Mekler, G; Aldana, Maximino; Cocho, Germinal; Larralde, Hernan; Martinez-Mekler, Gustavo

    2002-01-01

    We address the question, related with the origin of the genetic code, of why are there three bases per codon in the translation to protein process. As a followup to our previous work, we approach this problem by considering the translocation properties of primitive molecular machines, which capture basic features of ribosomal/messenger RNA interactions, while operating under prebiotic conditions. Our model consists of a short one-dimensional chain of charged particles(rRNA antecedent) interacting with a polymer (mRNA antecedent) via electrostatic forces. The chain is subject to external forcing that causes it to move along the polymer which is fixed in a quasi one dimensional geometry. Our numerical and analytic studies of statistical properties of random chain/polymer potentials suggest that, under very general conditions, a dynamics is attained in which the chain moves along the polymer in steps of three monomers. By adjusting the model in order to consider present day genetic sequences, we show that the ab...

  10. Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation

    Science.gov (United States)

    Wan, Wu-Bing; Lv, Hong-Hong; Merlitz, Holger; Wu, Chen-Xu

    2016-10-01

    By defining a topological constraint value (rn), the static and dynamic properties of a polymer brush composed of moderate or short chains with different topological ring structures are studied using molecular dynamics simulation, and a comparison with those of linear polymer brush is also made. For the center-of-mass height of the ring polymer brush scaled by chain length h ˜ N ν , there is no significant difference of exponent from that of a linear brush in the small topological constraint regime. However, as the topological constraint becomes stronger, one obtains a smaller exponent. It is found that there exists a master scaling power law of the total stretching energy scaled by chain length N for moderate chain length regime, F ene ˜ Nρ ν , for ring polymer brushes, but with a larger exponent ν than 5/6, indicating an influence of topological constraint to the dynamic properties of the system. A topological invariant of free energy scaled by 5/4 is found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374243 and 11574256).

  11. Elastic Properties of CaSiO3 Perovskite from ab initio Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Shigeaki Ono

    2013-10-01

    Full Text Available Ab initio molecular dynamics simulations were performed to investigate the elasticity of cubic CaSiO3 perovskite at high pressure and temperature. All three independent elastic constants for cubic CaSiO3 perovskite, C11, C12, and C44, were calculated from the computation of stress generated by small strains. The elastic constants were used to estimate the moduli and seismic wave velocities at the high pressure and high temperature characteristic of the Earth’s interior. The dependence of temperature for sound wave velocities decreased as the pressure increased. There was little difference between the estimated compressional sound wave velocity (VP in cubic CaSiO3 perovskite and that in the Earth’s mantle, determined by seismological data. By contrast, a significant difference between the estimated shear sound wave velocity (VS and that in the Earth’s mantle was confirmed. The elastic properties of cubic CaSiO3 perovskite cannot explain the properties of the Earth’s lower mantle, indicating that the cubic CaSiO3 perovskite phase is a minor mineral in the Earth’s lower mantle.

  12. Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels.

    Science.gov (United States)

    Dudukovic, Nikola A; Zukoski, Charles F

    2014-04-22

    We explore the phase diagram and mechanical properties of molecular gels produced from mixing water with a dimethyl sulfoxide (DMSO) solution of the aromatic dipeptide derivative fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Highly soluble in DMSO, Fmoc-FF assembles into fibrous networks that form gels upon addition of water. At high water concentrations, rigid gels can be formed at Fmoc-FF concentrations as low as 0.01 wt %. The conditions are established defining the Fmoc-FF and water concentrations at which gels are formed. Below the gel boundary, the solutions are clear and colorless and have long-term stability. Above the gel boundary, gels are formed with increasing rapidity with increasing water or Fmoc-FF concentrations. A systematic characterization of the effect of Fmoc-FF and water concentrations on the mechanical properties of the gels is presented, demonstrating that the elastic behavior of the gels follows a specific, robust scaling with Fmoc-FF volume fraction. Furthermore, we characterize the kinetics of gelation and demonstrate that these gels are reversible in the sense that they can be disrupted mechanically and rebuild strength over time.

  13. POLYMER NETWORKS BY MOLECULAR DYNAMICS SIMULATION:FORMATION, THERMAL, STRUCTURAL AND MECHANICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Rong-liang Wu; Ting Li; Erik Nies

    2013-01-01

    A molecular dynamics simulation method is presented and used in the study of the formation of polymer networks.We study the formation of networks representing the methylene repeating units as united atoms.The network formation is accomplished by cross-linking polymer chains with dedicated functional end groups.The simulations reveal that during the cross-linking process,initially branched molecules are formed before the gel point; approaching the gel point,larger branched entities are formed through integration of smaller branched molecules,and at the gel point a network spanning the simulation box is obtained; beyond the gel point the network continues to grow through the addition of the remaining molecules of the sol phase onto the gel (the network); the final completion of the reaction occurs by intra-network connection of dangling ends onto unsaturated cross-linkers.The conformational properties of the strands in the undeformed network are found to be very similar with the conformational properties of the chains before cross-linking.The uniaxial deformation of the formed networks is investigated and the modulus determined from the stress-strain curves shows reciprocal scaling with the precursor chain length for networks formed from sufficiently large precursor chains (N≥ 20).

  14. Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.

    Science.gov (United States)

    Robalo, João R; Ramalho, J P Prates; Huster, Daniel; Loura, Luís M S

    2015-09-21

    Following a recent experimental investigation of the effect of the length of the alkyl side chain in a series of cholesterol analogues (Angew. Chem., Int. Ed., 2013, 52, 12848-12851), we report here an atomistic molecular dynamics characterization of the behaviour of methyl-branched side chain sterols (iso series) in POPC bilayers. The studied sterols included androstenol (i-C0-sterol) and cholesterol (i-C8-sterol), as well as four other derivatives (i-C5, i-C10, i-C12 and i-C14-sterol). For each sterol, both subtle local effects and more substantial differential alterations of membrane properties along the iso series were investigated. The location and orientation of the tetracyclic ring system is almost identical in all compounds. Among all the studied sterols, cholesterol is the sterol that presents the best matching with the hydrophobic length of POPC acyl chains, whereas longer-chained sterols interdigitate into the opposing membrane leaflet. In accordance with the experimental observations, a maximal ordering effect is observed for intermediate sterol chain length (i-C5, cholesterol, i-C10). Only for these sterols a preferential interaction with the saturated sn-1 chain of POPC (compared to the unsaturated sn-2 chain) was observed, but not for either shorter or longer-chained derivatives. This work highlights the importance of the sterol alkyl chain in the modulation of membrane properties and lateral organization in biological membranes.

  15. Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-01-21

    We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  16. Physical properties of CO-dark molecular gas traced by C+

    Science.gov (United States)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by f

  17. Adoption Resources for Black Children

    Science.gov (United States)

    Gallagher, Ursula M.

    1971-01-01

    The growing number of adoptions in this country, including racially mixed adoptions, attest to the general acceptance of adoption as a way of bringing love to children in need of families of their own and the satisfactions of parenthood to childless couples, single men and women, and families who have room for one more. (Author/AJ)

  18. Adoption Resource Directory: Region X.

    Science.gov (United States)

    1983

    State, regional, and national adoption resources are described in this directory for residents of Region X states (Alaska, Idaho, Oregon, and Washington). Emphasizing the adoption of children with special needs, the directory gives organizational contacts for parents in various stages of the adoption process and mentions resources for social…

  19. Effect of valence of lanthanide ion and molecular symmetry in polyoxotungstoborate on the molecular structure and spectrochemical properties

    Science.gov (United States)

    Iijima, Jun; Naruke, Haruo

    2017-01-01

    The compound K9(NH4)H[CeIV(α-BW11O39)(W5O18)]·16H2O (1) was successfully isolated and structurally characterized. The structural investigation revealed that 1 displayed a less molecular distortion, whereas Ln3+-analogs exhibited a large molecular distortion. IR spectroscopy demonstrated that the spectral patterns of 1 and Ce3+-analog were depending on each valence of Ce (IV/III). 11B-NMR spectroscopy showed that a decrease in site symmetry of B atom in the polyoxotungstoborate was related with an increase in a half width of NMR peak. There is a difference in molecular distortion between 1 and Ce3+-analog, but they have similar large half widths because of the same site symmetry of B atom. The 4f electron in Ce atom exhibited less effect on the chemical shift.

  20. Coordination compounds for molecular electronics: Synthesis, characterization and electronic transport properties of copper rotaxanes and molecular complexes

    OpenAIRE

    Ponce González, Julia

    2014-01-01

    Esta tesis se centra en el estudio de compuestos de coordinación de interés en el campo de la electrónica molecular. Este campo tiene como objetivo la utilización de unidades moleculares como componentes activos en circuitos electrónicos. Los dispositivos unimoleculares presentan cualidades únicas, inherentes a la nanoescala, que no poseen equivalencia en los componentes convencionales, actualmente basados en el silicio. Además, la síntesis de moléculas dispone de un altísimo grado de control...

  1. On the impact of the magnitude of Interstellar pressure on physical properties of Molecular Cloud

    Science.gov (United States)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2017-01-01

    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and in their star-forming ability have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs : (1) that MCs are Virialised, and (2) they obey the Larson's third law. Here we invoked the framework of cloud-formation via collision between warm gas-flows to examine if these latest observational inferences can be reconciled. To this end we traced the temporal evolution of the gas surface density, the fraction of dense gas, the distribution of gas column density (N-PDF), and the Virial nature of the assembled clouds. We conclude, these physical properties exhibit temporal variation and their respective peak-magnitude also increases in proportion with the magnitude of external pressure, Pext. The velocity dispersion in assembled clouds appears to follow the power-law, σ _{gas}∝ P_{ext}^{0.23}. The power-law tail at higher densities becomes shallower with increasing magnitude of external pressure for Pext/kB ≲ 107 K cm-3; at higher magnitudes such as those typically found in the Galactic CMZ (Pext/kB > 107 K cm-3), the power-law shows significant steepening. While our results are broadly consistent with inferences from various recent observational surveys, it appears, MCs do not exhibit a unique set of properties, but rather a wide variety that can be reconciled with a range of magnitudes of pressure between 104 K cm-3 - 108 K cm-3.

  2. Properties of Molecular Gas in Galaxies in Early and Mid Stage of the Interaction: I. Distribution of Molecular Gas

    CERN Document Server

    Kaneko, Hiroyuki; Iono, Daisuke; Tamura, Yoichi; Tosaki, Tomoka; Nakanishi, Koichiro; Sawada, Tsuyoshi

    2012-01-01

    We present the results of 12CO(J = 1-0) mapping observations toward four interacting galaxies in early and mid stages of the interaction to understand the behavior of molecular gas in galaxy-galaxy interaction. The observations were carried out using the 45-m telescope at Nobeyama Radio Observatory (NRO). We compared our CO total flux to those previously obtained with single-dish observations and found that there are no discrepancy between them. Applying a typical CO-H2 conversion factor, all constituent galaxies have molecular gas mass more than 10^9 M_sun. Comparisons to HI, Ks and tracers of SF such as Halpha, FUV, 8 um and 24 um revealed that the distribution of molecular gas in interacting galaxies in the early stage of the interaction differs from atomic gas, stars and star-forming regions. These differences are not explained without the result of the interaction. Central concentration of molecular gas of interacting galaxies in the early stage of the interaction is lower than that of isolated galaxies,...

  3. Intellectual resemblance among adoptive adoptive and biological relatives: the Texas adoption project.

    Science.gov (United States)

    Horn, J M; Loehlin, J C; Willerman, L

    1979-05-01

    Intellectual and personality measures were available from unwed mothers who gave their children up for adoption at birth. The same or similar measures have been obtained from 300 sets of adoptive parents and all of their adopted and natural children in the Texas Adoption Project. The sample characteristics are discussed in detail, and the basic findings for IQ are presented. Initial analyses of the data on IQ suggest moderate heritabilities. Emphasis is placed on the preliminary nature of these findings.

  4. Technology Adoption: an Interaction Perspective

    Science.gov (United States)

    Sitorus, Hotna M.; Govindaraju, Rajesri; Wiratmadja, I. I.; Sudirman, Iman

    2016-02-01

    The success of a new technology depends on how well it is accepted by its intended users. Many technologies face the problem of low adoption rate, despite the benefits. An understanding of what makes people accept or reject a new technology can help speed up the adoption rate. This paper presents a framework for technology adoption based on an interactive perspective, resulting from a literature study on technology adoption. In studying technology adoption, it is necessary to consider the interactions among elements involved in the system, for these interactions may generate new characteristics or new relationships. The interactions among elements in a system adoption have not received sufficient consideration in previous studies of technology adoption. Based on the proposed interaction perspective, technology adoption is elaborated by examining interactions among the individual (i.e. the user or prospective user), the technology, the task and the environment. The framework is formulated by adopting several theories, including Perceived Characteristics of Innovating, Diffusion of Innovation Theory, Technology Acceptance Model, Task-Technology Fit and usability theory. The proposed framework is illustrated in the context of mobile banking adoption. It is aimed to offer a better understanding of determinants of technology adoption in various contexts, including technology in manufacturing systems.

  5. Computational study on 3D structure of L-aspartic acid and L-glutamic acid: molecular descriptors and properties

    Directory of Open Access Journals (Sweden)

    Stefaniu Amalia

    2016-06-01

    Full Text Available The aim of this work is to provide a comprehensive and complex analysis of molecular descriptors and properties of two similar amino acids, L-Aspartic acid and L-Glutamic acid, using a software tool for calculations and properties predictions. As amino acids are model compounds for predicting the physical-chemical properties and behavior of biological, larger molecules as peptides or proteins, researches were focused on providing accurate mechanical calculations using: molecular/mechanical methods. Our study aims to initiate a linear scaling approach, by dividing a large system into small subsystems and performing the calculations for each, individually, then, embedding and correcting the information globally. The calculations were performed on the 3D structure of the studied amino acids that were first generated, as CPK model, and optimized by energy minimization. A comparative assay on their topological, molecular descriptors and properties was conducted, in vacuum and in water, using the Hartree-Fock model and second-order Møller-Plesset perturbation theory MP2 for predicting structure, energy and property calculations with Spartan’14 software. Values of molecular properties such as area, volume, polar surface area, polarizability, ovality, logP, dipole moment, HOMO-LUMO gap, distances and angles between atoms, were obtained. The results have been interpreted in terms of electronic effects of side chain groups, molecular deformability, steric factors and reactivity. This approach can be extended to other amino acids in order to predict protein-ligand interactions, important aspects in drug design studies and protein engineering.

  6. Molecular Cloning and Pharmacological Properties of an Acidic PLA2 from Bothrops pauloensis Snake Venom

    Directory of Open Access Journals (Sweden)

    Francis Barbosa Ferreira

    2013-12-01

    Full Text Available In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A2 (PLA2 isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA2-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA2-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF analysis and its theoretical isoelectric point was 4.98. BpPLA2-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA2-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II and Ovarian Carcinoma (OVCAR-3, whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast and Sarcoma 180 (TIB-66. The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA2s. The phylogenetic analyses showed that BpPLA2-TXI forms a group with other acidic D49 PLA2s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects.

  7. Molecular cloning and pharmacological properties of an acidic PLA2 from Bothrops pauloensis snake venom.

    Science.gov (United States)

    Ferreira, Francis Barbosa; Gomes, Mário Sérgio Rocha; de Souza, Dayane Lorena Naves; Gimenes, Sarah Natalie Cirilo; Castanheira, Letícia Eulalio; Borges, Márcia Helena; Rodrigues, Renata Santos; Yoneyama, Kelly Aparecida Geraldo; Brandeburgo, Maria Inês Homsi; Rodrigues, Veridiana M

    2013-12-04

    In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A(2) (PLA(2)) isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA(2)-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA(2)-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis and its theoretical isoelectric point was 4.98. BpPLA(2)-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA(2)-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II) and Ovarian Carcinoma (OVCAR-3), whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast) and Sarcoma 180 (TIB-66). The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA(2)s. The phylogenetic analyses showed that BpPLA(2)-TXI forms a group with other acidic D49 PLA(2)s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects.

  8. Molecular Design, Expression and Evaluation of PASylated Human Recombinant Erythropoietin with Enhanced Functional Properties.

    Science.gov (United States)

    Hedayati, Mohammad Hossein; Norouzian, Dariush; Aminian, Mahdi; Teimourian, Shahram; Ahangari Cohan, Reza; Sardari, Soroush; Khorramizadeh, M Reza

    2017-02-01

    Erythropoietin (EPO) is the principal hormone which, has somewhat short half-life involved in the differentiation and regulation of circulating red blood cells. The present study was carried out to evaluate the capability of a polyethylene glycol mimetic technology as a biological alternative to improve pharmaceutical properties of human recombinant EPO. In silico models of EPO fused to 200 amino acids of proline, alanine, and serine (PAS) were initially generated and assessed by molecular dynamic (MD) simulation. The fluctuations of the modeled structure reached a plateau after 6000 ps of MD simulation. The Phi and psi analysis showed >99.2% of residues were located in the allowed regions. An expression vector consisting of EPO cDNA tagged to PAS coding sequences was synthesized and expressed in CHO-K1 Cells. The produced PASylated molecule was purified and characterized by standard analytical methods. The molecular weight of fusion protein was expanded to 70 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis method. Analytical size exclusion chromatography revealed an approximately sevenfold increase in apparent size of produced protein. Although the in vitro potency of the fusion protein was significantly reduced (1.26 ± 0.05 vs. 0.24 ± 0.03 ng/ml) but, the in vivo activity was considerably increased up to 1.58 × 10(5) IU/ml in normocythemic mice assay. Pharmacokinetic animal studies revealed strongly 15.6-fold plasma half-life extension for the PASylated EPO (83.16 ± 13.28 h) in comparison to epoetin α (8.5 ± 2.4 h) and darbepoetin α (25.3 ± 2.2h).

  9. Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N-benzyl-2,2,2-trifluoroacetamide

    Science.gov (United States)

    Balachandran, C.; Kumar, P. Saravana; Arun, Y.; Duraipandiyan, V.; Sundaram, R. Lakshmi; Vijayakumar, A.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N. A.; Perumal, P. T.

    2015-02-01

    N-Benzyl-2,2,2-trifluoroacetamide was obtained by acylation of benzylamine with trifluoroacetic anhydride using Friedel-Crafts acylation method. The synthesised compound was confirmed by spectroscopic and crystallographic techniques. N-Benzyl-2,2,2 -trifluoroacetamide was assessed for its antimicrobial, antioxidant, cytotoxic and molecular docking properties. It showed good antifungal activity against tested fungi and moderate antibacterial activity. The minimum inhibitory concentration values of N-benzyl-2,2,2 -trifluoroacetamide against fungi were 15.62 μg/mL against A. flavus, 31.25 μg/mL against B. Cinerea and 62.5 μg/mL against T. mentagrophytes, Scopulariopsis sp., C. albicans and M. pachydermatis. N-Benzyl-2,2,2-trifluoroacetamide showed 78.97 ± 2.24 of antioxidant activity at 1,000 μg/mL. Cupric ion reducing antioxidant capacity of N-benzyl-2,2,2-trifluoroacetamide was dependent on the concentration. Ferric reducing antioxidant power assay of N-benzyl-2,2,2-trifluoroacetamide showed (1.352 ± 0.04 mM Fe(II)/g) twofold higher value compared to the standard. N-Benzyl-2,2,2-trifluoroacetamide showed 75.3 % cytotoxic activity at the dose of 200 μg/mL with IC50 (54.7 %) value of 100 μg/mL. N-Benzyl-2,2,2-trifluoroacetamide was subjected to molecular docking studies for the inhibition AmpC beta-lactamase, Glucosamine-6-Phosphate Synthase and lanosterol 14 alpha-demethylase (CYP51) enzymes which are targets for antibacterial and antifungal drugs. Docking studies of N-benzyl-2,2,2-trifluoroacetamide showed low docking energy. N-Benzyl-2,2,2-trifluoroacetamide can be evaluated further for drug development.

  10. Facile Determination of Molecular Structure Trends in Amphiphilic Core Corona Star Polymer Synthesis via Dielectric Property Measurement.

    Science.gov (United States)

    Hild, Frederic; Nguyen, Nam T; Deng, Eileen; Katrib, Juliano; Dimitrakis, Georgios; Lau, Phei-Li; Irvine, Derek J

    2016-08-01

    The use of dielectric property measurements to define specific trends in the molecular structures of poly(caprolactone) containing star polymers and/or the interbatch repeatability of the synthetic procedures used to generate them is demonstrated. The magnitude of the dielectric property value is shown to accurately reflect: (a) the number of functional groups within a series of materials with similar molecular size when no additional intermolecular order is present in the medium, (b) the polymer molecular size for a series of materials containing a fixed core material and so functional group number, and/or (c) the batch to batch repeatability of the synthesis method. The dielectric measurements are validated by comparison to spectroscopic/chromatographic data.

  11. Synthesis And Properties Of Functional Ultra-High Molecular Weight Transparent Styrene-Butadiene Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    GONG Guang-bi; ZHAO Xu-tao; WANG Gui-lun

    2004-01-01

    Functional ultra-high molecular weight transparent styrene-butadiene block copolymer possesses both high transparency and impact resistance and has excellent comprehensive properties prior to other transparent resins. In this paper we not only use anionic polymerization process which includes 1 time addition of initiator and 3 time addition of monomers, but also introduce functional coupling agent for the fist time to prepare mentioned functional block copolymer.The typical preparation process is described as the following: (a) Adding cyclohexane, styrene and initiator to the polymerizer, the polymerization is carried out at 50~75℃; (b) adding a mixture of styrene, butadiene and cyclohexane, the polymerization is carried out at 50~70℃ ;(c) adding a mixture of butadiene and cyclohexane, the polymerization is finished at 60~70℃ ;(d) adding coupling agent which is a substituted trimethoxysilane being expressed as N-silane, O-silane and being converted into a functional group (-NH, -OH) of mentioned block copolymer, coupling at 75~90℃ for 1 hr; (e) The amounts of coupling agent are about one sixth to one third of the initiator; (f) treating the prepared copolymer solution with some water and Carbon dioxide at 50~70℃ for 15 min.The copolymer is from three-arm to six-arm mono-modal radial block copolymer having 75~90%styrene, 10~25% butadiene and functional group of-NH or-OH. of the copolymer, Mw is from 30×104 to 120×104, Mw/Mn from 2.0 to 2.5, Izod notched impact strength 50~65 J/m,light transmission not less 87.5%, tensile strength not less 45 Mpa.The exploratory research shows that the mole ratio and feed rate of the random copolymerized styrene-butadiene, as well as the total ratio of styrene-butadiene have greater influence on the properties of the copolymer. The following model is established:Y=bo +∑3j=1 bjxj+∑3j=1bkjxkxj+∑3j=1bjjx2j (k<j)Where: Y is the light transmission, tensile strength, elongation, Izod notched impact

  12. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.

    Science.gov (United States)

    Burow, Asbjörn M; Bates, Jefferson E; Furche, Filipp; Eshuis, Henk

    2014-01-14

    The random phase approximation (RPA) is an increasingly popular method for computing molecular ground-state correlation energies within the adiabatic connection fluctuation-dissipation theorem framework of density functional theory. We present an efficient analytical implementation of first-order RPA molecular properties and nuclear forces using the resolution-of-the-identity (RI) approximation and imaginary frequency integration. The centerpiece of our approach is a variational RPA energy Lagrangian invariant under unitary transformations of occupied and virtual reference orbitals, respectively. Its construction requires the solution of a single coupled-perturbed Kohn-Sham equation independent of the number of perturbations. Energy gradients with respect to nuclear displacements and other first-order properties such as one-particle densities or dipole moments are obtained from partial derivatives of the Lagrangian. Our RPA energy gradient implementation exhibits the same [Formula: see text] scaling with system size N as a single-point RPA energy calculation. In typical applications, the cost for computing the entire gradient vector with respect to nuclear displacements is ∼5 times that of a single-point RPA energy calculation. Derivatives of the quadrature nodes and weights used for frequency integration are essential for RPA gradients with an accuracy consistent with RPA energies and can be included in our approach. The quality of RPA equilibrium structures is assessed by comparison to accurate theoretical and experimental data for covalent main group compounds, weakly bonded dimers, and transition metal complexes. RPA outperforms semilocal functionals as well as second-order Møller-Plesset (MP2) theory, which fails badly for the transition metal compounds. Dipole moments of polarizable molecules and weakly bound dimers show a similar trend. RPA harmonic vibrational frequencies are nearly of coupled cluster singles, doubles, and perturbative triples quality

  13. Highly efficient molecular simulation methods for evaluation of thermodynamic properties of crystalline phases

    Science.gov (United States)

    Moustafa, Sabry Gad Al-Hak Mohammad

    Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is

  14. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ye, E-mail: xw111luoye@gmail.com; Sorella, Sandro, E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), and CRS Democritos, CNR-INFM, Via Bonomea 265, I-34136 Trieste (Italy); Zen, Andrea, E-mail: zen.andrea.x@gmail.com [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  15. Simulation of material properties below the Debye temperature: A path-integral molecular dynamics case study of quartz

    Science.gov (United States)

    Müser, Martin H.

    2001-04-01

    Classical and path integral molecular dynamics (PIMD) simulations are used to study α and β quartz in a large range of temperatures at zero external stress. PIMD account for quantum fluctuations of atomic vibrations, which can modify material properties at temperatures below the Debye temperature. The difference between classical and quantum mechanical results for bond lengths, bond angles, elastic moduli, and some dynamical properties is calculated and comparison to experimental data is done. Only quantum mechanical simulations are able to reproduce the correct thermomechanical properties below room temperature. It is discussed in how far classical and PIMD simulations can be helpful in constructing improved potential energy surfaces for silica.

  16. Molecular dynamics investigation of structure and high-temperature mechanical properties of SiBCO ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ningbo, E-mail: lnb55@163.com; Xue, Wei, E-mail: weixuexw@163.com; Zhou, Hongming; Zhang, Miao

    2014-10-15

    Highlights: • The nano-domain structure of SiBCO is reproduced by large-scale atomistic simulations. • Calculated pair and angular distribution functions consist with experiments and DFT calculation. • Silicon atoms form mixed bonds tetrahedron with carbon and oxygen at domains interfaces. • Change in slope of temperature-dependent Young’s moduli indicates glass transition temperature. - Abstract: SiCO ceramics present excellent properties at high temperatures, the addition of boron for SiCO leads to enhanced performance on thermal stability and creep temperature. Investigating atomic structure and its influence on material property are essential for further study. In this study, large-scale molecular dynamics simulations were used to study amorphous SiBCO structures with different carbon contents. Phase separation and free carbon structures were successfully reproduced by melt-quench simulation. The calculated pair distribution functions of SiBCO are comparable to those of SiCO in experiments, the C–C–C angular distribution indicates strong sp{sup 2} carbon character together with a sp{sup 3} character. Si-centered tetrahedrons present in amorphous SiBCO and the most popular case is Si–C/O tetrahedron. Si{sub 3}BC{sub 7}O{sub 3} presents the largest Young’s modulus for all the temperatures due to the network structure of free carbon. A change in the slope of temperature-dependent Young’s moduli at 1300 K–1700 K for Si{sub 3}BC{sub 3}O{sub 3} indicates the glass transition temperature.

  17. Toward a QFT-based theory of atomic and molecular properties.

    Science.gov (United States)

    Aucar, Gustavo A

    2014-03-14

    The search for a QED-based (and then QFT-based) formalism that brings solid grounds to the whole area of relativistic quantum chemistry was just implicit in the first decades of the quantum theory. During the last few years it was shown that it is still unclear how to derive a well-defined N-electron relativistic Hamiltonian, and also the way negative-energy states may contribute to electron correlation. Furthermore, the relationship among electron correlation and radiative QED corrections is even more difficult to guess. These are few of the fundamental problems that need to be solved before such a program of research is finished within the wavefunction approach to quantum physics. The polarization propagator formalism was developed as an alternative approach to study atomic and molecular properties within both regimes, relativistic and nonrelativistic. In this article we expose how far away one can go today working with polarization propagators, until including QED (and afterwards QFT) effects. We will uncover its deepest formal origin, the path integral formalism, which explains why polarization propagators can be written formally the same in both regimes. This will also explain why the NR limit is obtained scaling the velocity of light to infinity. We shall introduce a few basic aspects of elementary propagators to show what they have in common with polarization propagators. Then we shall remark on the most important news that appears with the latter ones. Within the relativistic regime the contributions of negative energy orbitals to electron correlation are straightforwardly included. New insights on the relationship between spin and time-reversal operators are also given, together with an ansatz on how to consider both, QED and electron correlation effects on the same grounds. We focus here on the treatment of NMR spectroscopic parameters within such a formalism, that is still not broadly used by the quantum chemistry community. Most of the other response

  18. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    Science.gov (United States)

    Slone, Scott Michael; Li, Chen-Yu; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-05-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design.

  19. Molecular dynamics modelling of nanocarbon cluster properties under conditions close to HE detonation

    Directory of Open Access Journals (Sweden)

    Sapozhnikov F.A.

    2011-01-01

    Full Text Available We use molecular dynamics for modelling properties of carbon nanoclusters. The size of modelled carbon nanoclusters is below 5 nm, which is typical of detonation diamond nanoclusters. We have found their structural changes at P = 0 to be as follows: Diamond → Diamond core + GL-surface → sandwich-type graphite → Graphite-like liquid. In smaller clusters the transformations start at a lower temperature. Adaptive Template Analysis (ATA was used to determine the structures. We studied evaporation properties at temperatures above 5000 K. For clusters of several thousands of atoms, the simple dependence kvap ∼ e−T0/T/N1/3 (T0 is constant is quite good. It has been found out that densities of saturated vapour for clusters containing from 4000 to 8000 atoms are very close at T = 5000 K. The structure of nanoclusters was studied at nonzero pressures set by an argon environment. Calculated results suggest that the patterns for different temperatures are qualitatively similar for three pressures under study (20, 25 and 30 GPa. At T = 1000–1500 K, the initial diamond core is preserved and a thin disordered GL layer is present on the surface. At T = 2000–5000 K, graphite grains form in the sample and a thin layer of liquid is present on its surface. The sample is amorphous at 5500 K and 6000 K. The prevalence of the graphite phase at these pressures seems to come from the absence of long-range interaction in REBO-2002.

  20. Molecular physics

    CERN Document Server

    Williams, Dudley

    2013-01-01

    Methods of Experimental Physics, Volume 3: Molecular Physics focuses on molecular theory, spectroscopy, resonance, molecular beams, and electric and thermodynamic properties. The manuscript first considers the origins of molecular theory, molecular physics, and molecular spectroscopy, as well as microwave spectroscopy, electronic spectra, and Raman effect. The text then ponders on diffraction methods of molecular structure determination and resonance studies. Topics include techniques of electron, neutron, and x-ray diffraction and nuclear magnetic, nuclear quadropole, and electron spin reson

  1. Adopted youth and sleep difficulties

    Directory of Open Access Journals (Sweden)

    Radcliff Z

    2016-12-01

    Full Text Available Zach Radcliff, Allison Baylor, Bruce Rybarczyk Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA Abstract: Sleep is a critical component of healthy development for youth, with cascading effects on youth’s biological growth, psychological well-being, and overall functioning. Increased sleep difficulties are one of many disruptions that adopted youth may face throughout the adoption process. Sleep difficulties have been frequently cited as a major concern by adoptive parents and hypothesized in the literature as a problem that may affect multiple areas of development and functioning in adopted youth. However, there is limited research exploring this relationship. Using a biopsychosocial framework, this paper reviews the extant literature to explore the development, maintenance, and impact of sleep difficulties in adopted youth. Finally, implications for future research and clinical interventions are outlined. Keywords: adoption, sleep, youth

  2. The Bolocam Galactic Plane Survey. XIII. Physical Properties and Mass Functions of Dense Molecular Cloud Structures

    CERN Document Server

    Ellsworth-Bowers, Timothy P; Riley, Allyssa; Rosolowsky, Erik; Ginsburg, Adam; Evans, Neal J; Bally, John; Battersby, Cara; Shirley, Yancy L; Merello, Manuel

    2015-01-01

    We use the distance probability density function (DPDF) formalism of Ellsworth-Bowers et al. (2013, 2015) to derive physical properties for the collection of 1,710 Bolocam Galactic Plane Survey (BGPS) version 2 sources with well-constrained distance estimates. To account for Malmquist bias, we estimate that the present sample of BGPS sources is 90% complete above 400 $M_\\odot$ and 50% complete above 70 $M_\\odot$. The mass distributions for the entire sample and astrophysically motivated subsets are generally fitted well by a lognormal function, with approximately power-law distributions at high mass. Power-law behavior emerges more clearly when the sample population is narrowed in heliocentric distance (power-law index $\\alpha = 2.0\\pm0.1$ for sources nearer than 6.5 kpc and $\\alpha = 1.9\\pm0.1$ for objects between 2 kpc and 10 kpc). The high-mass power-law indices are generally $1.85 \\leq \\alpha \\leq 2.05$ for various subsamples of sources, intermediate between that of giant molecular clouds and the stellar ...

  3. Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da [Chung Yuan Christian University, Department of Mechanical Engineering, Taoyuan City (China)

    2016-04-15

    The effects of scratch depth, scratch speed, and alloy composition on the mechanical deformation and nanotribology properties of CuZr metallic glasses are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, slip vectors, friction force, normal force, and friction coefficient. The simulation results show that a few shear transformation zones independently develop at the contact area between the probe tip and the film. Pileup occurs in the nanoscratch process but not during nanoindentation at a depth of 2.4 nm. There are two areas on the surface where the atoms have high slip vector values during nanoscratching. These areas form due to the removal of atoms that piled up around the probe tip and those behind the probe tip, respectively. Both the friction force and the normal force increase with increasing scratch depth and scratch speed. Friction coefficients decrease with increasing scratch depth, scratch speed, and Zr content in films. (orig.)

  4. Properties of low-dimensional collective variables in the molecular dynamics of biopolymers

    Science.gov (United States)

    Meloni, Roberto; Camilloni, Carlo; Tiana, Guido

    2016-11-01

    The description of the dynamics of a complex, high-dimensional system in terms of a low-dimensional set of collective variables Y can be fruitful if the low-dimensional representation satisfies a Langevin equation with drift and diffusion coefficients that depend only on Y . We present a computational scheme to evaluate whether a given collective variable provides a faithful low-dimensional representation of the dynamics of a high-dimensional system. The scheme is based on the framework of a finite-difference Langevin equation, similar to that used for molecular-dynamics simulations. This allows one to calculate the drift and diffusion coefficients in any point of the full-dimensional system. The width of the distribution of drift and diffusion coefficients in an ensemble of microscopic points at the same value of Y indicates to what extent the dynamics of Y is described by a simple Langevin equation. Using a simple protein model, we show that collective variables often used to describe biopolymers display a non-negligible width both in the drift and in the diffusion coefficients. We also show that the associated effective force is compatible with the equilibrium free energy calculated from a microscopic sampling, but it results in markedly different dynamical properties.

  5. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: Insights from molecular dynamics simulationsa)

    Science.gov (United States)

    Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry

    2013-09-01

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  6. [Composition, physico-chemical properties and molecular superstructure of dietary fiber preparations of the cellan type].

    Science.gov (United States)

    Dongowski, G; Frigge, K; Zenke, I

    1995-07-01

    Dietary fiber preparations of "cellan" type were prepared from apples, white cabbage, sugar beet pulp, soy hulls and wheat bran by treatment with amylolytic and proteolytic enzymes as well as by chemical extractions. Scanning electron microscopic examinations show different morphological structures of the preparations and a high maintenance of native biomolecular superstructure. The content of pectin, protein, polysaccharide-hexoses and -pentoses and the composition of monosaccharides (also after their treatment with 4 or 8% sodium hydroxide) were determined. The cellans possess waterbinding capacities (WBC) between 25 g H2O/g and waterholding capacities between 50 g H2O/g. The WBC is related to the internal surface; it diminishes after treatment with NaOH. The interactions between the cellans and the adsorbed water were characterized by NMR-spin-lattice relaxation time T1. The molecular mobility increases as the water content grows. The T1-values of dried cellans decreased with increasing degree of moisture before drying. The supermolecular structure is comparatively disordered. Only in case of soy cellan a crystalline cellulose-I-modification could be identified by X-ray-diffraction pattern, esp. after NaOH treatment. The low degree of order of cellans was observed in the 13C-NMR spectra, too. Only the soy hull preparation resulted in a spectrum corresponding to well-ordered cellulose. The botanic source has an essential influence on the physico-chemical properties of dietary fiber preparations of cellan type.

  7. Theoretical study of nitrodibenzofurans: A possible relationship between molecular properties and mutagenic activity.

    Science.gov (United States)

    Stanković, B; Ostojić, B D; Popović, A; Gruden, M А; Đorđević, D S

    2016-11-15

    In this study we present a theoretical investigation of the molecular properties of nitrodibenzofurans (NDFs) and dinitrodibenzofurans (DNDFs) and their relation to mutagenic activity. Equilibrium geometries, relative energies, vertical ionization potentials (IP), vertical electron activities (EA), electronic dipole polarizabilities, and dipole moments of all NDFs and three DNDFs calculated by Density Functional Theory (DFT) methods are reported. The Ziegler/Rauk Energy Decomposition Analysis (EDA) is employed for a direct estimate of the variations of the orbital interaction and steric repulsion terms corresponding to the nitro group and the oxygen of the central ring of NDFs. The results indicate differences among NDF isomers for the cleavage of the related bonds and steric effects in the active site. The results show a good linear relationship between polarizability (), anisotropy of polarizability (Δα), the summation of IR intensities (ΣIIR) and the summation of Raman activities (ΣARaman) over all 3N-6 vibrational modes and experimental mutagenic activities of NDF isomers in Salmonella typhimurium TA98 strain. The polarizability changes with respect to the νsNO+CN vibrational mode are in correlation with the mutagenic activities of NDFs and suggest that intermolecular interactions are favoured along this coordinate.

  8. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  9. Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons.

    Science.gov (United States)

    Jain, Surendra Kumar; Pellenq, Roland J-M; Gubbins, Keith E; Peng, Xuan

    2017-03-07

    Realistic molecular models of silica-templated CMK-1, CMK-3, and CMK-5 carbon materials have been developed by using carbon rods and carbon pipes that were obtained by adsorbing carbon in a model MCM-41 pore. The interactions between the carbon atoms with the silica matrix were described using the PN-Traz potential, and the interaction between the carbon atoms was calculated by the reactive empirical bond order (REBO) potential. Carbon rods and pipes with different thicknesses were obtained by changing the silica-carbon interaction strength, the temperature, and the chemical potential of carbon vapor adsorption. These equilibrium structures were further used to obtain the atomic models of CMK-1, CMK-3, and CMK-5 materials using the same symmetry as found in TEM pictures. These models are further refined and made more realistic by adding interconnections between the carbon rods and carbon pipes. We calculated the geometric pore size distribution of the different models of CMK-5 and found that the presence of interconnections results in some new features in the pore size distribution. Argon adsorption properties were investigated using GCMC simulations to characterize these materials at 77 K. We found that the presence of interconnection results greatly improves the agreement with available experimental data by shifting the capillary condensation to lower pressures. Adding interconnections also induces smoother adsorption/condensation isotherms, and desorption/evaporation curves show a sharp jump. These features reflex the complexity of the nanovoids in CMKs in terms of their pore morphology and topology.

  10. Test of Variational Methods for Studying Molecular and Solid State Properties by Application to Sodium Atom

    Science.gov (United States)

    Das, T. P.; Pink, R. H.; Dubey, Archana; Scheicher, R. H.; Chow, Lee

    2011-03-01

    As part of our continuing test of accuracy of the variational methods, Variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) and Variational Density Functional Theory (VDFT) for study of energy and wave-function dependent properties in molecular and solid state systems we are studying the magnetic hyperfine interactions in the ground state of sodium atom for comparison by these methods with the available results from experiment 1 and the linked cluster many-body many body perturbation theory (LCMBPT) for atoms 2 , which has provided very accurate results for the one-electron and many-electron contributions and total hyperfine constants in atomic systems. Comparison will also be made with the corresponding results obtained already from the (VHFMBPT) and (VDFT) methods in lithium 3 to draw general conclusions about the nature of possible improvements needed for the variational methods. 1. M. Arditi and R. T. Carver, Phys. Rev. 109, 1012 (1958); 2. T. Lee, N.C. Dutta, and T.P. Das, Hyperfine Structure of Sodium, Phys. Rev. A 1, 995 (1970); 3. Third Joint HFI-NQI International Conference on Hyperfine Interactions, CERN, Geneva, September 2010.

  11. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole.

    Science.gov (United States)

    Sun, Binbin; Lian, Fei; Bao, Qiongli; Liu, Zhongqi; Song, Zhengguo; Zhu, Lingyan

    2016-07-01

    The interaction between biochar (BC) and antibiotics with the presence of low molecular weight organic acids (LMWOAs) is largely unknown, although it is crucial for understanding the role of BC in reducing the bioavailability of antibiotics in rhizosphere. The impacts of two typical LMWOAs (citric and malic acids) on sorption of sulfamethoxazole (SMX) by crop-straw BCs produced at 300 °C (BCs300) and 600 °C (BCs600), respectively, were examined. The sorption of SMX on BCs increased more than 5 times with the concentration of LMWOAs increasing from 0 to 100 mmol/L, which was mainly attributed to the elevated microporosity of BCs (measured by CO2) after treated by LMWOAs. The pore development of BCs was mainly derived from the release of dissolved organic residues from BC by LMWOA washing. For H2O2-oxidized BCs, however, LMWOAs had little effect on SMX sorption by BCs300 but greatly increased that by BCs600, which can be explained by the distinct sorption mechanisms of SMX on BCs300 and BCs600. These results indicate that the impact of LMWOAs on SMX sorption is highly dependent on the properties of BCs and LMWOAs, as well as their interaction mechanisms.

  12. Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties

    Directory of Open Access Journals (Sweden)

    A. Bhattacharyya

    2014-02-01

    Full Text Available Reduced graphene oxide or graphene was dispersed in ultra high molecular weight polyethylene (UHMWPE using two methods to prepare nanocomposite films. In pre-reduction method, graphite oxide (GO was exfoliated and dispersed in organic solvents and reduced to graphene before polymer was added, while reduction of graphene oxide was carried out after polymer addition for in situ reduction method. Raman spectroscopic study reveals that the second method results in better exfoliation of graphene but it has more amorphous content as evident from selected area electron diffraction (SAED pattern, wide angle X-ray and differential scanning calorimetry (DSC. The nanocomposite film produced by prereduction method possesses higher crystallinity (almost the same as that of the pure film as compared to the in situ method. It shows better modulus (increased from 864 to 1236 MPa, better strength (increased from 12.6 to 22.2 MPa, network hardening and creep resistance (creep strain reduced to 9% from 50% when 40% of maximum load was applied for 72 h than the pure film. These findings show that graphene can be used for reinforcement of UHMWPE to improve its tensile and creep resistance properties.

  13. Analysis of local properties during a scratch test on a polymeric surface using molecular dynamics simulations.

    Science.gov (United States)

    Solar, M; Meyer, H; Gauthier, C

    2013-03-01

    This work demonstrates a possible route to connect a particle (chain) based understanding with continuum mechanical questions about contact mechanics. The bond orientation, chain conformation and stress field of a polymer film were analyzed during scratch tests (tangential contact) using a molecular dynamics (MD) simulation approach. Scratch tests with a conical tip at constant scratching velocity were simulated on linear amorphous polymer surfaces at various temperatures and roughnesses of the tip and for various interactions between the tip and the particles of the polymer chains. The second Legendre polynomial (computed for small domains around the tip) gave the bond orientation inside the polymer film during sliding of the tip. The gyration tensor (layer-resolved in the direction of the polymer film thickness) provided information about the conformation of the polymer chains. These results allowed us to argue in favor of Briscoe's hypothesis (thin film sheared vs. "bulk" compressive behavior) concerning the friction properties of the polymer surfaces. Finally, the first stress measurements of the virial stress tensor (in sub-boxes placed in the MD cell) revealed a complex combination between compressive hydrostatic pressure and shear stress, which may be interpreted as a complex sheared domain at the interface.

  14. Immunomodulatory Properties and Molecular Effects in Inflammatory Diseases of Low-dose X-Irradiation

    Directory of Open Access Journals (Sweden)

    Franz eRödel

    2012-09-01

    Full Text Available Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 - 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.

  15. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhao, Chenglong [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Van Quang, Nguyen; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Dung, Dang Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi (Viet Nam)

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  16. Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation.

    Science.gov (United States)

    Chung, Hyun-Jung; Liu, Qiang

    2010-08-01

    In this study, potato and bean starches were treated by gamma-irradiation up to 50kGy. Molecular structure and physicochemical properties of irradiated potato and bean starches were investigated. Microscopic observation under scanning electron microscope (SEM) and polarized microscope showed that some of potato and bean starch granules were destroyed by gamma-irradiation and the breakage was much greater at a higher dose (50 kGy). Carboxyl content and amylose leaching increased, whereas the swelling factor and apparent amylose content decreased after irradiation in both potato and bean starches. The proportions of short (DP 6-12) and long (DP > or = 37) amylopectin chains as well as average chain length increased with increasing irradiation dose. However, the proportion of DP 13-24 decreased by irradiation. The relative crystallinity, the degree of granule surface order, and gelatinization enthalpy decreased with an increase in irradiation dose. The extent of decrease in potato starch was greater than that in bean starch. The exothermic peak around 90-110 degrees C was observed in DSC thermogram when the potato starch was irradiated at 50 kGy. The pasting viscosity significantly decreased with an increase in irradiation dose. The proportion of slowly digestible starch (SDS) decreased and resistant starch (RS) content increased by irradiation in both potato and bean starches. However, the rapidly digestible starch (RDS) of potato starch increased with increasing irradiation dose, whereas the bean starch showed the opposite trend to potato starch in RDS content.

  17. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sara Carpi

    Full Text Available Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes. MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  18. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties

    Science.gov (United States)

    Kasireddy, Chandana; Ellis, Jonathan M.; Bann, James G.; Mitchell-Koch, Katie R.

    2017-02-01

    Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.

  19. Molecular gas properties of UV-luminous star-forming galaxies at low redshift

    CERN Document Server

    Gonçalves, T S; Overzier, R A; Pérez, L; Martin, D C

    2014-01-01

    Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and luminosities in the local universe. In this work we present results from a survey with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) to detect CO(1-0) emission in LBAs, in order to analyse the properties of the molecular gas in these galaxies. Our results show that LBAs follow the same Schmidt-Kennicutt law as local galaxies. On the other hand, they have higher gas fractions (up to 66%) and faster gas depletion time-scales (below 1 Gyr). These characteristics render these objects more akin to high-redshift star-forming galaxies. We conclude that LBAs are a great nearby laboratory for studying the cold interstellar medium in low-metallicity, UV-luminous compact star-forming galaxies.

  20. Viscous-flow properties and viscosity-average molecular mass of orange peel pectin

    Institute of Scientific and Technical Information of China (English)

    周尽花; 吴宇雄; 沈志强

    2008-01-01

    The viscous-flow properties of pectin from the residue of orange peel after extraction of essential oil and flavonoid were studied and the viscosity-average molecular mass(Mv,ave) of this kind of pectin was determined.Experimental results show that Arrhenius viscous-flow equation can be applied to describing the effect of temperature on viscosity of this kind of orange peel pectin solutions with the average viscous-flow activation energy being 17.91 kJ/mol(depending on the concentration).Neither power equation,η =K1 cA1,nor exponential equation,η=K2exp(A2c) can describe the effect of concentration on viscosity of this kind of orange peel pectin solutions well.However,it seems that exponential equation model is more suitable to describe their relation due to its higher linear correlation coefficient.Schulz-Blaschke equation can be used to calculate the intrinsic viscosity of this kind of orange peel pectin.The Mv,ave of the orange peel pectin is 1.65×105 g/mol.

  1. Molecular order and functional properties of starches from three waxy wheat varieties grown in China.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Zhang, Wei; Li, Caili; Yu, Jinglin; Wang, Shuo

    2015-08-15

    Molecular order and functional properties of starch from three waxy wheat varieties grown in China were investigated by a combination of various technical analyses. The total starch content of the waxy wheat ranged between 54.1% and 55.0%, and the amylose content of the starch was between 0.71% and 1.63%. Average particle diameter of the three starches varied between 16.5 and 17.4 μm. Three waxy wheat starches presented the typical A-type X-ray diffraction pattern, with relative crystallinity between 38.7% and 40.0%. No significant differences were observed in relative crystallinity, IR ratios of 1047/1022 cm(-1) and 1022/995 cm(-1), and FWHH of the band at 480 cm(-1), indicating the similarity in long-range order of crystallites and short-range order of double helices of three starch granules. Small differences were observed in swelling power, gelatinization parameters, pasting viscosities, and in vitro enzymatic digestibility of three waxy wheat starches. Under the stored condition, no retrogradation occurred for three waxy wheat starches.

  2. Molecular dynamics simulation of the structural, elastic, and thermal properties of pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liyuan; Li, Yuhong; Devanathan, Ram; Gao, Fei

    2016-04-28

    We present a comprehensive simulation study of the effect of composition on the structural, elastic and thermal properties of 25 different compounds from the pyrochlore family. We joined a repulsive potential to an existing interatomic potential to enable molecular dynamics simulations of conditions away from equilibrium. We systematically varied the chemistry of the pyrochlore by substituting different cations in the A and B sites of the A2B2O7 formula unit. The A cations varied from Lu3+ to La3+, and the B cations from Ti4+ to Ce4+. The lattice parameter increased steadily with increasing the radius of A or B cations, but the bulk modulus showed a decreasing trend with increasing cation radius. However, the specific heat capacity and thermal expansion coefficient remained almost unchanged with increasing the radii of A and B cations. It is of interest to note that Ce on the B site significantly reduces the specific heat capacity and thermal expansion coefficient, which could have implications for annealing of radiation damage in cerate pyrochlores. The present results are consistent with the experimental measurements, which validates these potentials for simulation of dynamical processes, such as radiation damage, in pyrochlores.

  3. Properties of interstellar filaments derived from Herschel, Planck, and molecular line observations

    Science.gov (United States)

    Arzoumanian, Doris

    2015-08-01

    The highly filamentary structure of the interstellar medium (ISM) is now impressively revealed by Herschel and Planck images. Previous observations have shown that clouds are filamentary, however, only recently the mapping capabilities of Herscheland Planck have discovered their ubiquity in the ISM. In particular, Herschel images, with their high spatial and intensity dynamic ranges, show that dense filaments are associated with the main sites of star formation, demonstrating their key role in the star formation process.The analysis of the column density profiles of filaments indicates that they all share a common central width of 0.1pc, while they span a wide range in length, column density, mass per unit length. The results derived from observations tracing cold dust and gas emission, in total and polarised intensity, suggest that filaments can be divided into two families: On the one hand, low column density, unbound, and quiescent filaments mostly aligned with the magnetic field orientation, and on the other hand, dense, self-gravitating filaments, which fragment into star forming cores.I will present the properties of the filamentary structures derived from Herschel, Planck, and molecular line observations, and I will discuss the observational constraints on the formation and evolution of interstellar filaments.

  4. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Science.gov (United States)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  5. Conductance properties of the inwardly rectifying channel, Kir3.2: molecular and Brownian dynamics study.

    Science.gov (United States)

    Hilder, Tamsyn A; Chung, Shin-Ho

    2013-02-01

    Using the recently unveiled crystal structure, and molecular and Brownian dynamics simulations, we elucidate several conductance properties of the inwardly rectifying potassium channel, Kir3.2, which is implicated in cardiac and neurological disorders. We show that the pore is closed by a hydrophobic gating mechanism similar to that observed in Kv1.2. Once open, potassium ions move into, but not out of, the cell. The asymmetrical current-voltage relationship arises from the lack of negatively charged residues at the narrow intracellular mouth of the channel. When four phenylalanine residues guarding the intracellular gate are mutated to glutamate residues, the channel no longer shows inward rectification. Inward rectification is restored in the mutant Kir3.2 when it becomes blocked by intracellular Mg(2+). Tertiapin, a polypeptide toxin isolated from the honey bee, is known to block several subtypes of the inwardly rectifying channels with differing affinities. We identify critical residues in the toxin and Kir3.2 for the formation of the stable complex. A lysine residue of tertiapin protrudes into the selectivity filter of Kir3.2, while two other basic residues of the toxin form hydrogen bonds with acidic residues located just outside the channel entrance. The depth of the potential of mean force encountered by tertiapin is -16.1kT, thus indicating that the channel will be half-blocked by 0.4μM of the toxin.

  6. EFFECTS OF MOLECULAR WEIGHT ON THERMAL RESPONSIVE PROPERTY OF PEGYLATED POLY-L-GLUTAMATES

    Institute of Scientific and Technical Information of China (English)

    Shusheng Zhang; Chongyi Chen; Zhibo Li

    2013-01-01

    We investigated the ring opening polymerization (ROP) of di-and tri-ethylene glycol monomethyl ether functionalized L-glutamate N-carboxyanhydrides (NCAs) using hexamethyldisilazane (HMDS) as primary initiator and 1,5,7-triazabicyclo-[4.4.0]dec-5-ene (TBD) as co-initiator.The binary initiator system afforded a living ROP for these pegylated NCAs,and a series of homopolypeptides with controlled molecular weight (MW) and low polydispersity were obtained.We then systematically studied the helical content and clouding point (CP) dependence on polypeptide MW using circular dichroism (CD) spectroscopy and turbidity measurements,respectively.We found that the helical content of both homopolypeptides increased with MW,but the triethylene glycol functionalized poly-L-glutamate (poly-L-EG3Glu) intended to form more stable α-helical structure than diethylene glycol functionalized counterpart (poly-L-EG2Glu) at similar MW.Accordingly,the CP of poly-L-EG2Glu with known end group has strong dependence on its helical content,which is essentially determined by MW.Our results suggested that the thermal responsive properties of these unique pegylated poly-L-glutamates not only rely on their chemical structure but also on their secondary structures,which is different from conventional thermal responsive polymers.

  7. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    Science.gov (United States)

    Honda, K.; Yamaguchi, H.; Kobayashi, M.; Morita, M.; Takahara, A.

    2008-03-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-Cy, where y is fluoromethylene number in Rf group] thin films were systematically investigated. Spin-coated PFA-Cy thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-Cy with short side chain (y=8. GIXD revealed that fluoroalkyl side chain of PFA-Cy with y>=8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-Cy can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity.

  8. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Honda, K; Yamaguchi, H; Takahara, A [Graduate School of Engineering, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Kobayashi, M [Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Morita, M [Fundamental Research Department, Chemical Division, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585 (Japan)], E-mail: takahara@cstf.kyushu-u.ac.jp

    2008-03-15

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C{sub y}, where y is fluoromethylene number in R{sub f} group] thin films were systematically investigated. Spin-coated PFA-C{sub y} thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C{sub y} with short side chain (y{<=}6) and increased above y{>=}8. GIXD revealed that fluoroalkyl side chain of PFA-C{sub y} with y{>=}8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C{sub y} can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C{sub 8} through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity.

  9. Characterizing the Turbulent Properties of the Starless Molecular Cloud MBM 16

    Science.gov (United States)

    Pingel, N. M.; Stanimirović, Snezana; Peek, J. E. G.; Lee, Min-Young; Lazarian, Alex; Burkhart, Blakesley; Begum, Ayesha; Douglas, Kevin A.; Heiles, Carl; Gibson, Steven J.; Grcevich, Jana; Korpela, Eric J.; Lawrence, Allen; Murray, Claire; Putman, Mary E.; Saul, Destry

    2013-12-01

    We investigate turbulent properties of the non-star-forming, translucent molecular cloud MBM 16 by applying the statistical technique of a two-dimensional spatial power spectrum (SPS) on the neutral hydrogen (H I) observations obtained by the Galactic Arecibo L-Band Feed Array H I survey. The SPS, calculated over the range of spatial scales from 0.1 to 17 pc, is well represented with a single power-law function, with a slope ranging from -3.3 to -3.7 and being consistent over the velocity range of MBM 16 for a fixed velocity channel thickness. However, the slope varies significantly with the velocity slice thickness, suggesting that both velocity and density contribute to H I intensity fluctuations. By using this variation, we estimate the slope of three-dimensional density fluctuations in MBM 16 to be -3.7 ± 0.2. This is significantly steeper than what has been found for H I in the Milky Way plane, the Small Magellanic Cloud, or the Magellanic Bridge, suggesting that interstellar turbulence in MBM 16 is driven on scales >17 pc and that the lack of stellar feedback could be responsible for the steep power spectrum.

  10. Characterizing the turbulent properties of the starless molecular cloud MBM 16

    Energy Technology Data Exchange (ETDEWEB)

    Pingel, N. M.; Stanimirović, Snezana; Lee, Min-Young; Lazarian, Alex; Burkhart, Blakesley; Lawrence, Allen; Murray, Claire [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Peek, J. E. G.; Grcevich, Jana; Putman, Mary E.; Saul, Destry [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Begum, Ayesha [Indian Institute of Science Education and Research, ITI Campus (Gas Rahat) Building, Govindpura, Bhopal- 23 (India); Douglas, Kevin A. [University of Calgary/Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A6J9 (Canada); Heiles, Carl; Korpela, Eric J. [Astronomy Department and Space Science Laboratory, University of California, Berkeley, CA 94703 (United States); Gibson, Steven J., E-mail: pingel@astro.wisc.edu, E-mail: sstanimi@astro.wisc.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 4201 (United States)

    2013-12-10

    We investigate turbulent properties of the non-star-forming, translucent molecular cloud MBM 16 by applying the statistical technique of a two-dimensional spatial power spectrum (SPS) on the neutral hydrogen (H I) observations obtained by the Galactic Arecibo L-Band Feed Array H I survey. The SPS, calculated over the range of spatial scales from 0.1 to 17 pc, is well represented with a single power-law function, with a slope ranging from –3.3 to –3.7 and being consistent over the velocity range of MBM 16 for a fixed velocity channel thickness. However, the slope varies significantly with the velocity slice thickness, suggesting that both velocity and density contribute to H I intensity fluctuations. By using this variation, we estimate the slope of three-dimensional density fluctuations in MBM 16 to be –3.7 ± 0.2. This is significantly steeper than what has been found for H I in the Milky Way plane, the Small Magellanic Cloud, or the Magellanic Bridge, suggesting that interstellar turbulence in MBM 16 is driven on scales >17 pc and that the lack of stellar feedback could be responsible for the steep power spectrum.

  11. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.

    Science.gov (United States)

    Fu, Chia-Chun; Kulkarni, Pandurang M; Shell, M Scott; Leal, L Gary

    2013-09-07

    To what extent can a "bottom-up" mesoscale fluid model developed through systematic coarse-graining techniques recover the physical properties of a molecular scale system? In a previous paper [C.-C. Fu, P. M. Kulkarni, M. S. Shell, and L. G. Leal, J. Chem. Phys. 137, 164106 (2012)], we addressed this question for thermodynamic properties through the development of coarse-grained (CG) fluid models using modified iterative Boltzmann inversion methods that reproduce correct pair structure and pressure. In the present work we focus on the dynamic behavior. Unlike the radial distribution function and the pressure, dynamical properties such as the self-diffusion coefficient and viscosity in a CG model cannot be matched during coarse-graining by modifying the pair interaction. Instead, removed degrees of freedom require a modification of the equations of motion to simulate their implicit effects on dynamics. A simple but approximate approach is to introduce a friction coefficient, γ, and random forces for the remaining degrees of freedom, in which case γ becomes an additional parameter in the coarse-grained model that can be tuned. We consider the non-Galilean-invariant Langevin and the Galilean-invariant dissipative particle dynamics (DPD) thermostats with CG systems in which we can systematically tune the fraction φ of removed degrees of freedom. Between these two choices, only DPD allows both the viscosity and diffusivity to match a reference Lennard-Jones liquid with a single value of γ for each degree of coarse-graining φ. This friction constant is robust to the pressure correction imposed on the effective CG potential, increases approximately linearly with φ, and also depends on the interaction cutoff length, rcut, of the pair interaction potential. Importantly, we show that the diffusion constant and viscosity are constrained by a simple scaling law that leads to a specific choice of DPD friction coefficient for a given degree of coarse-graining. Moreover, we

  12. Adoption and Assisted Reproduction. Adoption and Ethics, Volume 4.

    Science.gov (United States)

    Freundlich, Madelyn

    The controversies in adoption have extended across a spectrum of policy and practice issues, and although the issues have become clear, resolution has not been achieved nor has consensus developed regarding a framework on which to improve the quality of adoption policy and practice. This book is the fourth in a series to use an ethics-based…

  13. Homosexuality and adoption in Brazil.

    Science.gov (United States)

    Uziel, A P

    2001-11-01

    Western societies are undergoing legal and policy changes in relation to laws governing the family, marital status, sexual orientation and the welfare of children, including in Brazil where, in the 1990s, the rights of homosexuals were incorporated into ongoing debates about what constitutes a family. This paper discusses the issue of adoption of children by homosexual men in Brazil, using information from court records from 1995-2000 in Rio de Janeiro, and from interviews with two judges, five psychologists and four social workers who evaluate those wishing to adopt. It uses the case records of one man's application to adopt, in which homosexuality became a central issue. Both the construction of masculinity in relation to parenting and concepts of the family were the parameters upon which the decision to allow him to adopt or not depended. Because the legislation does not specify what the sexual orientation of would-be adoptive parents should be, it is possible for single persons to adopt if they show they can be good parents. As more single people, alone or in couples, seek to adopt, it is important to clarify the criteria for judicial decisions on adoption applications. A dialogue is therefore needed on the meaning of family and whether and how it relates to sexual orientation. It is only on this basis that the courts can take a clear decision as to whether being homosexual is a relevant issue in regard to applications to adopt or not.

  14. Application of ring-opening metathesis polymerization in study of polymer molecular weight-mediated catalytic properties of immobilized lipase

    Institute of Scientific and Technical Information of China (English)

    DU Chuang; ZHANG Guo; WANG Zhi; LI Lei; TANG Jun; WANG Lei

    2009-01-01

    Recently, significant efforts have been devoted into the study of the effect of hydrophobic supports on the catalytic properties of immobilized lipases. It seems that immobilization lipases on hydrophobic supports is a simple and efficient method to improve the catalytic activity of lipases. In this study, the hydrophobic poly(N-propyl-norbornene-exo-2,3-dicarboximide)s with well-controlled molecular weight were synthesized by the living ring-opening metathesis polymerization, and the lipases from Pseudo-monas sp. were then immobilized on these hydrophobic polymer supports through the physical ad-sorption. The immobilized lipases exhibited higher activity and enantioselectivity for the transesterifi-cation of 2-octanol than those of free lipases. Furthermore, we investigated the polymer molecular weight-mediated catalytic properties of immobilized lipases. It was found that the catalytic activity and E value of the immobilized lipases increased with the increase of the polymer molecular weight. At the polymeric molecular weight of about 40kDa, the highest E value (58 at 54.2% of conversion, enanti-omeric excess = 99%) was reached. After the molecular weight of polymers getting higher than 40 kDa, catalytic activity end E value of the immobilized lipase decreased.

  15. A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties

    Science.gov (United States)

    Khalansky, D.; Popova, E.; Gladyshev, P.; Dushanov, E.; Kholmurodov, Kh.

    2014-12-01

    Aqueous electrolyte solutions play an important role in many electrophysical and chemical processes in aerospace technology and industrial applications. As noncovalent interactions, the interactions between ions are crucially important for biomolecular structures as well (protein structure folding, molecular level processes followed by ionic pair correlations, the formation of flexible hydrate shells, and so on). Specifically, ions (cations and anions with the same valence charges) can form stable pairs if their sizes match. The formation of ionic pairs can substantially affect the thermodynamic stabilities of proteins in the alkali salts physiologically present in the human body. Research aims and problems impose severe demands on readjustments of the ionic force fields and potential parameters developed to describe aqueous solutions and electrolytic systems. Ionic solutions and their interaction with biomolecules have been observed for over 100 years [1], but the behavior of such solutions remains poorly studied today. New data obtained in this work deals with parameterization strategies and adjustments for the ionic force fields of the alkali cations and halide anions that should be helpful in biomolecular research. Using molecular dynamics (MD) models, four electrolytic systems (HCl-H2O, LiCl-H2O, NaCl-H2O, and KCl-H2O) are investigated as binary mixtures of water and cations and anions, respectively. The intermolecular interaction parameters are varied for two of the four model electrolytes (HCl-H2O and NaCl-H2O) to simulate the possibility of different ionic shells forming during interaction with water. It is found that varying the potential parameters strongly affects the dynamic and structural characteristics of electrolyte systems. MD simulations are performed in the temperature range of 300 to 600 K with a step of 50 K. MD simulations for all electrolyte models (HCl-H2O, LiCl-H2O, NaCl-H2O, KCl-H2O) are also conducted for different molar fractions of

  16. Amyloid-β–Induced Changes in Molecular Clock Properties and Cellular Bioenergetics

    Science.gov (United States)

    Schmitt, Karen; Grimm, Amandine; Eckert, Anne

    2017-01-01

    Ageing is an inevitable biological process that results in a progressive structural and functional decline, as well as biochemical alterations that altogether lead to reduced ability to adapt to environmental changes. As clock oscillations and clock-controlled rhythms are not resilient to the aging process, aging of the circadian system may also increase susceptibility to age-related pathologies such as Alzheimer's disease (AD). Besides the amyloid-beta protein (Aβ)-induced metabolic decline and neuronal toxicity in AD, numerous studies have demonstrated that the disruption of sleep and circadian rhythms is one of the common and earliest signs of the disease. In this study, we addressed the questions of whether Aβ contributes to an abnormal molecular circadian clock leading to a bioenergetic imbalance. For this purpose, we used different oscillator cellular models: human skin fibroblasts, human glioma cells, as well as mouse primary cortical and hippocampal neurons. We first evaluated the circadian period length, a molecular clock property, in the presence of different Aβ species. We report here that physiologically relevant Aβ1–42 concentrations ranging from 10 to 500 nM induced an increase of the period length in human skin fibroblasts, human A172 glioma cells as well as in mouse primary neurons whereas the reverse control peptide Aβ42-1, which is devoid of toxic action, did not influence the circadian period length within the same concentration range. To better understand the underlying mechanisms that are involved in the Aβ-related alterations of the circadian clock, we examined the cellular metabolic state in the human primary skin fibroblast model. Notably, under normal conditions, ATP levels displayed circadian oscillations, which correspond to the respective circadian pattern of mitochondrial respiration. In contrast, Aβ1–42 treatment provoked a strong dampening in the metabolic oscillations of ATP levels as well as mitochondrial respiration and

  17. Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans

    2014-05-21

    We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.

  18. Faculty Adoption of Educational Technology

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Although faculty support has been identified as a critical factor in the success of educational-technology programs, many people involved in such efforts underestimate the complexities of integrating technology into teaching. In this article, the author proposes an adoption cycle to help tackle the complex issue of technology adoption for…

  19. Healthy Travel for International Adoptions

    Centers for Disease Control (CDC) Podcasts

    2007-10-22

    The number of international adoptions, many from developing countries, has doubled in the last 10 years. This podcast discusses ways adoptive families can protect their own health and the health of their new children.  Created: 10/22/2007 by National Center for the Prevention, Detection and Control of Infectious Diseases (NCPDCID).   Date Released: 10/24/2007.

  20. Adopting Children with Attachment Problems.

    Science.gov (United States)

    Hughes, Daniel A.

    1999-01-01

    Notes that attachment behavior in infants is a facet of normal child development, and that children with attachment problems require special attention during and after the adoption process. Presents actions needed to increase the probability that such children can be successfully adopted, detailed attachment patterns, and parenting strategies and…

  1. Intra-Firm Adoption Decisions

    NARCIS (Netherlands)

    Y.M. van Everdingen (Yvonne); B. Wierenga (Berend)

    2001-01-01

    textabstractThe subject of this paper is intra-firm adoption decisions, a relatively unexplored research area in the marketing literature. In particular, we investigate which factors influence the intra-firm adoption decisions regarding the common European currency of the treasury, purchasing and sa

  2. Parents’ Feelings Towards Their Adoptive and Non-Adoptive Children

    Science.gov (United States)

    Glover, Marshaun B.; Mullineaux, Paula Y.; Deater-Deckard, Kirby; Petrill, Stephen A.

    2010-01-01

    In the current study, we examined parent gender differences in feelings (negativity and positivity) and perceptions of child behavioural and emotional problems in adoptive and biological parent–child dyads. In a sample of 85 families, we used a novel within-family adoption design in which one child was adopted and one child was a biological child of the couple, and tested whether the links between parent feelings and child maladjustment included effects of passive gene–environment correlation. Parents reported more negativity and less positivity as well as higher levels of externalizing behaviour for the adopted child compared to the non-adopted child, although effect sizes were small and no longer statistically significant after correcting for multiple comparisons. Fathers and mothers did not differ significantly in their reports of positive and negative feelings towards their children or in regard to child externalizing and internalizing behaviours. The correlations between parental negativity and positivity and child externalizing and internalizing were similar for fathers and mothers, and for adopted and non-adopted children. The findings suggest similar parent–child relationship processes for fathers and mothers, and that genetic transmission of behaviour from parent to child does not account for the association between parental warmth and hostility and child-adjustment problems. PMID:21088705

  3. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    Science.gov (United States)

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  4. Microbial utilization of low molecular weight organics in soil depends on the substances properties

    Science.gov (United States)

    Gunina, Anna

    2016-04-01

    Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between

  5. Molecular dynamics study of grain boundary structure and properties at high temperatures

    Science.gov (United States)

    Fensin, Saryu Jindal

    This thesis reports research involving the development and application of atomistic simulation methods to study the effects of high homologous temperatures on the structural, thermodynamic, kinetic and mechanical properties of grain boundaries in metals. Our interest in these properties is due to the role they play in governing the evolution of microstructure and deformation of metals during solidification processing. The interest in developing more predictive models for the formation of solidification defects highlights a need to better understand the thermodynamic driving forces underlying grain-boundary premelting and the mobility and shear strength of these interfaces at high temperatures. In this work we study two different elemental systems, namely Ni and Cu, and consider a variety of grain boundary structures characterized by different misorientation angles, twist/tilt character and zero-temperature energies. A method to calculate the disjoining potential from molecular dynamics (MD) is developed and applied to grain boundaries in Ni. The disjoining potential characterizes the variation in grain-boundary free energy as a function of the width of a premelted interfacial layer. The MD method for the calculation of this property is applied to grain boundaries that display continuous premelting transitions, as well as a boundary characterized by a disordered atomic structure displaying a finite interfacial width at the melting temperature. The disjoining potential represents an important input property to larger scale models of solidification and grain coalescence. We further develop analysis methods to characterize the change in the atomic structure of an asymmetric tilt grain boundary in elemental Cu as a function of temperature. This boundary is characterized by a potential-energy surface with multiple minima as a function of the relative translation of the grains parallel to the interface plane. The more complex structure of this boundary, relative to the

  6. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum.

    Science.gov (United States)

    Mohammed, D; Crowther, J M; Matts, P J; Hadgraft, J; Lane, M E

    2013-01-30

    Niacinamide-containing moisturisers are known be efficacious in alleviating dry skin conditions and improving stratum corneum (SC) barrier function. However, the mechanisms of action of niacinamide at the molecular level in the SC are still not well understood. Previously, we have reported the development of novel methods to probe SC barrier properties in vivo. The aim of the present study was to characterise changes in Trans Epidermal Water Loss (TEWL), corneocyte surface area and maturity, selected protease activities and SC thickness after repeated application of a simple vehicle containing niacinamide. A commercial formulation was also included as a reference. The left and right mid-volar forearms of 20 healthy volunteers were used as study sites, to which topical formulations were applied twice daily for 28 days. After successive tape-stripping, corneocyte maturity and surface area were assessed. In addition, activity of the desquamatory kallikrein (KLK) protease enzymes KLK5 and KLK7, and tryptase and plasmin (implicated in inflammatory process) were measured using a fluorogenic probe assay. The amount of protein removed and TEWL were also recorded. SC thickness before and after treatment was determined using Confocal Raman Spectroscopy (CRS). Overall (i) corneocyte maturity and surface area decreased with increasing number of tape strips, (ii) activity of both the desquamatory and inflammatory enzymes was highest in the outer layers of the SC and decreased with depth (iii) TEWL increased as more SC layers were removed. Furthermore, areas treated with formulations containing niacinamide were significantly different to pre-treatment baseline and untreated/vehicle-control treated sites, with larger and more mature corneocytes, decreased inflammatory activity, decreased TEWL and increased SC thickness. These data (a) confirm the utility of measures and metrics developed previously for the non-invasive assay of SC barrier function, (b) present an holistic picture

  7. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS.

    Science.gov (United States)

    Singh, Jagmohan; Rattan, Satish

    2012-09-15

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca(2+), KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K(+) depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10(-5) M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs' SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS.

  8. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex.

    Science.gov (United States)

    Trcka, Filip; Durech, Michal; Man, Petr; Hernychova, Lenka; Muller, Petr; Vojtesek, Borivoj

    2014-04-01

    Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding.

  9. Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing.

    Science.gov (United States)

    Makhloufi, Hajer; Boonpeng, Poonyasiri; Mazzucato, Simone; Nicolai, Julien; Arnoult, Alexandre; Hungria, Teresa; Lacoste, Guy; Gatel, Christophe; Ponchet, Anne; Carrère, Hélène; Marie, Xavier; Fontaine, Chantal

    2014-03-17

    We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 μm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well.

  10. HIGH MOLECULAR CELLULOSE ESTERS. MECHANISM OF ACTION IN SUSTAINED RELEASE MATRIX TABLETS. DISSOLUTION PROFILE OF ACTIVE DRUG DEPENDING ON MOLECULAR WEIGHT AND HYDROPHILIC PROPERTIES OF POLYMERS

    Directory of Open Access Journals (Sweden)

    S. V. Trofimov

    2015-01-01

    Full Text Available This article reviews cellulose esters as important excipients in development of dosage forms with sustained release. We have studied modern methods of drug development, based on technological, and physical and chemical properties of excipients to provide a sustained release effect and the mechanism of interaction between active substance and excipients for justification of choice of the optimum prolonging agent in compliance with desirable result. Different cellulose esters were used as model excipients. They were hydroxypropylmethylcellulose (HPMC and hydroxyethylcellulose (HEC. we have studied an effect of molecular weight and hydrophilic properties on dissolution rate of active substance from the tablets with sustained release.

  11. Bulk and interfacial properties of chain fluids: a molecular modelling approach

    OpenAIRE

    2003-01-01

    En este trabajo se han desarrollado técnicas de modelado molecular, concretamente la teoría estadística de los fluidos asociantes (en inglés, SAFT) y la simulación molecular (Monte Carlo y dinámica molecular), y se han aplicado en el área de la termodinámica molecular moderna. Las técnicas mencionadas se han utilizado en el estudio del comportamiento de propiedades de sistemas fluidos en equilibrio termodinámico, principalmente equilibrios líquido-vapor, pero también coexistencia líquido-líqu...

  12. Properties of Low Metallicity Molecular Clouds: A 0.3 Parsec Resolution Map of SMC B1 #1

    Science.gov (United States)

    Rodea, Uriel

    2017-01-01

    Stars form in molecular clouds, therefore understanding their structure is important in understanding this key process in galaxy evolution. Studies of clouds in the Milky Way have provided insight to their internal structures, but until recently we have not been able to study clouds in low metallicity conditions at the same resolution. We use the Atacama Large Millimeter Array to map a molecular cloud in the nearby, low metallicity galaxy the SMC at 0.3 pc spatial resolution in 12CO (2-1). We use the CPROPS algorithm (Rosolowsky & Leroy 2006) to measure structural properties of the cloud (mass, size, velocity dispersion, temperature) and compare to molecular clouds in the Milky Way observed at comparable resolution. We present the results of this comparison and discuss the CO-to-H2 conversion factor, virial parameter and mass-radius-velocity dispersion relationships (i.e. Larson's Laws) for the cloud.

  13. Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan.

    Science.gov (United States)

    Muzaffar, Shazia; Bhatti, Ijaz Ahmad; Zuber, Mohammad; Bhatti, Haq Nawaz; Shahid, Muhammad

    2017-01-01

    A series of aqueous dispersions of polyurethane (PU) and low molecular weight chitosan (CS(LMW)) has been prepared in two steps synthetic process. In first step PU prepolymer, with NCO termini were prepared by reacting isophrone diisocyanate (IPDI), poly (caprolactone) diol (CAPA, Mn 1000), and 2,2-dimethylol propionic acid (DMPA), followed by neutralization of PU prepolymer with triethylamine (TEA). In second step PU prepolymer chain was extended by low molecular weight chitosan followed by dispersion formation by adding calculated volume of water. Molecular characterization of CS(LMW)-PU finishes was done by FTIR and application on poly-cotton blended fabric samples was confirmed by scanning electron microscopy (SEM). Antimicrobial and UV protective performance of treated fabrics was performed by AATCC 100 and AATCC TM183 methods respectively. Furthermore, it shows that the addition of chitosan remarkably increases antimicrobial and UV protective properties of PUs.

  14. Ab initio study of transport properties of an all-carbon molecular switch based on C20 molecule

    Institute of Scientific and Technical Information of China (English)

    OUYANG Fang-ping; XU Hui

    2007-01-01

    Choosing closed-ended armchair (5, 5) singlewall carbon nanotubes (CCNTs) as electrodes, we have investigated the electron transport properties across a carbon molecular junction consisting of a C20 molecule sandwiched between two semi-infinite carbon nanotubes. It is shown that the Landauer conductance of this carbon hybrid system can be tuned within several orders of magnitude not only by varying the tube-C20 distance, but more importantly by changing the orientation of the C20 molecule and rotating the C20 molecule or one of the tubes around the symmetry axis of the system at fixed distances. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switching device. Moreover, our study also reveals that molecular configuration selection and structural relaxation would play an important role in the design of such devices.

  15. Preparation of nanoporous systems for the study of the mechanical properties of silica aerogels by Molecular Dynamics simulations

    Science.gov (United States)

    Rivas Murillo, John S.; Bachlechner, Martina E.; Barbero, Ever J.

    2009-03-01

    This presentation focuses on the application of the Molecular Dynamics technique to study the mechanical properties of silica aerogels through the simulation of a tension test. It covers multiple areas, including aspects related to the preparation of a well-relaxed nanoporous system from the expansion of an amorphous bulk sample and the influence of the initial configuration of the system on the final results of the simulated tension test. The results presented here will help to develop a more complete procedure to prepare a proper sample for the study of the mechanical properties of a nanoporous system by using Molecular Dynamics. Comparison of the simulation results and previously published experimental data is provided

  16. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  17. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    Directory of Open Access Journals (Sweden)

    G.M. Bhuiyan

    2012-10-01

    Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  18. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    Science.gov (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  19. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    CERN Document Server

    Bhuiyan, G M; González, D J; 10.5488/CMP.15.33604

    2012-01-01

    Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  20. Liquid-crystalline rigid-core semiconductor oligothiophenes: influence of molecular structure on phase behaviour and thin-film properties.

    Science.gov (United States)

    Melucci, Manuela; Favaretto, Laura; Bettini, Christian; Gazzano, Massimo; Camaioni, Nadia; Maccagnani, Piera; Ostoja, Paolo; Monari, Magda; Barbarella, Giovanna

    2007-01-01

    The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

  1. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    OpenAIRE

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    2015-01-01

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety assessment of novel working fluids relies on accurate property data. Flammability data like the lower and upper flammability limit (LFL and UFL) play an important role in quantifying the risk of fire and e...

  2. Molecular Modeling of Thermosetting Polymers: Effects of Degree of Curing and Chain Length on Thermo-Mechanical Properties

    Science.gov (United States)

    2012-08-01

    the mechanical properties of one particular thermosetting polymer, DGEBA /DETDA epoxy system using atomistic molecular dynamics simulations. A series...response of the DGEBA /DETDA epoxy system, the atomistic simulation part described below will only consider a DGEBA monomer as the resin...on the reaction of the DGEBA (diglycidyl ether of bisphenol A) monomers with curing agent EPI-Cure-W (diethylenetoluenediamine, DETDA) (Figure 2

  3. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity.

    Directory of Open Access Journals (Sweden)

    Matthias Stein

    Full Text Available BACKGROUND: Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. CONCLUSIONS/SIGNIFICANCE: We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.

  4. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    DEFF Research Database (Denmark)

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    , Ph(DPP)2 and PhDMe(DPP)2 with similar chemical components but different molecular geometries. Due to its more twisted molecular conformation, PhDMe(DPP)2 shows more blue-shifted absorption bands, higher electron mobility, and better miscibility with the polymer donor poly(3-hexylthiophene) (P3HT...

  5. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  6. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    Science.gov (United States)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  7. Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information

    Directory of Open Access Journals (Sweden)

    Kleinau Gunnar

    2011-08-01

    Full Text Available Abstract Background The monocarboxylate transporter 8 (MCT8 is a member of the major facilitator superfamily (MFS and transports specificly iodothyronines. MCT8 mutations are the underlying cause of a syndrome of severe X-linked psychomotor retardation known as the Allan-Herndon-Dudley syndrome. This syndrome is characterized by abnormally high T3, low/normal T4 serum levels and slightly elevated serum TSH. To date, more than 25 pathogenic mutations in hMCT8 are known and they are valuable indicators of important regions for structural and functional MCT8 properties. Methods We designed a structural human MCT8 model and studied reported pathogenic missense mutations with focus on the estimation of those amino acid positions which are probably sensitive for substrate transport. Furthermore, assuming similarities between determinants of T3 binding observed in the published crystal structure of the thyroid hormone receptor beta occupied by its ligand T3 and the structural MCT8 model, we explore potential T3 binding sites in the MCT8 substrate channel cavity. Results We found that all known pathogenic missense mutations are located exclusively in the transmembrane helices and to a high degree at conserved residues among the MCT family. Furthermore, mutations either of or to prolines/glycines are located mainly at helices 9-12 and are expected to cause steric clashes or structural misfolding. In contrast, several other mutations are close to the potential substrate channel and affected amino acids are likely involved in the switching mechanism between different transporter conformations. Finally, three potential substrate binding sites are predicted for MCT8. Conclusions Naturally occurring mutations of MCT8 provide molecular insights into protein regions important for protein folding, substrate binding and the switching mechanism during substrate transport. Future studies guided by this information should help to clarify structure

  8. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    Directory of Open Access Journals (Sweden)

    Ryo Ohmura

    2012-02-01

    Full Text Available This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the best stability. Also, at a given molecule size, better stability may be available when the large molecule guest substance has a larger molar mass.

  9. Open adoption and adoptive mothers: attitudes toward birthmothers, adopted children, and parenting.

    Science.gov (United States)

    Lee, J S; Twaite, J A

    1997-10-01

    The nature and extent of contact between 238 adoptive mothers and their child's biological mother was assessed for the period prior to the birth of the child and during the first two years of the child's life. Adoptive mothers who reported such contact prior to the child's birth had significantly more favorable attitudes toward both the biological mother and the adopted child. Those with contact either before or after the birth also demonstrated significantly more favorable parenting attitudes. Policy implications and the need for further research are noted.

  10. Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme.

    Science.gov (United States)

    Xue, Ling; Godden, Jeffrey W; Stahura, Florence L; Bajorath, Jürgen

    2003-01-01

    A new fingerprint design concept is introduced that transforms molecular property descriptors into two-state descriptors and thus permits binary encoding. This transformation is based on the calculation of statistical medians of descriptor distributions in large compound collections and alleviates the need for value range encoding of these descriptors. For binary encoded property descriptors, bit positions that are set off capture as much information as bit positions that are set on, different from conventional fingerprint representations. Accordingly, a variant of the Tanimoto coefficient has been defined for comparison of these fingerprints. Following our design idea, a prototypic fingerprint termed MP-MFP was implemented by combining 61 binary encoded property descriptors with 110 structural fragment-type descriptors. The performance of this fingerprint was evaluated in systematic similarity search calculations in a database containing 549 molecules belonging to 38 different activity classes and 5000 background molecules. In these calculations, MP-MFP correctly recognized approximately 34% of all similarity relationships, with only 0.04% false positives, and performed better than previous designs and MACCS keys. The results suggest that combinations of simplified two-state property descriptors have predictive value in the analysis of molecular similarity.

  11. Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight

    CERN Document Server

    Tronci, Giuseppe; Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-01-01

    The formation of naturally-derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely-available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-Trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activ...

  12. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch.

  13. Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers.

    Science.gov (United States)

    Zhu, Baolei; Jasinski, Nils; Benitez, Alejandro; Noack, Manuel; Park, Daesung; Goldmann, Anja S; Barner-Kowollik, Christopher; Walther, Andreas

    2015-07-20

    Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass-transition temperature T(g) and bonded by quadruple hydrogen-bonding motifs, and subsequently assembled with high-aspect-ratio synthetic nanoclays to generate nacre-mimetic films. The high dynamics and self-healing of the polymers render transparent films with a near-perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films (E≈45 GPa, σ(UTS)≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.

  14. Molecular dynamics study of the effect of varying exothermicity on the properties of condensed-phase detonation

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.L. [Naval Academy, Annapolis, MD (United States). Chemistry Dept.; Robertson, D.H. [Indiana Univ.-Purdue Univ., Indianapolis, IN (United States). Dept. of Chemistry; White, C.T. [Naval Research Lab., Washington, DC (United States). Chemistry Div.

    1996-07-01

    To investigate the role of exothermicity on the properties of a chemically sustained shock waves, a series of two-dimensional molecular dynamics simulations was carried out in which the exothermicity was systematically varied. The simulations were based on a model diatomic system which has been previously shown to produce reasonable values for shock wave properties. A decrease of 33% in the amount of energy released in the reaction produced a significant decrease in detonation front velocity and an increase in the impact energy necessary to initiate a sustained shock wave. Redistribution of energy between the reaction products at constant total exothermicity had a much smaller effect on the properties of the detonation front.

  15. Ab initio molecular dynamics simulations of the static, dynamic and electronic properties of liquid lead using real-space pseudopotentials

    Energy Technology Data Exchange (ETDEWEB)

    Alemany, Manuel M. G. [Universidad de Santiago de Compostela; Longo, Roberto [Universidad de Santiago de Compostela; Gallego, Luis [Universidad de Santiago de Compostela; Gonzales, D. J. [Universidad de Valladolid; Gonzales, L. E. [Universidad de Valladolid; Tiago, Murilo L [ORNL; Chelikowsky, James [University of Texas, Austin

    2007-01-01

    We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.

  16. TIME-DEPENDENT PROPERTIES OF LIQUID WATER: A COMPARISON OF CAR-PARRINELLO AND BORN-OPPENHIEMER MOLECULAR DYNAMICS SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, I W; Mundy, C; McGrath, M; Siepmann, J I

    2005-12-29

    A series of 30 ps first principles molecular dynamics simulations in the microcanonical ensemble were carried out to investigate transport and vibrational properties of liquid water. To allow for sufficient sampling, the thermodynamic constraints were set to an elevated temperature of around 423 K and a density of 0.71 g/cm{sup 3} corresponding to the saturated liquid density for the Becke-Lee-Yang-Parr (BLYP) representation of water. Four simulations using the Car-Parrinello molecular dynamics (CPMD) technique with varying values of the fictitious electronic mass ({mu}) and two simulations using the Born-Oppenheimer molecular dynamics (BOMD) technique are analyzed to yield structural and dynamical information. At the selected state point, the simulations are found to exhibit non-glassy dynamics and yield consistent results for the liquid structure and the self-diffusion coefficient, although the statistical uncertainties in the latter quantity are quite large. Consequently, it can be said that the CPMD and BOMD methods produce equivalent results for these properties on the time scales reported here. However, it was found that the choice of {mu} affects the frequency spectrum of the intramolecular modes, shifting them slightly to regions of lower frequency. Using a value of {mu} = 400 a.u. results in a significant drift in the electronic kinetic energy of the system over the course of 30 ps and a downward drift in the ionic temperature. Therefore, for long trajectories at elevated temperatures, lower values of this parameter are recommended for CPMD simulations of water.

  17. Effects of aging procedures on the molecular, biochemical, morphological, and mechanical properties of vacuum-formed retainers.

    Science.gov (United States)

    Ahn, Hyo-Won; Ha, Hye-Ryun; Lim, Ho-Nam; Choi, Samjin

    2015-11-01

    The influence of intraoral exposure procedures on the physical characteristics of thermoplastic vacuum-formed retainers (VFRs) is still unclear. The effects of thermoforming and intraoral use on the molecular, chemical, morphological, and mechanical properties of thermoplastic VFRs were investigated. VFRs with a 0.8-mm-thick thermoplastic PETG sheet acquired from 48 patients were investigated with two aging procedures, including vacuum forming and intraoral exposure, for 2-week and 6-month. Eight evaluating sites for thermoplastic VFRs were assessed with seven analytical techniques. LM, SEM, and AFM microscopic findings showed that the surface characteristics increased with increasing in vivo exposure time (a four-fold increase) and varied depending on the sites evaluated (an occlusal surface). Raman and EDX spectroscopic findings showed that aging procedures led to a significant change in the molecular composition of VFRs, leading to a decrease in the composition rate of carbon (C) and the presence of silicon (Si), phosphorus (P), and calcium (Ca). Compressive strength and tensile tests showed that aging procedures led to a significant increase (PThermoforming led to a smoother surface and no crystallization of PETG sheets. Intraoral exposure accelerated changes in surface morphology, tensile strength, and elastic modulus of VFRs. This change was site-specific and enhanced with an increase in intraoral exposure time. Therefore, thermoforming and in vivo oral exposure procedures led to the molecular, morphological, and mechanical properties of thermoplastic VFRs.

  18. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan

    2016-03-24

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using the snapshots from the dynamic trajectory of the simulated molecular system. Kinetic Monte Carlo simulations are carried out to calculate the current characteristics. A widely used hole-transporting material, N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) is studied as an application of this method, and the properties of its hole-only device are investigated. The calculated current densities and dependence on the applied voltage without an injection barrier are close to those obtained by the Mott-Gurney equation. The results with injection barriers are also in good agreement with experiment. This method can be used to aid the design of molecules and guide the optimization of devices. © 2016 Elsevier B.V. All rights reserved.

  19. Personality disorders in adopted versus non-adopted adults.

    Science.gov (United States)

    Westermeyer, Joseph; Yoon, Gihyun; Amundson, Carla; Warwick, Marion; Kuskowski, Michael A

    2015-04-30

    The goal of this epidemiological study was to investigate lifetime history and odds ratios of personality disorders in adopted and non-adopted adults using a nationally representative sample. Data, drawn from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC), were compared in adopted (n=378) versus non-adopted (n=42,503) adults to estimate the odds of seven personality disorders using logistic regression analyses. The seven personality disorders were histrionic, antisocial, avoidant, paranoid, schizoid, obsessive-compulsive, and dependent personality disorder. Adoptees had a 1.81-fold increase in the odds of any personality disorder compared with non-adoptees. Adoptees had increased odds of histrionic, antisocial, avoidant, paranoid, schizoid, and obsessive-compulsive personality disorder compared with non-adoptees. Two risk factors associated with lifetime history of a personality disorder in adoptees compared to non-adoptees were (1) being in the age cohort 18-29 years (but no difference in the age 30-44 cohort), using the age 45 or older cohort as the reference and (2) having 12 years of education (but no difference in higher education groups), using the 0-11 years of education as the reference. These findings support the higher rates of personality disorders among adoptees compared to non-adoptees.

  20. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    Science.gov (United States)

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  1. Studies of the molecular geometry, vibrational spectra, frontier molecular orbital, nonlinear optical and thermodynamics properties of aceclofenac by quantum chemical calculations.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-05-05

    The solid phase FT-IR and FT-Raman spectra of 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl] oxyacetic acid (Aceclofenac) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies were scaled and have been compared with experimental by obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method employed to study its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) were also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  2. SMEs' E-commerce Adoption

    DEFF Research Database (Denmark)

    Scupola, Ada

    2009-01-01

    Purpose - Proposes providing an insight about factors affecting business-to-business e-commerce adoption and implementation in small to medium-sized enterprises (SMEs), highlighting similarities and differences between Danish and Australian SMEs.    Design/methodology/approach - The research...... is based on a wide literature review, focused on proposing a theoretical model of technological, environmental and organizational factors influencing e-commerce adoption and implementation. Subsequently, a questionnaire based on the research model has been developed and face-to-face interviews were...... conducted in Danish and Australian companies. Findings - The findings both corroborate previous results about significant factors affecting SMEs' b-to-b e-commerce adoption and implementation and provide new, interesting insights. The study also finds many similarities and differences between Denmark...

  3. Adopting to Agile Software Development

    Directory of Open Access Journals (Sweden)

    Linkevics Gusts

    2014-12-01

    Full Text Available Agile software development can be made successful, but there is no well-defined way how to achieve this. The problem is that the successful adoption of agile methods and practices is a complex process and this process should be customizable for a particular organization or a team. This research focuses on identification of agile methods and practices. Result of the research is the ranking of agile methods, practices and their usage trends. As some terms of agile software development are interpreted differently in different organizations and teams, terminology used is analyzed. Results of the research can be used as a reference material for those who are planning to adopt agile methods or are looking for the next agile practice to implement. Results will be used for the development of an expert system to support agile adoption.

  4. SCELib3.0: The new revision of SCELib, the parallel computational library of molecular properties in the Single Center Approach

    Science.gov (United States)

    Sanna, N.; Baccarelli, I.; Morelli, G.

    2009-12-01

    SCELib is a computer program which implements the Single Center Expansion (SCE) method to describe molecular electronic densities and the interaction potentials between a charged projectile (electron or positron) and a target molecular system. The first version (CPC Catalog identifier ADMG_v1_0) was submitted to the CPC Program Library in 2000, and version 2.0 (ADMG_v2_0) was submitted in 2004. We here announce the new release 3.0 which presents additional features with respect to the previous versions aiming at a significative enhance of its capabilities to deal with larger molecular systems. SCELib 3.0 allows for ab initio effective core potential (ECP) calculations of the molecular wavefunctions to be used in the SCE method in addition to the standard all-electron description of the molecule. The list of supported architectures has been updated and the code has been ported to platforms based on accelerating coprocessors, such as the NVIDIA GPGPU and the new parallel model adopted is able to efficiently run on a mixed many-core computing system. Program summaryProgram title: SCELib3.0 Catalogue identifier: ADMG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMG_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 018 862 No. of bytes in distributed program, including test data, etc.: 4 955 014 Distribution format: tar.gz Programming language: C Compilers used: xlc V8.x, Intel C V10.x, Portland Group V7.x, nvcc V2.x Computer: All SMP platforms based on AIX, Linux and SUNOS operating systems over SPARC, POWER, Intel Itanium2, X86, em64t and Opteron processors Operating system: SUNOS, IBM AIX, Linux RedHat (Enterprise), Linux SuSE (SLES) Has the code been vectorized or parallelized?: Yes. 1 to 32 (CPU or GPU) used RAM: Up to 32 GB depending on the molecular

  5. Molecular simulations for determination of transport properties of nano-composites

    Science.gov (United States)

    Mahajan, Sanket S.

    In several recent applications, including those aimed at developing novel thermal interface materials, nano-particulate systems have been proposed to improve the effective behavior of the system. One critical challenge in using nano-particulate systems is the lack of knowledge regarding their thermal conductivity. In this thesis, techniques based on Molecular Dynamics (MD) simulations are developed to determine transport properties of various types of homogeneous and inhomogeneous systems. In particular, the thermal conductivity values of bulk silica, silica nano-wire and nano-particle are determined using MD simulations. The equilibrium MD simulations of nano-particles using Green-Kubo relations are demonstrated to be computationally very expensive and unsuitable for nano-scale systems. The reverse non-equilibrium MD method of imposing heat flux is shown to be efficient and more accurate. The method is first demonstrated on bulk amorphous silica and silica nano-wires. The mean thermal conductivity values for bulk silica and silica nano-wire are estimated to be 1.221 W/mK and 1.430 W/mK, respectively. To model nano-particles, a novel methodology inspired by the imposition of heat flux technique, is developed by dividing the nano-particle into concentric shells so as to capture the naturally radial mode of heat transfer. The mean thermal conductivity value of a 600-atom silica nano-particle obtained using this approach is 0.589 W/mK. This value is ˜50-60% lower than those of bulk silica and silica nano-wire. The above developed technique for estimating the thermal conductivity of nano-structured homogeneous systems is naturally extended to determine the Kapitza resistance between solid-solid interfaces. The systems considered are interfaces between Si-SiO2 and Si-HfO2 thin films. For the Si-SiO2 interface, the average Kapitza resistance for ˜8 A thick oxide layer system is 0.503 x 10-9 m2K/W and for the ˜11.5 A thick oxide layer system is 0.518 x 10-9 m 2K/W. For

  6. Computational Molecular Nanoscience Study of the Properties of Copper Complexes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jorge Almaral-Sánchez

    2012-11-01

    Full Text Available In this work, we studied a copper complex-based dye, which is proposed for potential photovoltaic applications and is named Cu (I biquinoline dye. Results of electron affinities and ionization potentials have been used for the correlation between different levels of calculation used in this study, which are based on The Density Functional Theory (DFT and time-dependent (TD DFT. Further, the maximum absorption wavelengths of our theoretical calculations were compared with the experimental data. It was found that the M06/LANL2DZ + DZVP level of calculation provides the best approximation. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT.

  7. Revealing structural and dynamical properties of high density lipoproteins through molecular simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vattulainen, I.

    2012-01-01

    The structure and function of high density lipoprotein (HDL) particles have intrigued the scientific community for decades because of their crucial preventive role in coronary heart disease. However, it has been a taunting task to reveal the precise molecular structure and dynamics of HDL. Further......, because of the complex composition of HDL, understanding the impact of its structure and dynamics on the function of HDL in reverse cholesterol transport has also been a major issue. Recent progress in molecular simulation methodology and computing power has made a difference, as it has enabled...... essentially atomistic considerations of HDL particles over microsecond time scales, thereby proving substantial added value to experimental research. In this article, we discuss recent highlights concerning the structure and dynamics of HDL particles as revealed by atomistic and coarse-grained molecular...

  8. Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells.

    Science.gov (United States)

    Baldenebro-López, Jesús; Castorena-González, José; Flores-Holguín, Norma; Almaral-Sánchez, Jorge; Glossman-Mitnik, Daniel

    2012-11-28

    In this work, we studied a copper complex-based dye, which is proposed for potential photovoltaic applications and is named Cu (I) biquinoline dye. Results of electron affinities and ionization potentials have been used for the correlation between different levels of calculation used in this study, which are based on The Density Functional Theory (DFT) and time-dependent (TD) DFT. Further, the maximum absorption wavelengths of our theoretical calculations were compared with the experimental data. It was found that the M06/LANL2DZ + DZVP level of calculation provides the best approximation. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT.

  9. a Moessbauer Effect and Fenske-Hall Molecular Orbital Study of the Electronic Properties of Organoiron Clusters.

    Science.gov (United States)

    Buhl, Margaret Linn

    The electronic properties of trinuclear iron, tetranuclear iron butterfly, iron-cobalt, and iron-copper clusters have been studied experimentally at 78K by the Mossbauer effect and theoretically by Fenske-Hall molecular orbital calculations. The Mossbauer effect isomer shift is very sensitive to the differences in the iron s-electron densities in these clusters and, as expected, decreases as the sum of the iron 4s Mulliken population and the Clementi and Raimondi effective nuclear charge increases. The molecular orbital wave functions and the Mulliken atomic charges are used to calculate the electric field gradient at the metal nuclei and the iron Mossbauer effect quadrupole splittings. The valence contribution was found to be the major component of the electric field gradient in all the clusters studied. In general the calculated value of Delta E_ {Q} is larger than the observed value, as a result of neglect of the valence Sternheimer factor, R. The metal charge depends upon its electronegativity and upon the nature of its Lewis base ligands. The carbonyl ligand carbon charge becomes more positive as the metal electronegativity increases. The oxygen charge becomes more negative as the anionic cluster charge increases, and in so doing, yields the maximum anionic charge separation. The electronic properties of the terminal carbonyl ligands are similar to those of carbon monoxide, whereas the electronic properties of the bridging carbonyl ligands are similar to those of the carbonyl group found in aldehydes and ketones.

  10. Structure-dependent tuning of electro-optic and thermoplastic properties in triphenyl groups containing molecular glasses

    Energy Technology Data Exchange (ETDEWEB)

    Traskovskis, Kaspars, E-mail: kaspars.traskovskis@rtu.lv [Riga Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena Street, Riga LV-1048 (Latvia); Zarins, Elmars; Laipniece, Lauma [Riga Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena Street, Riga LV-1048 (Latvia); Tokmakovs, Andrejs [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Kokars, Valdis [Riga Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena Street, Riga LV-1048 (Latvia); Rutkis, Martins [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia)

    2015-04-01

    The series of seven molecular compounds composed of D–π–A chromophores and triphenylmethyl auxiliary groups were characterized by UV–Vis spectroscopy, differential scanning calorimetry and quantum chemical calculations. Nonlinear optical (NLO) properties of compounds were determined by second harmonic generation measurements in corona poled thin glassy films. The results show that triphenylmethyl auxiliary groups are effective at shielding undesirable dipole interactions in solid phase thus increasing NLO efficiency of materials. Thermal stability up to 108 °C was achieved for a polar order in poled samples. - Highlights: • Triphenylmethyl groups can be used to reduce solid phase dipole interactions in organic molecular materials. • NLO efficiency of a poled material is higher, if a number of present triphenyl groups increases. • NLO efficiency of materials decreases, if polarity of used chromophores increases. • Thermal stability of polar order up to 108 °C can be achieved in poled organic glasses.

  11. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    CERN Document Server

    Ji, Pengfei; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quant...

  12. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    Science.gov (United States)

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-05

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  13. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  14. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  15. Solvent effect on molecular structure, IR spectra, thermodynamic properties and chemical stability of zoledronic acid: DFT study.

    Science.gov (United States)

    Liu, Qingzhu; Qiu, Ling; Wang, Yang; Lv, Gaochao; Liu, Guiqing; Wang, Shanshan; Lin, Jianguo

    2016-04-01

    Zoledronic acid (ZL) has been used widely for treating skeletal diseases because of its high potency in inhibiting bone resorption. A detailed understanding of its physicochemical characteristics may be of great significance in both medicinal chemistry and structural biology for the design of novel bisphosphonates with higher activity. In the present work, the monoclinic (IM) and triclinic (IT) polymorphs of ZL in the gas phase and the aqueous phase were studied by density functional theory (DFT) method at the B3LYP/6-311++G** level. The polarizable continuum model (PCM) was employed to study the solvent effect on structures and properties. The optimized IM and IT conformations in both phases are in reasonable agreement with the experimental structures with the overall mean absolute percent deviation (MAPD%) less than 3.1 %. The presence of intramolecular hydrogen bond within both conformations was identified in the solvent. The IR spectra were simulated and assigned in detail, which agreed well with the experimental data. The intramolecular hydrogen bonding interactions resulted in the shift of vibrational frequencies of hydroxyl to the low band by 12-22 cm(-1) and 24-26 cm(-1) for IM and IT conformations, respectively. Their thermodynamic properties were also calculated based on the harmonic vibrational analysis, including standard heat capacity (C(°)p,m), entropy (S(°)m), and enthalpy (H(°)m). The molecular stability, hydrogen bonding interaction and other electronic properties have been further analyzed by the natural bond orbital (NBO), atoms in molecules (AIM), molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analysis.

  16. Conformational and Molecular Structures of α,β-Unsaturated Acrylonitrile Derivatives: Photophysical Properties and Their Frontier Orbitals

    Directory of Open Access Journals (Sweden)

    María Judith Percino

    2016-03-01

    Full Text Available We report single crystal X-ray diffraction (hereafter, SCXRD analyses of derivatives featuring the electron-donor N-ethylcarbazole or the (4-diphenylaminophenyl moieties associated with a -CN group attached to a double bond. The compounds are (2Z-3-(4-(diphenylamino-phenyl-2-(pyridin-3-ylprop-2-enenitrile (I, (2Z-3-(4-(diphenylaminophenyl-2-(pyridin-4-yl-prop-2-enenitrile (II and (2Z-3-(9-ethyl-9H-carbazol-3-yl-2-(pyridin-2-ylenenitrile (III. SCXRD analyses reveal that I and III crystallize in the monoclinic space groups P2/c with Z’ = 2 and C2/c with Z’ = 1, respectively. Compound II crystallized in the orthorhombic space group Pbcn with Z’ = 1. The molecular packing analysis was conducted to examine the pyridine core effect, depending on the ortho, meta- and para-positions of the nitrogen atom, with respect to the optical properties and number of independent molecules (Z’. It is found that the double bond bearing a diphenylamino moiety introduced properties to exhibit a strong π-π-interaction in the solid state. The compounds were examined to evaluate the effects of solvent polarity, the role of the molecular structure, and the molecular interactions on their self-assembly behaviors. Compound I crystallized with a cell with two conformers, anti and syn, due to interaction with solvent. DFT calculations indicated the anti and syn structures of I are energetically stable (less than 1 eV. Also electrochemical and photophysical properties of the compounds were investigated, as well as the determination of optimization calculations in gas and different solvent (chloroform, cyclohexane, methanol, ethanol, tetrahydrofuran, dichloromethane and dimethyl sulfoxide in the Gaussian09 program. The effect of solvent by PCM method was also investigated. The frontier HOMO and LUMO energies and gap energies are reported.

  17. Conformational and Molecular Structures of α,β-Unsaturated Acrylonitrile Derivatives: Photophysical Properties and Their Frontier Orbitals.

    Science.gov (United States)

    Percino, María Judith; Cerón, Margarita; Rodríguez, Oscar; Soriano-Moro, Guillermo; Castro, María Eugenia; Chapela, Víctor M; Siegler, Maxime A; Pérez-Gutiérrez, Enrique

    2016-03-28

    We report single crystal X-ray diffraction (hereafter, SCXRD) analyses of derivatives featuring the electron-donor N-ethylcarbazole or the (4-diphenylamino)phenyl moieties associated with a -CN group attached to a double bond. The compounds are (2Z)-3-(4-(diphenylamino)-phenyl)-2-(pyridin-3-yl)prop-2-enenitrile (I), (2Z)-3-(4-(diphenylamino)phenyl)-2-(pyridin-4-yl)-prop-2-enenitrile (II) and (2Z)-3-(9-ethyl-9H-carbazol-3-yl)-2-(pyridin-2-yl)enenitrile (III). SCXRD analyses reveal that I and III crystallize in the monoclinic space groups P2/c with Z' = 2 and C2/c with Z' = 1, respectively. Compound II crystallized in the orthorhombic space group Pbcn with Z' = 1. The molecular packing analysis was conducted to examine the pyridine core effect, depending on the ortho, meta- and para-positions of the nitrogen atom, with respect to the optical properties and number of independent molecules (Z'). It is found that the double bond bearing a diphenylamino moiety introduced properties to exhibit a strong π-π-interaction in the solid state. The compounds were examined to evaluate the effects of solvent polarity, the role of the molecular structure, and the molecular interactions on their self-assembly behaviors. Compound I crystallized with a cell with two conformers, anti and syn, due to interaction with solvent. DFT calculations indicated the anti and syn structures of I are energetically stable (less than 1 eV). Also electrochemical and photophysical properties of the compounds were investigated, as well as the determination of optimization calculations in gas and different solvent (chloroform, cyclohexane, methanol, ethanol, tetrahydrofuran, dichloromethane and dimethyl sulfoxide) in the Gaussian09 program. The effect of solvent by PCM method was also investigated. The frontier HOMO and LUMO energies and gap energies are reported.

  18. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    Science.gov (United States)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  19. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup;

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  20. Electronic and Redox Properties of Stacked-Ring Silicon Phthalocyanines from Molecular Orbital Theory.

    Science.gov (United States)

    1984-10-19

    a molecular orbital approximation to the electron delocalization energy.1 8 The ASED theory is derived from the Hellmann- Feynman formula for...34 . . 4.•" " ., .7% . r .- - - . , .-. - . . _ .-.- :.- .- . v ._ . _ . " - . ’ " _ _ 12. Wheeler , B. L.; Nagasubramanian, G.; Bard, A. J

  1. Rheological properties of poly(vinylpiyrrolidone) as a function of molecular weight

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Wolff-Ragnar

    2014-01-01

    Different grades of poly (vinylpyrrolidone) (PVP) were studied as dispersant for gadolinium doped cerium oxide (CGO) in ethanol-based colloidal dispersions. The average molecular weights Mw, Mn, and Mz were determined by gel permeation chromatography (GPC), and then used in a numerical method...

  2. Structure–property tuning in hydrothermally stable sol–gel-processed hybrid organosilica molecular sieving membranes

    NARCIS (Netherlands)

    Elshof, ten J.E.; Dral, A.P.

    2016-01-01

    Supported microporous organosilica membranes made from bridged silsesquioxane precursors by an acid-catalyzed sol–gel process have demonstrated a remarkable hydrothermal stability in pervaporation and gas separation processes, making them the first generation of ceramic molecular sieving membranes w

  3. Molecular characterisation of the thermostability and catalytic properties of enzymes from hyperthermophiles

    NARCIS (Netherlands)

    Lebbink, J.H.G.

    1999-01-01

    Hyperthermophilic organisms are able to survive and reproduce optimally between 80°C and 113°C. Most of them belong to the domain of the Archaea, although several hyperthermophilic Bacteria have been described. One of the major questions regarding hyperthermophiles concerns the molecular mechanisms

  4. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    Science.gov (United States)

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  5. Has the Academy Adopted TQM?

    Science.gov (United States)

    Birnbaum, Robert; Deshotels, Judy

    1999-01-01

    A survey of 469 colleges and universities assessed the degree to which colleges and universities have adopted total quality management (TQM) or continuous quality improvement (CQI) techniques. Results suggest use of TQM/CQI is lower than predicted, at about 13% of institutions. Variations in extent of use of the approach are discussed. (MSE)

  6. Why Adoption of Standards Matters

    Science.gov (United States)

    Journal of Staff Development, 2016

    2016-01-01

    A total of 39 states have adopted, adapted, or endorsed the Standards for Professional Learning, including the standards issued in 2011 (labeled in red) and those published earlier (labeled in blue). Making a commitment to the standards is a commitment to continuous learning for all educators in a school.

  7. ADOPT COMMUNICATIVE APPROACHES IN CET

    Institute of Scientific and Technical Information of China (English)

    LinSitan

    2004-01-01

    How to make CET tailored to the requirements of thesociety is a topic of great significance. This paper is meant toexplore the advantages of adopting communicative approaches inCET( College English Teaching ) by comparing communicativeapproaches with traditional ones and presenting our practice ofemploying communicative approaches as well as the result.

  8. Chinese adoption: practices and challenges.

    Science.gov (United States)

    Lihua, H

    2001-01-01

    The majority of children in China who are the subject of protective services are either abandoned or disabled. Recent reform efforts in China's child welfare practices have focused on the importance of providing safe, permanent families for children in lieu of long-term institutional care. Although challenges still exist, adoption and foster care are increasingly being seen as viable alternatives for these children.

  9. Predicting Virtual Learning Environment Adoption

    DEFF Research Database (Denmark)

    Penjor, Sonam; Zander, Pär-Ola Mikael

    2016-01-01

    This study investigates the significance of Rogers’ Diffusion of Innovations (DOI) theory with regard to the use of a Virtual Learning Environment (VLE) at the Royal University of Bhutan (RUB). The focus is on different adoption types and characteristics of users. Rogers’ DOI theory is applied...

  10. How do trehalose, maltose and sucrose influence some structural and dynamical properties of lysozyme ? An insight from Molecular Dynamics simulations

    CERN Document Server

    Lerbret, A; Affouard, F; Hedoux, A; Guinet, Y; Descamps, M

    2007-01-01

    The influence of three well-known disaccharides, namely trehalose, maltose and sucrose, on some structural and dynamical properties of lysozyme has been investigated by means of molecular dynamics computer simulations in the 37-60 wt % concentration range. The effects of sugars on the protein conformation are found relatively weak, in agreement with the preferential hydration of lysozyme. Conversely, sugars seem to increase significantly the relaxation times of the protein. These effects are shown to be correlated to the fractional solvent accessibilities of lysozyme residues and further support the slaving of protein dynamics. Moreover, a significant increase in the relaxation times of lysozyme, sugars and water molecules is observed within the studied concentration range and may result from the percolation of the hydrogen-bond network of sugar molecules. This percolation appears to be of primary importance to explain the influence of sugars on the dynamical properties of lysozyme and water.

  11. Understanding heavy-oil molecular functionality and relations to fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I. [Schlumberger, DBR Technology Center, Edmonton AB (Canada)

    2011-07-01

    In the heavy oil industry, knowing oil properties is important to optimizing recovery, transport and refinery. Nitrogen, sulfur and oxygen compounds (NSOs) have an important impact on these properties but this is often overlooked. The purpose of this paper is to analyze the impact of functional groups in connection with heavy oil and asphaltenes. Experiments were carried out with asphaltenes altered by chemical surgery that removed specific functional interactions. Titration calorimetry and fluorescence spectroscopy were then done. Results highlighted the fact that functional groups are of key importance in the determination of heavy oil properties and that acidity can be considered the most important interaction. This paper demonstrated that the determination of specific interactions could be more important in assessing heavy oil properties than understanding their hydrocarbon structure; further work is needed to fully understand the role of sulfur and nitrogen species.

  12. Electrical and optical properties of indium nitride and indium-rich nitrides prepared by molecular beam epitaxy for opto-electronics applications

    Science.gov (United States)

    Lu, Hai

    Great interest in III-nitride semiconductors has been driven by the significant technological importance of this material system. GaN and its alloy have been used in the fabrication of a range of electronic and photonic devices. Blue light emitting diode and laser diode with InGaN as the active layer have been commercialized for several years. Due to such technological importance, considerable research efforts have been made to understand the fundamental properties of III-N semiconductors. However, unlike the intensively studied GaN, InGaN and other nitride compounds, InN, which is also an important component of the III-N system, remains the least studied nitride material. This is mainly due to the difficulty in preparation of high-quality InN epilayers. Two of the main difficulties are the lack of suitable substrate material and the low dissociation temperature of InN. As a result, many fundamental parameters of InN were adopted from some very early reports based on polycrystalline InN films produced by RF sputtering method. Those reports are seemingly good but have never been repeated. This thesis reports epitaxial growth of InN and In-rich nitrides by molecular beam epitaxy. The optimum growth conditions of InN were investigated, which results in the best electrical properties of InN film reported in recent years. For the first time, non-degenerate InN film was produced and the surface charge accumulation of InN films was identified. Detailed and original structural characterizations were carried out. By collaborating with outside labs, many fundamentals properties of InN were measured or rediscovered. One of the main accomplishments in the study is the discovery of the narrow fundamental bandgap of InN, which is around 0.7 eV instead of the widely accepted 1.9 eV. This significant result provides new research guidance for the scientific community. By further preparing In-rich nitrides, the bowing parameters of InGaN and InAIN were first accurately measured. For

  13. MOLECULAR DESIGN OF FUNCTIONAL POLYMERS BASED ON UNIQUE PROPERTIES OF POLYMER CHAINS

    Institute of Scientific and Technical Information of China (English)

    Mikiharu Kamachi

    2000-01-01

    The inclusion complex formation of α-CD, β-CD, and γ-CD with various water-soluble polymers has been investigated, and the relationship between the chain cross-sectional areas of the polymers and the diameters of the cavities of cyclodextrins (molecular recognition) was found. Polyrotaxanes and tubular polymers were prepared on the basis of molecular recognition. Several kinds of polymers having tetraphenylporphyrin (TPP) and paramagnetic metallotetraphenylporphyrin (AgTPP, CuTPP, VOTPP or ZnTPP) have been prepared by radical polymerization of the corresponding monomers. Visible spectra of these polymers show hypochromism in the Soret bands of TPP moieties as compared with those of monomers. Polymer effects were observed in the magnetic behavior and oxygen adsorption of paramagnetic metallotetraphenylporphyrin moieties. Moreover, polymer effects on photophysical and photochemical behavior were found in the amphiphilic polymers covalently tethered with small amounts of zinc(Ⅱ)-tetraphenylporphyrin (ZnTPP).

  14. Classical molecular dynamics simulation on the dynamical properties of H2 on silicene layer

    Directory of Open Access Journals (Sweden)

    Casuyac Miqueas

    2016-01-01

    Full Text Available This study investigates the diffusion of hydrogen molecule physisorbed on the surface of silicene nanoribbon (SiNRusing the classical molecular dynamic (MD simulation in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator. The interactions between silicon atoms are modeled using the modified Tersoff potential, the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO potential for hydrogen – hydrogen interaction and the Lennard – Jones potential for the physisorbed H2 on SiNR. By varying the temperatures (60 K Δ 130 K, we observed that the Δxdisplacement of H2 on the surface SiNR shows a Brownian motion on a Lennard-Jones potential and a Gaussian probability distribution can be plotted describing the diffusion of H2. The calculated mean square displacement (MSD was approximately increasing in time and the activation energy barrier for diffusion has been found to be 43.23meV.

  15. Effects of irradiation crosslinking and molecular weight properties on crosslinked PP foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, D.; Yoon, K.J.; Baek, W.S.; Jung, Y.H. [Chungnam National University, Taejon (Korea); Lee, J.G.; Lee, K.I. [Honam Petrochemical Co., Taejon (Korea); Lee, J.H.; Kim, T.S. [Youngbo Chemical Co. Ltd., Ansung (Korea); Lee, K.Y. [Chungnam National University, Taejon (Korea)

    2002-07-01

    The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well. (author). 9 refs., 2 tabs., 15 figs.

  16. ms2: A molecular simulation tool for thermodynamic properties, new version release

    CERN Document Server

    Glass, Colin W; Rutkai, Gábor; Deublein, Stephan; Köster, Andreas; Carrión, Gabriela Guevara; Wafai, Amer; Horsch, Martin; Bernreuther, Martin F; Windmann, Thorsten; Hasse, Hans; Vrabec, Jadran

    2015-01-01

    A new version release (2.0) of the molecular simulation tool ms2 [S. Deublein et al., Comput. Phys. Commun. 182 (2011) 2350] is presented. Version 2.0 of ms2 features a hybrid parallelization based on MPI and OpenMP for molecular dynamics simulation to achieve higher scalability. Furthermore, the formalism by Lustig [R. Lustig, Mol. Phys. 110 (2012) 3041] is implemented, allowing for a systematic sampling of Massieu potential derivatives in a single simulation run. Moreover, the Green-Kubo formalism is extended for the sampling of the electric conductivity and the residence time. To remove the restriction of the preceding version to electro-neutral molecules, Ewald summation is implemented to consider ionic long range interactions. Finally, the sampling of the radial distribution function is added.

  17. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    OpenAIRE

    Singh, Jagmohan; Rattan, Satish

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The bas...

  18. Direct determination of three-phase contact line properties on nearly molecular scale

    OpenAIRE

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-01-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of ...

  19. Computational Study of the Structure and Mechanical Properties of the Molecular Crystal RDX

    Science.gov (United States)

    2012-11-01

    Thompson, D. L. Intermolecular Potential for the Hexahydro- 1,3,5-trinitro-1,3,5-s-triazine Crystal (RDX): A Crystal Packing, Monte Carlo, and...Molecular Dynamics Study. The Journal of Physical Chemistry B 1997, 101, 798–808. 40. Sewell, T. D.; Bennett, C. M. Monte Carlo Calculations of the...PDF INFORMATION CTR only) DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218 1 DIRECTOR US ARMY RESEARCH LAB

  20. Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations

    Science.gov (United States)

    Shaikh, Abdul Rajjak; Rajabzadeh, Saeid; Matsuo, Ryuichi; Takaba, Hiromitsu; Matsuyama, Hideto

    2016-04-01

    Polyvinyl chloride (PVC) membranes are widely used in water treatment because of their low cost and chemical stability. However, PVC membranes can become fouled, and this restricts their applications in membrane technology. In order to enhance the antifouling property of PVC membranes, copolymers such as poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) (poly(VC-co-PEGMA)) with different PEGMA segment percentages were synthesized in our previous work. Experimentally, it was observed that the poly(VC-co-PEGMA) copolymer has better antifouling properties than those of PVC membranes. Here, we explore effect of the PEGMA segment percentage on the surface hydration properties of poly(VC-co-PEGMA) copolymers. Density functional theory calculations and molecular dynamics simulations were carried out to understand the interactions between PVC and PEGMA. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. MD studies showed that increasing PEGMA percentage in the copolymer increases the interaction with water molecules, leading to improved resistance to fouling. The antifouling mechanism is also discussed with respect to surface hydration and water dynamicity. This study could form a basis for the systematic studies of polymeric membranes as well as their stability from the extent of solvent-polymer, solvent-solvent, and polymer-polymer interactions.

  1. Effect of radiation on the microstructure and mechanical property of ultrahigh molecular weight polyethylene used in orthopedic prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang [KAERI, Daejon (Korea, Republic of)

    2004-07-01

    The effect of radiation on the microstructure and mechanical property of ultra high molecular weight ployethylene (UHMWPE) used in orthopedic implants was investigated. The raw material used in this study was GUR 4150 ram extruded UHMWPE bar. The UHMWPE specimen was irradiated at 140{open_square} in oil and room temperature under nitrogen with different dosages of an electron beam (EB) for the purposes of enhancing the crosslinking extent of the polymer. Following irradiation at room temperature, the UHMWPE specimens were thermally treated at various temperature to eliminate all the remaining free radicals. Surface oxidation of the UHMWPE samples according to the irradiation and thermal treating conditions were verified by FTIR-ATR. An electron spin resonance (ESR) spectroscopic study was Undertaken to investigate the remaining radicals in UHMWPE. The crystalline structure and mechanical properties of the irradiated UHMWPE were compared after the crosslinking of the EB. The crystalline structure and degree of crystallinity of irradiated UHMWPE were investigated using DSC, SAXS and WAXD. Mechanical properties such as the tensile strength were measured. The polymer pin on a metal plate type testing apparatus was used to test the wear property. The melt-irradiated samples had a higher crosslinking extent compared with the room temperature-irradiated and the UHMWPE control. The crystallinity and lamellar thickness of UHMWPE irradiated at room temperature increased much more comparing with specimens irradiated at 140{open_square}. The melt-irradiated UHMWPE had a better wear resistance than the room temperature-irradiated and the UHMWPE control.

  2. Equilibrium properties of the reaction H2 ⇌ 2H by classical molecular dynamics simulations.

    Science.gov (United States)

    Skorpa, Ragnhild; Simon, Jean-Marc; Bedeaux, Dick; Kjelstrup, Signe

    2014-01-21

    We have developed a classical molecular dynamics model for the hydrogen dissociation reaction, containing two- and three-particle potentials derived by Kohen, Tully and Stillinger. Two fluid densities were investigated for a wide range of temperatures, and 11 fluid densities were considered for one temperature. We report the temperature range where the degree of reaction is significant, and also where a stable molecule dominates the population in the energy landscape. The three-particle potential, which is essential for the reaction model and seldom studied, together with the two-particle interaction lead to a large effective excluded volume diameter of the molecules in the molecular fluid. The three-particle interaction was also found to give a large positive contribution to the pressure of the reacting mixture at high density and/or low temperatures. From knowledge of the dissociation constant of the reaction and the fluid pressure, we estimated the standard enthalpy of the dissociation reaction to be 430 kJ mol(-1) (ρ = 0.0695 g cm(-3)) and 380 kJ mol(-1) (ρ = 0.0191 g cm(-3)). These values are in good agreement with the experimental vaule of 436 kJ mol(-1) under ambient pressure. The model is consistent with a Lennard-Jones model of the molecular fluid, and may facilitate studies of the impact of chemical reactions on transport systems.

  3. Structural and spectroscopic properties of the second generation phosphorus-viologen “molecular asterisk”

    Science.gov (United States)

    Furer, V. L.; Vandukov, A. E.; Katir, N.; Majoral, J. P.; El Kadib, A.; Caminade, A. M.; Bousmina, M.; Kovalenko, V. I.

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium (BFBP) molecule without counter ions PF6- does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  4. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    Science.gov (United States)

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  5. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  6. Chemically bonded hybrid systems from functionalized hydroxypyridine molecular bridge: characterization and photophysical properties.

    Science.gov (United States)

    Yan, Bing; Qian, Kai

    2009-01-01

    A series of novel photoactive hybrid materials with organic parts covalently linked to inorganic parts via the acylamino group have been assembled by sol-gel process. The organic parts as molecular bridge derive from alpha-hydroxypyridine (HP) functionalized by 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Finally homogeneous, molecular-based hybrid materials with different microstructure (uniform spherical or clubbed) are obtained, in which no phase separation is observed. This may be ascribed as the different coordination behavior of metal ions (Eu3+ (Tb3+) or Zn2+). Red emission of Eu-HP-Si, green emission of Tb-HP-Si and violet-blue luminescence of Zn-HP-Si hybrids can be achieved within these molecular-based hybrid materials. Besides, both Eu(Tb) and Zn are introduced into the same hybrid systems (Eu(Zn)-HP-Si or Tb(Zn)-HP-Si) through the covalent Si-O bond, whose sphere particle size can be modified. Especially the photoluminescence behavior can be enhanced, suggesting that intramolecular energy transfer takes place between inert Zn2+ and Eu3+ (Tb3+) in the covalently bonded hybrid systems.

  7. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  8. SYNTHESIS AND PROPERTIES OF HIGH MOLECULAR WEIGHT POLY(LACTIC ACID) AND ITS RESULTANT FIBERS

    Institute of Scientific and Technical Information of China (English)

    Wang-xi Zhang; Yan-zhi Wang

    2008-01-01

    Direct melt/solid polycondensation of lactic acid (LA) was carried out to obtain high molecular weight poly(lactic acid) (PLA) by a process using various catalysts in the first-step melt polycondensation, and followed solid polycondensation by using p-toulenesulfonic acid monohydrate (TSA) as the catalyst in the second step. Effects of various catalysts and reaction temperature on the molecular weight and crystallinity of resulting PLA polymers were examined. It was shown that SnCl2·2H2O/TSA, SnCl2·2H2O/succinic anhydride, and SnCl2·2H2O/maleic anhydride binary catalysts should be effective binary catalysts to obtain high molecular weight PLA of more than 1.2 × 105. A conventional melt spinning method was used to spin PLA fibers, which displayed tensile strength of (382.76±1.41) MPa and tensile modulus of (4.36±0.07) GPa.

  9. The Atlas3D Project -- XI. Dense molecular gas properties of CO-luminous early-type galaxies

    CERN Document Server

    Crocker, Alison; Bureau, Martin; Young, Lisa M; Davis, Timothy A; Bayet, Estelle; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Rchard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2011-01-01

    Surveying eighteen 12CO-bright galaxies from the ATLAS3D early-type galaxy sample with the Institut de Radio Astronomie Millim\\'etrique (IRAM) 30m telescope, we detect 13CO(1-0) and 13CO(2-1) in all eighteen galaxies, HCN(1-0) in 12/18 and HCO+(1-0) in 10/18. We find that the line ratios 12CO(1-0)/13CO(1-0) and 12CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular to atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the 12CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the 12CO(1- 0)/13CO(1-0), 12CO(2-1)/13CO(2-1) and HCN/HCO+(1-0) ratios. In particular, three galaxies ar...

  10. On the structural affinity of macromolecules with different biological properties: Molecular dynamics simulations of a series of TEM-1 mutants

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, Alessia Di [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Mazza, Fernando [Department of Health Sciences, Univ. of L’Aquila, 67010 L’Aquila (Italy); Daidone, Isabella [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Amicosante, Gianfranco; Perilli, Mariagrazia [Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Aschi, Massimiliano, E-mail: massimiliano.aschi@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy)

    2013-07-12

    Highlights: •We have performed molecular dynamics simulations of TEM-1 mutants. •Mutations effects on the mechanical properties are considered. •Mutants do not significantly alter the average enzymes structure. •Mutants produce sharp alterations in enzyme conformational repertoire. •Mutants also produce changes in the active site volume. -- Abstract: Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical–biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment.

  11. The JCMT Nearby Galaxies Legacy Survey X. Environmental Effects on the Molecular Gas and Star Formation Properties of Spiral Galaxies

    CERN Document Server

    Mok, Angus; Golding, J; Warren, B E; Israel, F P; Serjeant, S; Knapen, J H; Sanchez-Gallego, J R; Barmby, P; Bendo, G J; Rosolowsky, E; van der Werf, P

    2015-01-01

    We present a study of the molecular gas properties in a sample of 98 HI - flux selected spiral galaxies within $\\sim25$ Mpc, using the CO $J=3-2$ line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H$_{2}$ mass in the Virgo galaxies, despite their lower mean HI mass. This leads to a significantly higher H$_{2}$ to HI ratio for Virgo galaxies. Combining our data with complementary H$\\alpha$ star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H$_{2}$ masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative...

  12. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    Directory of Open Access Journals (Sweden)

    Mathias Sorieul

    2016-07-01

    Full Text Available Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  13. La gestion des adoptions internationales

    OpenAIRE

    Boéchat, Hervé

    2011-01-01

    Après les rumeurs nées lors du tsunami et le désastre avéré de L’Arche de Zoé, l’adoption – et plus généralement le sort des enfants – est devenue une préoccupation majeure en cas de catastrophe naturelle ou de conflit. Haïti, pays depuis longtemps ouvert à l’adoption internationale, n’a pas échappé à la polémique. Hervé Boéchat nous livre l’appréciation de son institution sur cet épisode qui n’a sans doute pas contribué à apaiser le ressentiment des Haïtiens contre la « communauté internati...

  14. Sharing Experiences of Intercountry Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko; McIlvenny, Paul

    are interactionally occasioned. Our special concern is with how the past is built into the present through memory work that is actualised and performed not just through language but also through embodied attention such as body posture, gaze and gestures. In other words, we study how the past is folded into the now...... the perspective of the kinds of work that talking about the past does in a specific interaction. Middleton & Brown (2005) extend this interactional perspective to include, on the one hand, the experience of being in the world (ie. duration), and, on the other hand, the use of mediational means (eg. language...... of this research is to better understand the relationships between multimodality, embodiment, interaction and affect. We present the results of our analysis of how the experiences of adoptive parents are (re)mediated in a Danish television documentary series following five prospective adoptive couples, not all...

  15. Revision of the Adoption Law

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    DECEMBER 29, 1991, saw thePresident of the People’sRepublic of China promulgatea new adoption law by Order 54, a lawwhich was introduced to the seventhNational People’s Congress at thetwenty-third meeting of its StandingCommittee and which took effect fromApril 1, 1992. This was the first suchadoption law in China and, althoughadoption did occur prior to itsimplementation, it was not then boundby legal measures or guarantee.

  16. Local electric fields and molecular properties in heterogeneous environments through polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2016-01-01

    (1PA and 2PA, respectively) properties of PRODAN-methanol clusters as well as the fluorescent protein DsRed. Our results demonstrate the necessity of accounting for both the dynamical reaction field and effective external field contributions to the local field in order to reproduce full quantum......In spectroscopies, the local field experienced by a molecule embedded in an environment will be different from the externally applied electromagnetic field, and this difference may significantly alter the response and transition properties of the molecule. The polarizable embedding (PE) model has...... previously been developed to model the local field contribution stemming from the direct molecule-environment coupling of the electromagnetic response properties of molecules in solution as well as in heterogeneous environments, such as proteins. Here we present an extension of this approach to address...

  17. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.

    Science.gov (United States)

    Lee, Hyun Ji Julie; Aiona, Paige Kuuipo; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.

  18. Effect of the molecular chain orientation on carrier transport and optical properties of polymer blends

    Science.gov (United States)

    Kažukauskas, V.; Čyras, V.; Pranaitis, M.; Apostoluk, A.; Rocha, L.; Sicot, L.; Raimond, P.; Sentein, C.

    2007-03-01

    We have investigated properties of poly(9-vinylcarbazole) (PVK) doped with 30% wt 4-dibutylamino-4'-nitrostilbene (DBANS), depending on the orientation of the polar DBANS molecules. Appearance of the orientation-induced built-in electrical field was proven optically by the Solid Electric Field Induced Second Harmonic Generation and electrically by Current-Voltage characterization. Modification of optical properties was evidenced by the spectral dependencies of absorption coefficient. The Thermally Stimulated Currents spectra demonstrated that carrier transport and trapping are affected, too. This paper has been presented at “ECHOS06”, Paris, 28 30 juin 2006.

  19. Substituent effects on molecular properties of dicarba-closo-dodecarborane derivatives.

    Science.gov (United States)

    Junqueira, Georgia M A; Sato, Fernando

    2014-07-01

    In this paper we study the role played by substituent effects on reactivity and NLO properties of ortho-, meta- and para- dicarba-closo-dodecarborane derivatives at B3LYP/6-31G(d,p) level of theory. In addition correlations with Hammett parameters of the substituents were established. In accordance with obtained results the reactivity properties of derivatives have not been significantly influenced by the isomer type, however the replaced para isomers were the most sensitive to NLO calculations. Moreover, the push-pull para isomers were found to be the most reactive and displayed the largest values of β tot and dipole moment.

  20. Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids.

    Science.gov (United States)

    Tong, Chinghang; Blanco, Mario; Goddard, William A; Seinfeld, John H

    2004-07-15

    Ambient particulate matter contains polar multifunctional oxygenates that partition between the vapor and aerosol phases. Vapor pressure predictions are required to determine the gas-particle partitioning of such organic compounds. We present here a method based on atomistic simulations combined with the Clausius-Clapeyron equation to predict the liquid vapor pressure, enthalpies of vaporization, and heats of sublimation of atmospheric organic compounds. The resulting temperature-dependent vapor pressure equation is a function of the heat of vaporization at the normal boiling point [deltaHvap(Tb)], normal boiling point (Tb), and the change in heat capacity (liquid to gas) of the compound upon phase change [deltaCp(Tb)]. We show that heats of vaporization can be estimated from calculated cohesive energy densities (CED) of the pure compound obtained from multiple sampling molecular dynamics. The simulation method (CED) uses a generic force field (Dreiding) and molecular models with atomic charges determined from quantum mechanics. The heats of vaporization of five dicarboxylic acids [malonic (C3), succinic (C4), glutaric (C5), adipic (C6), and pimelic (C7)] are calculated at 500 K. Results are in agreement with experimental values with an averaged error of about 4%. The corresponding heats of sublimation at 298 K are also predicted using molecular simulations. Vapor pressures of the five dicarboxylic acids are also predicted using the derived Clausius-Clapeyron equation. Predicted liquid vapor pressures agree well with available literature data with an averaged error of 29%, while the predicted solid vapor pressures at ambient temperature differ considerably from a recent study by Bilde et al. (Environ. Sci. Technol. 2003, 37, 1371-1378) (an average of 70%). The difference is attributed to the linear dependence assumption thatwe used in the derived Clausius-Clapeyron equation.

  1. A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS

    Energy Technology Data Exchange (ETDEWEB)

    Kamenetzky, J. [Also at Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA. (United States); Rangwala, N. [Visiting Scientist, Space Science and Astrobiology Division, NASA Ames Research Center. (United States); Glenn, J.; Maloney, P. R.; Conley, A., E-mail: jkamenetzky@as.arizona.edu [Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, 389-UCB, Boulder, CO (United States)

    2014-11-10

    The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and cool CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.

  2. DFT calculations on molecular structure, spectral analysis, multiple interactions, reactivity, NLO property and molecular docking study of flavanol-2,4-dinitrophenylhydrazone

    Science.gov (United States)

    Singh, Ravindra Kumar; Singh, Ashok Kumar

    2017-02-01

    A new flavanol-2,4-dinitrophenylhydrazone (FDNP) was synthesized and its structure was confirmed by FT-IR, FT-Raman, 1H NMR, mass spectrometry and elemental analysis. All quantum chemical calculations were carried out at level of density functional theory (DFT) with B3LYP functional using 6-311++ G (d,p) basis atomic set. UV-Vis absorption spectra for the singlet-singlet transition computed for fully optimized ground state geometry using Time-Dependent-Density Functional Theory (TD-DFT) with CAM-B3LYP functional was found to be in consistent with that of experimental findings. Analysis of vibrational (FT-IR and FT-Raman) spectrum and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. HOMO-LUMO analysis was performed and reactivity descriptors were calculated. Calculated global electrophilicity index (ω = 7.986 eV) shows molecule to be a strong electrophile. 1H NMR chemical shift calculated with the help of gauge-including atomic orbital (GIAO) approach shows agreement with experimental data. Various intramolecular interactions were analysed by AIM approach. DFT computed total first static hyperpolarizability (β0 = 189.03 × 10-30 esu) indicates that title molecule can be used as attractive future NLO material. Solvent induced effects on the NLO properties studied by using self-consistent reaction field (SCRF) method shows that β0 value increases with increase in solvent polarity. To study the thermal behaviour of title molecule, thermodynamic properties such as heat capacity, entropy and enthalpy change at various temperatures have been calculated and reported. Molecular docking results suggests title molecule to be a potential kinase inhibitor and might be used in future for designing of new anticancer drug.

  3. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  4. Molecular characterization of biochars and their influence on microbiological properties of soil

    Science.gov (United States)

    The composition and surface chemistry of carbon rich biochar materials is highly uncertain and believed to change with feedstock and biomass conversion process. The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N...

  5. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    Science.gov (United States)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  6. Bustin' Bunnies: An Adaptable Inquiry-Based Approach Introducing Molecular Weight and Polymer Properties

    Science.gov (United States)

    Mc Ilrath, Sean P.; Robertson, Nicholas J.; Kuchta, Robert J.

    2012-01-01

    Plastics are more prevalent in our society than ever before, yet the general public has a limited understanding of why plastics have properties that are vastly different from other common materials such as glass and ceramics. This lab is designed to introduce students to several introductory principles of polymer science and their relation to the…

  7. Calculation of molecular response properties with the second-order coupled perturbed electron propagator

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, M.S.; Pickup, B.T.; Wilton, D.J.

    2000-04-05

    The authors present the theory of the electron propagator perturbed by an external electric field and show how it can be used to calculate a variety of one-electron linear response properties that are accurate through second order in electron correlation. Some illustrative calculations are discussed.

  8. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches.

    Science.gov (United States)

    Rahimi, Hamid Reza; Arastoo, Mohammad; Ostad, Seyed Nasser

    2012-01-01

    Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms.

  9. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches

    Science.gov (United States)

    Rahimi, Hamid Reza; Arastoo, Mohammad; Ostad, Seyed Nasser

    2012-01-01

    Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms. PMID:24250463

  10. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.;

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  11. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics.

  12. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon.

    Science.gov (United States)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J

    2016-09-14

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  13. Static and dynamic properties of curved vapour-liquid interfaces by massively parallel molecular dynamics simulation

    CERN Document Server

    Horsch, Martin T; Vrabec, Jadran; Glass, Colin W; Niethammer, Christoph; Bernreuther, Martin F; Müller, Erich A; Jackson, George

    2011-01-01

    Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

  14. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    Science.gov (United States)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  15. QUANTUM-MECHANICAL PROPERTIES OF PROTON TRANSPORT IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    PANG XIAO-FENG; LI PING

    2000-01-01

    The dynamic equations of the proton transport along the hydrogen bonded molecular systems have been obtainedby using completely quantum-mechanical method to be based on new Hamiltonian and model we proposed. Somequantum-mechanical features of the proton-solitons have also been given in such a case. The alternate motion of twodefects resulting from proton transfer occurred in the systems can be explained by the results. The results obtainedshow that the proton-soliton has corpuscle feature and obey classical equations of motion, while the free soliton movesin uniform velocity along the hydrogen bonded chains.

  16. Effect of molecular diameters on state-to-state transport properties: The shear viscosity coefficient

    Science.gov (United States)

    Kustova, Elena V.; Kremer, Gilberto M.

    2015-09-01

    Shear viscosity coefficient is calculated for both equilibrium and strongly non-equilibrium state-to-state vibrational distributions taking into account increasing diameters of vibrationally excited molecules. Under conditions of local thermal equilibrium, the effect of vibrational excitation on the shear viscosity coefficient is found to be negligible for temperatures below 5000 K. For T > 10 000 K, the contribution of excited states becomes important. Under non-equilibrium conditions characteristic for shock heated and supersonic expanding flows vibrational level populations deviate strongly from the Boltzmann distribution. Nevertheless, estimated coupled effect of molecular size and non-Boltzmann distributions on the shear viscosity coefficient is negligible.

  17. Molecular beam epitaxy growth and optical properties of single crystal Zn3N2 films

    Science.gov (United States)

    Wu, Peng; Tiedje, T.; Alimohammadi, H.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Wang, Cong

    2016-10-01

    Single crystal Zn3N2 films with (100) orientation have been grown by plasma-assisted molecular beam epitaxy on MgO and A-plane sapphire substrates with in situ optical reflectance monitoring of the growth. The optical bandgap was found to be 1.25-1.28 eV and an electron Hall mobility as high as 395 cm2 V-1 s-1 was measured. The films were n-type with carrier concentrations in the 1018-1019 cm-3 range.

  18. Lanthanum Influence on EuAlO3 Perovskite Structural Properties: Experimental and Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Enrique Lima

    2012-01-01

    Full Text Available X-ray diffraction, 27Al MAS NMR, and FTIR spectra along with results of molecular dynamics simulations were used to characterise LaxEu1−xAlO3 perovskites for x=0.3,  0.1. Experimental and simulation results show that local changes in the perovskite-like structure can be achieved as lanthanum ions substitute europium ones. The introduction of La3+ ions in the EuAlO3 parent causes an increase in the mobility of oxygen network.

  19. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Yeo, Yee-Chia

    2016-08-01

    We investigated the compositional dependence of the near-bandgap dielectric function and the E0 critical point in pseudomorphic Ge1-xSnx alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E1 and E1+Δ1 transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  20. Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation

    Institute of Scientific and Technical Information of China (English)

    Chen Ming-Jun; Liang Ying-Chun; Li Hong-Zhu; Li Dan

    2006-01-01

    In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up the simulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63°(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1 GPa as others reports.

  1. a Molecular Approach to Electrolyte Solutions: Predicting Phase Behavior and Thermodynamic Properties of Single and Binary-Solvent Systems

    Science.gov (United States)

    Gering, Kevin Leslie

    A molecular formulation based on modern liquid state theory is applied to the properties and phase behavior of electrolyte systems containing volatile species. An electrolyte model based on the exponential modification of the Mean Spherical Approximation (EXP-MSA) is used to describe the cation-cation, cation-anion, and anion-anion distributions of the ionic species. This theory represents an improvement over the nonmodified MSA approach, and goes beyond the usual Debye-Huckel theory and Pitzer correlation for treating concentrated solutions. Electrolyte solutions such as water-salt, ammonia-salt, mixed salts, and mixed -solvent systems are investigated over a wide range of temperatures, pressures, and compositions. The usual salt properties, such as osmotic and mean activity coefficients and other thermodynamic properties (enthalpies), are calculated. The predictions are accurate to saturation limits. In addition, an iterative method is presented that is used to predict vapor-liquid equilibria (VLE) and thermodynamic properties of single-salt multisolvent electrolytes of the form solvent-cosolvent-salt. In this method, a local composition model (LCM) and EXP-MSA theory are combined with traditional phase equilibria relations to estimate the pressures and compositions of a vapor phase in equilibrium with a binary-solvent electrolyte. Also, a pseudo-solvent model is proposed as a means of obtaining a variety of averaged liquid phase electrolyte properties. To predict preferential solvation in mixed solvents, a general framework is developed that is based on predicted solvation numbers of each solvent. Preferential solvation will be shown to influence VLE. Results show that phase equilibria is accurately predicted by the above iterative method. Three mixed-solvent electrolyte systems are investigated: water -ethylene glycol-LiBr, ammonia-water-LiBr, and methanol -water-LiCl. Finally, the above electrolyte model is utilized in predicting design criteria for a single

  2. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids.

    Science.gov (United States)

    Kawser Hossain, Mohammed; Abdal Dayem, Ahmed; Han, Jihae; Yin, Yingfu; Kim, Kyeongseok; Kumar Saha, Subbroto; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2016-04-15

    Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.

  3. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids

    Directory of Open Access Journals (Sweden)

    Mohammed Kawser Hossain

    2016-04-01

    Full Text Available Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.

  4. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    CERN Document Server

    Wang, Ning; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-01-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in the quantum molecular dynamics simulations. The case of the phase space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics (ImQMD) model, the fusion excitation functions of $^{16}$O+$^{186}$W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with $Z=16-28$ are obser...

  5. Charge Density Analysis and Transport Properties of TTF Based Molecular Nanowires: A DFT Approach

    Directory of Open Access Journals (Sweden)

    Karuppannan Selvaraju

    2015-01-01

    Full Text Available The present study has been performed to understand the charge density distribution and the electrical characteristics of Au and thiol substituted tetrathiafulvalene (TTF based molecular nanowire. A quantum chemical calculation has been carried out using DFT method (B3LYP with the LANL2DZ basis set under various applied electric fields (EFs. The bond topological analysis characterizes the terminal Au–S and S–C bonds as well as all the bonds of central TTF unit of the molecule. The variation of electron density and Laplacian of electron density at the bond critical point of bonds for zero and different applied fields reveal the electron density distribution of the molecule. The molecular conformation, the variation of atomic charges and energy density distribution of the molecule have been analyzed for the various levels of applied EFs. The HOMO-LUMO gap calculated from quantum chemical calculations has been compared with the value calculated from the density of states. The variation of dipole moment due to the polarization effect and the I-V characteristics of the molecule for the various applied EFs have been well discussed.

  6. Computation of the physio-chemical properties and data mining of large molecular collections.

    Science.gov (United States)

    Cheng, Ailan; Diller, David J; Dixon, Steven L; Egan, William J; Lauri, George; Merz, Kenneth M

    2002-01-15

    Very large data sets of molecules screened against a broad range of targets have become available due to the advent of combinatorial chemistry. This information has led to the realization that ADME (absorption, distribution, metabolism, and excretion) and toxicity issues are important to consider prior to library synthesis. Furthermore, these large data sets provide a unique and important source of information regarding what types of molecular shapes may interact with specific receptor or target classes. Thus, the requirement for rapid and accurate data mining tools became paramount. To address these issues Pharmacopeia, Inc. formed a computational research group, The Center for Informatics and Drug Discovery (CIDD).* In this review we cover the work done by this group to address both in silico ADME modeling and data mining issues faced by Pharmacopeia because of the availability of a large and diverse collection (over 6 million discrete compounds) of drug-like molecules. In particular, in the data mining arena we discuss rapid docking tools and how we employ them, and we describe a novel data mining tool based on a ID representation of a molecule followed by a molecular sequence alignment step. For the ADME area we discuss the development and application of absorption, blood-brain barrier (BBB) and solubility models. Finally, we summarize the impact the tools and approaches might have on the drug discovery process.

  7. Tuning the electrical properties of Si nanowire field-effect transistors by molecular engineering.

    Science.gov (United States)

    Bashouti, Muhammad Y; Tung, Raymond T; Haick, Hossam

    2009-12-01

    Exposed facets of n-type silicon nanowires (Si NWs) fabricated by a top-down approach are successfully terminated with different organic functionalities, including 1,3-dioxan-2-ethyl, butyl, allyl, and propyl-alcohol, using a two-step chlorination/alkylation method. X-ray photoemission spectroscopy and spectroscopic ellipsometry establish the bonding and the coverage of these molecular layers. Field-effect transistors fabricated from these Si NWs displayed characteristics that depended critically on the type of molecular termination. Without molecules the source-drain conduction is unable to be turned off by negative gate voltages as large as -20 V. Upon adsorption of organic molecules there is an observed increase in the "on" current at large positive gate voltages and also a reduction, by several orders of magnitude, of the "off" current at large negative gate voltages. The zero-gate voltage transconductance of molecule-terminated Si NW correlates with the type of organic molecule. Adsorption of butyl and 1,3-dioxan-2-ethyl molecules improves the channel conductance over that of the original SiO(2)-Si NW, while adsorption of molecules with propyl-alcohol leads to a reduction. It is shown that a simple assumption based on the possible creation of surface states alongside the attachment of molecules may lead to a qualitative explanation of these electrical characteristics. The possibility and potential implications of modifying semiconductor devices by tuning the distribution of surface states via the functionality of attached molecules are discussed.

  8. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium.

    Science.gov (United States)

    Kress, J D; Cohen, James S; Kilcrease, D P; Horner, D A; Collins, L A

    2011-02-01

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code INFERNO. The INFERNO-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  9. Molecular properties of water-unextractable proteoglycans from Hypsizygus marmoreus and their in vitro immunomodulatory activities.

    Science.gov (United States)

    Bao, Hong Hui; Tarbasa, Mehdi; Chae, Hee Mun; You, Sang Guan

    2011-12-27

    Four proteoglycans were sequentially extracted from Hypsizygus marmoreus using 0.1 M NaOH (alkali-soluble proteoglycans [F1] and alkali-insoluble proteoglycans [F3]) and 0.1 M HCl (acid-soluble proteoglycans [F2] and acid-insoluble proteoglycans [F4]), and their structures and immunomodulatory activities were investigated. The proteoglycans were found to contain carbohydrates (19.8-82.4%) with various amounts of proteins (7.7-67.3%), and glucose was the major monosaccharide unit present, along with trace amounts of galactose. The molecular weights (Mw) and the radius of gyration (Rg) of these proteoglycans showed ranges of 16 × 10(4)-19,545 × 10(4) g/mol and 35-148 nm, respectively, showing significant variations in their molecular conformations. The backbones of F1 and F2 were mainly connected through a-(1→3), (1→4) and b-(1→6)-glycosidic linkages with some branches. The F1 and F2 proteoglycans significantly stimulated Raw264.7 cells to release nitric oxide (NO), prostaglandin E2 (PGE(2)) and various cytokines, such as IL-1β, TNF-α and IL-6 by inducing their mRNA expressions.

  10. Distinct kinetics of molecular gelation in a confined space and its relation to the structure and property of thin gel films.

    Science.gov (United States)

    Liu, Yu; Zhao, Wen-Jing; Li, Jing-Liang; Wang, Rong-Yao

    2015-03-28

    Thin films of molecular gels formed in a confined space have potential applications in transdermal delivery, artificial skin, molecular electronics, etc. The microstructures and properties of thin gel films can be significantly different from those of their bulk counterparts. However, so far a comprehensive understanding of the effects of spatial confinement on the molecular gelation kinetics, fiber network structure and related mechanical properties is still lacking. In this work, using rheological techniques, we investigated the effect of one-dimensional confinement on the formation kinetics of fiber networks in the molecular gelation process. Fractal analyses of the kinetic information in terms of an extended Dickinson model enabled us to describe quantitatively the distinct kinetic signature of molecular gelation. The structural features derived from gelation kinetics support well the fractal patterns of the fiber networks acquired by optical and electron microscopy. With the kinetics-structure correlation, we can gain an in-depth understanding of the confinement-induced differences in the structure and consequently the mechanical properties of a model molecular gelling system. Particularly, the confinement induced structural transition, from a three-dimensional, dense and compact spherulitic network composed of highly branched fibers to a quasi-two-dimensional sparse spherulitic network composed of less branched fibers and entangled fibrils at the boundary areas, renders a gel film to become less stiff but more ductile. Our study suggests here a new strategy of engineering the fiber network microstructure to achieve functional gel films with unusual but useful properties.

  11. Effects of molecular weight and ratio of guluronic acid to mannuronic acid on the antioxidant properties of sodium alginate fractions prepared by radiation-induced degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Murat, E-mail: msen@hacettepe.edu.t [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, 06800 Ankara (Turkey)

    2011-01-15

    In this study, the effects of the molecular weight and ratio of guluronic acid (G) to mannuronic acid (M), G/M, of some sodium alginate (NaAlg) fractions on their antioxidative properties were investigated. Low-molecular-weight-fractions with various G/M were prepared by gamma radiation-induced degradation of NaAlg. Change in their molecular weight was monitored. Antioxidant properties of the fractions with various molecular weight and G/M were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH{sup {center_dot}}). 50% inhibition concentrations of the 50 kGy-irradiated NaAlgs having molecular weights of 20.5, 17.7, and 16.0 kDa were found to be 11.0, 18.0, and 24.0 mg/ml, respectively, whereas the fractions of the same molecular weight with a lower G/M exhibited a better DPPH{sup {center_dot}}scavenging activity. The results demonstrated that its molecular weight and G/M were important factors in controlling the antioxidant properties of NaAlg.

  12. Experimental and DFT studies of solvent effects on molecular structure and physical properties of Dipyridylamine pyridine based ligand

    Science.gov (United States)

    Bilkan, Mustafa Tuğfan; Şahin, Onur; Yurdakul, Şenay

    2017-04-01

    The solvent effects on molecular structure, electronic, vibrational and thermochemical properties of 2,2‧-Dipyridylamine were investigated by using experimental and theoretical methods. 2,2‧-Dipyridylamine molecule was selected for this study intentionally because it has two pyridyl rings connected by amine bridge. This allows to change the stable equilibrium geometry, even the slightest effects. Dichloromethane was chosen as solvent. The reason for this selection is to examine whether the chlorine atoms make hydrogen bonds with the ligand atoms. For this purpose, firstly 2,2‧-Dipyridylamine solution was prepared and characterized by FT-IR and FT-Raman spectroscopy. Secondly, crystal structure of 2,2‧-Dipyridylamine was obtained to compare with the calculated geometric parameters. The crystal structure was analyzed by Single Crystal X-Ray diffraction methods. Density Functional Theory calculations were conducted with B3LYP functional and 6-31G(d) basis set. The theoretical vibrational properties of optimized geometric structure were computed in vapor and solvation phases. Two different theoretical approaches were discussed, based on the experimental results. It can be seen from the experimental and theoretical studies that the structural, vibrational, thermochemical and electronic properties are dependent on the solvent effects for selected structure. Furthermore, the chlorine atoms of Dichloromethane do not make hydrogen bonds with the ligand atoms.

  13. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury

    2017-02-01

    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  14. Effect of temperature on the EPR properties of a rhamnose alkoxy radical: a DFT molecular dynamics study.

    Science.gov (United States)

    Pauwels, Ewald; Verstraelen, Toon; Waroquier, Michel

    2008-05-01

    It has been shown previously that two distinctive variants (called RHop and RO4) exist of the radiation-induced rhamnose alkoxy radical. Density functional theory (DFT) calculations of the electron paramagnetic resonance (EPR) properties were found to be consistent with two separate measurements at different temperatures [E. Pauwels, R. Declerck, V. Van Speybroeck, M. Waroquier, Radiat. Res., in press]. However, the agreement between theory and experiment was only of a qualitative nature, especially for the latter radical. In the present work, it is examined whether this residual difference between theoretical and experimental spectroscopic properties can be explained by explicitly accounting for temperature in DFT calculations. With the aid of ab-initio molecular dynamics, a temperature simulation was conducted of the RO4 variant of the rhamnose alkoxy radical. At several points along the MD trajectory, g and hyperfine tensors were calculated, yielding time (and temperature) dependent mean spectroscopic properties. The effect of including temperature is evaluated but found to be within computational error.

  15. The PdBI arcsecond whirlpool survey (PAWS): Environmental dependence of giant molecular cloud properties in M51

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, Dario; Hughes, Annie; Schinnerer, Eva; Meidt, Sharon E. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Pety, Jérôme; Dumas, Gaëlle; Schuster, Karl F. [Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d' Hères (France); Dobbs, Clare L. [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); García-Burillo, Santiago [Observatorio Astronómico Nacional - OAN, Observatorio de Madrid Alfonso XII, 3, E-28014 Madrid (Spain); Thompson, Todd A. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Kramer, Carsten [Instituto Radioastronomía Milimétrica, Av. Divina Pastora 7, Nucleo Central, E-18012 Granada (Spain)

    2014-03-20

    Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total {sup 12}CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ∼30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the {sup 12}CO(1-0) emission in molecule-rich environments, such as M51's inner disk.

  16. Tailoring Pull-out Properties of Single-Walled Carbon Nanotube Bundles by Varying Binding Structures through Molecular Dynamics Simulation.

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2014-08-12

    Single-walled carbon nanotubes (SWCNTs) have demonstrated a remarkable capacity for self-assembly into nanobundles through intermolecular van der Waals interactions, bestowing these agglomerates extraordinary mechanical, thermal, and electrical properties. However, how to improve the binding ability of SWCNT bundles to mitigate the delamination and sliding effects between individual nanotubes remains to be further investigated. By utilizing molecular dynamics simulation, here we present the construction of SWCNT bundles with discrete cylindrical and continuous helical binders by noncovalent coating of the bundle surface with sp(2)-hybridized carbon networks. Meanwhile, by modifying the binding potentials between the binder and SWCNT bundles to mimic the different binding types actually used, the bound SWCNT bundle presents a variety of distinct mechanical properties unmatched by unbound bundles. The pull-out tests with discrete binders portray an intriguing force-displacement curve which can help determine the number of discrete binders used in the system. SWCNT bundles with binders depict unique mechanical properties which can differentiate them from unbound SWCNT bundles. These findings provide compelling evidence that bound SWCNT bundles will open up novel avenues for a variety of applications, especially in nanocomposites.

  17. Friction and wear properties of ultra-high molecular mass polyethylene reinforced with Al2O3 nano-particle

    Institute of Scientific and Technical Information of China (English)

    FAN Dong-li; XIONG Dang-sheng

    2004-01-01

    The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting property and tribological properties of the Al2O3-UHMMPE composites under dry friction sliding against both stainless steel and Ti-6Al-4V alloy was investigated. The morphologies of the worn surfaces of composites were observed with optical microscope. The results show that, wetting property and wear resistance of the composites are improved by filling Al2O3, while the friction coefficient is decreased largely under dry friction as compared with that of the unfilled UHMMPE. This is attributed to the reinforcing function of the nano-powder of Al2O3 in the composites. The wear of UHMMPE is dominated by plowing, plastic deformation and fatigue wear; while the Al2O3-UHMMPE composites are characterized by the mild fatigue wear.

  18. Molecular Structure-Based Methods of Property Prediction in Application to Lipids: A Review and Refinement

    DEFF Research Database (Denmark)

    Cunico, Larissa; Hukkerikar, Amol; Ceriani, Roberta;

    2013-01-01

    The paper is a review of the combined group contribution (GC)–atom connectivity index (CI) approachfor prediction of physical and thermodynamic properties of organic chemicals and their mixtures withspecial emphasis on lipids. The combined approach employs carefully selected datasets of different...... dependent, have been developed. For mixtures, properties related to phase equilibria aremodeled with GE-based models (UNIQUAC, UNIFAC, NRTL, and combined UNIFAC-CI method). The col-lected phase equilibrium data for VLE and SLE have been tested for thermodynamic consistency togetherwith a performance...... evaluation of the GE-models. The paper also reviews the role of the databases andthe mathematical and thermodynamic consistency of the measured/estimated data and the predictivenature of the developed models....

  19. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials

    Science.gov (United States)

    Niu, Mei; Liu, Xuguang; Dai, Jinming; Hou, Wensheng; Wei, Liqiao; Xu, Bingshe

    2012-02-01

    Wool fiber was modified by ultraviolet irradiation (UV) and functionalized by grafting antibacterial agent. The structure and properties of antibacterial wool fiber were discussed in detail. The secondary structure changes and crystal structure were analyzed based on Fourier Transformation Raman Spectrometry (FTR) and X-ray diffraction (XRD). The results show that the disordered degree of UV-treated sample was increased and the antibacterial sample became more oriented. Compared with parent wool fiber, the antibacterial wool fiber was improved in mechanical property. The force, tensile strength and elongation were increased by 18%, 16%, and 7%, respectively. Also, the anti-shrinkage performance was increased because of the decrease in the directional frictional effect (DFE).

  20. Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale

    Directory of Open Access Journals (Sweden)

    Ziang Jing

    2016-08-01

    Full Text Available The doping effect of graphene nanoplatelets (GNPs on electrical insulation properties of polyethylene (PE was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT and the non-equilibrium Green’s function (NEGF method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials.