WorldWideScience

Sample records for administration depletes mitochondrial

  1. Mitochondrial DNA depletion analysis by pseudogene ratioing.

    Science.gov (United States)

    Swerdlow, Russell H; Redpath, Gerard T; Binder, Daniel R; Davis, John N; VandenBerg, Scott R

    2006-01-30

    The mitochondrial DNA (mtDNA) depletion status of rho(0) cell lines is typically assessed by hybridization or polymerase chain reaction (PCR) experiments, in which the failure to hybridize mtDNA or amplify mtDNA using mtDNA-directed primers suggests thorough mitochondrial genome removal. Here, we report the use of an mtDNA pseudogene ratioing technique for the additional confirmation of rho0 status. Total genomic DNA from a U251 human glioma cell line treated with ethidium bromide was amplified using primers designed to anneal either mtDNA or a previously described nuclear DNA-embedded mtDNA pseudogene (mtDNApsi). The resultant PCR product was used to generate plasmid clones. Sixty-two plasmid clones were genotyped, and all arose from mtDNApsi template. These data allowed us to determine with 95% confidence that the resultant mtDNA-depleted cell line contains less than one copy of mtDNA per 10 cells. Unlike previous hybridization or PCR-based analyses of mtDNA depletion, this mtDNApsi ratioing technique does not rely on interpretation of a negative result, and may prove useful as an adjunct for the determination of rho0 status or mtDNA copy number.

  2. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  3. Adult mitochondrial DNA depletion syndrome with mild manifestations

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2013-06-01

    Full Text Available Mitochondrial DNA depletion syndrome (MDS is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece, developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered.

  4. Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis

    Directory of Open Access Journals (Sweden)

    Stephen W.G. Tait

    2013-11-01

    Full Text Available Programmed necrosis (or necroptosis is a form of cell death triggered by the activation of receptor interacting protein kinase-3 (RIPK3. Several reports have implicated mitochondria and mitochondrial reactive oxygen species (ROS generation as effectors of RIPK3-dependent cell death. Here, we directly test this idea by employing a method for the specific removal of mitochondria via mitophagy. Mitochondria-deficient cells were resistant to the mitochondrial pathway of apoptosis, but efficiently died via tumor necrosis factor (TNF-induced, RIPK3-dependent programmed necrosis or as a result of direct oligomerization of RIPK3. Although the ROS scavenger butylated hydroxyanisole (BHA delayed TNF-induced necroptosis, it had no effect on necroptosis induced by RIPK3 oligomerization. Furthermore, although TNF-induced ROS production was dependent on mitochondria, the inhibition of TNF-induced necroptosis by BHA was observed in mitochondria-depleted cells. Our data indicate that mitochondrial ROS production accompanies, but does not cause, RIPK3-dependent necroptotic cell death.

  5. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    Science.gov (United States)

    ... Munnich A, Rötig A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007 Jun;39(6):776-80. Epub 2007 May 7. Citation on PubMed GeneReview: RRM2B-Related Mitochondrial Disease Pontarin G, Ferraro P, Bee L, Reichard P, ...

  6. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion

    DEFF Research Database (Denmark)

    Miller, Chaya; Wang, Liya; Ostergaard, Elsebet;

    2011-01-01

    SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform...... encoded by SUCLG2, and the association with mitochondrial nucleoside diphosphate kinase (NDPK), is a plausible link. We have investigated this relationship by studying SUCLA2 deficient fibroblasts derived from patients and detected normal mtDNA content and normal NDPK activity. However, knockdown of SUCLG...... and that mitochondrial NDPK is involved. Although results pertain to a cell culture system, the findings might explain the pathomechanism and tissue specificity in mtDNA depletion caused by defective SUCLA2....

  7. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Oda, Hideaki [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.

  8. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion.

    Science.gov (United States)

    Spinazzola, Antonella; Viscomi, Carlo; Fernandez-Vizarra, Erika; Carrara, Franco; D'Adamo, Pio; Calvo, Sarah; Marsano, René Massimiliano; Donnini, Claudia; Weiher, Hans; Strisciuglio, Pietro; Parini, Rossella; Sarzi, Emmanuelle; Chan, Alicia; DiMauro, Salvatore; Rötig, Agnes; Gasparini, Paolo; Ferrero, Iliana; Mootha, Vamsi K; Tiranti, Valeria; Zeviani, Massimo

    2006-05-01

    The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.

  9. Clinical variability in neurohepatic syndrome due to combined mitochondrial DNA depletion and Gaucher disease

    Directory of Open Access Journals (Sweden)

    Julie Harvengt

    2014-01-01

    Full Text Available A 1-year-old girl born to consanguineous parents presented with unexplained liver failure, leading to transplantation at 19 months. Subsequent partial splenectomy for persistent cytopenia showed the presence of foamy cells, and Gaucher disease was confirmed by homozygosity for the p.Leu483Pro mutation in the GBA gene. She was treated by enzyme replacement therapy (ERT. Clinical follow-up showed mild developmental delay, strabismus, nystagmus and oculomotor apraxia. Biochemical studies revealed multiple respiratory chain deficiencies and a mosaic pattern of deficient complex IV immunostaining in liver and fibroblast. Molecular analysis identified a mtDNA depletion syndrome due to the homozygous p.Pro98Leu mutation in MPV17. A younger sister unaffected by mtDNA depletion, presented with pancytopenia and hepatosplenomegaly. ERT for Gaucher disease resulted in visceral normalization without any neurological symptom. A third sister, affected by both conditions, had marked developmental delay, strabismus and ophthalmoplegia but no liver cirrhosis. In conclusion, intrafamilal variability occurs in MPV17-related disease. The combined pathological effect of Gaucher and mitochondrial diseases can negatively impact neurological and liver functions and influence the outcome in consanguineous families. The immunocytochemical staining of OXPHOS protein in tissues and cultured cells is a powerful tool revealing mosaic pattern of deficiency pointing to mtDNA-related mitochondrial disorders.

  10. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Science.gov (United States)

    Shen, Bo; He, Pei-Jie; Shao, Chun-Lin

    2013-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  11. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Directory of Open Access Journals (Sweden)

    Bo Shen

    Full Text Available Norcantharidin (NCTD, a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM, the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN. Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen expression, destruction of mitochondrial membrane potential (MMP, down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  12. A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria

    DEFF Research Database (Denmark)

    Østergaard, Elsebet; Schwartz, Marianne; Batbayli, Mustafa;

    2010-01-01

    Mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria is associated with mutations in SUCLA2, the gene encoding a beta subunit of succinate-CoA ligase, where 17 patients have been reported. Mutations in SUCLG1, encoding the alpha subunit of the enzyme, have been reported...

  13. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    Energy Technology Data Exchange (ETDEWEB)

    Villarroya, Joan, E-mail: joanvillarroya@gmail.com [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Institut de Recerca l' Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Lara, Mari-Carmen [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Department of Neurology, Columbia University Medical Center, New York, NY (United States); Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII (Spain); Dorado, Beatriz [Department of Neurology, Columbia University Medical Center, New York, NY (United States); Garrido, Marta [Unitat de Biologia Cel.lular i Molecular, IMIM-Hospital del Mar, Barcelona (Spain); Garcia-Arumi, Elena [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII (Spain); Meseguer, Anna [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Hirano, Michio [Department of Neurology, Columbia University Medical Center, New York, NY (United States); Vila, Maya R. [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain)

    2011-04-08

    Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity

  14. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Elizabeth eMcCormick

    2015-06-01

    Full Text Available Desmin (DES is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children’s Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity and mitochondrial DNA (35% of control mean. His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for the otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin

  15. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA.

    Science.gov (United States)

    McCormick, Elizabeth M; Kenyon, Lawrence; Falk, Marni J

    2015-01-01

    Desmin (DES) is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children's Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity) and mitochondrial DNA (35% of control mean). His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for this otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin-related disease.

  16. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  17. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    Science.gov (United States)

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.

  18. Evaluation of simplified stream-aquifer depletion models for water rights administration

    Science.gov (United States)

    Sophocleous, Marios; Koussis, Antonis; Martin, J.L.; Perkins, S.P.

    1995-01-01

    We assess the predictive accuracy of Glover's (1974) stream-aquifer analytical solutions, which are commonly used in administering water rights, and evaluate the impact of the assumed idealizations on administrative and management decisions. To achieve these objectives, we evaluate the predictive capabilities of the Glover stream-aquifer depletion model against the MODFLOW numerical standard, which, unlike the analytical model, can handle increasing hydrogeologic complexity. We rank-order and quantify the relative importance of the various assumptions on which the analytical model is based, the three most important being: (1) streambed clogging as quantified by streambed-aquifer hydraulic conductivity contrast; (2) degree of stream partial penetration; and (3) aquifer heterogeneity. These three factors relate directly to the multidimensional nature of the aquifer flow conditions. From these considerations, future efforts to reduce the uncertainty in stream depletion-related administrative decisions should primarily address these three factors in characterizing the stream-aquifer process. We also investigate the impact of progressively coarser model grid size on numerically estimating stream leakage and conclude that grid size effects are relatively minor. Therefore, when modeling is required, coarser model grids could be used thus minimizing the input data requirements.

  19. Depletion of Mitofusin-2 Causes Mitochondrial Damage in Cisplatin-Induced Neuropathy.

    Science.gov (United States)

    Bobylev, Ilja; Joshi, Abhijeet R; Barham, Mohammed; Neiss, Wolfram F; Lehmann, Helmar C

    2017-01-21

    Sensory neuropathy is a relevant side effect of the antineoplastic agent cisplatin. Mitochondrial damage is assumed to play a critical role in cisplatin-induced peripheral neuropathy, but the pathomechanisms underlying cisplatin-induced mitotoxicity and neurodegeneration are incompletely understood. In an animal model of cisplatin-induced neuropathy, we determined in detail the extent and spatial distribution of mitochondrial damage during cisplatin treatment. Changes in the total number of axonal mitochondria during cisplatin treatment were assessed in intercostal nerves from transgenic mice that express cyan fluorescent protein. Further, we explored the impact of cisplatin on the expression of nuclear encoded molecules of mitochondrial fusion and fission, including mitofusin-2 (MFN2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (DRP1). Cisplatin treatment resulted in a loss of total mitochondrial mass in axons and in an abnormal mitochondrial morphology including atypical enlargement, increased vacuolization, and loss of cristae. These changes were observed in distal and proximal nerve segments and were more prominent in axons than in Schwann cells. Transcripts of fusion and fission proteins were reduced in distal nerve segments. Significant reduced expression levels of the fusion protein MFN2 was detected in nerves of cisplatin-exposed animals. In summary, we provide for the first time an evidence that cisplatin alters mitochondrial dynamics in peripheral nerves. Loss of MFN2, previously implicated in the pathogenesis of other neurodegenerative diseases, also contributes to the pathogenesis in cisplatin-induced neuropathy.

  20. Liquid chromatographic determination and depletion profile of oxytetracycline in milk after repeated intramuscular administration in sheep.

    Science.gov (United States)

    Fletouris, Dimitrios J; Papapanagiotou, Elias P; Nakos, Dimitrios S

    2008-12-01

    A simple, rapid and specific ion-pair liquid chromatographic method for the routine determination of the marker residue of oxytetracycline in sheep milk, at levels as low as 20 microg/kg, has been developed. Milk samples were acidified and extracted with acetonitrile. The extracts were purified by treatment with ammonium sulphate and concentrated into diluted phosphoric acid. Separation was carried out isocratically on a Nucleosil C(18) column using a mobile phase that contained both positively and negatively charged pairing ions. The in-house validated method gave overall recoveries and overall relative standard deviations better than 86% and 4.6%, respectively. The method was successfully applied to study the depletion of oxytetracycline in sheep milk and to estimate the withdrawal period after intramuscular administration of a commercial oxytetracycline formulation.

  1. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance

    NARCIS (Netherlands)

    Heeman, B.; Haute, C. Van den; Aelvoet, S.A.; Valsecchi, F.; Rodenburg, R.J.T.; Reumers, V.; Debyser, Z.; Callewaert, G.; Koopman, W.J.H.; Willems, P.H.G.M.; Baekelandt, V.

    2011-01-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the

  2. Coenzyme Q10 Administration Increases Brain Mitochondrial Concentrations and Exerts Neuroprotective Effects

    Science.gov (United States)

    Matthews, Russell T.; Yang, Lichuan; Browne, Susan; Baik, Myong; Flint Beal, M.

    1998-07-01

    Coenzyme Q10 is an essential cofactor of the electron transport chain as well as a potent free radical scavenger in lipid and mitochondrial membranes. Feeding with coenzyme Q10 increased cerebral cortex concentrations in 12- and 24-month-old rats. In 12-month-old rats administration of coenzyme Q10 resulted in significant increases in cerebral cortex mitochondrial concentrations of coenzyme Q10. Oral administration of coenzyme Q10 markedly attenuated striatal lesions produced by systemic administration of 3-nitropropionic acid and significantly increased life span in a transgenic mouse model of familial amyotrophic lateral sclerosis. These results show that oral administration of coenzyme Q10 increases both brain and brain mitochondrial concentrations. They provide further evidence that coenzyme Q10 can exert neuroprotective effects that might be useful in the treatment of neurodegenerative diseases.

  3. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2014-02-01

    Full Text Available Mutations in subunits of succinyl-CoA synthetase/ligase (SCS, a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA, and mitochondrial DNA (mtDNA depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo, which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5. Mutant placenta and embryonic (e17.5 brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%. However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction.

  4. Mitochondrial depletion causes neonatal-onset leigh syndrome, myopathy, and renal tubulopathy.

    Science.gov (United States)

    Lee, Inn-Chi; Lee, Ni-Chung; Lu, Jang-Jih; Su, Pen-Hua

    2013-03-01

    The authors describe a newborn with postnatal myopathy who subsequently developed feeding difficulties, ophthalmoplegia, ptosis, encephalopathy, and seizures. She became ventilator dependent after sudden apnea. The myopathy was without ragged red fibers in the muscle biopsy. An electron transport chain study showed a markedly generalized low level of enzyme activity, particularly in complexes I, I + III, and IV. An initial electroencephalogram finding was normal; subsequent electroencephalograms showed suppression bursts. The mitochondrial copy number in skeletal muscle was 2% of normal.

  5. Maternal uniparental disomy of chromosome 2 in a patient with a DGUOK mutation associated with hepatocerebral mitochondrial DNA depletion syndrome.

    Science.gov (United States)

    Haudry, Coralie; de Lonlay, Pascale; Malan, Valerie; Bole-Feysot, Christine; Assouline, Zahra; Pruvost, Solenn; Brassier, Anais; Bonnefont, Jean-Paul; Munnich, Arnold; Rötig, Agnès; Lebre, Anne-Sophie

    2012-12-01

    We report maternal uniparental disomy of chromosome 2 (matUPD2) in a 9-month-old girl presenting with hepatocerebral mitochondrial DNA depletion syndrome. This patient was homozygous for the c.352C>T (p.Arg118Cys) mutation in DGUOK gene. The proband's mother was heterozygous for the mutation was absent in DNA of the father. For proband, the absence of paternal contribution at the DGUOK locus prompted us to exclude intragenic DGUOK deletion of the paternal allele with Multiplex ligation-dependent probe amplification (MLPA) analysis. We also excluded non-paternity by studying various markers at different loci. Then we performed an analysis of copy number variations and absence of heterozygosity (AOH) on the proband DNA using high resolution oligonucleotides microarray. Several large regions of AOH with no copy number change were detected on chromosome 2 and one of these AOH regions encompassed DGUOK gene. These results were confirmed with haplotype analysis using polymorphic markers. Informative SNPs and microsatellites markers spanning the whole chromosome 2 showed a matUPD2 with heterodisomy and isodisomy regions, the absence of paternal allele and presence of two maternal alleles, with only one maternal allele on the region of DGUOK locus in 2p13.1. This is the first demonstration of matUPD2 with segmental isodisomy at 2p13.1 locus in hepatocerebral mitochondrial DNA depletion syndrome. The identification of UPD2 will impact genetic counseling for the proband's parents. Because the recurrence risk for UPD2 is very low, the risk for disease in further offspring for this couple is negligible.

  6. Whole exome sequencing identifies a homozygous POLG2 missense variant in an infant with fulminant hepatic failure and mitochondrial DNA depletion.

    Science.gov (United States)

    Varma, Hemant; Faust, Phyllis L; Iglesias, Alejandro D; Lagana, Stephen M; Wou, Karen; Hirano, Michio; DiMauro, Salvatore; Mansukani, Mahesh M; Hoff, Kirsten E; Nagy, Peter L; Copeland, William C; Naini, Ali B

    2016-10-01

    Mitochondrial DNA (mtDNA) depletion syndrome manifests as diverse early-onset diseases that affect skeletal muscle, brain and liver function. Mutations in several nuclear DNA-encoded genes cause mtDNA depletion. We report on a patient, a 3-month-old boy who presented with hepatic failure, and was found to have severe mtDNA depletion in liver and muscle. Whole-exome sequencing identified a homozygous missense variant (c.544C > T, p.R182W) in the accessory subunit of mitochondrial DNA polymerase gamma (POLG2), which is required for mitochondrial DNA replication. This variant is predicted to disrupt a critical region needed for homodimerization of the POLG2 protein and cause loss of processive DNA synthesis. Both parents were phenotypically normal and heterozygous for this variant. Heterozygous mutations in POLG2 were previously associated with progressive external ophthalmoplegia and mtDNA deletions. This is the first report of a patient with a homozygous mutation in POLG2 and with a clinical presentation of severe hepatic failure and mitochondrial depletion.

  7. Tissue deposition and residue depletion of melamine in fattening pigs following oral administration.

    Science.gov (United States)

    Wang, Wei; Chen, Hong; Yu, Bing; Mao, Xiangbing; Chen, Daiwen

    2014-01-01

    The adulteration of animal feed as well as milk products with melamine has led to concerns about the ability to establish appropriate withdrawal intervals to ensure food safety. Two experiments were conducted in this study. The first was to investigate the deposition and depletion of melamine in blood and tissues of pigs exposed to adulterated feed with high doses of melamine. A total of 500 or 1000 mg kg(-1) melamine was added to the diet for fattening pigs (initial BW = ±60.24 kg). Melamine residues were detected in tissues (brain, duodenum, liver, heart, muscle and kidney) by LC-MS/MS. Dose-dependent effects were found between melamine residual concentration and its dose in feed. Five days after the withdrawal of melamine from the diets, the residue concentration in tissues fell below 2.5 mg kg(-1). In the second experiment, blood samples were taken at different time points from fattening pigs (BW = 100 kg) fed with adulterated feed with 1000 mg kg(-1) of melamine for 42 days. Results from the pharmacokinetics analysis showed that it would take 83 h for the melamine level in plasma depleting to the safe level of 50 ng ml(-1) after an expose of 1000 mg kg(-1) melamine contaminated feed for 42 days.

  8. Glutathione deficiency in Gclm null mice results in complex I inhibition and dopamine depletion following paraquat administration.

    Science.gov (United States)

    Liang, Li-Ping; Kavanagh, Terrance J; Patel, Manisha

    2013-08-01

    Depletion of glutathione has been shown to occur in autopsied brains of patients with Parkinson's disease (PD) and in animal models of PD. The goal of this study was to determine whether chronic glutathione (GSH) deficiency per se resulted in complex I inhibition and/or dopamine depletion and whether these indices were further potentiated by aging or administration of paraquat, a redox-cycling herbicide that produces a PD-like neurodegeneration model in rodents (Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A., and Federoff, H. J. [1999]. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 823, 1-10; McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., and Di Monte, D. A. [2002]. Environmental risk factors and Parkinson's disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis. 10, 119-127.) Deletion of the rate-limiting GSH synthesis gene, glutamate-cysteine ligase modifier subunit (Gclm), leads to significantly lower GSH concentrations in all tissues including brain. Gclm null (Gclm (-/-)) mice provide a model of prolonged GSH depletion to explore the relationship between GSH, complex I inhibition, and dopamine loss in vivo. Despite ~60% depletion of brain GSH in Gclm (-/-) mice of ages 3-5 or 14-16 months, striatal complex I activity, dopamine levels, 3-nitrotyroine/tyrosine ratios, aconitase activity, and CoASH remained unchanged. Administration of paraquat (10mg/kg, twice/week, 3 weeks) to 3- to 5-month-old Gclm (-/-) mice resulted in significantly decreased aconitase activity, complex I activity, and dopamine levels but not in 3- to 5-month-old Gclm (+/+) mice. Furthermore, paraquat-induced inhibition of complex I and aconitase activities in Gclm (-/-) mice was observed in the striatum but not in the cortex. The results suggest that chronic deficiency of GSH in Gclm (-/-) mice was not

  9. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC on this process.Human dental pulp cells (hDPCs were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS and depletion of glutathione (GSH, differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.

  10. Depleted skeletal muscle mitochondrial DNA, hyperlactatemia, and decreased oxidative capacity in HIV-infected patients on highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, Steen B;

    2005-01-01

    hyperlactatemia is associated with depletion of skeletal muscle (sm)-mtDNA and decreased oxidative capacity in HIV-infected patients on NRTI based highly active antiretroviral therapy (HAART) and whether HIV infection itself is associated with sm-mtDNA depletion. Sm-mtDNA was determined in 42 HIV...... in part could be mediated through an enhanced pro-inflammatory response....

  11. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function.

    Science.gov (United States)

    Weisberg, E L; Koya, K; Modica-Napolitano, J; Li, Y; Chen, L B

    1996-02-01

    The effects of in vivo administration of a pharmacologically toxic dose of the lipophilic cationic compound, MKT-077, were investigated in selected vital organs of the rat. MKT-077 (15 mg/kg body weight), administered by bolus i.v. injection every day for 5 days, did not detectably influence rat heart and kidney mitochondrial respiration. Although the same dosage of MKT-077 significantly decreased respiratory rates in rat liver mitochondria relative to untreated controls, complete recovery was evident within 3 days following drug withdrawal. Whereas the mitochondrial DNA of rat kidney and liver appeared to be unaffected by MKT-077 treatment, levels of heart mtDNA were noticeably less than control levels in the immediate interval following drug administration. However, this latter effect was partially reversed as early as 10 days following treatment and completely reversed within a 30-day posttreatment period. These results strongly suggest that a pharmacologically toxic dose of MKT-077 minimally affects the overall functional integrity of mitochondria in such critical, although highly vulnerable, tissues as the heart, liver, and kidney.

  12. Depletion of long-acting ampicillin in goat milk following intramuscular administration.

    Science.gov (United States)

    Ferrini, Anna Maria; Trenta, Simona; Mannoni, Veruscka; Rosati, Remo; Coni, Ettore

    2010-12-08

    Although goat milk production represents today a very small percentage of the world milk market, this percentage has been growing continuously during the past 20 years. Goat milk is the basic milk supply in many developing countries and provides tasteful derivative products in developed countries. Goats, as well as all milk-producing animals, can be affected by mastitis, but goats being considered a minor species, few drugs are specifically registered for these animals; most, at least for mastitis treatment, are usually tested and registered for use in cows. This situation leads often to the adoption for goat milk of withdrawal periods defined for cows even if these extrapolations prove almost never valid for goats. In the present study, the elimination of the β-lactam antibacterial agent ampicillin in goat milk was investigated. Ampicillin was chosen because it is one of the most common antibiotics used by goat farmers against mastitis due to the fact that it is well tolerated and has short elimination times in cows. Goats were treated with long-acting ampicillin at 15 mg (kg of body weight)(-1) by double intramuscular injection at 72 h interval. Milk was collected in a 12 h milking scheme. The method used to determine the levels of ampicillin in goat milk was based on a liquid-liquid extraction of this drug from the matrix, successive derivatization with formaldehyde, and final separation by HPLC with fluorescence detection. The results point out a slow depletion of ampicillin and, consequently, a withdrawal period (13 milkings) longer than that extrapolated and authorized for cows and sheep.

  13. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth.

    Science.gov (United States)

    Rahn, Jennifer J; Bestman, Jennifer E; Stackley, Krista D; Chan, Sherine S L

    2015-12-02

    DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg(+/-) offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg(-/-) mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg(+/-) and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg(-/-) animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg(-/-) animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg(-/-) mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice.

  14. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  15. VARIATION IN MITOCHONDRIAL-DNA LEVELS IN MUSCLE FROM NORMAL CONTROLS - IS DEPLETION OF MTDNA IN PATIENTS WITH MITOCHONDRIAL MYOPATHY A DISTINCT CLINICAL SYNDROME

    NARCIS (Netherlands)

    POULTON, J; SEWRY, C; POTTER, CG; BOUGERON, T; CHRETIEN, D; WIJBURG, FA; MORTEN, KJ; BROWN, G

    1995-01-01

    Recent studies have identified a group of patients with cytochrome oxidase (COX) deficiency presenting in infancy associated with a deficiency of mtDNA in muscle or other affected tissue (Moraes et al 1991). We used a navel approach to compare the level of mitochondrial (mtDNA) compared to nuclear D

  16. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    Directory of Open Access Journals (Sweden)

    Felipe S. Pessoto

    2015-01-01

    Full Text Available A series of thiosemicarbazone (TSC p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics.

  17. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  18. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death

    Directory of Open Access Journals (Sweden)

    Mitchell W. Woodberry

    2009-08-01

    Full Text Available Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF, lethal factor (LF and protective antigen (PA. In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin- dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells.

  19. Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions

    NARCIS (Netherlands)

    Capala, Marta E; Pruis, Maurien; Vellenga, Edo; Schuringa, Jan Jacob

    2016-01-01

    A high proliferation rate of malignant cells requires an increased energy production, both by anaerobic glucose metabolism and mitochondrial respiration. Moreover, increased levels of mitochondria-produced reactive oxygen species (ROS) promote survival of transformed cells and contribute to the dise

  20. Repeated Administration of Mercury Intensifies Brain Damage in Multiple Sclerosis through Mitochondrial Dysfunction

    Science.gov (United States)

    Kahrizi, Farzad; Salimi, Ahmad; Noorbakhsh, Farshid; Faizi, Mehrdad; Mehri, Freshteh; Naserzadeh, Parvaneh; Naderi, Nima; Pourahmad, Jalal

    2016-01-01

    In this study we investigated the additive effect of mercury on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model. Experimental animals (female C57BL/6 mice) are divided into four groups (n = 8); control, Hg, EAE, EAE with Hg. EAE model of MS induced by injecting myelin oligodendrocyte glycoprotein (MOG). Neurobehavioral alterations are recorded and then mice were sacrificed at day 28 and brain mitochondria were isolated and mitochondrial toxicity parameters including mitochondrial swelling, reactive oxygen species (ROS) formation, collapse of mitochondrial membrane potential (MMP) and cytochrome c release were measured. Our results showed that repeated treatment of mercury following induction of EAE in mice significantly increased the neurobehavioral scores, as well as mitochondrial toxicity through ROS formation, mitochondrial swelling, collapse of MMP and cytochrome c release. Our findings proved that repeated exposure with mercury accelerates progression of MS through mitochondrial damage related to oxidative stress and finally apoptosis.

  1. Glycine intracerebroventricular administration disrupts mitochondrial energy homeostasis in cerebral cortex and striatum of young rats.

    Science.gov (United States)

    Moura, Alana Pimentel; Grings, Mateus; Dos Santos Parmeggiani, Belisa; Marcowich, Gustavo Flora; Tonin, Anelise Miotti; Viegas, Carolina Maso; Zanatta, Angela; Ribeiro, César Augusto João; Wajner, Moacir; Leipnitz, Guilhian

    2013-11-01

    High tissue levels of glycine (GLY) are the biochemical hallmark of nonketotic hyperglycinemia (NKH), an inherited metabolic disease clinically characterized by severe neurological symptoms and brain abnormalities. Considering that the mechanisms underlying the neuropathology of this disease are not fully established, the present work investigated the in vivo effects of intracerebroventricular administration of GLY on important parameters of energy metabolism in cerebral cortex and striatum from young rats. Our results show that GLY reduced CO₂ production using glucose as substrate and inhibited the activities of citrate synthase and isocitrate dehydrogenase in striatum, whereas no alterations of these parameters were verified in cerebral cortex 30 min after GLY injection. We also observed that GLY diminished the activities of complex IV in cerebral cortex and complex I-III in striatum at 30 min and inhibited complex I-III activity in striatum at 24 h after its injection. Furthermore, GLY reduced the activity of total and mitochondrial creatine kinase in both brain structures 30 min and 24 h after its administration. In contrast, the activity of Na⁺, K⁺-ATPase was not altered by GLY. Finally, the antioxidants N-acetylcysteine and creatine, and the NMDA receptor antagonist MK-801 attenuated or fully prevented the inhibitory effects of GLY on creatine kinase and respiratory complexes in cerebral cortex and striatum. Our data indicate that crucial pathways for energy production and intracellular energy transfer are severely compromised by GLY. It is proposed that bioenergetic impairment induced by GLY in vivo may contribute to the neurological dysfunction found in patients affected by NKH.

  2. Apaf-1-deficient fog mouse cell apoptosis involves hypopolarization of the mitochondrial inner membrane,ATP depletion and citrate accumulation

    Institute of Scientific and Technical Information of China (English)

    Iyoko Katoh; Shingo Sato; Nahoko Fukunishi; Hiroki Yoshida; Takasuke Imai; Shun-ichi Kurata

    2008-01-01

    To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency,we examined spleen and bone marrow cells from Apaf1+/+(+/+) and Apaf1fog/fog (fog/fog) mice for initiator caspase-9 activation by cellular stresses.When the mitochondrial inner membrane potential (△Ψm) was disrupted by staurosporine,+/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis,indicating the lack of apoptosomc (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells.However,when a marginal (~20%) decrease in △Ψm was caused by hydrogen peroxide (0.1 mM),peroxynitrite donor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m2),both +/+ and fog/fog cells triggeredprocaspase-9 auto-processing and its downstream cascade activation.Supporting our previous results,procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the geuotypes.Cellular ATP concentration significantly decreased under the hypoactive AΨm condition.Furthermore,we detected accumulation of citrate,a kosmotrope known to facilitate procaspase-9 dimerization,probably due to a feedback control of the Krebs cycle by the electron transfer system.Thus,mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses,which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.

  3. Long-term Aβ exposure augments mCa2+-independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin.

    Science.gov (United States)

    Hsiao, Chia-Wei; Peng, Tsung-I; Peng, Alexander C; Reiter, Russel J; Tanaka, Masashi; Lai, Yiu-Kay; Jou, Mei-Jie

    2013-01-01

    Mitochondrial dysfunction is a hallmark of amyloid β-peptide (Aβ)-induced neurodegeneration of Alzheimer's disease (AD). This study investigated whether mtDNA T8993G mutation-induced complex V inhibition, clinically associated with neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP), is a potential risk factor for AD and the pathological link for long-term exposure of Aβ-induced mitochondrial toxicity and apoptosis in NARP cybrids. Using noninvasive fluorescence probe-coupled laser scanning imaging microscopy and NARP cybrids harboring 98% mutant genes along with its parental 143B osteosarcoma cells, we demonstrated that Aβ-augmented mitochondrial Ca(2+) (mCa(2+))-independent mitochondrial reactive oxygen species (mROS) formation for a cardiolipin (CL, a major mitochondrial protective phospholipid)-dependent lethal modulation of the mitochondrial permeability transition (MPT). Aβ augmented not only the amount but also the propagation rate of mROS-induced mROS formation to significantly depolarize mitochondrial membrane potential (∆Ψ(m)) and reduce mCa(2+) stress. Aβ-augmented mROS oxidized and depleted CL, thereby enhances mitochondrial fission and movement retardation, which promoted the NARP-augmented lethal transient-MPT (t-MPT) to switch to its irreversible mode of permanent-MPT (p-MPT). Interestingly, melatonin, a multiple mitochondrial protector, markedly reduced Aβ-augmented mROS formation and therefore significantly reduced mROS-mediated depolarization of ∆Ψ(m), fission of mitochondria and retardation of mitochondrial movement to stabilize CL and hence the MPT. In the presence of melatonin, Aβ-promoted p-MPT was reversed to a protective t-MPT, which preserved ∆Ψ(m) and lowered elevated mCa(2+) to sublethal levels for an enhanced mCa(2+)-dependent O(2) consumption. Thus, melatonin may potentially rescue AD patients associated with NARP symptoms.

  4. The oral administration of D-galactose induces abnormalities within the mitochondrial respiratory chain in the brain of rats.

    Science.gov (United States)

    Budni, Josiane; Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; da Silva, Sabrina; Luz, Aline Pereira da; Schiavo, Gustavo Luiz; Batista-Silva, Hemily; Scaini, Giselli; Streck, Emílio Luiz; Quevedo, João

    2017-02-24

    D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative damage; However, the effects of oral D-gal remain unclear. The aim of this study was to evaluate whether the oral administration of D-gal induces abnormalities within the mitochondrial respiratory chain of rats. Male Wistar rats (4 months old) received D-gal (100 mg/kg v.o.), during the 1st, 2nd, 4th, 6th or 8th weeks by oral gavage. The activity of the mitochondrial respiratory chain complexes was measured in the 1st, 2nd, 4th, 6th and 8th weeks after the administration of D-gal. The activity of the respiratory chain complex I was found to have increased in the prefrontal cortex and hippocampus in the 1st, 6th and 8th weeks, while the activity of the respiratory chain complex II increased in the 1st, 2nd, 4th, 6th and 8th weeks within the hippocampus and in the 2nd, 4th, 6th and 8th weeks within the prefrontal cortex. The activity of complex II-III increased within the prefrontal cortex and hippocampus in each week of oral D-gal treatment. The activity of complex IV increased within the prefrontal cortex and hippocampus in the 1st, 2nd, 6th and 8th weeks of treatment. After 4 weeks of treatment the activity increased only in hippocampus. In conclusion, the present study showed that the oral administration of D-gal increased the activity of the mitochondrial respiratory chain complexes I, II, II-III and IV in the prefrontal cortex and hippocampus. Furthermore, the administration of D-gal via the oral route seems to cause the alterations in the mitochondrial respiratory complexes observed in brain neurodegeneration.

  5. Gender differences in hyperthermia and regional 5-HT and 5-HIAA depletion in the brain following MDMA administration in rats

    NARCIS (Netherlands)

    Wallinga, Alinde E.; Grahlmann, Carolin; Granneman, Ramon A.; Koolhaas, Jaap M.; Buwalda, Bauke

    2011-01-01

    In the present research the role of gender in MDMA-induced hyperthermia and serotonin depletion is studied by injecting male and female male rats with MDMA or saline 3 times (i.p.) with 3 h interval at dosages of 0.3, 1, 3 or 9 mg/kg at an ambient temperature of 25 degrees C. The acute hyperthermia

  6. Synthesis rates of glutathione and activated sulphate (PAPS) and response to cysteine and acetaminophen administration in glutathione-depleted rat hepatocytes

    DEFF Research Database (Denmark)

    Dalhoff, K; Poulsen, H E

    1993-01-01

    The effects of cysteine and acetaminophen (AA) on the synthesis rates of glutathione (GSH), adenosine 3'-phosphate 5'-phosphosulphate (PAPS, activated sulphate) and the AA metabolites, AA-GSH and AA-sulphate were studied in rat hepatocytes depleted of GSH by diethyl maleate (DEM). The synthesis......(6) cells.min) which increased to 281 nmol/(10(6) cells.min) (P = 0.05) after addition of cysteine. However, increased GSH synthesis was not followed by increased AA-GSH synthesis [4.7 vs 4.8 nmol/(10(6) cells.hr)]. Also, PAPS synthesis increased after cysteine administration [10.2 to 19.1 nmol/(10(6) cells.......min)] (P cysteine stimulated both GSH and PAPS synthesis rates in GSH-depleted rat hepatocytes incubated with a toxic AA concentration without stimulation...

  7. Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain.

    Science.gov (United States)

    Réus, Gislaine Z; Stringari, Roberto B; Rezin, Gislaine T; Fraga, Daiane B; Daufenbach, Juliana F; Scaini, Giselli; Benedet, Joana; Rochi, Natália; Streck, Emílio L; Quevedo, João

    2012-04-01

    Several studies have appointed for a role of glutamatergic system and/or mitochondrial function in major depression. In the present study, we evaluated the creatine kinase and mitochondrial respiratory chain activities after acute and chronic treatments with memantine (N-methyl-D: -aspartate receptor antagonist) and imipramine (tricyclic antidepressant) in rats. To this aim, rats were acutely or chronically treated for 14 days once a day with saline, memantine (5, 10 and 20 mg/kg) and imipramine (10, 20 and 30 mg/kg). After acute or chronic treatments, we evaluated mitochondrial respiratory chain complexes (I, II, II-III and IV) and creatine kinase activities in prefrontal cortex, hippocampus and striatum. Our results showed that both acute and chronic treatments with memantine or imipramine altered respiratory chain complexes and creatine kinase activities in rat brain; however, these alterations were different with relation to protocols (acute or chronic), complex, dose and brain area. Finally, these findings further support the hypothesis that the effects of imipramine and memantine could be involve mitochondrial function modulation.

  8. Mitochondrial genome depletion dysregulates bile acid- and paracetamol-induced expression of the transporters Mdr1, Mrp1 and Mrp4 in liver cells

    Science.gov (United States)

    Perez, MJ; Gonzalez-Sanchez, E; Gonzalez-Loyola, A; Gonzalez-Buitrago, JM; Marin, JJG

    2011-01-01

    BACKGROUND AND PURPOSE Mitochondria are involved in the toxicity of several compounds, retro-control of gene expression and apoptosis activation. The effect of mitochondrial genome (mtDNA) depletion on changes in ABC transporter protein expression in response to bile acids and paracetamol was investigated. EXPERIMENTAL APPROACH Hepa 1-6 mouse hepatoma cells with 70% decrease in 16S/18S rRNA ratio (Rho cells) were obtained by long-term treatment with ethidium bromide. KEY RESULTS Spontaneous apoptosis and reactive oxygen species (ROS) generation were decreased in Rho cells. Following glycochenodeoxycholic acid (GCDCA) or paracetamol, Rho cells generated less ROS and were more resistant to cell death. Apoptosis induced by GCDCA and Fas was also reduced. The basal expression of Mdr1 was significantly enhanced, but this was not further stimulated by GCDCA or paracetamol, as observed in wild-type (WT) cells. Basal expression of Mrp1 and Mrp4 was similar in WT and Rho cells, whereas they were up-regulated only in WT cells after GCDCA or paracetamol, along with the transcription factors Shp and Nrf2, but not Fxr or Pxr. Increased expression of Nrf2 was accompanied by its enhanced nuclear translocation. Glycoursodeoxycholic acid failed to cause any of the effects observed for GCDCA or paracetamol. CONCLUSIONS AND IMPLICATIONS The Nrf2-mediated pathway is partly independent of ROS production. Nuclear translocation of Nrf2 is insufficient to up-regulate Mdr1, Mrp1 and Mrp4, which requires the participation of other regulatory element(s) whose activation in response to GCDCA and paracetamol is impaired in Rho cells and hence probably sensitive to ROS. PMID:21175587

  9. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    Science.gov (United States)

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  10. Ultra-performance liquid chromatography-tandem mass spectrometry determination and depletion profile of flunixin residues in tissues after single oral administration in rabbits.

    Science.gov (United States)

    Zhu, Ai-Ling; Peng, Tao; Liu, Liang; Xia, Xi; Hu, Ting; Tao, Xiao-Qi; Wen, Kai; Cheng, Lin-Li; Li, Jian-Cheng; Ding, Shuang-Yang; Cao, Xing-Yuan; Jiang, Hai-Yang

    2013-09-01

    An ultra-performance liquid chromatography with tandem mass spectrometric detection (UPLC-MS/MS) method was developed for the detection of flunixin residues in rabbit tissues. The samples were extracted with acidic acetonitrile, defatted with n-hexane, and then purified by HLB solid-phase extraction cartridge. Analysis was carried out on UPLC-ESI-MS/MS working with multiple reaction monitoring (MRM) mode. The limits of detection (LODs) of the method were 0.3-0.8μgkg(-1) and limits of quantification (LOQs) were 1.0-3.0μgkg(-1) in rabbit tissues, respectively. In all fortified samples at a concentration range of 1.0-300.0μgkg(-1), mean recoveries were 61.7-115.7% with relative standard deviations (RSDs) below 16%. Residue depletion of flunixin in rabbit was conducted after oral administration at a dose of 5mgkg(-1) of body weight. The average concentrations for flunixin measured 2h post-administration in kidney and intestine were significantly higher than in liver, heart and muscle. The concentrations for flunixin in all rabbit tissues were below the LOD or not detected in all tissues after 96h administration of drug. A minimum withdrawal time of 21h was indicated for residue levels in heart, liver, kidney, intestine and muscle below the maximum residue limits (MRLs).

  11. The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion.

    Science.gov (United States)

    Figueira, Tiago R; Castilho, Roger F; Saito, Angela; Oliveira, Helena C F; Vercesi, Anibal E

    2011-12-01

    Congenital analbuminemia is a rare autosomal recessive disorder characterized by a trace level of albumin in blood plasma and mild clinical symptoms. Analbuminemic patients generally present associated abnormalities, among which dyslipidemia is a hallmark. In this study, we show that mitochondria isolated from different tissues (liver, heart and brain) from 3-month-old analbuminemic rats (NAR) present a higher susceptibility to Ca(2+)-induced mitochondrial permeability transition (MPT), as assessed by either Ca(2+)-induced mitochondrial swelling, dissipation of membrane potential or mitochondrial Ca(2+) release. The Ca(2+) retention capacity of the liver mitochondria isolated from 3-month-old NAR was about 50% that of the control. Interestingly, the assessment of this variable in 21-day-old NAR indicated that the mitochondrial Ca(2+) retention capacity was preserved at this age, as compared to age-matched controls, which indicates that a reduced capacity for mitochondrial Ca(2+) retention is not a constitutive feature. The search for putative mediators of MPT sensitization in NAR revealed a 20% decrease in mitochondrial nitrosothiol content and a 30% increase in cyclophilin D expression. However, the evaluation of other variables related to mitochondrial redox status showed similar results between the controls and NAR, i.e., namely the contents of reduced mitochondrial membrane protein thiol groups and total glutathione, H(2)O(2) release rate, and NAD(P)H reduced state. We conclude that the higher expression of cyclophilin D, a major component of the MPT pore, and decreased nitrosothiol content in NAR mitochondria may underlie MPT sensitization in these animals.

  12. Acute effects of TCDD administration:special emphasis on testicular and sperm mitochondrial function

    Institute of Scientific and Technical Information of China (English)

    Paula C Mota; Renata S Tavares; Marlia Cordeiro; Susana P Pereira; Stephen J Publicover; Paulo J Oliveira; Joo Ramalho-Santos

    2012-01-01

    Objective: The goal of this study was to verify if 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could have any effect on male germ cells mitochondria and in this way add new insights in how male reproductive alterations observed in other studies occur. Methods:In vivo and in vitro approaches using rat testis and human sperm as models were employed to evaluate TCDD effects on testicular and sperm mitochondria after 24 h of exposure. Results:Testicular mitochondria from TCDD-treated rats presented no differences in the bioenergetic parameters monitored except for a significantly higher electric membrane potential in the presence of ADP, corroborated when TCDD was directly added to testicular mitochondria from untreated rats. Nevertheless, sperm mitochondrial membrane potential, motility, viability, capacitation and acrosomal integrity did not change after TCDD treatment. Moreover, only few sperm cells exposed to TCDD increased their intracellular Ca2+concentration. Conlusions:TCDD can interact directly with rat testicular mitochondria inducing small changes. This effect, however, does not seem to occur in human sperm or it may be insufficient to induce significant alterations as observed by the maintenance of sperm function.

  13. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans.

    Directory of Open Access Journals (Sweden)

    Darcy L Johannsen

    Full Text Available The physiologic effects of triiodothyronine (T3 on metabolic rate are well-documented; however, the effects of thyroxine (T4 are less clear despite its wide-spread use to treat thyroid-related disorders and other non-thyroidal conditions. Here, we investigated the effects of acute (3-day T4 supplementation on energy expenditure at rest and during incremental exercise. Furthermore, we used a combination of in situ and in vitro approaches to measure skeletal muscle metabolism before and after T4 treatment. Ten healthy, euthyroid males were given 200 µg T4 (levothyroxine per day for 3 days. Energy expenditure was measured at rest and during exercise by indirect calorimetry, and skeletal muscle mitochondrial function was assessed by in situ ATP flux ((31P MRS and in vitro respiratory control ratio (RCR, state 3/state 4 rate of oxygen uptake using a Clark-type electrode before and after acute T4 treatment. Thyroxine had a subtle effect on resting metabolic rate, increasing it by 4% (p = 0.059 without a change in resting ATP demand (i.e., ATP flux of the vastus lateralis. Exercise efficiency did not change with T4 treatment. The maximal capacity to produce ATP (state 3 respiration and the coupled state of the mitochondria (RCR were reduced by approximately 30% with T4 (p = 0.057 and p = 0.04, respectively. Together, the results suggest that T4, although less metabolically active than T3, reduces skeletal muscle efficiency and modestly increases resting metabolism even after short-term supplementation. Our findings may be clinically relevant given the expanding application of T4 to treat non-thyroidal conditions such as obesity and weight loss.

  14. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  15. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.

    Science.gov (United States)

    Bongard, Robert D; Yan, Ke; Hoffmann, Raymond G; Audi, Said H; Zhang, Xiao; Lindemer, Brian J; Townsley, Mary I; Merker, Marilyn P

    2013-12-01

    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency.

  16. Mitochondrial disorders.

    Science.gov (United States)

    Zeviani, M; Tiranti, V; Piantadosi, C

    1998-01-01

    Mitochondrial respiration, the most efficient metabolic pathway devoted to energy production, is at the crosspoint of 2 quite different genetic systems, the nuclear genome and the mitochondrial genome (mitochondrial DNA, mtDNA). The latter encodes a few essential components of the mitochondrial respiratory chain and has unique molecular and genetic properties that account for some of the peculiar features of mitochondrial disorders. However, the perpetuation, propagation, and expression of mtDNA, the majority of the subunits of the respiratory complexes, as well as a number of genes involved in their assembly and turnover, are contained in the nuclear genome. Although mitochondrial disorders have been known for more than 30 years, a major breakthrough in their understanding has come much later, with the discovery of an impressive, ever-increasing number of mutations of mitochondrial DNA. Partial deletions or duplications of mtDNA, or maternally inherited point mutations, have been associated with well-defined clinical syndromes. However, phenotypes transmitted as mendelian traits have also been identified. These include clinical entities defined on the basis of specific biochemical defects, and also a few autosomal dominant or recessive syndromes associated with multiple deletions or tissue-specific depletion of mtDNA. Given the complexity of mitochondrial genetics and biochemistry, the clinical manifestations of mitochondrial disorders are extremely heterogenous. They range from lesions of single tissues or structures, such as the optic nerve in Leber hereditary optic neuropathy or the cochlea in maternally inherited nonsyndromic deafness, to more widespread lesions including myopathies, encephalomyopathies, cardiopathies, or complex multisystem syndromes. The recent advances in genetic studies provide both diagnostic tools and new pathogenetic insights in this rapidly expanding area of human pathology.

  17. The Effects of Mitochondrial DNA Depletion in Human Bronchial Epithelial Line on Calcium Homeostasis%线粒体DNA拷贝量降低诱发人支气管上皮细胞钙信号失调

    Institute of Scientific and Technical Information of China (English)

    尉红; 薛莲; 李冰燕; 童建; 张增利

    2012-01-01

    采用溴化乙锭(EtBr)诱导线粒体DNA(mitochondrial DNA,mtDNA)拷贝量降低的人支气管上皮细胞株(p-HBE); Real-time PCR与共聚焦成像表明,经EtBr诱导60 d并挑取的单克隆细胞株,其mtDNA拷贝量下降为正常细胞的24%,成功构建了p-HBE.与母本细胞相比,p-HBE群体倍增时间延长,生长速度减慢.流式细胞术检测细胞线粒体膜电位(AΨm)下降,以Fura-2标记胞浆内游离钙,p-HBE [Ca2+]i升高;线粒体解耦联剂FCCP刺激细胞后,激光共聚焦扫描显微镜动态监测单个活细胞[Ca2+]i变化,发现[Ca2+]i水平波动幅度小.提示mtDNA拷贝数降低可导致细胞内钙信号调节紊乱.%Human bronchial epithelial cells (HBE cells) were cultured in culture medium containing ethidi-um bromide (EtBr) to establish a mitochondrial DNA (mtDNA)-depleted HBE model (p-HBE). Real-time PCR and confocal imaging show that the content of mtDNA in p- HBE selected from limiting-dilution in EtBr-treated cells was 24% of the wide-type HBE. Compared with parent HBE, p- HBE showed a slower growth rate, increased level of intracellular Ca2+concentrations ([Ca2+]i), decreased condition of mitochondrial transmembrane potential (△Ψ), the magnitude of elevation of [Ca2+]i was markedly reduced to FCCP stimulation. These results indicated that the depletion of mtDNA disrupted calcium homeostasis.

  18. Administration

    DEFF Research Database (Denmark)

    Bogen handler om den praksis, vi kalder administration. Vi er i den offentlige sektor i Danmark hos kontorfolkene med deres sagsmapper, computere, telefoner,, lovsamlinger,, retningslinier og regneark. I bogen udfoldes en mangfoldighed af konkrete historier om det administrative arbejde fra...... forskellige områder i den offentlige sektor. Hensigten er at forstå den praksis og faglighed der knytter sig til det administrative arbejde...

  19. Acute and chronic administration of cannabidiol increases mitochondrial complex and creatine kinase activity in the rat brain

    Directory of Open Access Journals (Sweden)

    Samira S. Valvassori

    2013-12-01

    Full Text Available Objective: To investigate the effects of cannabidiol (CBD on mitochondrial complex and creatine kinase (CK activity in the rat brain using spectrophotometry. Method: Male adult Wistar rats were given intraperitoneal injections of vehicle or CBD (15, 30, or 60 mg/kg in an acute (single dose or chronic (once daily for 14 consecutive days regimen. The activities of mitochondrial complexes and CK were measured in the hippocampus, striatum, and prefrontal cortex. Results: Both acute and chronic injection of CBD increased the activity of the mitochondrial complexes (I, II, II-III, and IV and CK in the rat brain. Conclusions: Considering that metabolism impairment is certainly involved in the pathophysiology of mood disorders, the modulation of energy metabolism (e.g., by increased mitochondrial complex and CK activity by CBD could be an important mechanism implicated in the action of CBD.

  20. Administration of flutamide alters sperm ultrastructure, sperm plasma membrane integrity and its stability, and sperm mitochondrial oxidative capability in the boar: in vivo and in vitro approach.

    Science.gov (United States)

    Lydka, M; Piasecka, M; Gaczarzewicz, D; Koziorowski, M; Bilinska, B

    2012-08-01

    Our previous work has shown that an anti-androgen flutamide administered pre- and post-natally induced adverse effects on the epididymal morphology and function of adult boars. The present investigation is aimed to understand the effect of flutamide and its metabolite on changes in sperm plasma membrane integrity and its stability, changes in mitochondrial oxidative capability and frequency of abnormal sperm. In vivo effects of flutamide (50 mg/kg b.w.) on sperm ultrastructure were examined by electron microscopic observations. In vitro effects of 5, 50 and 100 μg/ml hydroxyflutamide, administered for 2 and 24 h, on sperm plasma membrane integrity were measured by LIVE/DEAD Sperm Vitality kit, while those on sperm membrane stability and mitochondrial oxidoreductive activity were investigated using Merocyanine 540 and NADH tests, respectively. The incidence of abnormal spermatozoa increased significantly (p boars compared with controls. In an in vitro approach, low dose of hydroxyflutamide in 2-h incubations appeared less effective in altering the sperm plasma membrane integrity and its stability than two higher doses used (p sperm membrane destabilization and mitochondrial oxidoreductive activity was strengthened after 24 h of hydroxyflutamide administration (p sperm parameters with regard to oxidative capability of mitochondria, plasma membrane changes and sperm ultrastructure provides novel data on the boar sperm sensitivity to anti-androgen action. Results indicate high sensitivity of boar spermatozoa to androgen withdrawal.

  1. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome.

    Science.gov (United States)

    Llewellyn, Katrina J; Nalbandian, Angèle; Gomez, Arianna; Wei, Don; Walker, Naomi; Kimonis, Virginia E

    2015-04-01

    Genetic defects in the UBE3A gene, which encodes for the imprinted E6-AP ubiquitin E3 ligase (UBE3A), is responsible for the occurrence of Angelman syndrome (AS), a neurodegenerative disorder which arises in 1 out of every 12,000-20,000 births. Classical symptoms of AS include delayed development, impaired speech, and epileptic seizures with characteristic electroencephalography (EEG) readings. We have previously reported impaired mitochondrial structure and reduced complex III in the hippocampus and cerebellum in the Ube3a(m-/p+) mice. CoQ10 supplementation restores the electron flow to the mitochondrial respiratory chain (MRC) to ultimately increase mitochondrial antioxidant capacity. A number of recent studies with CoQ10 analogues seem promising in providing therapeutic benefit to patients with a variety of disorders. CoQ10 therapy has been reported to be safe and relatively well-tolerated at doses as high as 3000mg/day in patients with disorders of CoQ10 biosynthesis and MRC disorders. Herein, we report administration of idebenone, a potent CoQ10 analogue, to the Ube3a(m-/p+) mouse model corrects motor coordination and anxiety levels, and also improves the expression of complexes III and IV in hippocampus CA1 and CA2 neurons and cerebellum in these Ube3a(m-/p+) mice. However, treatment with idebenone illustrated no beneficial effects in the reduction of oxidative stress. To our knowledge, this is the first study to suggest an improvement in mitochondrial respiratory chain dysfunction via bioenergetics modulation with a CoQ10 analogue. These findings may further elucidate possible cellular and molecular mechanism(s) and ultimately a clinical therapeutic approach/benefit for patients with Angelman syndrome.

  2. Co-administration of the flavanol (−)-epicatechin with doxycycline synergistically reduces infarct size in a model of ischemia reperfusion injury by inhibition of mitochondrial swelling

    Science.gov (United States)

    Ortiz-Vilchis, Pilar; Yamazaki, Katrina Go; Rubio-Gayosso, Ivan; Ramirez-Sanchez, Israel; Calzada, Claudia; Romero-Perez, Diego; Ortiz, Alicia; Meaney, Eduardo; Taub, Pam; Villarreal, Francisco; Ceballos, Guillermo

    2016-01-01

    (−)-Epicatechin (EPI) is cardioprotective in the setting of ischemia/reperfusion (IR) injury and doxycycline (DOX) is known to preserve cardiac structure/function after myocardial infarction (MI). The main objective of this study was to examine the effects of EPI and DOX co-administration on MI size after IR injury and to determine if cardioprotection may involve the mitigation of mitochondrial swelling. For this purpose, a rat model of IR was used. Animals were subjected to a temporary 45 min occlusion of the left anterior descending coronary artery. Treatment consisted of a single or double dose of EPI (10 mg/kg) combined with DOX (5 mg/kg). The first dose was given 15 min prior to reperfusion and the second 12 h post-MI. The effects of EPI +/− DOX on mitochondrial swelling (i.e. mPTP opening) were determined using isolated mitochondria exposed to calcium overload and data examined using isobolographic analysis. To ascertain for the specificity of EPI effects on mitochondrial swelling other flavonoids were also evaluated. Single dose treatment reduced MI size by ~46% at 48 h and 44% at three weeks. Double dosing evidenced a synergistic, 82% reduction at 3 weeks. EPI plus DOX also inhibited mitochondrial swelling in a synergic manner thus, possibly accounting for the cardioprotective effects whereas limited efficacy was observed with the other flavonoids. Given the apparent lack of toxicity in humans, the combination of EPI and DOX may have clinical potential for the treatment of myocardial IR injury. PMID:25281837

  3. 线粒体DNA耗竭综合征1例临床特点和DGUOK基因突变分析%Clinical features and DGUOK mutations of an infant with mitochondrial DNA depletion syndrome

    Institute of Scientific and Technical Information of China (English)

    邓梅; 林伟霞; 郭丽; 张占会; 宋元宗

    2016-01-01

    The aim of this study was to investigate the clinical features and DGUOK gene mutations of an infant with mitochondrial DNA depletion syndrome (MDS). The patient (more than 7 months old) manifested as hepatosplenomegaly, abnormal liver function, nystagmus and psychomotor retardation. Genetic DNA was extracted from peripheral blood samples of the patient and her parents. Targeted Exome Sequencing was performed to explore the genetic causes. Sanger sequencing was carried out to confirm the detected mutations. The sequencing results showed that the patient was a compound heterozygote for c.679G>A and c.817delT in the DGUOK gene. The former was a reportedly pathogenic missense mutation of maternal origin, while the latter, a frameshift mutation from the father, has not been described yet. The findings in this study expand the mutation spectrum of DGUOK gene, and provide molecular evidence for the etiologic diagnosis of the patient as well as for the genetic counseling and prenatal diagnosis in the family.%该文报道1例线粒体DNA耗竭综合征患儿的临床特征及DGUOK基因突变特点。患儿女,婴儿期起病,表现为肝脾肿大、肝功能异常、眼球震颤和精神运动发育迟缓等。提取患儿及其父母外周血DNA标本,采用外显子组捕获测序技术检测致病突变,并对检测到的突变进行Sanger测序验证。结果显示患儿为DGUOK基因突变c.679G>A和c.817delT的复合杂合子,前一个突变来自于母亲,为已报道致病性突变;后者来自于父亲,是一个未见文献报道的新突变。该研究扩展了DGOUK基因突变谱,为患儿病因诊断及该家系的遗传咨询和产前诊断提供了分子依据。

  4. Chronic administration of the metastin/kisspeptin analog KISS1-305 or the investigational agent TAK-448 suppresses hypothalamic pituitary gonadal function and depletes plasma testosterone in adult male rats.

    Science.gov (United States)

    Matsui, Hisanori; Tanaka, Akira; Yokoyama, Kotaro; Takatsu, Yoshihiro; Ishikawa, Kaori; Asami, Taiji; Nishizawa, Naoki; Suzuki, Atsuko; Kumano, Satoshi; Terada, Michiko; Kusaka, Masami; Kitada, Chieko; Ohtaki, Tetsuya

    2012-11-01

    Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.

  5. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    Science.gov (United States)

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.

  6. Mitochondrial Dynamics in Mitochondrial Diseases

    Directory of Open Access Journals (Sweden)

    Juan M. Suárez-Rivero

    2016-12-01

    Full Text Available Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.

  7. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    Osama El-Assal; Feng Hong; Won-Ho Kim; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however, the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes via induction of metallothionein protein expression, which may account for the protective role of IL-6 in alcoholic liver disease.

  8. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    OsamaEl-Assal; FengHong; Won-HoKim; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however,the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes v/a induction of metallothionein protein expression, which mav account for the nrotective role of IL-6 in alcoholic liver disease.

  9. TK2-related mitochondrial DNA depletion syndrome:two cases report and review of literature%TK2相关线粒体DNA耗竭综合征2例并文献复习

    Institute of Scientific and Technical Information of China (English)

    移艳红; 吴晔; 熊晖; 王朝霞; 袁云; 常杏芝

    2016-01-01

    Objective To study the clinical characteristics,muscle pathological features,diagnosis and prognosis of TK2-related mitochondrial DNA depletion syndrome(MDS).Methods Clinical and laboratory data of 2 cases of TK2-related myopathic MDS were reported.And data of previously reported 58 TK2-related MDS cases were reviewed.Results Total 60 patients consisted of 35 male and 25 female.The age of onset ranged from the birth to the age of 74 years old,and 54 of the patients were attacked at the age younger than 3 years old.Muscle weakness and hypotonia were detected in all patients,with 40 patients(including the newly diagnosed 2 cases) manifested as pure myopathic form,and 20 patients with other multiple organs involvement.Serum creatine kinase was mildly increased (211-6 500 IU/L) in 53 patients.Elevated serum lactic acid level (2.3-12.0 mmol/L)was observed in 24 patients.Muscle biopsy was available from 55 patients,and ragged red fibers and/or cytochrome C oxidase (COX)-negative fibers were detected in 48 out of them.Nine out of 11 patients received electronic microscope study showed proliferation of abnormal mitochondria.Respiratory chain enzymatic activities in skeletal muscle were reduced in 31 out of 33 patients.Marked mtDNA content reduction was observed in 36 out of 41 patients (4%-25% of age-and tissue-matched controls).A total of 42 TK2 mutations were found in 60 patients,including 2 novel mutations c.923A > G and c.619-2A > T in this study.Conclusions The most common clinical manifestations of TK2-related MDS are severely,rapidly progressing myopathy with infantile or early childhood onset.As the detection rate of characteristic pathologic features in muscle is high,muscle biopsy is important for the diagnosis of TK2-related MDS.%目的 探讨TK2相关线粒体DNA耗竭综合征的临床和病理特征、诊断及预后,提高对该病的认识.方法 报道2例基因和病理检查确诊的TK2相关肌病型线粒体DNA耗竭综合

  10. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  11. SUCLA2相关脑肌病型线粒体DNA耗竭综合征一例并文献复习%SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome: a case report and review of literature

    Institute of Scientific and Technical Information of China (English)

    刘志梅; 方方; 丁昌红; 吴沪生; 吕俊兰; 伍妘

    2014-01-01

    丙二酸轻度升高,血C3和C4DC轻度升高.头颅MRI为基底节受累和脑萎缩样改变,以双侧尾状核、壳核对称性病变为主.25例中19例来自欧洲,其中的13例来自法罗群岛,为SUCLA2 c.534+ 1G>A纯合突变.结论 SUCLA2相关脑肌病型线粒体DNA耗竭综合征临床特征为:生后或婴儿早期出现严重肌张力低下、喂养困难、生长迟缓、发育迟滞(尤其是运动)、听力损害等;血乳酸增高,尿甲基丙二酸轻度增高,血C3和C4DC轻度升高;头颅MRI为双侧对称性尾状核、壳核受累,伴有脑萎缩样改变.发现SUCLA2致病性突变可确诊.%Objective To analyze the clinical characteristics of SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome (MDS) in one patient,and review the latest clinical research reports.Method Clinical,laboratory and genetic data of one case of SUCLA2-related encephalomyopathic MDS diagnosed by department of Neurology,Beijing Children's Hospital in November,2013 were reported,and through taking "SUCLA2" as key words to search at CNKI,Wanfang,PubMed and the Human Gene Mutation Database (HGMD) professional to date,the clinical characteristics of 24 reported cases of SUCLA2-related encephalomyopathic MDS in international literature in combination with our case were analyzed.Result (1) The patient was 5 years and 9 months old,born as a term small for gestational age infant whose birth weight was 2 400 g,and presented since birth with severe muscular hypotonia,feeding difficulties,failure to thrive,psychomotor retardation and hearing impairment.Until now,he still showed severe developmental retardation,together with muscular atrophy,thoracocyllosis and scoliosis,and facial features.The patient is the first born from consanguineous healthy parents,whose relationship is cousins.Laboratory tests showed urinary excretion of mild methylmalonic acid (MMA),elevated plasma lactate concentration,and increased C3-carnitine and C4-dicarboxylic-carnitine in plasma carnitine ester

  12. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  13. Mitochondrial Myopathies

    Science.gov (United States)

    ... which stimulates normal beating of the heart. Cardiac muscle damage also may occur. People with mitochondrial disorders may need to have regular examina- tions by a cardiologist. Other potential health issues Some people with mitochondrial disease experience ...

  14. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  15. Mitochondrial genetics

    OpenAIRE

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was con...

  16. Mitochondrial diseases: therapeutic approaches.

    Science.gov (United States)

    DiMauro, Salvatore; Mancuso, Michelangelo

    2007-06-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is

  17. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

    Science.gov (United States)

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W

    2015-01-15

    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy.

  18. Oral administration of fumonisin B1 and T-2 individually and in combination affects hepatic total and mitochondrial membrane lipid profile of rabbits.

    Science.gov (United States)

    Szabó, A; Szabó-Fodor, J; Fébel, H; Mézes, M; Bajzik, G; Kovács, M

    2016-09-01

    Weaned rabbits were fed diets contaminated with 2 mg/kg diet T-2 toxin alone, or 10 mg/kg diet fumonisin B1 (FB1) alone, and both toxins in combination (2 + 10 mg/kg, respectively) compared to a toxin-free control diet. Samplings were performed after 4 weeks (blood and liver). Bodyweight of T-2-fed group was lower after 4 weeks; the liver weight was increased dramatically (threefold of control). Liver total phospholipids (PLs) provided slight alterations in the fatty acid (FA) composition; all three toxin-treated groups showed a decrease in palmitoleic acid (C16:1 n7) proportion. In the liver mitochondrial PL FA composition, margaric acid (C17:0) proportion decreased in the separated toxin treatments compared to the combined setting. Oleic acid (C18:1 n9) proportion was increased and arachidonic acid (C20:4 n6) was decreased in the FB1-treated group, while docosapentaenoic acid (C22:5 n3) was decreased in the separated treatments. The total monounsaturation was significantly higher in the FB1 group's mitochondrial PL FA profile. After 4 weeks, all toxin treatments decreased the blood plasma reduced glutathione and glutathione peroxidase activity, and FB1 increased the plasma sphinganine/sphingosine ratio. Both mycotoxins seem to cross the hepatocellular and the hepatic mitochondrial membrane, without drastic membrane disruption, as assessed from the PL FA composition, but inducing detectable lipid peroxidation.

  19. Mitochondrial vasculopathy

    Institute of Scientific and Technical Information of China (English)

    Josef Finsterer; Sinda Zarrouk-Mahjoub

    2016-01-01

    Mitochondrial disorders(MIDs)are usually multisystem disorders(mitochondrial multiorgan disorder syndrome)either on from onset or starting at a point during the disease course.Most frequently affected tissues are those with a high oxygen demand such as the central nervous system,the muscle,endocrine glands,or the myocardium.Recently,it has been shown that rarely alsothe arteries may be affected(mitochondrial arteriopathy).This review focuses on the type,diagnosis,and treat-ment of mitochondrial vasculopathy in MID patients.A literature search using appropriate search terms was carried out.Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy.Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy,migraine-like headache,stroke-like episodes,or peripheral retinopathy.Mitochondrial macroangiopathy manifests as atherosclerosis,ectasia of arteries,aneurysm formation,dissection,or spontan-eous rupture of arteries.The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes.Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes.Mitochondrial vasculopathy exists and manifests as micro-or macroangiopathy.Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.

  20. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

      The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...... giving rise to depletion layers, and the mechanisms and border conditions that control their presence and extension require still clarification. Recently, careful systematic reflectivity experiments were re-done on the same system. No depletion layers were found, and it was conjectured that the whole...

  1. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    ), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other

  2. Mitochondrial Mechanisms in Septic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    María Cecilia Cimolai

    2015-08-01

    Full Text Available Sepsis is the manifestation of the immune and inflammatory response to infection that may ultimately result in multi organ failure. Despite the therapeutic strategies that have been used up to now, sepsis and septic shock remain a leading cause of death in critically ill patients. Myocardial dysfunction is a well-described complication of severe sepsis, also referred to as septic cardiomyopathy, which may progress to right and left ventricular pump failure. Many substances and mechanisms seem to be involved in myocardial dysfunction in sepsis, including toxins, cytokines, nitric oxide, complement activation, apoptosis and energy metabolic derangements. Nevertheless, the precise underlying molecular mechanisms as well as their significance in the pathogenesis of septic cardiomyopathy remain incompletely understood. A well-investigated abnormality in septic cardiomyopathy is mitochondrial dysfunction, which likely contributes to cardiac dysfunction by causing myocardial energy depletion. A number of mechanisms have been proposed to cause mitochondrial dysfunction in septic cardiomyopathy, although it remains controversially discussed whether some mechanisms impair mitochondrial function or serve to restore mitochondrial function. The purpose of this review is to discuss mitochondrial mechanisms that may causally contribute to mitochondrial dysfunction and/or may represent adaptive responses to mitochondrial dysfunction in septic cardiomyopathy.

  3. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    Directory of Open Access Journals (Sweden)

    Nélson R Carvalho

    Full Text Available The acute liver failure (ALF induced by acetaminophen (APAP is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe2 to the N-acetylcysteine (NAC during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg, (PhSe2 (15.6 mg/kg, NAC (1200 mg/kg, APAP+(PhSe2 or APAP+NAC, where the (PhSe2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe2. The effectiveness of (PhSe2 was similar at a lower dose than NAC. In summary, (PhSe2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.

  4. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  5. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion.

    Science.gov (United States)

    Chen Scarabelli, Carol; McCauley, Roy B; Yuan, Zhaokan; Di Rezze, Justin; Patel, David; Putt, Jeff; Raddino, Riccardo; Allebban, Zuhair; Abboud, John; Scarabelli, Gabriele M; Chilukuri, Karuna; Gardin, Julius; Saravolatz, Louis; Faggian, Giuseppe; Mazzucco, Alessandro; Scarabelli, Tiziano M

    2008-06-02

    Sarcopenia is an inevitable age-related degenerative process chiefly characterized by decreased synthesis of muscle proteins and impaired mitochondrial function, leading to progressive loss of muscle mass. Here, we sought to probe whether long-term administration of oral amino acids (AAs) can increase protein and adenosine triphosphate (ATP) content in the gastrocnemius muscle of aged rats, enhancing functional performance. To this end, 6- and 24-month-old male Fisher 344 rats were divided into 3 groups: group A (6-month-old rats) and group B (24-month-old rats) were used as adult and senescent control group, respectively, while group C (24-month-old rats) was used as senescent treated group and underwent 1-month oral treatment with a mixture of mainly essential AAs. Untreated senescent animals exhibited a 30% reduction in total and fractional protein content, as well as a 50% reduction in ATP content and production, compared with adult control rats (p supplementation with mixed AAs significantly improved protein and high-energy phosphate content, as well as the rate of mitochondrial ATP production, conforming their values to those of adult control animals (p energy substrates in the gastrocnemius muscle of treated aged rats paralleled a significant enhancement in functional performance assessed by swim test, with dramatic elongation of maximal exertion times compared with untreated senescent rats (p supplementation with oral AAs improved protein and energy profiles in the gastrocnemius of treated rats, enhancing functional performance and accelerating high-energy phosphate recovery after exhaustive exertion.

  6. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  7. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2).    The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  8. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  9. The Case of Ozone Depletion

    Science.gov (United States)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  10. AFSC/REFM: Pacific cod Localized Depletion Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Localized Depletion study for Pacific cod 2001-2005. Study was conducted using cod pot gear to measure localized abundance of Pacific cod inside and...

  11. Adding trend data to Depletion-Based Stock Reduction Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Bayesian model of Depletion-Based Stock Reduction Analysis (DB-SRA), informed by a time series of abundance indexes, was developed, using the Sampling Importance...

  12. Depletion of florfenicol amine, marker residue of florfenicol, from the edible fillet of tilapia (Oreochromis niloticus x O. niloticus and O. niloticus x O. aureus) following florfenicol administration in feed

    Science.gov (United States)

    Gaikowski, M.P.; Mushtaq, M.; Cassidy, P.; Meinertz, J.R.; Schleis, S.M.; Sweeney, D.; Endris, R.G.

    2010-01-01

    Aquaflor??, a 50% feed premix containing the broad spectrum antibacterial agent florfenicol is available globally to control mortality associated with economically significant systemic bacterial diseases of fish. Florfenicol (FFC) is effective in controlling mortality associated with Streptococcus iniae in tilapia Oreochromis sp. when administered in medicated feed at a dose of 15 mg/kg bodyweight (BW)/d for 10 consecutive days. Our objective was to characterize the depletion of the FFC marker residue, florfenicol amine (FFA), from the edible tissue of market-weight Nile tilapia O. niloticus x O. niloticus and hybrid tilapia O. niloticus x O. aureus offered feed medicated with FFC at a nominal dose rate of 15 mg/kg BW/d for 12 days. Near market-weight tilapia were obtained from a commercial tilapia farm, distributed to 2 single pass (one for Nile tilapia and one for hybrid tilapia), flow-through systems and maintained at 27 ??C under a 15 h light:9 h dark photoperiod over a 41-d pre-dosing period. During the dosing period, tilapia were offered feed medicated with FFC at a concentration of 1.479 g/kg at 1% BW daily divided in three equal offerings. The initial 10-d dosing period was extended to 12 d because one tank did not consume > 75% of the feed offered during the first two dosing days. The total dose consumed by fish in each of the 2 tanks ranged from 147 to 167 mg/kg. Once during the pre-dose period and on days 1, 2, 4, 7, 14, 21, and 28 of the post-dose period, groups of fish were indiscriminately removed from each tank, measured for weight and length, scaled, filleted, and the skin-on fillets stored at performance liquid chromatography with UV detection. Florfenicol amine is rapidly eliminated from tilapia fillet after withdrawal from medication and depletion followed first-order kinetics with an estimated half-life of 2.32 d. The FFA tolerance limit, calculated as the 99th percentile of the potential residue level at 95% confidence, had depleted to less

  13. Depletion of mtDNA: syndromes and genes.

    Science.gov (United States)

    Alberio, Simona; Mineri, Rossana; Tiranti, Valeria; Zeviani, Massimo

    2007-01-01

    Maintenance of mitochondrial DNA (mtDNA) requires the concerted activity of several nuclear-encoded factors that participate in its replication, being part of the mitochondrial replisome or ensuring the balanced supply of dNTPs to mitochondria. In the past decade, a growing number of syndromes associated with dysfunction due to tissue-specific depletion of mtDNA (MDS) have been reported. This article reviews the current knowledge of the genes responsible for these disorders, the impact of different mutations in the epidemiology of MDS and their role in the pathogenic mechanisms underlying the different clinical presentations.

  14. Depletion of intense fields

    CERN Document Server

    Seipt, D; Marklund, M; Bulanov, S S

    2016-01-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 \\sim 10^3$ and electron bunches with charges of the order of nC.

  15. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  16. Mitochondrial Myopathy

    Science.gov (United States)

    ... diseases are caused by CoQ10 deficiency, and CoQ10 supplementation is clearly beneficial in these cases. It might provide some relief from other mitochondrial diseases. Creatine, L-carnitine, and CoQ10 supplements often are combined into a “ ...

  17. mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin.

    Directory of Open Access Journals (Sweden)

    Wen-Yi Huang

    Full Text Available BACKGROUND: F1F0-ATP synthase (F1F0-ATPase plays important roles in regulating mitochondrial function during hypoxia, but the effect of F1F0-ATPase defect on hypoxia/reoxygenation (H/RO is unknown. The aim of this study was to investigate how mtDNA T8993G mutation (NARP-induced inhibition of F1F0-ATPase modulates the H/RO-induced mitochondrial dysfunction. In addition, the potential for melatonin, a potent antioxidant with multiple mitochondrial protective properties, to protect NARP cells exposed to H/RO was assessed. METHODS AND FINDINGS: NARP cybrids harboring 98% of mtDNA T8993G genes were established as an in vitro model for cells with F1F0-ATPase defect; their parental osteosarcoma 143B cells were studied for comparison. Treating the cells with H/RO using a hypoxic chamber resembles ischemia/reperfusion in vivo. NARP significantly enhanced apoptotic death upon H/RO detected by MTT assay and the trypan blue exclusion test of cell viability. Based on fluorescence probe-coupled laser scanning imaging microscopy, NARP significantly enhanced mitochondrial reactive oxygen species (mROS formation and mitochondrial Ca(2+ (mCa(2+ accumulation in response to H/RO, which augmented the depletion of cardiolipin, resulting in the retardation of mitochondrial movement. With stronger H/RO stress (either with longer reoxygenation duration, longer hypoxia duration, or administrating secondary oxidative stress following H/RO, NARP augmented H/RO-induced mROS formation to significantly depolarize mitochondrial membrane potential (ΔΨm, and enhance mCa(2+ accumulation and nitric oxide formation. Also, NARP augmented H/RO-induced mROS oxidized and depleted cardiolipin, thereby promoting permanent mitochondrial permeability transition, retarded mitochondrial movement, and enhanced apoptosis. Melatonin markedly reduced NARP-augmented H/RO-induced mROS formation and therefore significantly reduced mROS-mediated depolarization of ΔΨm and accumulation of mCa(2

  18. Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics.

    Science.gov (United States)

    Xiao, Lin; Xian, Hongxu; Lee, Kit Yee; Xiao, Bin; Wang, Hongyan; Yu, Fengwei; Shen, Han-Ming; Liou, Yih-Cherng

    2015-10-09

    Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death.

  19. B cell depletion in treating primary biliary cirrhosis: Pros and cons

    Institute of Scientific and Technical Information of China (English)

    Yu-Feng Yin; Xuan Zhang

    2012-01-01

    Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease of unknown etiology that affects almost exclusively women.Ursodeoxycholic acid (UDCA) is currently the only approved drug by Food and Drug Administration for patients with PBC.Although the precise pathogenesis of PBC remains unclear,it has been postulated that many cell populations,including B cells,are involved in the ongoing inflammatory process,which implicates,not surprisingly,a potential therapeutic target of depleting B cell to treat this disorder.Rituximab is a chimeric anti-CD20 monoclonal antibody that has been approved for the treatment of lymphoma and some autoimmune diseases such as rheumatoid arthritis.Whether it is effective in the treatment of PBC has not been evaluated.Recently,Tsuda et al[1] demonstrated that B cell depletion with rituximab significantly reduced the number of anti-mitochondrial antibodies (AMA)-producing B cells,AMA titers,the plasma levels of immunoglobulins (IgA,IgM and IgG) as well as serum alkaline phosphatase,and it was well tolerated by all the treated patients with no serious adverse events.This observation provides a novel treatment option for the patients with PBC who have incomplete response to UDCA.

  20. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity.

  1. Topical or oral administration with an extract of Polypodium leucotomos prevents acute sunburn and psoralen-induced phototoxic reactions as well as depletion of Langerhans cells in human skin

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, S.; Pathak, M.A.; Fitzpatrick, T.B. [Massachusetts General Hospital, Harvard Medical School, Dept. of Dermatology, Boston, MA (United States); Cuevas, J. [Hospital Universitario de Guadalajara, Dept. of Pathology, Guadalajara (Spain); Villarrubia, V.G. [I.F. Cantabria SA, Medical Dept., Immunology Sect., Madrid (Spain)

    1997-12-31

    Sunburn, immune suppression, photo-aging, and skin cancers result from uncontrolled overexposure of human skin to solar ultraviolet radiation (UVR). Preventive measures, including photo-protection, are helpful and can be achieved by topical sun-screening agents. Polypodium leucotomos (PL) has been used for the treatment of inflammatory diseases and has shown some in vitro and in vivo immunomodulating properties. Its beneficial photo-protective effects in the treatment of vitiligo and its antioxidant properties encouraged us to evaluate in vivo the potentially useful photo-protective property of natural extract of PL after topical application or oral ingestion. Twenty-one healthy volunteers [either untreated or treated with oral psoralens (8-MOP or 5-MOP)] were enrolled in this study and exposed to solar radiation for evaluation of the following clinical parameters: immediate pigment darkening (IPD), minimal erythema dose (MED), minimal melanogenic dose (MMD), and minimal phototoxic dose (MPD) before and after topical or oral administration of PL. Immunohistochemical assessment of CD1a-expressing epidermal cells were also performed. PL was found to be photo-protective after topical application as well as oral administration. PL increased UV dose required for IPD (P<0.01), MED (P<0.001) and MPD (P<0.001). After oral administration of PL, MED increased 2.,8{+-}0.59 times and MPD increased 2.75{+-}0.5 and 6.8{+-}1.3 times depending upon the type of psoralen used. Immunohistochemical study revealed photo-protection of Langherhans cells by oral as well as topical PL. The observed photo-protective activities of oral or topical PL reveal a new avenue in examining the potentially useful field of systemic photo-protection and suggests that PL can be used as adjunct treatment and can make photochemotherapy and phototherapy possibly safe and effective when the control of cutaneous phototoxicity to PUVA or UVB is a limiting factor in such photo-therapies. (au). 50 refs.

  2. Mitochondrial cytopathies and cardiovascular disease.

    Science.gov (United States)

    Dominic, Elizabeth A; Ramezani, Ali; Anker, Stefan D; Verma, Mukesh; Mehta, Nehal; Rao, Madhumathi

    2014-04-01

    The global epidemic of cardiovascular disease remains the leading cause of death in the USA and across the world. Functional and structural integrity of mitochondria are essential for the physiological function of the cardiovascular system. The metabolic adaptation observed in normal heart is lost in the failing myocardium, which becomes progressively energy depleted leading to impaired myocardial contraction and relaxation. Uncoupling of electron transfer from ATP synthesis leads to excess generation of reactive species, leading to widespread cellular injury and cardiovascular disease. Accumulation of mitochondrial DNA mutation has been linked to ischaemic heart disease, cardiomyopathy and atherosclerotic vascular disease. Mitochondria are known to regulate apoptotic and autophagic pathways that have been shown to play an important role in the development of cardiomyopathy and atherosclerosis. A number of pharmacological and non-pharmacological treatment options have been explored in the management of mitochondrial diseases with variable success.

  3. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis.

    Science.gov (United States)

    Jou, Mei-Jie; Peng, Tsung-I; Yu, Pai-Zu; Jou, Shuo-Bin; Reiter, Russel J; Chen, Jin-Yi; Wu, Hong-Yueh; Chen, Chih-Chun; Hsu, Lee-Fen

    2007-11-01

    Defected mitochondrial respiratory chain (RC), in addition to causing a severe ATP deficiency, often augments reactive oxygen species (ROS) generation in mitochondria (mROS) which enhances pathological conditions and diseases. Previously, we demonstrated a potent endogenously RC defect-augmented mROS associated dose-dependently with a commonly seen large-scale deletion of 4977 base pairs of mitochondrial DNA (mtDNA), i.e. the common deletion (CD). As current treatments for CD-associated diseases are rather supplementary and ineffective, we investigated whether melatonin, a potential mitochondrial protector, provides beneficial protection for CD-augmented mitochondrial oxidative stress and apoptosis particularly upon the induction of a secondary oxidative stress. Detailed mechanistic investigations were performed by using laser scanning dual fluorescence imaging microscopy to provide precise spatial and temporal resolution of mitochondrial events at single cell level. We demonstrate, for the first time, that melatonin significantly prevents CD-augmented mROS formation under basal conditions as well as at early time-points upon secondary oxidative stress induced by H2O2 exposure. Thus, melatonin prevents mROS-mediated depolarization of mitochondrial membrane potential (DeltaPsim) and subsequent opening of the mitochondrial permeability transition pore (MPTP) and cytochrome c release. Moreover, melatonin prevents depletion of cardiolipin which appears to be crucial for postponing later MPTP opening, disruption of the mitochondrial membrane and apoptosis. Finally, the protection provided by melatonin is superior to those caused by the suppression of mitochondrial Ca2+ regulators including the mitochondrial Na+-Ca2) exchanger, the MPTP, and the mitochondrial Ca2+ uniporter and by antioxidants including vitamin E and mitochondria-targeted coenzyme Q, MitoQ. As RC defect-augmented endogenous mitochondrial oxidative stress is centrally involved in a variety of pathological

  4. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  5. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  6. Functional Recovery of Human Cells Harbouring the Mitochondrial DNA Mutation MERRF A8344G via Peptide-Mediated Mitochondrial Delivery

    Directory of Open Access Journals (Sweden)

    Jui-Chih Chang

    2012-09-01

    Full Text Available We explored the feasibility of mitochondrial therapy using the cell-penetrating peptide Pep-1 to transfer mitochondrial DNA (mtDNA between cells and rescue a cybrid cell model of the mitochondrial disease myoclonic epilepsy with ragged-red fibres (MERRF syndrome. Pep-1-conjugated wild-type mitochondria isolated from parent cybrid cells incorporating a mitochondria-specific tag were used as donors for mitochondrial delivery into MERRF cybrid cells (MitoB2 and mtDNA-depleted Rho-zero cells (Mitoρ°. Forty-eight hours later, translocation of Pep-1-labelled mitochondria into the mitochondrial regions of MitoB2 and Mitoρ° host cells was observed (delivery efficiencies of 77.48 and 82.96%, respectively. These internalized mitochondria were maintained for at least 15 days in both cell types and were accompanied by mitochondrial function recovery and cell survival by preventing mitochondria-dependent cell death. Mitochondrial homeostasis analyses showed that peptide-mediated mitochondrial delivery (PMD also increased mitochondrial biogenesis in both cell types, but through distinct regulatory pathways involving mitochondrial dynamics. Dramatic decreases in mitofusin-2 (MFN2 and dynamin-related protein 1/fission 1 were observed in MitoB2 cells, while Mitoρ° cells showed a significant increase in optic atrophy 1 and MFN2. These findings suggest that PMD can be used as a potential therapeutic intervention for mitochondrial disorders.

  7. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  8. Depletable resources and the economy.

    NARCIS (Netherlands)

    Heijman, W.J.M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, ti

  9. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.

    Science.gov (United States)

    Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala

    2005-01-01

    Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.

  10. LHON: Mitochondrial Mutations and More.

    Science.gov (United States)

    Kirches, E

    2011-03-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder leading to severe visual impairment or even blindness by death of retinal ganglion cells (RGCs). The primary cause of the disease is usually a mutation of the mitochondrial genome (mtDNA) causing a single amino acid exchange in one of the mtDNA-encoded subunits of NADH:ubiquinone oxidoreductase, the first complex of the electron transport chain. It was thus obvious to accuse neuronal energy depletion as the most probable mediator of neuronal death. The group of Valerio Carelli and other authors have nicely shown that energy depletion shapes the cell fate in a LHON cybrid cell model. However, the cybrids used were osteosarcoma cells, which do not fully model neuronal energy metabolism. Although complex I mutations may cause oxidative stress, a potential pathogenetic role of the latter was less taken into focus. The hypothesis of bioenergetic failure does not provide a simple explanation for the relatively late disease onset and for the incomplete penetrance, which differs remarkably between genders. It is assumed that other genetic and environmental factors are needed in addition to the 'primary LHON mutations' to elicit RGC death. Relevant nuclear modifier genes have not been identified so far. The review discusses the unresolved problems of a pathogenetic hypothesis based on ATP decline and/or ROS-induced apoptosis in RGCs.

  11. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  12. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    OpenAIRE

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.

  13. Mitochondrial DNA dynamics during in vitro culture and pluripotency induction of a bovine Rho0 cell line.

    Science.gov (United States)

    Pessôa, L V F; Bressan, F F; Chiaratti, M R; Pires, P R L; Perecin, F; Smith, L C; Meirelles, F V

    2015-10-30

    Large number of cellular changes and diseases are related to mutations in the mitochondrial DNA copy number. Cell culture in the presence of ethidium bromide is a known way of depleting mitochondrial DNA and is a useful model for studying such conditions. Interestingly, the morphology of these depleted cells resembles that of pluripotent cells, as they present larger and fragmented mitochondria with poorly developed cristae. Herein, we aimed to study the mechanisms responsible for the control of mitochondrial DNA replication during mitochondrial DNA depletion mediated by ethidium bromide and during the in vitro induction of cellular pluripotency with exogenous transcription factor expression in a bovine model. This article reports the generation of a bovine Rho0 mesenchymal cell line and describes the analysis of mitochondrial DNA copy number in a time-dependent manner. The expression of apoptosis and mitochondrial-related genes in the cells during mitochondrial DNA repletion were also analyzed. The dynamics of mitochondrial DNA during both the depletion process and in vitro reprogramming are discussed. It was possible to obtain bovine mesenchymal cells almost completely depleted of their mitochondrial DNA content (over 90%). However, the production of induced pluripotent stem cells from the transduction of both control and Rho0 bovine mesenchymal cells with human reprograming factors was not successful.

  14. A role of taurine in mitochondrial function

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Andersen, Mogens Larsen; Cornett, Claus;

    2010-01-01

    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range...... and its pKa value is determined to 9.0 (25 degrees C) and 8.6 (37 degrees C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase...... enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes....

  15. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    Science.gov (United States)

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  16. Mitochondrial inheritance is mediated by microtubules in mammalian cell division.

    Science.gov (United States)

    Lawrence, Elizabeth; Mandato, Craig

    2013-11-01

    The mitochondrial network fragments and becomes uniformly dispersed within the cytoplasm when mammalian cells enter mitosis. Such morphology and distribution of mitochondria was previously thought to facilitate the stochastic inheritance of mitochondria by daughter cells. In contrast, we recently reported that mitochondria in dividing mammalian cells are inherited by an ordered mechanism of inheritance mediated by microtubules. We showed that mitochondria are progressively enriched at the cell equator and depleted at the poles throughout division. Furthermore, the mitochondrial distribution during division is dependent on microtubules, indicating an ordered inheritance strategy. The microtubule-mediated positioning of mitochondria in dividing mammalian cells may have functional consequences for cell division and/or mitochondrial inheritance.

  17. Number matters: control of mammalian mitochondrial DNA copy number.

    Science.gov (United States)

    Clay Montier, Laura L; Deng, Janice J; Bai, Yidong

    2009-03-01

    Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.

  18. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma.

    Science.gov (United States)

    de Araujo, Luiza F; Fonseca, Aline S; Muys, Bruna R; Plaça, Jessica R; Bueno, Rafaela B L; Lorenzi, Julio C C; Santos, Anemari R D; Molfetta, Greice A; Zanette, Dalila L; Souza, Jorge E S; Valente, Valeria; Silva, Wilson A

    2015-11-01

    Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.

  19. Characteristics of mitochondrial calpains.

    Science.gov (United States)

    Ozaki, Taku; Tomita, Hiroshi; Tamai, Makoto; Ishiguro, Sei-Ichi

    2007-09-01

    Calpains are considered to be cytoplasmic enzymes, although several studies have shown that calpain-like protease activities also exist in mitochondria. We partially purified mitochondrial calpain from swine liver mitochondria and characterized. Only one type of mitochondrial calpain was detected by the column chromatographies. The mitochondrial calpain was stained with anti-mu-calpain and calpain small subunit antibodies. The susceptibility of mitochondrial calpain to calpain inhibitors and the optimum pH differ from those of cytosolic mu- and m-calpains. The Ca(2+)-dependency of mitochondrial calpain was similar to that of cytosolic mu-calpain. Therefore, we named the protease mitochondrial mu-like calpain. In zymogram analysis, two types of caseinolytic enzymes existed in mitochondria and showed different mobilities from cytosolic mu- and m-calpains. The upper major band was stained with anti-mu-calpain and calpain small subunit antibodies (mitochondrial calpain I, mitochondrial mu-like calpain). The lower band was stained only with anti-calpain small subunit antibody (mitochondrial calpain II, unknown mitochondrial calpain). Calpastatin was not detected in mitochondrial compartments. The mitochondrial calpain processed apoptosis-inducing factor (AIF) to truncated AIF (tAIF), releasing tAIF into the intermembrane space. These results indicate that mitochondrial calpain, which differs from mu- and m-calpains, seems to be a ubiquitous calpain and may play a role in mitochondrial apoptotic signalling.

  20. Depleting depletion: Polymer swelling in poor solvent mixtures

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  1. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations

    Science.gov (United States)

    Liao, Chunyan; Ashley, Neil; Diot, Alan; Morten, Karl; Phadwal, Kanchan; Williams, Andrew; Fearnley, Ian; Rosser, Lyndon; Lowndes, Jo; Fratter, Carl; Ferguson, David J.P.; Vay, Laura; Quaghebeur, Gerardine; Moroni, Isabella; Bianchi, Stefania; Lamperti, Costanza; Downes, Susan M.; Sitarz, Kamil S.; Flannery, Padraig J.; Carver, Janet; Dombi, Eszter; East, Daniel; Laura, Matilde; Reilly, Mary M.; Mortiboys, Heather; Prevo, Remko; Campanella, Michelangelo; Daniels, Matthew J.; Zeviani, Massimo; Yu-Wai-Man, Patrick; Simon, Anna Katharina; Votruba, Marcela

    2017-01-01

    Objective: To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. Methods: Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. Results: Fibroblasts from 3 biallelic OPA1(−/−) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)–depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA–treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. Conclusions: We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion. PMID:27974645

  2. Rotational Mixing and Lithium Depletion

    CERN Document Server

    Pinsonneault, M H

    2010-01-01

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  3. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    showed that a pre-ischemic administration of AOA preserved mitochondrial complex I-linked state 3 respiration and fatty acid oxidation during late reperfusion in IR-injured isolated rat hearts. The AOA treatment also attenuated the excessive emission of mitochondrial reactive oxygen species during state...

  4. Mitochondrial biogenesis and turnover.

    Science.gov (United States)

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  5. Gastrin-releasing peptide receptor antagonist or N-acetylcysteine combined with omeprazol protect against mitochondrial complex II inhibition in a rat model of gastritis.

    Science.gov (United States)

    Rezin, Gislaine T; Petronilho, Fabricia C; Araújo, João H; Gonçalves, Cinara L; Daufenbach, Juliana F; Cardoso, Mariane R; Roesler, Rafael; Schwartsmann, Gilberto; Dal-Pizzol, Felipe; Streck, Emilio L

    2011-03-01

    The pathophysiology of gastritis involves an imbalance between gastric acid attack and mucosal defence. In addition, the gastric mucosal injury results in adenosine triphosphate (ATP) depletion leading to mitochondrial dysfunction. Several studies have shown the association of mitochondrial disorders with gastrointestinal dysfunction. In the present study, we investigated the activity of mitochondrial respiratory chain complexes activity in the stomach of rats with gastritis induced by indomethacin (IDM) and treated with omeprazole (OM), N-acetylcysteine (NAC) and the gastrin-releasing peptide receptor (GRPR) antagonist RC-3095. Adult male Wistar rats were pre-treated for 7 days with OM, NAC, RC-3095, combination of OM plus RC-3095, OM plus NAC and water (control). The animals were then submitted to fasting for 24 hr; IDM was administered. The rats were killed 6 hr later, and the stomachs were used for evaluation of macroscopic damage and respiratory chain activity. Our results showed that complex I and IV activities were not affected by administration of IDM. On the other hand, complex II and III activities were inhibited. In addition, OM plus RC-3095 and OM plus NAC did not reverse complex II activity inhibition. However, the complex III activity inhibition was reversed only with the combined use of OM plus RC-3095 and OM plus NAC. Our results are in agreement with previous studies indicating mitochondrial dysfunction in the pathophysiology of gastrointestinal tract disease and we suggest that GRPR antagonism might be a novel therapeutic strategy in gastritis.

  6. Inherited Mendelian defects of nuclear-mitochondrial communication affecting the stability of mitochondrial DNA.

    Science.gov (United States)

    Limongelli, Anna; Tiranti, Valeria

    2002-11-01

    The presence of mtDNA abnormalities inherited as Mendelian traits indicates the existence of mutations in nuclear genes affecting the integrity of the mitochondrial genome. Two groups of nucleus-driven abnormalities have been described: qualitative alterations of mtDNA, i.e. multiple large-scale deletions of mtDNA, and quantitative decrease of the mtDNA copy number, i.e. tissue-specific depletion of mtDNA. Autosomal dominant or recessive (adPEO), progressive ophthalmoplegia and autosomal-recessive mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), are three neurodegenerative disorders associated with the coexistence of wild-type mtDNA with several deletion-containing mtDNA species. Heterozygous mutations of the genes encoding the muscle-heart isoform of the adenosine diphosphate/adenosine triphosphate mitochondrial translocator (ANT1), the main subunit of polymerase gamma (POLG1), and of the putative mtDNA helicase (Twinkle) have been found in adPEO families linked to three different loci, on chromosomes 4q34-35, 10q24, and 15q25, respectively. Mutations in the gene encoding thymidine phosphorylase have been identified in several MNGIE patients. Severe, tissue-specific depletion of mtDNA is the molecular hallmark of rapidly progressive hepatopathies or myopathies of infancy and childhood. Two genes, deoxyguanosine kinase and thymidine kinase type 2, both involved in the mitochondrion-specific salvage pathways of deoxynucleotide pools, have been associated with depletion syndromes in selected families.

  7. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy.

    Science.gov (United States)

    Scruggs, Erin R; Dirks Naylor, Amie J

    2008-01-01

    Zidovudine (3-azido-3'-deoxythymidine), also referred to as azidothymidine (AZT), has become an integral component in highly active antiretroviral therapy, and has also been used in the treatment of cancer. The clinical effectiveness of AZT is constrained due to its association with increased adverse effects, such as myopathy. There are numerous potential mechanisms that may contribute to AZT-induced myopathy. The first hypothesized mechanism to explain AZT-induced toxicity was mtDNA depletion due to inhibition of DNA polymerase gamma. Although mtDNA depletion is present in patients with myopathy, current data suggests that alternative mechanisms may play a more direct role in the myotoxicity. These mechanisms include AZT-induced oxidative stress, direct inhibition of mitochondrial bioenergetic machinery, and mitochondrial depletion of L-carnitine. Furthermore, we hypothesize that apoptosis may play a role in AZT-induced myopathy.

  8. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  9. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Science.gov (United States)

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  10. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model.

    Science.gov (United States)

    Keeney, Paula M; Quigley, Caitlin K; Dunham, Lisa D; Papageorge, Christina M; Iyer, Shilpa; Thomas, Ravindar R; Schwarz, Kathleen M; Trimmer, Patricia A; Khan, Shaharyar M; Portell, Francisco R; Bergquist, Kristen E; Bennett, James P

    2009-08-01

    Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled

  11. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  12. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-03

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.

  13. Drug-induced mitochondrial neuropathy in children: a conceptual framework for critical windows of development.

    Science.gov (United States)

    Wallace, Kendall B

    2014-09-01

    Mitochondrial disease arises from genetic or nongenetic events that interfere either directly or indirectly with the bioenergetic function of the mitochondrion and manifest clinically in some form of metabolic disorder. In primary mitochondrial disease, the critical molecular target is one or more of the individual subunits of the respiratory complexes or their assembly and incorporation into the inner mitochondrial membrane, whereas with secondary mitochondrial disease the bioenergetic deficits are secondary to effects on targets other than the electron transport chain and oxidative phosphorylation. Primary genetic events include mutations to or altered expression of proteins targeted to the mitochondrial compartment, whether they are encoded by the nuclear or mitochondrial genome. In this review, we emphasize the occurrence of nongenetic mitochondrial disease resulting from therapeutic drug administration, review the broad scope of drugs implicated in affecting specific primary mitochondrial targets, and describe evidence demonstrating critical windows of risk for the developing neonate to drug-induced mitochondrial disease and neuropathy.

  14. Mitochondrial dysfunction in neuromuscular disorders.

    Science.gov (United States)

    Katsetos, Christos D; Koutzaki, Sirma; Melvin, Joseph J

    2013-09-01

    This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.

  15. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  16. Ozone depletion, paradigms, and politics

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  17. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  18. HD depletion in starless cores

    CERN Document Server

    Sipilä, O; Harju, J

    2013-01-01

    Aims: We aim to investigate the abundances of light deuterium-bearing species such as HD, H2D+ and D2H+ in a gas-grain chemical model including an extensive description of deuterium and spin state chemistry, in physical conditions appropriate to the very centers of starless cores. Methods: We combine a gas-grain chemical model with radiative transfer calculations to simulate density and temperature structure in starless cores. The chemical model includes deuterated forms of species with up to 4 atoms and the spin states of the light species H2, H2+ and H3+ and their deuterated forms. Results: We find that HD eventually depletes from the gas phase because deuterium is efficiently incorporated to grain-surface HDO, resulting in inefficient HD production on grains. HD depletion has consequences not only on the abundances of e.g. H2D+ and D2H+, whose production depends on the abundance of HD, but also on the spin state abundance ratios of the various light species, when compared with the complete depletion model ...

  19. Mitochondrial phospholipids: role in mitochondrial function.

    Science.gov (United States)

    Mejia, Edgard M; Hatch, Grant M

    2016-04-01

    Mitochondria are essential components of eukaryotic cells and are involved in a diverse set of cellular processes that include ATP production, cellular signalling, apoptosis and cell growth. These organelles are thought to have originated from a symbiotic relationship between prokaryotic cells in an effort to provide a bioenergetic jump and thus, the greater complexity observed in eukaryotes (Lane and Martin 2010). Mitochondrial processes are required not only for the maintenance of cellular homeostasis, but also allow cell to cell and tissue to tissue communication (Nunnari and Suomalainen 2012). Mitochondrial phospholipids are important components of this system. Phospholipids make up the characteristic outer and inner membranes that give mitochondria their shape. In addition, these membranes house sterols, sphingolipids and a wide variety of proteins. It is the phospholipids that also give rise to other characteristic mitochondrial structures such as cristae (formed from the invaginations of the inner mitochondrial membrane), the matrix (area within cristae) and the intermembrane space (IMS) which separates the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM). Phospholipids are the building blocks that make up these structures. However, the phospholipid composition of the OMM and IMM is unique in each membrane. Mitochondria are able to synthesize some of the phospholipids it requires, but the majority of cellular lipid biosynthesis takes place in the endoplasmic reticulum (ER) in conjunction with the Golgi apparatus (Fagone and Jackowski 2009). In this review, we will focus on the role that mitochondrial phospholipids play in specific cellular functions and discuss their biosynthesis, metabolism and transport as well as the differences between the OMM and IMM phospholipid composition. Finally, we will focus on the human diseases that result from disturbances to mitochondrial phospholipids and the current research being performed to help

  20. Mitochondrial helicases and mitochondrial genome maintenance

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; de Souza-Pinto, Nadja C; Kulikowicz, Tomasz;

    2010-01-01

    Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases...... have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus....

  1. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  2. Novel TK2 mutations as a cause of delayed muscle maturation in mtDNA depletion syndrome.

    Science.gov (United States)

    Termglinchan, Thanes; Hisamatsu, Seito; Ohmori, Junko; Suzumura, Hiroshi; Sumitomo, Noriko; Imataka, George; Arisaka, Osamu; Murakami, Nobuyuki; Minami, Narihiro; Akihiko, Ishiyama; Sasaki, Masayuki; Goto, Yuichi; Noguchi, Satoru; Nonaka, Ikuya; Mitsuhashi, Satomi; Nishino, Ichizo

    2016-10-01

    Recessive mutations in TK2 cause a severe mitochondrial DNA depletion syndrome (MDS),(1) characterized by severe myopathy from early infancy. Recent reports have suggested a wider clinical spectrum including encephalomyopathic form.(1,2) We report a patient with infantile-onset fatal encephalomyopathy presenting with extreme muscle fiber immaturity.

  3. Mitochondrial Biogenesis and Turnover

    OpenAIRE

    Diaz, Francisca; Moraes, Carlos T.

    2008-01-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last twenty years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium dependent protein kinases that in turn a...

  4. [Mitochondrial and oocyte development].

    Science.gov (United States)

    Deng, Wei-Ping; Ren, Zhao-Rui

    2007-12-01

    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  5. Progress in mitochondrial epigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  6. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  7. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult.

    Science.gov (United States)

    Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2015-07-01

    Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress.

  8. Action orientation overcomes the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task.

  9. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD.

  10. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  11. Physics of Fully Depleted CCDs

    CERN Document Server

    Holland, S E; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

  12. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  13. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  14. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS.

    Science.gov (United States)

    Jackson, Megan V; Morrison, Thomas J; Doherty, Declan F; McAuley, Daniel F; Matthay, Michael A; Kissenpfennig, Adrien; O'Kane, Cecilia M; Krasnodembskaya, Anna D

    2016-08-01

    Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in preclinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the antimicrobial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC antimicrobial effect in the in vivo model of Escherichia coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct coculture of MSC with monocyte-derived macrophages enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through tunneling nanotubes (TNT)-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the antimicrobial effect of MSC in vivo. Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the antimicrobial effect of MSC in ARDS. Stem Cells 2016;34:2210-2223.

  15. Depleted uranium disposal options evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  16. Tylosin depletion in edible tissues of turkeys.

    Science.gov (United States)

    Montesissa, C; De Liguoro, M; Santi, A; Capolongo, F; Biancotto, G

    1999-10-01

    The depletion of tylosin residues in edible turkey tissues was followed after 3 days of administration of tylosin tartrate at 500 mg l-1 in drinking water, to 30 turkeys. Immediately after the end of the treatment (day 0) and at day 1, 3, 5 and 10 of withdrawal, six turkeys (three males and three females) per time were sacrificed and samples of edible tissues were collected. Tissue homogenates were extracted, purified and analysed by HPLC according to a method previously published for the analysis of tylosin residues in pig tissues. In all tissues, tylosin residues were already below the detection limits of 50 micrograms kg-1 at time zero. However, in several samples of tissues (skin + fat, liver, kidney, muscle), from the six turkeys sacrificed at that time, one peak corresponding to an unknown tylosin equivalent was detected at measurable concentrations. The identification of this unknown compound was performed by LC-MS/MS analysis of the extracts from incurred samples. The mass fragmentation of the compound was consistent with the structure of tylosin D (the alcoholic derivative of tylosin A), the major metabolite of tylosin previously recovered and identified in tissues and/or excreta from treated chickens, cattle and pigs.

  17. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction.

    Science.gov (United States)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction.

  18. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.

  19. Ego depletion increases risk-taking.

    Science.gov (United States)

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  20. Administrating Solr

    CERN Document Server

    Mohan, Surendra

    2013-01-01

    A fast-paced, example-based guide to learning how to administrate, monitor, and optimize Apache Solr.""Administrating Solr"" is for developers and Solr administrators who have a basic knowledge of Solr and who are looking for ways to keep their Solr server healthy and well maintained. A basic working knowledge of Apache Lucene is recommended, but this is not mandatory.

  1. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  2. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  3. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  4. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  5. [Mitochondrial diseases and stroke].

    Science.gov (United States)

    Irimia, P; Oliveros-Cid, A; Martínez-Vila, E

    1998-04-01

    We review the mitochondrial diseases in which cerebrovascular changes are seen, such as the MERRF syndrome (myoclonic epilepsy and ragged red fibers) or the Kearns-Sayre syndrome (progressive external ophthalmoplegia, retinitis pigmentaria, cerebellar disorders and disorders of cardiac conduction), focusing on the syndrome involving mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). We consider the different clinical aspects, diagnostic methods, pathophysiological mechanisms of the cerebrovascular involvement as well as therapeutic approaches.

  6. Mitochondrial protection by resveratrol.

    Science.gov (United States)

    Ungvari, Zoltan; Sonntag, William E; de Cabo, Rafael; Baur, Joseph A; Csiszar, Anna

    2011-07-01

    Mitochondrial dysfunction and oxidative stress are thought to play important roles in mammalian aging. Resveratrol is a plant-derived polyphenol that exerts diverse antiaging activities, mimicking some of the molecular and functional effects of dietary restriction. This review focuses on the molecular mechanisms underlying the mitochondrial protective effects of resveratrol, which could be exploited for the prevention or amelioration of age-related diseases in the elderly.

  7. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  8. High homocysteine induces betaine depletion.

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.

  9. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  10. G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility.

    Science.gov (United States)

    Andreeva, Alexandra V; Kutuzov, Mikhail A; Voyno-Yasenetskaya, Tatyana A

    2008-08-01

    G alpha12 constitutes, along with G alpha13, one of the four families of alpha subunits of heterotrimeric G proteins. We found that the N terminus of G alpha12, but not those of other G alpha subunits, contains a predicted mitochondrial targeting sequence. Using confocal microscopy and cell fractionation, we demonstrated that up to 40% of endogenous G alpha12 in human umbilical vein endothelial cells colocalize with mitochondrial markers. N-terminal sequence of G alpha12 fused to GFP efficiently targeted the fusion protein to mitochondria. G alpha12 with mutated mitochondrial targeting sequence was still located in mitochondria, suggesting the existence of additional mechanisms for mitochondrial localization. Lysophosphatidic acid, one of the known stimuli transduced by G alpha12/13, inhibited mitochondrial motility, while depletion of endogenous G alpha12 increased mitochondrial motility. G alpha12Q229L variants uncoupled from RhoGEFs (but not fully functional activated G alpha12Q229L) induced transformation of the mitochondrial network into punctate mitochondria and resulted in a loss of mitochondrial membrane potential. All examined G alpha12Q229L variants reduced phosphorylation of Bcl-2 at Ser-70, while only mutants unable to bind RhoGEFs also decreased cellular levels of Bcl-2. These G alpha12 mutants were also more efficient Hsp90 interactors. These findings are the first demonstration of a heterotrimeric G protein alpha subunit specifically targeted to mitochondria and involved in the control of mitochondrial morphology and dynamics.

  11. Peripheral neuropathy in mitochondrial disorders.

    Science.gov (United States)

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  12. Ocular manifestations of mitochondrial disease

    Directory of Open Access Journals (Sweden)

    S. D. Mathebula

    2012-12-01

    Full Text Available Mitochondrial disease caused by mutations in mitochondrial DNA is recognized as one of the most common causes of inherited neurological disease. Neuro-ophthalmic manifestations are a common feature of mitochondrial disease.  Optic atrophy causing central visual loss is the dominant feature of mitochondrial DNA diseases. Nystagmus is also encountered in mitochondrial disease.Although optometrists are not involved with the management of mitochondrial disease, they are likely to see more patients with this disease. Oph-thalmic examination forms part of the clinical assessment of mitochondrial disease. Mitochondrial disease should be suspected in any patient with unexplained optic neuropathy, ophthalmoplegia, pigmentary retinopathy or retrochiasmal visual loss. Despite considerable advances in the under-standing of mitochondrial genetics and the patho-genesis of mtDNA diseases, no effective treatment options are currently available for patients withmitochondrial dysfunction. (S Afr Optom 201271(1 46-50

  13. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    Full Text Available Taurine (2-aminoethanesulfonic acid is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a. Tissue taurine depletion also enhances unfolded protein response (UPR, which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  14. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  15. Administrative Reform

    DEFF Research Database (Denmark)

    Plum, Maja

    Through the example of a Danish reform of educational plans in early childhood education, the paper critically addresses administrative educational reforms promoting accountability, visibility and documentation. Drawing on Foucaultian perspectives, the relation between knowledge and governing...... of administrative technology, tracing how the humanistic values of education embed and are embedded within ‘the professional nursery teacher' as an object and subject of administrative practice. Rather than undermining the humanistic potential of education, it is argued that the technology of accounting...

  16. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.

    Science.gov (United States)

    Hussain, Saber M; Javorina, Amanda K; Schrand, Amanda M; Duhart, Helen M; Ali, Syed F; Schlager, John J

    2006-08-01

    This investigation was designed to determine whether nano-sized manganese oxide (Mn-40 nm) particles would induce dopamine (DA) depletion in a cultured neuronal phenotype, PC-12 cells, similar to free ionic manganese (Mn(2+)). Cells were exposed to Mn-40 nm, Mn(2+) (acetate), or known cytotoxic silver nanoparticles (Ag-15 nm) for 24 h. Phase-contrast microscopy studies show that Mn-40 nm or Mn(2+) exposure did not greatly change morphology of PC-12 cells. However, Ag-15 nm and AgNO(3) produce cell shrinkage and irregular membrane borders compared to control cells. Further microscopic studies at higher resolution demonstrated that Mn-40 nm nanoparticles and agglomerates were effectively internalized by PC-12 cells. Mitochondrial reduction activity, a sensitive measure of particle and metal cytotoxicity, showed only moderate toxicity for Mn-40 nm compared to similar Ag-15 nm and Mn(2+) doses. Mn-40 nm and Mn(2+) dose dependently depleted DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), while Ag-15 nm only significantly reduced DA and DOPAC at concentrations of 50 mug/ml. Therefore, the DA depletion of Mn-40 nm was most similar to Mn(2+), which is known to induce concentration-dependent DA depletion. There was a significant increase (> 10-fold) in reactive oxygen species (ROS) with Mn-40 nm exposure, suggesting that increased ROS levels may participate in DA depletion. These results clearly demonstrate that nanoscale manganese can deplete DA, DOPAC, and HVA in a dose-dependent manner. Further study is required to evaluate the specific intracellular distribution of Mn-40 nm nanoparticles, metal dissolution rates in cells and cellular matrices, if DA depletion is induced in vivo, and the propensity of Mn nanoparticles to cross the blood-brain barrier or be selectively uptaken by nasal epithelium.

  17. Administrative Ecology

    Science.gov (United States)

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  18. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction

    DEFF Research Database (Denmark)

    Stanyer, Lee; Jørgensen, Wenche; Hori, Osamu;

    2008-01-01

    more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex....... Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress....

  19. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    Science.gov (United States)

    2009-04-01

    of oxidative stress [30]. Embryo lethality and depletion of mitochondrial content has also been shown inmice lacking NRF-1 [31]. Whereas estrogen...Moroni,M.C., Christians ,F., Grassilli,E., Prosperini,E., Vigo,E., Oliner,J.D., and Helin,K. (2001) E2Fs regulate the expression of genes involved in

  20. High saturated fat feeding prevents left ventricular dysfunction and enhances mitochondrial function in heart failure

    Science.gov (United States)

    Accumulation of lipids in the heart is associated with contractile dysfunction, and has been proposed to be a causative factor in mitochondrial dysfunction. We have previously shown that administration of a high saturated fat diet in heart failure (HF) increased mitochondrial respiration and ETC com...

  1. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  2. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology.

    Science.gov (United States)

    Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade

    2015-05-21

    The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.

  3. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and...

  4. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  5. Effects of Oxidative Alcohol Metabolism on the Mitochondrial Permeability Transition Pore and Necrosis in a Mouse Model of Alcoholic Pancreatitis

    Science.gov (United States)

    SHALBUEVA, NATALIA; MARENINOVA, OLGA A.; GERLOFF, ANDREAS; YUAN, JINGZHEN; WALDRON, RICHARD T.; PANDOL, STEPHEN J.; GUKOVSKAYA, ANNA S.

    2013-01-01

    BACKGROUND & AIMS Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD−/− mice by a combination of ethanol and CCK. RESULTS Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD−/− acinar cells. Ethanol and CCK activated MPTP through different mechanisms— ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca2+. CypD−/− mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis. PMID:23103769

  6. Mitochondrial Myopathy with DNA Deletions

    OpenAIRE

    J Gordon Millichap

    1992-01-01

    Deletions of mitochondrial DNA (mtDNA) are reported in 19 of 56 patients with mitochondrial myopathy examined in the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.

  7. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  8. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    Science.gov (United States)

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  9. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    Science.gov (United States)

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine.

  10. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  11. Polar stratospheric clouds and ozone depletion

    Science.gov (United States)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  12. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Edith E., E-mail: ed.mueller@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Mayr, Johannes A., E-mail: h.mayr@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Zimmermann, Franz A., E-mail: f.zimmermann@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Feichtinger, Rene G., E-mail: r.feichtinger@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Stanger, Olaf, E-mail: o.stanger@rbht.nhs.uk [Department of Cardiac Surgery, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Sperl, Wolfgang, E-mail: w.sperl@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Kofler, Barbara, E-mail: b.kofler@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

  13. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  14. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  15. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  17. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Sweet delusion. Glucose drinks fail to counteract ego depletion.

    Science.gov (United States)

    Lange, Florian; Eggert, Frank

    2014-04-01

    Initial acts of self-control have repeatedly been shown to reduce individuals' performance on a consecutive self-control task. In addition, sugar containing drinks have been demonstrated to counteract this so-called ego-depletion effect, both when being ingested and when merely being sensed in the oral cavity. However, since the underlying evidence is less compelling than suggested, replications are crucially required. In Experiment 1, 70 participants consumed a drink containing either sugar or a non-caloric sweetener between two administrations of delay-discounting tasks. Experiment 2 (N=115) was designed to unravel the psychological function of oral glucose sensing by manipulating the temporal delay between a glucose mouth rinse and the administration of the consecutive self-control task. Despite applying powerful research designs, no effect of sugar sensing or ingestion on ego depletion could be detected. These findings add to previous challenges of the glucose model of self-control and highlight the need for independent replications.

  19. Pharmacologic Effects on Mitochondrial Function

    Science.gov (United States)

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  20. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  1. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  2. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: A role for glutathione depletion

    OpenAIRE

    Kachadourian, Remy; LEITNER, VHEATHER M.; Day, Brian J.

    2007-01-01

    Adjuvant therapies that enhance the anti-tumor effects of cisplatin are actively being pursued. Growing evidence supports the involvement of mitochondrial dysfunction in the anti-cancer effect of cis-diammineplatinum(II) dichloride (cisplatin, CDDP). We examined the potential of using selective flavonoids that are effective in depleting tumor cells of glu-tathione (GSH) to potentiate cisplatin-mediated cytotoxicity in human lung adenocarcinoma (A549) cells. We found that cisplatin (40 μM, 48-...

  3. Offentlig administration

    DEFF Research Database (Denmark)

    Nielsen, Elof Nellemann; Rehr, Preben René

    En undervisningsbog der henvender sig til administrationsbacheloruddannelsen. Kapitlerne er inddelt efter modulerne på uddannelsen og indeholder derfor elementer af administration, forvaltning, økonomistyring, innovation, samfundsvidenskabelige metoder og politisk styrede organisationer.......En undervisningsbog der henvender sig til administrationsbacheloruddannelsen. Kapitlerne er inddelt efter modulerne på uddannelsen og indeholder derfor elementer af administration, forvaltning, økonomistyring, innovation, samfundsvidenskabelige metoder og politisk styrede organisationer....

  4. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo

    OpenAIRE

    Starenki, Dmytro; Park, Jong-In

    2015-01-01

    Background Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenogr...

  5. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  6. Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA

    OpenAIRE

    Parone, Philippe A.; Sandrine Da Cruz; Daniel Tondera; Yves Mattenberger; James, Dominic I.; Pierre Maechler; François Barja; Jean-Claude Martinou

    2008-01-01

    Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At t...

  7. Melatonin mitigates mitochondrial malfunction.

    Science.gov (United States)

    León, Josefa; Acuña-Castroviejo, Darío; Escames, Germane; Tan, Dun-Xian; Reiter, Russel J

    2005-01-01

    Melatonin, or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinson's, Alzheimer's, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen-based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.

  8. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  9. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  10. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    Science.gov (United States)

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adducts formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves formation of mitochondrial protein adducts and mitochondrial dysfunction. PMID:26431796

  11. Mesencephalic complex I deficiency does not correlate with parkinsonism in mitochondrial DNA maintenance disorders.

    Science.gov (United States)

    Palin, Eino J H; Paetau, Anders; Suomalainen, Anu

    2013-08-01

    Genetic evidence from recessively inherited Parkinson's disease has indicated a clear causative role for mitochondrial dysfunction in Parkinson's disease. This role has long been discussed based on findings that toxic inhibition of mitochondrial respiratory complex I caused parkinsonism and that tissues of patients with Parkinson's disease show complex I deficiency. Disorders of mitochondrial DNA maintenance are a common cause of inherited neurodegenerative disorders, and lead to mitochondrial DNA deletions or depletion and respiratory chain defect, including complex I deficiency. However, parkinsonism associates typically with defects of catalytic domain of mitochondrial DNA polymerase gamma. Surprisingly, however, not all mutations affecting DNA polymerase gamma manifest as parkinsonism, but, for example, spacer region mutations lead to spinocerebellar ataxia and/or severe epilepsy. Furthermore, defective Twinkle helicase, a close functional companion of DNA polymerase gamma in mitochondrial DNA replication, results in infantile-onset spinocerebellar ataxia, epilepsy or adult-onset mitochondrial myopathy, but not typically parkinsonism. Here we sought for clues for this specificity in the neurological manifestations of mitochondrial DNA maintenance disorders by studying mesencephalic neuropathology of patients with DNA polymerase gamma or Twinkle defects, with or without parkinsonism. We show here that all patients with mitochondrial DNA maintenance disorders had neuronopathy in substantia nigra, most severe in DNA polymerase gamma-associated parkinsonism. The oculomotor nucleus was also affected, but less severely. In substantia nigra, all patients had a considerable decrease of respiratory chain complex I, but other respiratory chain enzymes were not affected. Complex I deficiency did not correlate with parkinsonism, age, affected gene or inheritance. We conclude that the cell number in substantia nigra correlated well with parkinsonism in DNA polymerase gamma

  12. New Approach For Prediction Groundwater Depletion

    Science.gov (United States)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  13. Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1L cleavage.

    Science.gov (United States)

    Lee, Byoungchun; Ahn, Younghee; Kang, Sung-Myung; Park, Youngjin; Jeon, You-Jin; Rho, Jong M; Kim, Sung-Woo

    2015-06-15

    Deregulation of mitochondrial heat-shock protein 40 (mtHsp40) and dysfunction of mtHsp70 are associated with mitochondrial fragmentation, suggesting that mtHsp40 and mtHsp70 may play roles in modulating mitochondrial morphology. However, the mechanism of mitochondrial fragmentation induced by mtHsp40 deregulation and mtHsp70 dysfunction remains unclear. In addition, the functional link between mitochondrial morphology change upon deregulated mtHsp40/mtHsp70 and mitochondrial function has been unexplored. Our coimmunoprecipitation and protein aggregation analysis showed that both overexpression and depletion of mtHsp40 accumulated aggregated proteins in fragmented mitochondria. Moreover, mtHsp70 loss and expression of a mtHsp70 mutant lacking the client-binding domain caused mitochondrial fragmentation. Together the data suggest that the molecular ratio of mtHsp40 to mtHsp70 is important for their chaperone function and mitochondrial morphology. Whereas mitochondrial translocation of Drp1 was not altered, optic atrophy 1 (Opa1) short isoform accumulated in fragmented mitochondria, suggesting that mitochondrial fragmentation in this study results from aberration of mitochondrial inner membrane fusion. Finally, we found that fragmented mitochondria were defective in cristae development, OXPHOS, and ATP production. Taken together, our data suggest that impaired stoichiometry between mtHsp40 and mtHsp70 promotes Opa1L cleavage, leading to cristae opening, decreased OXPHOS, and triggering of mitochondrial fragmentation after reduction in their chaperone function.

  14. Vanadium distribution following decavanadate administration.

    Science.gov (United States)

    Soares, S S; Martins, H; Aureliano, M

    2006-01-01

    An acute exposure of two vanadate solutions-metavanadate and decavanadate-containing different vanadate oligomers, induces different patterns of subcellular vanadium distribution in blood plasma, red blood cells (RBC), and cardiac muscle subcellular fractions of the fish Sparus aurata (gilthead seabream). The highest amount of vanadium was found in blood plasma 1 h after (5 mM) intravenous vanadate administration (295 +/- 64 and 383 +/- 104 microg V/g dry tissue, for metavanadate and decavanadate solutions, respectively), being 80-fold higher than in RBC. After 12 h of administration, the amount of vanadium in plasma, as well as in cardiac cytosol, decreased about 50%, for both vanadate solutions. During the period between 1 and 12 h, the ratio of vanadium in plasma/vanadium in RBC increased from 27 to 128 for metavanadate, whereas it remains constant (77) for decavanadate. Both vanadium solutions were primarily accumulated in the mitochondrial fraction (138 +/- 0 and 195 +/- 34 ng V/g dry tissue for metavanadate and decavanadate solutions, respectively, after 12 h exposure), rather than in cytosol. The amount of vanadium in cardiac mitochondria was twofold higher than in cytosol, earlier for metavanadate (6 h) than for decavanadate (12 h). It is concluded that, in fish cardiac muscle, the vanadium distribution is dependent on the administration of decameric vanadate, with vanadium being mainly distributed in plasma, before being accumulated into the mitochondrial fraction.

  15. The New MCNP6 Depletion Capability

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  16. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter.

    Science.gov (United States)

    Vais, Horia; Mallilankaraman, Karthik; Mak, Don-On Daniel; Hoff, Henry; Payne, Riley; Tanis, Jessica E; Foskett, J Kevin

    2016-01-26

    The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.

  17. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  18. Database Administrator

    Science.gov (United States)

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  19. Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes.

    Science.gov (United States)

    Zavodnik, I B; Lapshina, E A; Cheshchevik, V T; Dremza, I K; Kujawa, J; Zabrodskaya, S V; Reiter, R J

    2011-08-01

    Mitochondrial dysfunction and an increase in mitochondrial reactive oxygen species in response to hyperglycemia during diabetes lead to pathological consequences of hyperglycemia. The aim of the present work was to investigate the role of a specific functional damage in rat liver mitochondria during diabetes as well as to evaluate the possibility of metabolic and antioxidative correction of mitochondrial disorders by pharmacological doses of succinate and melatonin. In rat liver mitochondria, streptozotocin-induced diabetes was accompanied by marked impairments of metabolism: we observed a significant activation of α-ketoglutarate dehydrogenase (by 60%, pdiabetic animals, melatonin (10 mg/kg b.w., 30 days) or succinate (50 mg/kg b.w., 30 days) reversed the oxygen consumption rate V(3) and the acceptor control ratio to those in nondiabetic animals. Melatonin enhanced the inhibited activity of catalase in the cytoplasm of liver cells and prevented mitochondrial glutathione-S-transferase inhibition while succinate administration prevented α-ketoglutarate dehydrogenase activation. The mitochondria dysfunction associated with diabetes was partially remedied by succinate or melatonin administration. Thus, these molecules may have benefits for the treatment of diabetes. The protective mechanism may be related to improvements in mitochondrial physiology and the antioxidative status of cells.

  20. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    Science.gov (United States)

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-02-22

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  1. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion.

  2. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  3. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  4. Plasmonic nanoprobes for stimulated emission depletion microscopy

    CERN Document Server

    Cortes, Emiliano; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M; Maier, Stefan A

    2016-01-01

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved microscopy. We demonstrate stimulated emission depletion (STED) microscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm that provide an enhancement of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. These novel nanoparticle-assisted STED probes represent a ~2x10^3 reduction in probe volume compared to previously used nanoparticles and we demonstrate their application to the first plasmon-assisted STED cellular imaging. We also discuss their current limitations.

  5. Depletion of the nuclear Fermi sea

    CERN Document Server

    Rios, A; Dickhoff, W H

    2009-01-01

    The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizeable depletion of low momenta in the ground state of a nuclear many-body system. The self-consistent Green's function method within the ladder approximation provides an \\textit{ab-initio} description of correlated nuclear systems that accounts properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry (isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the momentum distribution and the time-ordered components of the self-energy, which allows for an improved interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative estimates of the importance of short-range and tensor correlations in nuclear systems.

  6. Harmonization of Mangiferin on methylmercury engendered mitochondrial dysfunction.

    Science.gov (United States)

    Das, Shubhankar; Paul, Ajanta; Mumbrekar, Kamalesh D; Rao, Satish B S

    2017-02-01

    Mangiferin (MGN), a C-glucosylxanthone abundantly found in mango plants, was studied for its potential to ameliorate methylmercury (MeHg) induced mitochondrial damage in HepG2 (human hepatocarcinoma) cell line. Cell viability experiments performed using 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) showed protective property of MGN in annulling MeHg-induced cytotoxicity. Conditioning the cells with optimal dose of MGN (50 µM) lowered MeHg-induced oxidative stress, calcium influx/efflux, depletion of mitochondrial trans-membrane potential and prevented mitochondrial fission as observed by decrease in Mitotracker red fluorescence, expression of pDRP1 (serine 616), and DRP1 levels. MGN pre-treated cells demonstrated elevation in the activities of glutathione (GSH), Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), reduced levels of Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) and mitochondrial electron transport chain (ETC) enzyme complexes. In addition, the anti-apoptotic effect of MGN was clearly indicated by the reduction in MeHg-induced apoptotic cells analyzed by flowcytometric analysis after Annexin V-FITC/propidium iodide staining. In conclusion, the present work demonstrates the ability of a dietary polyphenol, MGN to ameliorate MeHg-mediated mitochondrial dysfunction in human hepatic cells in vitro. This hepatoprotective potential may be attributed predominantly to the free radical scavenging/antioxidant property of MGN, by facilitating the balancing of cellular Ca(2+) ions, maintenance of redox homeostasis and intracellular antioxidant activities, ultimately preserving the mitochondrial function and cell viability after MeHg intoxication. As MeHg intoxication occurs over a period of time, continuous consumption of such dietary compounds may prove to be very useful in promoting human health. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 630-644, 2017.

  7. Effect of sodium depletion on peripheral vascular responses to heat stress in baboons.

    Science.gov (United States)

    Proppe, D W

    1987-04-01

    The cutaneous vasodilation and renal vasoconstriction in baboons during environmental heating (EH) appear to be produced predominantly by sympathetic vasoconstrictor withdrawal and activation of the renin-angiotensin system, respectively. Since these mechanisms may be influenced differently by sodium depletion, this study examined the hypothesis that sodium depletion would have a differential effect on cutaneous and renal vascular responses to EH. Sodium depletion was produced in chronically instrumented baboons by placing them on low-salt intake for 8-19 days along with diuretic administration. EH consisted of exposing the baboon to an ambient temperature of 40-42 degrees C until core temperature (Tc) reached 39.8-40.0 degrees C. Both control plasma renin activity (PRA) and the rise in PRA with Tc during EH were considerably larger in sodium-depleted baboons. However, the magnitudes of the progressive increases in iliac vascular conductance (used as an index of hindlimb cutaneous vasodilation) and renal vascular resistance with rising Tc during EH were unaltered by sodium depletion. Therefore, neither cutaneous nor renal vascular responses to EH are influenced by elevated PRA and other changes accompanying sodium depletion in the baboon.

  8. In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.M.; Linette, G.P.; Doughty, B.L.; Byram, J.E.; Von Lichtenberg, F.

    1987-08-01

    These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affected the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested.

  9. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  10. MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE

    Directory of Open Access Journals (Sweden)

    P. Ayatollahi

    2006-06-01

    Full Text Available Mitochondrial neurogastrointestinal encephalo-myopathy (MNGIE is a rare autosomal recessive disease caused by thymidine phosphorylase (TP gene mutation. Here we report a patient with MNGIE in whom sensorimotor polyneuropathy was the first presenting symptom and had a fluctuating course. This 26-year-old female patient developed acute-onset demyelinating polyneuropathy from the age of 6 with two relapses later on. In addition, she had gastrointestinal symptoms (diarrhea, recurrent abdominal pain, progressive weight loss and ophthalmoparesis. Brain magnetic resonance imaging showed white matter abnormalities, and muscle biopsy showed ragged red fibers. This constellation of clinical and laboratory findings raised the diagnosis of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE. This report highlights the uncommon clinical characteristics of this rare disease.

  11. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    Science.gov (United States)

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  12. The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia

    Directory of Open Access Journals (Sweden)

    Zhiqiang Hu

    2015-01-01

    Full Text Available The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86±11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P<0.05, and no difference in blood flow rate between the laminectomy and intact controls. Electron microscopy confirmed irreversible neuronal mitochondrion depletion surrounding the cyst, but recoverable mitochondrial loses in laminectomy rats. Profound energy loss quantified in the spinal cord of syrinx animals, and less ATP and ADP decline observed in laminectomy rats. Our findings demonstrate that an excitotoxic injury induces local ischemia in the spinal cord and results in neuronal mitochondrial depletion, and profound ATP loss, contributing to syrinx enlargement. Ischemia did not occur following laminectomy induced trauma in which mitochondrial loss and decline in ATP were reversible. This confirms excitotoxic injury contributing to the pathology of posttraumatic syringomyelia.

  13. Mitochondrial Energetics and Therapeutics

    OpenAIRE

    2010-01-01

    Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems app...

  14. Sealing the Mitochondrial Respirasome

    OpenAIRE

    Winge, Dennis R.

    2012-01-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our underst...

  15. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis.

    Science.gov (United States)

    Donthamsetty, Shashikiran; Brahmbhatt, Meera; Pannu, Vaishali; Rida, Padmashree C G; Ramarathinam, Sujatha; Ogden, Angela; Cheng, Alice; Singh, Keshav K; Aneja, Ritu

    2014-01-01

    Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.

  16. Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity

    Science.gov (United States)

    Lehmann-Horn, Klaus; Kinzel, Silke; Feldmann, Linda; Radelfahr, Florentine; Hemmer, Bernhard; Traffehn, Sarah; Bernard, Claude C A; Stadelmann, Christine; Brück, Wolfgang; Weber, Martin S

    2014-01-01

    Clinical trials revealed that systemic administration of B-cell-depleting anti-CD20 antibodies can hold lesion formation in the early relapsing-remitting phase of multiple sclerosis (MS). Throughout the secondary-progressive (SP) course of MS, pathogenic B cells may, however, progressively replicate within the central nervous system (CNS) itself, which is largely inaccessible to systemic anti-CD20 treatment. Utilizing the murine MS model of experimental autoimmune encephalomyelitis, we show that intrathecal (i.t.) administration of anti-CD20 alone very efficiently depletes meningeal B cells from established CNS lesions. In SP-MS patients, adding i.t. administration of anti-CD20 to its systemic use may be a valuable strategy to target pathogenic B-cell function. PMID:25356419

  17. Sphingolipids and mitochondrial apoptosis.

    Science.gov (United States)

    Patwardhan, Gauri A; Beverly, Levi J; Siskind, Leah J

    2016-04-01

    The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.

  18. Mitochondrial ABC transporters.

    Science.gov (United States)

    Lill, R; Kispal, G

    2001-01-01

    In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.

  19. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  20. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  1. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    Science.gov (United States)

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  2. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction

    NARCIS (Netherlands)

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W.; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C.; Bischoff', Rainer; Wanders, Ronald J.; Houten, Sander M.; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F.; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.; Jonker, Johan W.; Kim, Peter K.; Bandsma, Robert H. J.

    2016-01-01

    Background & Aims: Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy produc

  3. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction

    NARCIS (Netherlands)

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W.; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; Allgayer de Moraes, Roberta; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J

    2016-01-01

    BACKGROUND & AIMS: Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy produc

  4. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology.

    Science.gov (United States)

    Tasseva, Guergana; Bai, Helin Daniel; Davidescu, Magdalena; Haromy, Alois; Michelakis, Evangelos; Vance, Jean E

    2013-02-08

    Mitochondrial dysfunction is implicated in neurodegenerative, cardiovascular, and metabolic disorders, but the role of phospholipids, particularly the nonbilayer-forming lipid phosphatidylethanolamine (PE), in mitochondrial function is poorly understood. Elimination of mitochondrial PE (mtPE) synthesis via phosphatidylserine decarboxylase in mice profoundly alters mitochondrial morphology and is embryonic lethal (Steenbergen, R., Nanowski, T. S., Beigneux, A., Kulinski, A., Young, S. G., and Vance, J. E. (2005) J. Biol. Chem. 280, 40032-40040). We now report that moderate mitochondrial morphology and function and impairs cell growth. Acute reduction of mtPE by RNAi silencing of phosphatidylserine decarboxylase and chronic reduction of mtPE in PSB-2 cells that have only 5% of normal phosphatidylserine synthesis decreased respiratory capacity, ATP production, and activities of electron transport chain complexes (C) I and CIV but not CV. Blue native-PAGE analysis revealed defects in the organization of CI and CIV into supercomplexes in PE-deficient mitochondria, correlated with reduced amounts of CI and CIV proteins. Thus, mtPE deficiency impairs formation and/or membrane integration of respiratory supercomplexes. Despite normal or increased levels of mitochondrial fusion proteins in mtPE-deficient cells, and no reduction in mitochondrial membrane potential, mitochondria were extensively fragmented, and mitochondrial ultrastructure was grossly aberrant. In general, chronic reduction of mtPE caused more pronounced mitochondrial defects than did acute mtPE depletion. The functional and morphological changes in PSB-2 cells were largely reversed by normalization of mtPE content by supplementation with lyso-PE, a mtPE precursor. These studies demonstrate that even a modest reduction of mtPE in mammalian cells profoundly alters mitochondrial functions.

  5. Impaired Cerebral Mitochondrial Oxidative Phosphorylation Function in a Rat Model of Ventricular Fibrillation and Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2014-01-01

    Full Text Available Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA. Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF. We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP and phosphocreatine (PCr developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

  6. The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules*

    Science.gov (United States)

    Zaganelli, Sofia; Rebelo-Guiomar, Pedro; Maundrell, Kinsey; Rozanska, Agata; Pierredon, Sandra; Powell, Christopher A.; Martinou, Jean-Claude

    2017-01-01

    Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNAMet, and mt-tRNAPhe, and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression. PMID:28082677

  7. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  8. Contrasts between Antarctic and Arctic ozone depletion.

    Science.gov (United States)

    Solomon, Susan; Portmann, Robert W; Thompson, David W J

    2007-01-09

    This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local depletion in the heart of the ozone "hole" region near 18 km, frequently exceeding 90%. Although some ozone losses are apparent in the Arctic during particular years, the depth of the ozone losses in the Arctic are considerably smaller, and their occurrence is far less frequent. Many Antarctic total integrated column ozone observations in spring since approximately the 1980s show values considerably below those ever observed in earlier decades. For the Arctic, there is evidence of some spring season depletion of total ozone at particular stations, but the changes are much less pronounced compared with the range of past data. Thus, the observations demonstrate that the widespread and deep ozone depletion that characterizes the Antarctic ozone hole is a unique feature on the planet.

  9. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishna

    2008-11-01

    Full Text Available Abstract Background Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted ρ0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. Results Cultured A549 ρ0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. Conclusion We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells.

  10. The Potato Tuber Mitochondrial Proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper F; Chen, Mingjie;

    2014-01-01

    manner using normalized spectral counts including as many as 5-fold more “extreme” proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome...... that more than 50% of the identified proteins harbor at least one modification. The most prominently observed class of posttranslational modifications was oxidative modifications. This study reveals approximately 500 new or previously unconfirmed plant mitochondrial proteins and outlines a facile strategy...... for unbiased, near-comprehensive identification of mitochondrial proteins and their modified forms....

  11. Opa1 is required for proper mitochondrial metabolism in early development.

    Directory of Open Access Journals (Sweden)

    Jennifer J Rahn

    Full Text Available Opa1 catalyzes fusion of inner mitochondrial membranes and formation of the cristae. OPA1 mutations in humans lead to autosomal dominant optic atrophy. OPA1 knockout mice lose viability around embryonic day 9 from unknown reasons, indicating that OPA1 is essential for embryonic development. Zebrafish are an attractive model for studying vertebrate development and have been used for many years to describe developmental events that are difficult or impractical to view in mammalian models. In this study, Opa1 was successfully depleted in zebrafish embryos using antisense morpholinos, which resulted in disrupted mitochondrial morphology. Phenotypically, these embryos exhibited abnormal blood circulation and heart defects, as well as small eyes and small pectoral fin buds. Additionally, startle response was reduced and locomotor activity was impaired. Furthermore, Opa1 depletion caused bioenergetic defects, without impairing mitochondrial efficiency. In response to mitochondrial dysfunction, a transient upregulation of the master regulator of mitochondrial biogenesis, pgc1a, was observed. These results not only reveal a new Opa1-associated phenotype in a vertebrate model system, but also further elucidates the absolute requirement of Opa1 for successful vertebrate development.

  12. Coenzyme depletion by members of the aerolysin family of pore-forming toxins leads to diminished ATP levels and cell death.

    Science.gov (United States)

    Fennessey, Christine M; Ivie, Susan E; McClain, Mark S

    2012-08-01

    Recent studies demonstrated that a variety of bacterial pore-forming toxins induce cell death through a process of programmed necrosis characterized by the rapid depletion of cellular ATP. However, events leading to the necrosis and depletion of ATP are not thoroughly understood. We demonstrate that ATP-depletion induced by two pore-forming toxins, the Clostridium perfringens epsilon-toxin and the Aeromonas hydrophila aerolysin toxin, is associated with decreased mitochondrial membrane potential and opening of the mitochondrial permeability transition pore. To gain further insight into the toxin-induced metabolic changes contributing to necrosis and depletion of ATP, we analyzed the biochemical profiles of 251 distinct compounds by GC/MS or LC/MS/MS following exposure of a human kidney cell line to the epsilon-toxin. As expected, numerous biochemicals were seen to increase or decrease in response to epsilon-toxin. However, the pattern of these changes was consistent with the toxin-induced disruption of major energy-producing pathways in the cell including disruptions to the beta-oxidation of lipids. In particular, treatment with epsilon-toxin led to decreased levels of key coenzymes required for energy production including carnitine, NAD (and NADH), and coenzyme A. Independent biochemical assays confirmed that epsilon-toxin and aerolysin induced the rapid decrease of these coenzymes or their synthetic precursors. Incubation of cells with NADH or carnitine-enriched medium helped protect cells from toxin-induced ATP depletion and cell death. Collectively, these results demonstrate that members of the aerolysin family of pore-forming toxins lead to decreased levels of essential coenzymes required for energy production. The resulting loss of energy substrates is expected to contribute to dissipation of the mitochondrial membrane potential, opening of the mitochondrial permeability transition pore, and ultimately cell death.

  13. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.

    Science.gov (United States)

    Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu

    2014-06-01

    Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy.

  14. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  15. Sealing the mitochondrial respirasome.

    Science.gov (United States)

    Winge, Dennis R

    2012-07-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our understanding of the structures of supercomplexes and the factors that mediate their stability.

  16. Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines.

    Science.gov (United States)

    Silva, Diana F; Selfridge, J Eva; Lu, Jianghua; E, Lezi; Roy, Nairita; Hutfles, Lewis; Burns, Jeffrey M; Michaelis, Elias K; Yan, ShiDu; Cardoso, Sandra M; Swerdlow, Russell H

    2013-10-01

    Bioenergetic dysfunction occurs in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a clinical syndrome that frequently precedes symptomatic AD. In this study, we modeled AD and MCI bioenergetic dysfunction by transferring mitochondria from MCI, AD and control subject platelets to mtDNA-depleted SH-SY5Y cells. Bioenergetic fluxes and bioenergetics-related infrastructures were characterized in the resulting cytoplasmic hybrid (cybrid) cell lines. Relative to control cybrids, AD and MCI cybrids showed changes in oxygen consumption, respiratory coupling and glucose utilization. AD and MCI cybrids had higher ADP/ATP and lower NAD+/NADH ratios. AD and MCI cybrids exhibited differences in proteins that monitor, respond to or regulate cell bioenergetic fluxes including HIF1α, PGC1α, SIRT1, AMPK, p38 MAPK and mTOR. Several endpoints suggested mitochondrial mass increased in the AD cybrid group and probably to a lesser extent in the MCI cybrid group, and that the mitochondrial fission-fusion balance shifted towards increased fission in the AD and MCI cybrids. As many of the changes we observed in AD and MCI cybrid models are also seen in AD subject brains, we conclude reduced bioenergetic function is present during very early AD, is not brain-limited and induces protean retrograde responses that likely have both adaptive and mal-adaptive consequences.

  17. Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    2017-01-01

    Full Text Available In this review, the interactive mechanisms of mitochondria with the endoplasmic reticulum (ER are discussed with emphasis on the potential protective role of the mitochondria derived peptide humanin (HN in ER stress. The ER and mitochondria are dynamic organelles capable of modifying their structure and function in response to changing environmental conditions. The ER and mitochondria join together at multiple sites and form mitochondria-ER associated membranes that participate in signal transduction pathways that are under active investigation. Our laboratory previously showed that HN protects cells from oxidative stress induced cell death and more recently, described the beneficial role of HN on ER stress-induced apoptosis in retinal pigment epithelium cells and the involvement of ER-mitochondrial cross-talk in cellular protection. The protection was achieved, in part, by the restoration of mitochondrial glutathione that was depleted by ER stress. Thus, HN may be a promising candidate for therapy for diseases that involve both oxidative and ER stress. Developing novel approaches for retinal delivery of HN, its analogues as well as small molecular weight ER stress inhibitors would prove to be a valuable approach in the treatment of age-related macular degeneration.

  18. Neutron-activation revisited: the depletion and depletion-activation models.

    Science.gov (United States)

    Abdel-Rahman, Wamied; Podgorsak, Ervin B

    2005-02-01

    The growth of a radioactive daughter in neutron activation is commonly described with the saturation model that ignores the consumption of parent nuclei during the radio-activation process. This approach is not valid when radioactive sources with high specific activities are produced or when the particle fluence rates used are very high. Assuming a constant neutron fluence rate throughout the activation target, a neutron-activation model that accounts for the depletion in parent nuclei is introduced. This depletion model is governed by relationships similar to those describing the parent-daughter-granddaughter decay series, and, in contrast to the saturation model, correctly predicts the practical limit of the daughter specific activity, irrespective of the particle fluence rate. Also introduced is a neutron-activation model that in addition to parent depletion accounts for the neutron activation of daughter nuclei in situations where the cross section for this effect is high. The model is referred to as the depletion-activation model and it provides the most realistic description for the daughter specific activity in neutron activation. Three specific neutron activation examples of interest to medical physics are presented: activation of molybdenum-98 into molybdenum-99 described by the saturation model; activation of cobalt-59 into cobalt-60 described by the depletion model; and activation of iridium-191 into iridium-192 described by the depletion-activation model.

  19. Molecular Genetics of Mitochondrial Disorders

    Science.gov (United States)

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  20. Redox Homeostasis and Mitochondrial Dynamics

    NARCIS (Netherlands)

    Willems, P.H.G.M.; Rossignol, R.; Dieteren, C.E.J.; Murphy, M.P.; Koopman, W.J.H.

    2015-01-01

    Within living cells, mitochondria are considered relevant sources of reactive oxygen species (ROS) and are exposed to reactive nitrogen species (RNS). During the last decade, accumulating evidence suggests that mitochondrial (dys)function, ROS/RNS levels, and aberrations in mitochondrial morphology

  1. Mitochondrial disorders and the eye

    Directory of Open Access Journals (Sweden)

    O’Neill EC

    2011-09-01

    Full Text Available Nicole J Van Bergen, Rahul Chakrabarti, Evelyn C O'Neill, Jonathan G Crowston, Ian A TrounceCentre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, AustraliaAbstract: The clinical significance of disturbed mitochondrial function in the eye has emerged since mitochondrial DNA (mtDNA mutation was described in Leber's hereditary optic neuropathy. The spectrum of mitochondrial dysfunction has become apparent through increased understanding of the contribution of nuclear and somatic mtDNA mutations to mitochondrial dynamics and function. Common ophthalmic manifestations of mitochondrial dysfunction include optic atrophy, pigmentary retinopathy, and ophthalmoplegia. The majority of patients with ocular manifestations of mitochondrial disease also have variable central and peripheral nervous system involvement. Mitochondrial dysfunction has recently been associated with age-related retinal disease including macular degeneration and glaucoma. Therefore, therapeutic targets directed at promoting mitochondrial biogenesis and function offer a potential to both preserve retinal function and attenuate neurodegenerative processes.Keywords: mitochondria, disease, retina, eye, aging, neuroprotection

  2. Replacements For Ozone-Depleting Foaming Agents

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  3. ADMINISTRATIVE CIRCULARS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128

  4. Impairment of striatal mitochondrial function by acute paraquat poisoning.

    Science.gov (United States)

    Czerniczyniec, Analía; Lanza, E M; Karadayian, A G; Bustamante, J; Lores-Arnaiz, S

    2015-10-01

    Mitochondria are essential for survival. Their primary function is to support aerobic respiration and to provide energy for intracellular metabolic pathways. Paraquat is a redox cycling agent capable of generating reactive oxygen species. The aim of the present study was to evaluate changes in cortical and striatal mitochondrial function in an experimental model of acute paraquat toxicity and to compare if the brain areas and the molecular mechanisms involved were similar to those observed after chronic exposure. Sprague-Dawley rats received paraquat (25 mg/Kg i.p.) or saline and were sacrificed after 24 h. Paraquat treatment decreased complex I and IV activity by 37 and 21 % respectively in striatal mitochondria. Paraquat inhibited striatal state 4 and state 3 KCN-sensitive respiration by 80 % and 62 % respectively, indicating a direct effect on respiratory chain. An increase of 2.2 fold in state 4 and 2.3 fold in state 3 in KCN-insensitive respiration was observed in striatal mitochondria from paraquat animals, suggesting that paraquat redox cycling also consumed oxygen. Paraquat treatment increased hydrogen peroxide production (150 %), TBARS production (42 %) and cardiolipin oxidation/depletion (12 %) in striatal mitochondria. Also, changes in mitochondrial polarization was induced after paraquat treatment. However, no changes were observed in any of these parameters in cortical mitochondria from paraquat treated-animals. These results suggest that paraquat treatment induced a clear striatal mitochondrial dysfunction due to both paraquat redox cycling reactions and impairment of the mitochondrial electron transport, causing oxidative damage. As a consequence, mitochondrial dysfunction could probably lead to alterations in cellular bioenergetics.

  5. Ecological and corrosion behavior of depleted uranium

    Directory of Open Access Journals (Sweden)

    Stojanović Mirjana D.

    2015-01-01

    Full Text Available Environmental pollution with radionuclides, particularly uranium and its decay products is a serious global problem. The current scientific studies estimated that the contamination originating from TENORM, caused by nuclear and non-nuclear technologies, has significantly increased natural level of radioactivity in the last thirty years. During the last decades all the more were talking about the "new pollutant" - depleted uranium (DU, which has been used in anti-tank penetrators because of its high density, penetration and pyrophoric properties. It is estimated that during the Gulf War, the war in Bosnia and Yugoslavia and during the invasion of Iraq, 1.4 million missiles with depleted uranium was fired. During the NATO aggression against the ex Yugoslavia in 1999., 112 locations in Kosovo and Metohija, 12 locations in southern Serbia and two locations in Montenegro were bombed. On this occasion, approximately 10 tons of depleted uranium were entered into the environment, mainly on land, where the degree of contamination ranged from 200 Bq / kg to 235 000 Bq/kg, which is up to 1000 times higher than the natural level. Fourteen years ago there was very little information about the behavior of ecological systems damaged by DU penetrators fired. Today, unfortunately, we are increasingly faced with the ―invisible threat" of depleted uranium, which has a strong radioactive and hemotoxic impact on human health. Present paper provides a detailed overview of the current understanding of corrosion and corrosion behavior of DU and environmental factors that control corrosion, together with indicators of environmental impact in order to highlight areas that need further attention in developing remediation programs.

  6. Effective Depletion Potential of Colloidal Spheres

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Hua; MA Hong-Ru

    2004-01-01

    @@ A new semianalytical method, which is a combination of the density functional theory with Rosenfeld density functional and the Ornstein-Zernike equation, is proposed for the calculation of the effective depletion potentials between a pair of big spheres immersed in a small hard sphere fluid. The calculated results are almost identical to the integral equation method with the Percus-Yevick approximation, and are also in agreement well with the Monte Carlo simulation results.

  7. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  8. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...... by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function....

  9. Mitochondrial dynamics and peripheral neuropathy.

    Science.gov (United States)

    Baloh, Robert H

    2008-02-01

    Peripheral neuropathy is perhaps the archetypal disease of axonal degeneration, characteristically involving degeneration of the longest axons in the body. Evidence from both inherited and acquired forms of peripheral neuropathy strongly supports that the primary pathology is in the axons themselves and points to disruption of axonal transport as an important disease mechanism. Recent studies in human genetics have further identified abnormalities in mitochondrial dynamics--the fusion, fission, and movement of mitochondria--as a player in the pathogenesis of inherited peripheral neuropathy. This review provides an update on the mechanisms of mitochondrial trafficking in axons and the emerging relationship between the disruption of mitochondrial dynamics and axonal degeneration. Evidence suggests mitochondria are a "critical cargo" whose transport is necessary for proper axonal and synaptic function. Importantly, understanding the regulation of mitochondrial movement and the consequences of decreased axonal mitochondrial function may define new paths for therapeutic agents in peripheral neuropathy and other neurodegenerative diseases.

  10. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management.

  11. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Science.gov (United States)

    Matsuoka, Kunie; Shitara, Hiroshi; Taya, Choji; Kohno, Kenji; Kikkawa, Yoshiaki; Yonekawa, Hiromichi

    2013-01-01

    Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI), a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  12. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Kunie Matsuoka

    Full Text Available Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI, a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  13. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  14. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    Science.gov (United States)

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  15. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships.

    Science.gov (United States)

    Keeney, Paula M; Dunham, Lisa D; Quigley, Caitlin K; Morton, Stephanie L; Bergquist, Kristen E; Bennett, James P

    2009-12-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.

  16. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption.

  17. Constitutive Activation of AKT Pathway Inhibits TNF-induced Apoptosis in Mitochondrial DNA-Deficient human myelogenous leukemia ML-1a

    OpenAIRE

    Suzuki, Seigo; Naito, Akihiro; Asano, Takayuki; Evans, Teresa T; Reddy, Shrikanth A.G.; Higuchi, Masahiro

    2008-01-01

    TNF plus protein synthesis inhibitor cycloheximide induced apoptosis in human myelogenous leukemia ML-1a but not in C19, respiration minus mitochondrial DNA deficient C19 cells, derived from ML-1a. To investigate how mitochondrial DNA depletion inhibits apoptosis, we investigated AKT. Both AKT and its phosphorylated form were observed only in C19, indicating that depletion of mtDNA increased protein and the active form of AKT. Treatment of C19 with LY294002, which inhibits PI-3 kinase and inh...

  18. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats.

    Directory of Open Access Journals (Sweden)

    Nithya Mariappan

    Full Text Available Recent evidence suggests that tumor necrosis factor alpha (TNF and angiotensin II (ANGII induce oxidative stress contribute to cardiovascular disease progression. Here, we examined whether an interaction between TNF and ANGII contributes to altered cardiac mitochondrial biogenesis and ATP production to cause cardiac damage in rats. Rats received intraperitoneal injections of TNF (30 µg/kg, TNF + losartan (LOS, 1 mg/kg, or vehicle for 5 days. Left ventricular (LV function was measured using echocardiography. Rats were sacrificed and LV tissues removed for gene expression, electron paramagnetic resonance and mitochondrial assays. TNF administration significantly increased expression of the NADPH oxidase subunit, gp91phox, and the angiotensin type 1 receptor (AT-1R and decreased eNOS in the LV of rats. Rats that received TNF only had increased production rates of superoxide, peroxynitrite and total reactive oxygen species (ROS in the cytosol and increased production rates of superoxide and hydrogen peroxide in mitochondria. Decreased activities of mitochondrial complexes I, II, and III and mitochondrial genes were observed in rats given TNF. In addition, TNF administration also resulted in a decrease in fractional shortening and an increase in Tei index, suggesting diastolic dysfunction. TNF administration with concomitant LOS treatment attenuated mitochondrial damage, restored cardiac function, and decreased expression of AT1-R and NADPH oxidase subunits. Mitochondrial biogenesis and function is severely impaired by TNF as evidenced by downregulation of mitochondrial genes and increased free radical production, and may contribute to cardiac damage. These defects are independent of the downregulation of mitochondrial gene expression, suggesting novel mechanisms for mitochondrial dysfunction in rats given TNF.

  19. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  20. Lithium Depletion in Fully Convective Pre-Main Sequence Stars

    CERN Document Server

    Bildsten, L; Matzner, C D; Ushomirsky, G; Bildsten, Lars; Brown, Edward F.; Matzner, Christopher D.; Ushomirsky, Greg

    1996-01-01

    We present an analytic calculation of the thermonuclear depletion of lithium in contracting, fully convective, pre-main sequence stars of mass M 0.08 M_sun) and for constraining the masses of lithium depleted stars.

  1. Depletions at Browns Park National Wildlife Refuge [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Estimated depletion associated with the operation of Spitzie Marsh in Browns Park National Wildlife Refuge. Attached are the methods used to estimate depletion....

  2. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress

    Directory of Open Access Journals (Sweden)

    T. Kelly Rainbolt

    2016-03-01

    Full Text Available The mitochondrial inner membrane proteases YME1L and OMA1 are critical regulators of essential mitochondrial functions, including inner membrane proteostasis maintenance and mitochondrial dynamics. Here, we show that YME1L and OMA1 are reciprocally degraded in response to distinct types of cellular stress. OMA1 is degraded through a YME1L-dependent mechanism in response to toxic insults that depolarize the mitochondrial membrane. Alternatively, insults that depolarize mitochondria and deplete cellular ATP stabilize active OMA1 and promote YME1L degradation. We show that the differential degradation of YME1L and OMA1 alters their proteolytic processing of the dynamin-like GTPase OPA1, a critical regulator of mitochondrial inner membrane morphology, which influences the recovery of tubular mitochondria following membrane-depolarization-induced fragmentation. Our results reveal the differential stress-induced degradation of YME1L and OMA1 as a mechanism for sensitively adapting mitochondrial inner membrane protease activity and function in response to distinct types of cellular insults.

  3. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    Science.gov (United States)

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  4. A tale of two mitochondrial channels, MAC and PTP, in apoptosis.

    Science.gov (United States)

    Kinnally, Kathleen W; Antonsson, Bruno

    2007-05-01

    The crucial step in the intrinsic, or mitochondrial, apoptotic pathway is permeabilization of the mitochondrial outer membrane. Permeabilization triggers release of apoptogenic factors, such as cytochrome c, from the mitochondrial intermembrane space into the cytosol where these factors ensure propagation of the apoptotic cascade and execution of cell death. However, the mechanism(s) underlying permeabilization of the outer membrane remain controversial. Two mechanisms, involving opening of two different mitochondrial channels, have been proposed to be responsible for the permeabilization; the permeability transition pore (PTP) in the inner membrane and the mitochondrial apoptosis-induced channel (MAC) in the outer membrane. Opening of PTP would lead to matrix swelling, subsequent rupture of the outer membrane, and an unspecific release of intermembrane proteins into the cytosol. However, many believe PTP opening is a consequence of apoptosis and this channel is thought to principally play a role in necrosis, not apoptosis. Activation of MAC is exquisitely regulated by Bcl-2 family proteins, which are the sentinels of apoptosis. MAC provides specific pores in the outer membrane for the passage of intermembrane proteins, in particular cytochrome c, to the cytosol. The electrophysiological characteristics of MAC are very similar to Bax channels and depletion of Bax significantly diminishes MAC activity, suggesting that Bax is an essential constituent of MAC in some systems. The characteristics of various mitochondrial channels and Bax are compared. The involvement of MAC and PTP activities in apoptosis of disease and their pharmacology are discussed.

  5. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy.

    Science.gov (United States)

    Spiegel, Ronen; Saada, Ann; Halvardson, Jonatan; Soiferman, Devorah; Shaag, Avraham; Edvardson, Simon; Horovitz, Yoseph; Khayat, Morad; Shalev, Stavit A; Feuk, Lars; Elpeleg, Orly

    2014-07-01

    Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A>T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.

  6. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA.

    Science.gov (United States)

    de la Asuncion, J G; Millan, A; Pla, R; Bruseghini, L; Esteras, A; Pallardo, F V; Sastre, J; Viña, J

    1996-02-01

    Mitochondria may be primary targets of free radical damage associated with aging. We have found that mitochondrial glutathione is markedly oxidized with aging in rats and mice. The oxidized to reduced glutathione ratio rises with aging in the liver, kidney, and brain. The magnitude of these changes is much higher than that previously found in whole cells of any species previously studied. In the liver, this ratio (expressing GSSG as a percent of GSH) changed from 0.77 +/- 0.19% (n=5) in young rats to 2.47 +/- 1.25% (n=5) in old ones, i.e., 320% of the controls. In the brain and kidney, values for old rats were, respectively, 600 and 540% higher than those of young rats. A marked oxidation of mitochondrial glutathione also occurred in mice. Aging also caused an increase in 8-oxo-7,8-dihydro-2'-deoxyguanosine levels in mtDNA in rats and mice. Oral antioxidant administration protected against both glutathione oxidation and mtDNA damage in rats and mice. Finally, we have found a direct relationship between mtDNA damage and mitochondrial glutathione oxidation. This occurs both in rats (r=0.95) and in mice (r=0.98). This relationship, which has been observed for the first time in these studies, underscores the role of glutathione in the protection against free radical damage that occurs upon aging.

  7. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    OpenAIRE

    Kazutaka Sawada; Hiroshi Kitagaki

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked ...

  8. Clinical Development of Gamitrinib, a Novel Mitochondrial-Targeted Small Molecule Hsp90 Inhibitor

    Science.gov (United States)

    2015-09-01

    trophoblast, an actively invasive tissue at the interface between fetal and maternal circulation [30], whereas expression of this molecule in the adult...chondrial survivin (3). Furthermore, reconstitution of survivin-depleted PC3 cells with adenovirus ( pAd ) encoding mitochondrial-targeted survivin (3... pAd - mt-SVV) stimulated O2 consumption (Fig. 2G). In contrast, PC3 cells transfected with nontargeting siRNA and reconstituted with pAd -mt-survivin

  9. Redox regulation of mitochondrial biogenesis.

    Science.gov (United States)

    Piantadosi, Claude A; Suliman, Hagir B

    2012-12-01

    The cell renews, adapts, or expands its mitochondrial population during episodes of cell damage or periods of intensified energy demand by the induction of mitochondrial biogenesis. This bigenomic program is modulated by redox-sensitive signals that respond to physiological nitric oxide (NO), carbon monoxide (CO), and mitochondrial reactive oxygen species production. This review summarizes our current ideas about the pathways involved in the activation of mitochondrial biogenesis by the physiological gases leading to changes in the redox milieu of the cell, with an emphasis on the responses to oxidative stress and inflammation. The cell's energy supply is protected from conditions that damage mitochondria by an inducible transcriptional program of mitochondrial biogenesis that operates in large part through redox signals involving the nitric oxide synthase and the heme oxygenase-1/CO systems. These redox events stimulate the coordinated activities of several multifunctional transcription factors and coactivators also involved in the elimination of defective mitochondria and the expression of counterinflammatory and antioxidant genes, such as IL10 and SOD2, as part of a unified damage-control network. The redox-regulated mechanisms of mitochondrial biogenesis schematically outlined in the graphical abstract link mitochondrial quality control to an enhanced capacity to support the cell's metabolic needs while improving its resistance to metabolic failure and avoidance of cell death during periods of oxidative stress.

  10. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  11. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    OpenAIRE

    Swerdlow, Russell H.

    2011-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.

  12. Mitochondrial dysfunction in myofibrillar myopathy.

    Science.gov (United States)

    Vincent, Amy E; Grady, John P; Rocha, Mariana C; Alston, Charlotte L; Rygiel, Karolina A; Barresi, Rita; Taylor, Robert W; Turnbull, Doug M

    2016-10-01

    Myofibrillar myopathies (MFM) are characterised by focal myofibrillar destruction and accumulation of myofibrillar elements as protein aggregates. They are caused by mutations in the DES, MYOT, CRYAB, FLNC, BAG3, DNAJB6 and ZASP genes as well as other as yet unidentified genes. Previous studies have reported changes in mitochondrial morphology and cellular positioning, as well as clonally-expanded, large-scale mitochondrial DNA (mtDNA) deletions and focal respiratory chain deficiency in muscle of MFM patients. Here we examine skeletal muscle from patients with desmin (n = 6), ZASP (n = 1) and myotilin (n = 2) mutations and MFM protein aggregates, to understand how mitochondrial dysfunction may contribute to the underlying mechanisms causing disease pathology. We have used a validated quantitative immunofluorescent assay to study respiratory chain protein levels, together with oxidative enzyme histochemistry and single cell mitochondrial DNA analysis, to examine mitochondrial changes. Results demonstrate a small number of clonally-expanded mitochondrial DNA deletions, which we conclude are due to both ageing and disease pathology. Further to this we report higher levels of respiratory chain complex I and IV deficiency compared to age matched controls, although overall levels of respiratory deficient muscle fibres in patient biopsies are low. More strikingly, a significantly higher percentage of myofibrillar myopathy patient muscle fibres have a low mitochondrial mass compared to controls. We concluded this is mechanistically unrelated to desmin and myotilin protein aggregates; however, correlation between mitochondrial mass and muscle fibre area is found. We suggest this may be due to reduced mitochondrial biogenesis in combination with muscle fibre hypertrophy.

  13. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  14. Respiratory active mitochondrial supercomplexes.

    Science.gov (United States)

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  15. 26 CFR 1.642(e)-1 - Depreciation and depletion.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Depreciation and depletion. 1.642(e)-1 Section 1... (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(e)-1 Depreciation and depletion. An estate or trust is allowed the deductions for depreciation and depletion, but only to the extent...

  16. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  17. The hexameric structure of the human mitochondrial replicative helicase Twinkle.

    Science.gov (United States)

    Fernández-Millán, Pablo; Lázaro, Melisa; Cansız-Arda, Şirin; Gerhold, Joachim M; Rajala, Nina; Schmitz, Claus-A; Silva-Espiña, Cristina; Gil, David; Bernadó, Pau; Valle, Mikel; Spelbrink, Johannes N; Solà, Maria

    2015-04-30

    The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.

  18. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging.

    Science.gov (United States)

    Umanskaya, Alisa; Santulli, Gaetano; Xie, Wenjun; Andersson, Daniel C; Reiken, Steven R; Marks, Andrew R

    2014-10-21

    Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.

  19. Mitochondrial glutathione peroxidase 4 disruption causes male infertility.

    Science.gov (United States)

    Schneider, Manuela; Förster, Heidi; Boersma, Auke; Seiler, Alexander; Wehnes, Helga; Sinowatz, Fred; Neumüller, Christine; Deutsch, Manuel J; Walch, Axel; Hrabé de Angelis, Martin; Wurst, Wolfgang; Ursini, Fulvio; Roveri, Antonella; Maleszewski, Marek; Maiorino, Matilde; Conrad, Marcus

    2009-09-01

    Selenium is linked to male fertility. Glutathione peroxidase 4 (GPx4), first described as an antioxidant enzyme, is the predominant selenoenzyme in testis and has been suspected of being vital for spermatogenesis. Cytosolic, mitochondrial, and nuclear isoforms are all encoded by the same gene. While disruption of entire GPx4 causes early embryonic lethality in mice, inactivation of nuclear GPx4 does not impair embryonic development or fertility. Here, we show that deletion of mitochondrial GPx4 (mGPx4) allows both normal embryogenesis and postnatal development, but causes male infertility. Infertility was associated with impaired sperm quality and severe structural abnormalities in the midpiece of spermatozoa. Knockout sperm display higher protein thiol content and recapitulate features typical of severe selenodeficiency. Interestingly, male infertility induced by mGPx4 depletion could be bypassed by intracytoplasmic sperm injection. We also show for the first time that mGPx4 is the prevailing GPx4 product in male germ cells and that mGPx4 disruption has no effect on proliferation or apoptosis of germinal or somatic tissue. Our study finally establishes that mitochondrial GPx4 confers the vital role of selenium in mammalian male fertility and identifies cytosolic GPx4 as the only GPx4 isoform being essential for embryonic development and apoptosis regulation.

  20. Correlation between cosmic rays and ozone depletion.

    Science.gov (United States)

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle.

  1. Heatstroke Pathophysiology: The Energy Depletion Model

    Science.gov (United States)

    1989-06-12

    Pathophysiology: The Energy Depletion Model Roger W. Hubbard, Ph.D., Director Heat Research Division U. S. Army Research Institute of Environmental...Medicine Natick, MA 01760-5007 USA Send correspondence to: Roger W. Hubbard, Ph.D. Director Heat Research Division USARIEM Kansas St Natick, MA 01760...The NaK-Pump. Part B: Celular Asoects J.C. Skou, J.G. Normy, A.B. Maunsback, and M. Esmann (Eds) New York: Alan R. Uss, 1988, pp. 171-194. 54: Lewis

  2. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  3. The Time of Shipbuilding Order Depletion

    Institute of Scientific and Technical Information of China (English)

    Reporter Xing Dan

    2012-01-01

    In 2012, shipbuilding market is facing even colder weather. Depletion of orders, deals that can only ensure cost recovery ndustry which has already bankruptcy of ship yards one after another are also torturing this had many uncertainties. Some shipbuilding enterprises are trying to survive by cutting off parts of their business, some enterprises are leaving like the horses migrating on the African grassland, only those horses that have fights with crocodiles will reach the fertile land and enjoy the next warm spring. the business. It is survived the fierce

  4. RESERVOIR CAPACITY DEPLETION ON ACCOUNT OF SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE

    2001-01-01

    Capacity depletion is an important information required for planning of multipurpose reservoirs. It is a complex phenomenon involving diverse fields like surface hydrology, sediment transport, varied flow hydraulics and soil consolidation. Proper assessment of capacity reduction is helpful in ascertaining the life of the reservoir and the project benefits for cost/benefit analysis. In this study dimensionally consistent equations for deposition volume and the trap efficiency have been obtained. Methods of obtaining the parameters involved these equations have also been indicated. It was found that there is good agreement with the field data. It is hoped that the equations are useful to design engineer.

  5. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts

    Science.gov (United States)

    Ye, Hong; Jeong, Suh Young; Ghosh, Manik C.; Kovtunovych, Gennadiy; Silvestri, Laura; Ortillo, Danilo; Uchida, Naoya; Tisdale, John; Camaschella, Clara; Rouault, Tracey A.

    2010-01-01

    Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element–binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate δ, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP–repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency. PMID:20364084

  6. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.

    Science.gov (United States)

    Viader, Andreu; Sasaki, Yo; Kim, Sungsu; Strickland, Amy; Workman, Cayce S; Yang, Kui; Gross, Richard W; Milbrandt, Jeffrey

    2013-03-06

    Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.

  7. Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2013-01-01

    Full Text Available Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.

  8. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    Science.gov (United States)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  9. Genetic counseling in mitochondrial disease.

    Science.gov (United States)

    Vento, Jodie M; Pappa, Belen

    2013-04-01

    Mitochondrial diseases are a genetically and clinically diverse group of disorders that arise as a result of dysfunction of the mitochondria. Mitochondrial disorders can be caused by alterations in nuclear DNA and/or mitochondrial DNA. Although some mitochondrial syndromes have been described clearly in the literature many others present as challenging clinical cases with multisystemic involvement at variable ages of onset. Given the clinical variability and genetic heterogeneity of these conditions, patients and their families often experience a lengthy and complicated diagnostic process. The diagnostic journey may be characterized by heightened levels of uncertainty due to the delayed diagnosis and the absence of a clear prognosis, among other factors. Uncertainty surrounding issues of family planning and genetic testing may also affect the patient. The role of the genetic counselor is particularly important to help explain these complexities and support the patient and family's ability to achieve effective coping strategies in dealing with increased levels of uncertainty.

  10. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether, J.W.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations on the 630.0 nm nightglow brightness at the equatorial station at Arequipa, Peru (16.2 S, 71.4 W geographic, 3.2 S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridional wind reached a velocity of 100 m/s near 22h LT lasting for 1 to 2 hours. The temperature increases of 100K or more existed only in the poleware (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge. (Author)

  11. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether J.W. Jr.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations of the 630.0 nm nightglow brightness at the equatorial station of Arequipa. Peru (16.2/sup 0/S, 71.4/sup 0/W geographic, 3.2/sup 0/S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridonal wind reached a velocity of 100 m/s near 22/sup h/ LT lasting for 1 or 2 hours. The temperature increases of 10 K or more existed only in the poleward (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge.

  12. CD147 interacts with NDUFS6 in regulating mitochondrial complex I activity and the mitochondrial apoptotic pathway in human malignant melanoma cells.

    Science.gov (United States)

    Luo, Z; Zeng, W; Tang, W; Long, T; Zhang, J; Xie, X; Kuang, Y; Chen, M; Su, J; Chen, X

    2014-01-01

    Malignant melanoma (MM) is one of the most lethal tumors and is characterized by high invasiveness, frequent metastasis, and resistance to chemotherapy. The risk of metastatic MM is accompanied by disordered energy metabolism involving the oxidative phosphorylation (OXPHOS) process, which is largely carried out in mitochondrial complexes. Complex I is the first and largest mitochondrial enzyme complex associated with this process. CD147 is a transmembrane glycoprotein mainly expressed on the cell surface, and also appears in the cytoplasm in some tumors. We found that CD147 is often translocated to the cytoplasm in metastatic MM specimens as compared to primary MM. We also demonstrated high expression of CD147 in isolated mitochondrial fractions of A375 cells. The yeast two-hybrid (Y2H) assay identified NDUFS6 (which encodes a subunit of mitochondrial respiratory chain complex I) as a candidate that interacts with CD147 and depletion of CD147 in A375 cells significantly decreased complex I enzyme activity. We also showed that CD147 increased the viability of A375 cells exposed to berberine-induced mitochondrial damage, and protected them from apoptosis through a mitochondrial-dependent pathway. This finding was confirmed by adding exogenous Bcl-2 to A375 cell cultures. In summary, our results identify the existence of CD147 in human melanoma cell mitochondria. They indicate that CD147 appears to regulate complex I activity and apoptosis in MM by interacting with mitochondrial NDUFS6. Our findings provide new insight into the function of CD147 and identify it as a promising therapeutic target in melanoma through disruption of the energy metabolism.

  13. Mitofusin 2 Deficiency Affects Energy Metabolism and Mitochondrial Biogenesis in MEF Cells.

    Directory of Open Access Journals (Sweden)

    Maria Kawalec

    Full Text Available Mitofusin 2 (Mfn2, mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A. Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF differing in the presence of the Mfn2 gene; control (MEFwt and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO as well as mitochondrial transcription factor A (TFAM and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.

  14. Mitochondrial Replacement: Ethics And Identity

    OpenAIRE

    Wrigley, Anthony; Wilkinson, Stephen; Appleby, John B

    2015-01-01

    Mitochondrial replacement techniques (MRTs) have the potential to allow prospective parents who are at risk of passing on debilitating or even life-threatening mitochondrial disorders to have healthy children to whom they are genetically related. Ethical concerns have however been raised about these techniques. This article focuses on one aspect of the ethical debate, the question of whether there is any moral difference between the two types of MRT proposed: Pronuclear Transfer (PNT) and Mat...

  15. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  16. Computed tomography in mitochondrial cytopathy

    Energy Technology Data Exchange (ETDEWEB)

    Egger, J.; Kendall, B.E.

    1981-10-01

    The clinical and computed tomographic (CT) findings in 11 proven cases of mitochondrial cytopathy (mitochondrial myopathy, Kearns Sayre syndrome, ophthalmoplegia plus) were studied. The CT changes included focal low density lesions in the basal ganglia and white matter and atrophy which could be slight or diffuse and severe. Calcification has been described in the basal ganglia, but did not occur in our series. Serial CT showed progression of the abnormalities. The differential diagnosis is discussed.

  17. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  18. Mitochondrial diseases: advances and issues

    Science.gov (United States)

    Scarpelli, Mauro; Todeschini, Alice; Volonghi, Irene; Padovani, Alessandro; Filosto, Massimiliano

    2017-01-01

    Mitochondrial diseases (MDs) are a clinically heterogeneous group of disorders caused by a dysfunction of the mitochondrial respiratory chain. They can be related to mutation of genes encoded using either nuclear DNA or mitochondrial DNA. The advent of next generation sequencing and whole exome sequencing in studying the molecular bases of MDs will bring about a revolution in the field of mitochondrial medicine, also opening the possibility of better defining pathogenic mechanisms and developing novel therapeutic approaches for these devastating disorders. The canonical rules of mitochondrial medicine remain milestones, but novel issues have been raised following the use of advanced diagnostic technologies. Rigorous validation of the novel mutations detected using deep sequencing in patients with suspected MD, and a clear definition of the natural history, outcome measures, and biomarkers that could be usefully adopted in clinical trials, are mandatory goals for the scientific community. Today, therapy is often inadequate and mostly palliative. However, important advances have been made in treating some clinical entities, eg, mitochondrial neuro-gastrointestinal encephalomyopathy, for which approaches using allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy have recently been developed. Promising new treatment methods are being identified so that researchers, clinicians, and patients can join forces to change the history of these untreatable disorders. PMID:28243136

  19. Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion.

    Directory of Open Access Journals (Sweden)

    Alice Küster

    Full Text Available BACKGROUND: Depletion of blood glutathione (GSH, a key antioxidant, is known to occur in preterm infants. OBJECTIVE: Our aim was to determine: 1 whether GSH depletion is present at the time of birth; and 2 whether it is associated with insufficient availability of cysteine (cys, the limiting GSH precursor, or a decreased capacity to synthesize GSH. METHODOLOGY: Sixteen mothers delivering very low birth weight infants (VLBW, and 16 mothers delivering healthy, full term neonates were enrolled. Immediately after birth, erythrocytes from umbilical vein, umbilical artery, and maternal blood were obtained to assess GSH [GSH] and cysteine [cys] concentrations, and the GSH synthesis rate was determined from the incorporation of labeled cysteine into GSH in isolated erythrocytes ex vivo, measured using gas chromatography mass spectrometry. PRINCIPAL FINDINGS: Compared with mothers delivering at full term, mothers delivering prematurely had markedly lower erythrocyte [GSH] and [cys] and these were significantly depressed in VLBW infants, compared with term neonates. A strong correlation was found between maternal and fetal GSH and cysteine levels. The capacity to synthesize GSH was as high in VLBW as in term infants. CONCLUSION: The current data demonstrate that: 1 GSH depletion is present at the time of birth in VLBW infants; 2 As VLBW neonates possess a fully active capacity to synthesize glutathione, the depletion may arise from inadequate cysteine availability, potentially due to maternal depletion. Further studies would be needed to determine whether maternal-fetal cysteine transfer is decreased in preterm infants, and, if so, whether cysteine supplementation of mothers at risk of delivering prematurely would strengthen antioxidant defense in preterm neonates.

  20. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2(*-) generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-02-01

    Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we investigated an involvement of O(2)(*-) and GSH in FCCP-induced Calu-6 cell death and examined whether ROS scavengers rescue cells from FCCP-induced cell death. Levels of intracellular O(2)(*-) were markedly increased depending on the concentrations (5-100 microM) of FCCP. A depletion of intracellular GSH content was also observed after exposing cells to FCCP. Stable SOD mimetics, Tempol and Tiron did not change the levels of intracellular O(2)(*-), apoptosis and the loss of mitochondrial membrane potential (DeltaPsi(m)). Treatment with thiol antioxidants, NAC and DTT, showed the recovery of GSH depletion and the reduction of O(2)(*-) levels in FCCP-treated cells, which were accompanied by the inhibition of apoptosis. In contrast, BSO, a well-known inhibitor of GSH synthesis, aggravated GSH depletion, oxidative stress of O(2)(*-) and cell death in FCCP-treated cells. Taken together, our data suggested that FCCP as an O(2)(*-) generator, induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

  1. Arctic Ozone Depletion from UARS MLS Measurements

    Science.gov (United States)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  2. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  3. Depleted Uranium Penetrators : Hazards and Safety

    Directory of Open Access Journals (Sweden)

    S. S. Rao

    1997-01-01

    Full Text Available The depleted uranium (DU alloy is a state-of-the-art material for kinetic energy penetrators due to its superior ballistic performance. Several countries use DU penetrators in their main battle tanks. There is no gamma radiation hazard to the crew members from stowage of DO rounds. Open air firing can result in environmental contamination and associated hazards due to airborne particles containing essentially U/sub 3/0/sub 8/ and UO/sub 2/. Inhalation of polluted air only through respirators or nose masks and refraining form ingestion of water or food materials from contaminated environment are safety measures for avoiding exposure to uranium and its toxicity. Infusion of sodium bicarbonate helps in urinary excretion of uranium that may have entered the body.

  4. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  5. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    Directory of Open Access Journals (Sweden)

    Domenico Spadafora

    Full Text Available Due to the essential role played by mitochondrial DNA (mtDNA in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90% reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  6. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    Science.gov (United States)

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  7. Mitochondrial diseases: advances and issues

    Directory of Open Access Journals (Sweden)

    Scarpelli M

    2017-02-01

    Full Text Available Mauro Scarpelli,1 Alice Todeschini,2 Irene Volonghi,2 Alessandro Padovani,2 Massimiliano Filosto2 1Department of Neuroscience, Unit of Neurology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy; 2Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST “Spedali Civili”, University of Brescia, Brescia, Italy Abstract: Mitochondrial diseases (MDs are a clinically heterogeneous group of disorders caused by a dysfunction of the mitochondrial respiratory chain. They can be related to mutation of genes encoded using either nuclear DNA or mitochondrial DNA. The advent of next generation sequencing and whole exome sequencing in studying the molecular bases of MDs will bring about a revolution in the field of mitochondrial medicine, also opening the possibility of better defining pathogenic mechanisms and developing novel therapeutic approaches for these devastating disorders. The canonical rules of mitochondrial medicine remain milestones, but novel issues have been raised following the use of advanced diagnostic technologies. Rigorous validation of the novel mutations detected using deep sequencing in patients with suspected MD, and a clear definition of the natural history, outcome measures, and biomarkers that could be usefully adopted in clinical trials, are mandatory goals for the scientific community. Today, therapy is often inadequate and mostly palliative. However, important advances have been made in treating some clinical entities, eg, mitochondrial neuro-gastrointestinal encephalomyopathy, for which approaches using allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy have recently been developed. Promising new treatment methods are being identified so that researchers, clinicians, and patients can join forces to change the history of these untreatable disorders. Keywords: mitochondrial diseases

  8. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  9. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  10. N-Methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration

    Directory of Open Access Journals (Sweden)

    Ninković Milica

    2004-01-01

    Full Text Available Background. The underlying mechanisms of N-Methyl-3,4-methylenedioxyamphetamine-MDMA-induced hepatotoxicity are still unknown. The aim of this study was to evaluate hepatic oxido-reductive status in the rats liver after the single and repeated administration of MDMA. Methods. MDMA was dissolved in distilled water and administered in the doses of 5 mg, 10 mg, 20 mg, and 40 mg/kg. The animals from the acute experiment were treated per os with the single dose of the appropriate solution, through the orogastric tube. The animals from the chronic experiment were treated per os, with the doses of 5, 10, or 20 mg/kg of MDMA every day during 14 days. The control groups were treated with water only. Eight hours after the last dose, the animals were sacrificed, dissected their livers were rapidly removed, frozen and stored at -70°C until the moment of analysis. The parameters of oxidative stress in the crude mitochondrial fractions of the livers were analyzed. Results. Superoxide dismutase (SOD activity increased in the livers of the animals that were treated with single doses of MDMA. Chronically treated animals showed the increased SOD activity only after the highest dose (20 mg/kg. The content of reduced glutathione decreased in both groups, but the depletion was much more expressed after the single administration. Lipid peroxidation index increased in dose-dependent manner in both groups, being much higher after the single administration. Conclusion. The increased index of lipid peroxidation and the decreased reduced glutathione levels suggested that MDMA application induced the state of oxidative stress in the liver. These changes were much more expressed after the single administration of MDMA.

  11. RESIDUE DEPLETION OF SULPHADIAZINE AND TRIMETHOPRIM IN PIGS AND BROILERS AFTER ORAL ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    P. RONCADA

    2012-05-01

    Full Text Available The residual behaviour of a sulphadiazine (SDZ and trimethoprim (TMP combination was studied in fourteen pigs and twenty-eight broilers. The drug combination was added in the amount of 700 mg kg-1 (SDZ and 140 mg kg-1 (TMP to pig and 300 mg kg-1 (SDZ and 60 mg kg-1 (TMP to broiler feed, respectively. The medicated feeds were supplied for 5 consecutive days. The tissue SDZ/TMP concentrations were measured by a HPLC method. To ensure safe residue levels in all target tissues, withdrawal time of 8.6 days and 6.0 days should be applied to pigs and broilers, respectively, treated with SDZ and TMP in feed.

  12. Exogenous reactive oxygen species deplete the isolated rat heart of antioxidants.

    Science.gov (United States)

    Vaage, J; Antonelli, M; Bufi, M; Irtun, O; DeBlasi, R A; Corbucci, G G; Gasparetto, A; Semb, A G

    1997-01-01

    The effects of reactive oxygen species (ROS) on myocardial antioxidants and on the activity of oxidative mitochondrial enzymes were investigated in the following groups of isolated, perfused rat hearts. I: After stabilization the hearts freeze clamped in liquid nitrogen (n = 7). II: Hearts frozen after stabilization and perfusion for 10 min with xanthine oxidase (XO) (25 U/l) and hypoxanthine (HX) (1 mM) as a ROS-producing system (n = 7). III: Like group II, but recovered for 30 min after perfusion with XO + HX (n = 9). IV: The hearts were perfused and freeze-clamped as in group III, but without XO + HX (n = 7). XO + HX reduced left ventricular developed pressure and coronary flow to approximately 50% of the baseline value. Myocardial content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) increased at the end of XO + HX perfusion, indicating that generation of ROS and lipid peroxidation occurred. Levels of H2O2 and MDA normalized during recovery. Superoxide dismutase, reduced glutathione and alpha-tocopherol were all reduced after ROS-induced injury. ROS did not significantly influence the tissue content of coenzyme Q10 (neither total, oxidized, nor reduced), cytochrome c oxidase, and succinate cytochrome c reductase. The present findings indicate that the reduced contractile function was not correlated to reduced activity of the mitochondrial electron transport chain. ROS depleted the myocardium of antioxidants, leaving the heart more sensitive to the action of oxidative injury.

  13. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  14. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Suzuki

    Full Text Available Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.

  15. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  16. Hypoxamirs and Mitochondrial Metabolism

    Science.gov (United States)

    Cottrill, Katherine A.; Chan, Stephen Y.

    2014-01-01

    Abstract Significance: Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. Recent Advances: Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. Critical Issues: Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. Future Directions: The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes. Antioxid. Redox Signal. 21, 1189–1201. PMID:24111795

  17. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  18. C. elegans ATAD-3 is essential for mitochondrial activity and development.

    Directory of Open Access Journals (Sweden)

    Michael Hoffmann

    Full Text Available BACKGROUND: Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved. RESULTS: Here, we characterize the Caenorhabditis elegans (C. elegans ATAD3 homologue (ATAD-3 and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity. CONCLUSIONS: In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.

  19. Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE

    Science.gov (United States)

    Ferrando, Tiziana; Poggi, Alessandro; Garuti, Anna; D'Urso, Agustina; Selmo, Martina; Benvenuto, Federica; Cea, Michele; Zoppoli, Gabriele; Moran, Eva; Soncini, Debora; Ballestrero, Alberto; Sordat, Bernard; Patrone, Franco; Mostoslavsky, Raul; Uccelli, Antonio; Nencioni, Alessio

    2009-01-01

    Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders. PMID:19936064

  20. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE.

    Directory of Open Access Journals (Sweden)

    Santina Bruzzone

    Full Text Available Nicotinamide phosphoribosyltransferase (Nampt inhibitors such as FK866 are potent inhibitors of NAD(+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+-degrading enzyme poly-(ADP-ribose-polymerase (PARP by activated T cells enhances their susceptibility to NAD(+ depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.

  1. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE.

    Science.gov (United States)

    Bruzzone, Santina; Fruscione, Floriana; Morando, Sara; Ferrando, Tiziana; Poggi, Alessandro; Garuti, Anna; D'Urso, Agustina; Selmo, Martina; Benvenuto, Federica; Cea, Michele; Zoppoli, Gabriele; Moran, Eva; Soncini, Debora; Ballestrero, Alberto; Sordat, Bernard; Patrone, Franco; Mostoslavsky, Raul; Uccelli, Antonio; Nencioni, Alessio

    2009-11-19

    Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD(+) synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+) depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+)-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD(+) depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.

  2. Catalytic properties of Escherichia coli F1-ATPase depleted of endogenous nucleotides.

    Science.gov (United States)

    Senior, A E; Lee, R S; al-Shawi, M K; Weber, J

    1992-09-01

    Nucleotide-depleted Escherichia coli F1 was prepared by the procedure of Wise et al. (1983, Biochem. J. 215, 343-350). This enzyme had high rates of steady-state ATPase and GTPase activity. When "unisite" ATP hydrolysis was measured using an F1/ATP concentration ratio of 10, all of the substoichiometric ATP became bound to the high-affinity catalytic site and none became bound to noncatalytic sites. The association rate constant for ATP binding was 7 x 10(5) M-1 s-1 and the KdATP was 7.9 x 10(-10) M, as compared to values of 3.8 x 10(5) M-1 s-1 and 1.9 x 10(-10) M, respectively, in native (i.e., nucleotide-replete) F1. Rate constants for bound ATP hydrolysis, ATP resynthesis, and P(i) release, and the reaction equilibrium constant, were similar in nucleotide-depleted and native F1. Therefore, we conclude that occupancy of the noncatalytic sites is not required for formation of the high-affinity catalytic site of F1 and has no significant effect on unisite catalysis. In further experiments we looked for the occurrence of inhibitory, catalytic-site-bound MgADP in E. coli F1. Such an entity has been reported for chloroplast and mitochondrial F1. However, our experiments gave no indication for inhibitory MgADP in E. coli F1.

  3. Recombinant Mitochondrial Transcription Factor A with N-terminal Mitochondrial Transduction Domain Increases Respiration and Mitochondrial Gene Expression

    OpenAIRE

    Iyer, Shilpa; Thomas, Ravindar R.; Portell, Francisco R.; Dunham, Lisa D.; Quigley, Caitlin K.; Bennett, James P

    2009-01-01

    We developed a scalable procedure to produce human mitochondrial transcription factor A (TFAM) modified with an N-terminal protein transduction domain (PTD) and mitochondrial localization signal (MLS) that allow it to cross membranes and enter mitochondria through its “mitochondrial transduction domain” (MTD=PTD+MLS). Alexa488-labeled MTD-TFAM rapidly entered the mitochondrial compartment of cybrid cells carrying the G11778A LHON mutation. MTD-TFAM reversibly increased respiration and levels ...

  4. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  5. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice

    Institute of Scientific and Technical Information of China (English)

    Lei Diao; Qiao Mei; Jian-Ming Xu; Xiao-Chang Liu; Jing Hu; Juan Jin; Qiang Yao

    2012-01-01

    AIM:To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice.METHODS:Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally.A control group received the vehicle by gavage.Rebamipide (100 mg/kg,200 mg/kg,400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration.Intestinal permeability was evaluated by Evans blue and the FITC-dextran method.The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM).Mitochondrial function including mitochondrial swelling,mitochondrial membrane potential,mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels,succinate dehydrogenase (SDH) and ATPase activities were measured.Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity.RESULTS:Compared with the control group,intestinal permeability was significantly increased in the diclofenac group,which was accompanied by broken tight junctions,and significant increases in MDA content and MPO activity.Rebamipide significantly reduced intestinal permeability,improved inter-cellular tight junctions,and was associated with decreases in intestinal MDA content and MPO activity.At the mitochondrial level,rebamipide increased SDH and ATPase activities,NADH level and decreased mitochondrial swelling.CONCLUSION:Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide,which partially contributed to the protection of mitochondrial function.

  6. Senior Administrators Should Have Administrative Contracts.

    Science.gov (United States)

    Posner, Gary J.

    1987-01-01

    Recognizing that termination is viewed by the employee as the equivalent to capital punishment of a career, an administrative contract can reduce the emotional and financial entanglements that often result. Administrative contracts are described. (MLW)

  7. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  8. A Novel Depletion-Mode MOS Gated Emitter Shorted Thyristor

    Institute of Scientific and Technical Information of China (English)

    张鹤鸣; 戴显英; 张义门; 马晓华; 林大松

    2000-01-01

    A Novel MOS-gated thyristor, depletion-mode MOS gated emitter shorted thyristor (DMST),and its two structures are proposed. In DMST,the channel of depletion-mode MOS makes the thyristor emitter-based junction inherently short. The operation of the device is controlled by the interruption and recovery of the depletion-mode MOS P channel. The perfect properties have been demonstrated by 2-D numerical simulations and the tests on the fabricated chips.

  9. Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement.

    Science.gov (United States)

    Barazzoni, Rocco; Short, Kevin R; Asmann, Yan; Coenen-Schimke, Jill M; Robinson, Matthew M; Nair, K Sreekumaran

    2012-11-01

    Systemic insulin administration causes hypoaminoacidemia by inhibiting protein degradation, which may in turn inhibit muscle protein synthesis (PS). Insulin enhances muscle mitochondrial PS and ATP production when hypoaminoacidemia is prevented by exogenous amino acid (AA) replacement. We determined whether insulin would stimulate mitochondrial PS and ATP production in the absence of AA replacement. Using l-[1,2-¹³C]leucine as a tracer, we measured the fractional synthetic rate of mitochondrial as well as sarcoplasmic and mixed muscle proteins in 18 participants during sustained (7-h) insulin or saline infusion (n = 9 each). We also measured muscle ATP production, mitochondrial enzyme activities, mRNA levels of mitochondrial genes, and phosphorylation of signaling proteins regulating protein synthesis. The concentration of circulating essential AA decreased during insulin infusion. Mitochondrial, sarcoplasmic, and mixed muscle PS rates were also lower during insulin (2-7 h) than during saline infusions despite increased mRNA levels of selected mitochondrial genes. Under these conditions, insulin did not alter mitochondrial enzyme activities and ATP production. These effects were associated with enhanced phosphorylation of Akt but not of protein synthesis activators mTOR, p70(S6K), and 4EBP1. In conclusion, sustained physiological hyperinsulinemia without AA replacement did not stimulate PS of mixed muscle or protein subfractions and did not alter muscle mitochondrial ATP production in healthy humans. These results support that insulin and AA act in conjunction to stimulate muscle mitochondrial function and mitochondrial protein synthesis.

  10. Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites

    DEFF Research Database (Denmark)

    Scott, James; Liu, Jingao; Pearson, D. Graham;

    2016-01-01

    Although trace element concentrations in clinopyroxene serve as a useful tool for assessing the depletion and enrichment history of mantle peridotites, this is not applicable for peridotites in which the clinopyroxene component has been consumed (~ 25% partial melting). Orthopyroxene persists.......6), high spinel Cr# (commonly > 45) and low orthopyroxene Al2O3 (generally compositions shows that all samples, even the most refractory, have undergone metasomatism by small volume light rare earth element-bearing agents. Measured...

  11. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Luning [Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Li, Qiang; Sun, Bei; Xu, Zhiying [Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Ge, Zhiming, E-mail: zhimingge2000@hotmail.com [Department of Cardiology, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  12. The depletion potential in one, two and three dimensions

    Indian Academy of Sciences (India)

    R Roth; P-M König

    2005-06-01

    We study the behavior of the depletion potential in binary mixtures of hard particles in one, two, and three dimensions within the framework of a general theory for depletion potential using density functional theory. By doing so we extend earlier studies of the depletion potential in three dimensions to the cases of = 1 and 2 about which little is known, despite their importance for experiments. We also verify scaling relations between depletion potentials in sphere–sphere and wall–sphere geometries in = 3 and in disk–disk and wall–disk geometries in = 2, which originate from geometrical considerations.

  13. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    Science.gov (United States)

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  14. If ego depletion cannot be studied using identical tasks, it is not ego depletion.

    Science.gov (United States)

    Lange, Florian

    2015-01-01

    The hypothesis that human self-control capacities are fueled by glucose has been challenged on multiple grounds. A recent study by Lange and Eggert adds to this criticism by presenting two powerful but unsuccessful attempts to replicate the effect of sugar drinks on ego depletion. The dual-task paradigms employed in these experiments have been criticized for involving identical self-control tasks, a methodology that has been argued to reduce participants' willingness to exert self-control. The present article addresses this criticism by demonstrating that there is no indication to believe that the study of glucose effects on ego depletion should be restricted to paradigms using dissimilar acts of self-control. Failures to observe such effects in paradigms involving identical tasks pose a serious problem to the proposal that self-control exhaustion might be reversed by rinsing or ingesting glucose. In combination with analyses of statistical credibility, the experiments by Lange and Eggert suggest that the influence of sugar on ego depletion has been systematically overestimated.

  15. Autism Spectrum Disorder and Mitochondrial Disease

    Science.gov (United States)

    ... Is there a relationship between mitochondrial disease and autism? A: A child with a mitochondrial disease: may ... something else. Q: Is there a relationship between autism and encephalopathy? A: Most children with an autism ...

  16. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  17. Vitelliform macular degeneration associated with mitochondrial myopathy.

    OpenAIRE

    Modi, G; Heckman, J M; Saffer, D

    1992-01-01

    A patient with mitochondrial myopathy is described. Examination of his fundus revealed bilateral vitelliform degeneration of the maculae. This lesion is a focal abnormality of the retinal pigment epithelium and may be a manifestation of the underlying mitochondrial disease.

  18. Mitochondrial maintenance failure in aging and role of sexual dimorphism

    OpenAIRE

    Tower, John

    2014-01-01

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mu...

  19. Ethics of mitochondrial therapy for deafness.

    Science.gov (United States)

    Legge, Michael; Fitzgerald, Ruth P

    2014-11-07

    Mitochondrial therapy may provide the relief to many families with inherited mitochondrial diseases. However, it also has the potential for use in non-fatal disorders such as inherited mitochondrial deafness, providing an option for correction of the deafness using assisted reproductive technology. In this paper we discuss the potential for use in correcting mitochondrial deafness and consider some of the issues for the deaf community.

  20. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  1. Mitochondrial dysfunction in autism.

    Science.gov (United States)

    Legido, Agustín; Jethva, Reena; Goldenthal, Michael J

    2013-09-01

    Using data of the current prevalence of autism as 200:10,000 and a 1:2000 incidence of definite mitochondrial (mt) disease, if there was no linkage of autism spectrum disorder (ASD) and mt disease, it would be expected that 1 in 110 subjects with mt disease would have ASD and 1 in 2000 individuals with ASD would have mt disease. The co-occurrence of autism and mt disease is much higher than these figures, suggesting a possible pathogenetic relationship. Such hypothesis was initially suggested by the presence of biochemical markers of abnormal mt metabolic function in patients with ASD, including elevation of lactate, pyruvate, or alanine levels in blood, cerebrospinal fluid, or brain; carnitine level in plasma; and level of organic acids in urine, and by demonstrating impaired mt fatty acid β-oxidation. More recently, mtDNA genetic mutations or deletions or mutations of nuclear genes regulating mt function have been associated with ASD in patients or in neuropathologic studies on the brains of patients with autism. In addition, the presence of dysfunction of the complexes of the mt respiratory chain or electron transport chain, indicating abnormal oxidative phosphorylation, has been reported in patients with ASD and in the autopsy samples of brains. Possible pathogenetic mechanisms linking mt dysfunction and ASD include mt activation of the immune system, abnormal mt Ca(2+) handling, and mt-induced oxidative stress. Genetic and epigenetic regulation of brain development may also be disrupted by mt dysfunction, including mt-induced oxidative stress. The role of the purinergic system linking mt dysfunction and ASD is currently under investigation. In summary, there is genetic and biochemical evidence for a mitochondria (mt) role in the pathogenesis of ASD in a subset of children. To determine the prevalence and type of genetic and biochemical mt defects in ASD, there is a need for further research using the latest genetic technology such as next

  2. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  3. Efficiency of mitochondrially targeted gallic acid in reducing brain mitochondrial oxidative damage.

    Science.gov (United States)

    Parihar, P; Jat, D; Ghafourifar, P; Parihar, M S

    2014-07-03

    Oxidative stress is associated with mitochondrial impairments. Supplying mitochondria with potent antioxidants can reduce oxidative stress—induced mitochondrial impairment. Gallic acid can be used to reduce oxidative burden in mitochondria. In order to increase the bioavailability of gallic acid inside the mitochondria we synthesized mitochondrially targeted gallic acid and explored its preventive effects against sodium nitroprusside induced oxidative stress in isolated mitochondria. Our observations revealed an increase in oxidative stress,decrease in reduced glutathione in mitochondria and increase in the mitochondrial permeability pore transition due to sodium nitroprusside treatment. Pre—treatment of gallic acid and mitochondrially targeted gallic acid to sodium nitroprusside treated mitochondria not only significantly reduced the oxidative stress but also prevented mitochondrial permeability pore transition to a significant difference. Mitochondrially targeted gallic acid was found more effective in reducing oxidative stress and mitochondrial permeability pore transition than gallic acid. We conclude that mitochondrially targeted gallic acid can be used for preventing mitochondrial impairment caused by oxidative stress.

  4. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  5. Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy.

    Science.gov (United States)

    Chandrasekaran, Krish; Anjaneyulu, Muragundla; Inoue, Tatsuya; Choi, Joungil; Sagi, Avinash Rao; Chen, Chen; Ide, Tamomi; Russell, James W

    2015-07-15

    Oxidative stress-induced mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in peripheral neurons is considered to be important in the development of diabetic neuropathy. Mitochondrial transcription factor A (TFAM) wraps mtDNA and promotes mtDNA replication and transcription. We studied whether overexpression of TFAM reverses experimental peripheral diabetic neuropathy using TFAM transgenic mice (TFAM Tg) that express human TFAM (hTFAM). Levels of mouse mtDNA and the total TFAM (mouse TFAM + hTFAM) in the dorsal root ganglion (DRG) increased by approximately twofold in the TFAM Tg mice compared with control (WT) mice. WT and TFAM Tg mice were made diabetic by the administration of streptozotocin. Neuropathy end points were motor and sensory nerve conduction velocities, mechanical allodynia, thermal nociception, and intraepidermal nerve fiber density (IENFD). In the DRG neurons, mtDNA copy number and damage to mtDNA were quantified by qPCR, and TFAM levels were measured by Western blot. Mice with 16-wk duration of diabetes developed motor and sensory nerve conduction deficits, behavioral deficits, and intraepidermal nerve fiber loss. All of these changes were mostly prevented in diabetic TFAM Tg mice and were independent of changes in blood parameters. Mice with 16 wk of diabetes had a 40% decrease in mtDNA copy number compared with nondiabetic mice (P diabetic TFAM Tg mice reached the same level as that of WT nondiabetic mice. In comparison, there was upregulation of mtDNA and TFAM in 6-wk diabetic mice, suggesting that TFAM activation could be a therapeutic strategy to treat peripheral neuropathy.

  6. Veterans Health Administration

    Science.gov (United States)

    ... code here VA » Veterans Health Administration Veterans Health Administration Robotic Brace for Veterans of Spinal Cord Injury ... Read more » VA Medical Centers The Veterans Health Administration is home to the United States’ largest integrated ...

  7. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric i

  8. EPA Administrative Enforcement Dockets

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Administrative Enforcement Dockets database contains the electronic dockets for administrative penalty cases filed by EPA Regions and Headquarters. Visitors...

  9. Administrative Data Repository (ADR)

    Data.gov (United States)

    Department of Veterans Affairs — The Administrative Data Repository (ADR) was established to provide support for the administrative data elements relative to multiple categories of a person entity...

  10. Coenzyme Q and Mitochondrial Disease

    Science.gov (United States)

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  11. Mitochondrial dysfunction and Huntington disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Huntington disease (HD) is a chronic autosomal-dominant neurodegenerative disease. The gene coding Huntingtin has been identified, but the pathogenic mechanisms of the disease are still not fully understood. This paper reviews the involvement of mitochondrial dysfunction in pathogenesis of HD.

  12. Historical Perspective on Mitochondrial Medicine

    Science.gov (United States)

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the premolecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis,…

  13. Ozone Depletion Potential of CH3Br

    Science.gov (United States)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  14. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  15. The effect of ego depletion on sprint start reaction time.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  16. Barium depletion study on impregnated cathodes and lifetime prediction

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A

    2003-06-15

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  17. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  18. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    Science.gov (United States)

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  19. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  20. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Science.gov (United States)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  1. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    Science.gov (United States)

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function.

  2. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway.

    Science.gov (United States)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Verma, Deepika; Priyanka, Kumari; Bal, Amanjit; Gill, Kiran Dip

    2015-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.

  3. Lack of ability of trypsin-treated mitochondrial F1-ATPase to bind the oligomycin-sensitivity conferring protein (OSCP).

    Science.gov (United States)

    Hundal, T; Norling, B; Ernster, L

    1983-10-03

    Soluble beef-heart mitochondrial F1-ATPase modified in its alpha-subunit by mild trypsin treatment (alpha'-F1) can no longer bind oligomycin-sensitivity conferring protein (OSCP) but is still capable of binding to F1-depleted submitochondrial particles, giving rise to a maximally oligomycin-sensitive ATPase, provided the particles contain their native complement of OSCP. When OSCP is removed from the particles, alpha'-F1 can still bind to the particles, but added OSCP induces only a low degree of oligomycin sensitivity. The possible role of OSCP in the functional coupling of the catalytic (F1) and H+-translocating (Fo) moieties of mitochondrial ATPase is discussed. The results suggest a functional similarity between the OSCP component of mitochondrial ATPase and the delta-subunit of E. coli ATPase, which is in accordance with the structural homology recently found to exist between the two polypeptides.

  4. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  5. Impaired reward learning and intact motivation after serotonin depletion in rats.

    Science.gov (United States)

    Izquierdo, Alicia; Carlos, Kathleen; Ostrander, Serena; Rodriguez, Danilo; McCall-Craddolph, Aaron; Yagnik, Gargey; Zhou, Feimeng

    2012-08-01

    Aside from the well-known influence of serotonin (5-hydroxytryptamine, 5-HT) on emotional regulation, more recent investigations have revealed the importance of this monoamine in modulating cognition. Parachlorophenylalanine (PCPA) depletes 5-HT by inhibiting tryptophan hydroxylase, the enzyme required for 5-HT synthesis and, if administered at sufficiently high doses, can result in a depletion of at least 90% of the brain's 5-HT levels. The present study assessed the long-lasting effects of widespread 5-HT depletions on two tasks of cognitive flexibility in Long Evans rats: effort discounting and reversal learning. We assessed performance on these tasks after administration of either 250 or 500 mg/kg PCPA or saline (SAL) on two consecutive days. Consistent with a previous report investigating the role of 5-HT on effort discounting, pretreatment with either dose of PCPA resulted in normal effortful choice: All rats continued to climb tall barriers to obtain large rewards and were not work-averse. Additionally, rats receiving the lower dose of PCPA displayed normal reversal learning. However, despite intact motivation to work for food rewards, rats receiving the largest dose of PCPA were unexpectedly impaired relative to SAL rats on the pretraining stages leading up to reversal learning, ultimately failing to approach and respond to the stimuli associated with reward. High performance liquid chromatography (HPLC) with electrochemical detection confirmed 5-HT, and not dopamine, levels in the ventromedial frontal cortex were correlated with this measure of associative reward learning.

  6. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders.

    Science.gov (United States)

    Sládková, J; Spáčilová, J; Čapek, M; Tesařová, M; Hansíková, H; Honzík, T; Martínek, J; Zámečník, J; Kostková, O; Zeman, J

    2015-01-01

    Mitochondrial morphology was studied in cultivated myoblasts obtained from patients with mitochondrial disorders, including CPEO, MELAS and TMEM70 deficiency. Mitochondrial networks and ultrastructure were visualized by fluorescence microscopy and transmission electron microscopy, respectively. A heterogeneous picture of abnormally sized and shaped mitochondria with fragmentation, shortening, and aberrant cristae, lower density of mitochondria and an increased number of "megamitochondria" were found in patient myoblasts. Morphometric Fiji analyses revealed different mitochondrial network properties in myoblasts from patients and controls. The small number of cultivated myoblasts required for semiautomatic morphometric image analysis makes this tool useful for estimating mitochondrial disturbances in patients with mitochondrial disorders.

  7. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking

    Science.gov (United States)

    Zhang, Haijing; Zhao, Chunhui; Lv, Cui; Liu, Xiaoli; Du, Shijing; Li, Zhi; Wang, Yongyan; Zhang, Wensheng

    2017-01-01

    Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment. PMID:28179878

  8. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  9. Case of administrative dispute

    Directory of Open Access Journals (Sweden)

    Xhemazie Ibraimi

    2015-11-01

    Full Text Available The activity of administrative bodies includes big numbers of various acts and actions, through which the will of public administration is formed. The will of public administration bodies, expressed in administrative individual and normative acts, in administrative contracts and real acts, finds its reflection in the Constitution, laws and other provisions of legal character. All this activity is not inerrant and therefore, it is not uncontrollable. The supervision of executive activity is subject to political control of administrative acts through authorities designated for this purpose, as well as internal control and the judicial control. The institution of judicial control of administrative acts and actions appears as very important and widely treated in the legal doctrine. The protection of constitutional and legal rights of private persons is accomplished by subjecting administrative activity both to internal administrative control, as well as to the judicial control in accordance with legal provisions. The judicial control of administrative acts represents a constitutional guarantee for citizens to protect their rights through public and fair trial by an independent and impartial court. In this way, the Constitution empowers the common administrative court that invalidates an action or administrative act, but not all administrative acts may be subject to administrative dispute, with the exception of cases against which the administrative conflict cannot be carried out (negative enumeration.

  10. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Zhenghang Zhao

    Full Text Available Recent studies have suggested that mitochondria may play important roles in the Ca(2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+ flux can regulate the generation of Ca(2+ waves (CaWs and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+ (Cai (2+ was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR Ca(2+ release and CaWs were induced in the presence of high (4 mM external Ca(2+ (Cao (2+. The protonophore carbonyl cyanide p-(trifluoromethoxyphenylhydrazone (FCCP reversibly raised basal Cai (2+ levels even after depletion of SR Ca(2+ in the absence of Cao (2+ , suggesting Ca(2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m or Ru360 (a mitochondrial Ca(2+ uniporter inhibitor, but not by oligomycin (an ATP synthase inhibitor or iodoacetic acid (a glycolytic inhibitor, excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+ release and uptake exquisitely control the local Ca(2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.

  11. How do human cells react to the absence of mitochondrial DNA?

    Directory of Open Access Journals (Sweden)

    Rossana Mineri

    Full Text Available BACKGROUND: Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA and the mitochondrial genome (mtDNA. The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(- and A549, which had been entirely depleted of mtDNA (rho(o cells, and compared it with that of corresponding undepleted parental cells (rho(+ cells. RESULTS: Our data indicate that absence of mtDNA is associated with: i a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment. CONCLUSIONS: Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA.

  12. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  13. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle.

    Science.gov (United States)

    Winter, Lilli; Kuznetsov, Andrey V; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-08-15

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.

  14. Regulation and quantification of cellular mitochondrial morphology and content.

    Science.gov (United States)

    Tronstad, Karl J; Nooteboom, Marco; Nilsson, Linn I H; Nikolaisen, Julie; Sokolewicz, Maciek; Grefte, Sander; Pettersen, Ina K N; Dyrstad, Sissel; Hoel, Fredrik; Willems, Peter H G M; Koopman, Werner J H

    2014-01-01

    Mitochondria play a key role in signal transduction, redox homeostasis and cell survival, which extends far beyond their classical functioning in ATP production and energy metabolism. In living cells, mitochondrial content ("mitochondrial mass") depends on the cell-controlled balance between mitochondrial biogenesis and degradation. These processes are intricately linked to changes in net mitochondrial morphology and spatiotemporal positioning ("mitochondrial dynamics"), which are governed by mitochondrial fusion, fission and motility. It is becoming increasingly clear that mitochondrial mass and dynamics, as well as its ultrastructure and volume, are mechanistically linked to mitochondrial function and the cell. This means that proper quantification of mitochondrial morphology and content is of prime importance in understanding mitochondrial and cellular physiology in health and disease. This review first presents how cellular mitochondrial content is regulated at the level of mitochondrial biogenesis, degradation and dynamics. Next we discuss how mitochondrial dynamics and content can be analyzed with a special emphasis on quantitative live-cell microscopy strategies.

  15. Mitochondrial genomes of parasitic flatworms.

    Science.gov (United States)

    Le, Thanh H; Blair, David; McManus, Donald P

    2002-05-01

    Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.

  16. Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.

    Science.gov (United States)

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-10-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and alpha-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external alpha-ketoglutarate and glycine concentrations.

  17. A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease

    Science.gov (United States)

    Rajakulendran, Sanjeev; Pitceathly, Robert D. S.; Taanman, Jan-Willem; Costello, Harry; Sweeney, Mary G.; Woodward, Cathy E.; Jaunmuktane, Zane; Holton, Janice L.; Jacques, Thomas S.; Harding, Brian N.; Fratter, Carl; Hanna, Michael G.; Rahman, Shamima

    2016-01-01

    Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA). Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA) spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO). All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors. PMID:26735972

  18. A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease.

    Directory of Open Access Journals (Sweden)

    Sanjeev Rajakulendran

    Full Text Available Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA. Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS, one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO. All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.

  19. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  20. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    Science.gov (United States)

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  1. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits.

    Science.gov (United States)

    Ott, Christine; Dorsch, Eva; Fraunholz, Martin; Straub, Sebastian; Kozjak-Pavlovic, Vera

    2015-01-01

    Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.

  2. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    Science.gov (United States)

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.

  3. EMRE Is a Matrix Ca2+ Sensor that Governs Gatekeeping of the Mitochondrial Ca2+ Uniporter

    Directory of Open Access Journals (Sweden)

    Horia Vais

    2016-01-01

    Full Text Available The mitochondrial uniporter (MCU is an ion channel that mediates Ca2+ uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca2+ signaling. Matrix Ca2+ concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca2+ overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca2+ concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca2+ inhibition of MCU Ca2+ currents, resulting in MCU channel activation, enhanced mitochondrial Ca2+ uptake, and constitutively elevated matrix Ca2+ concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca2+. Thus, mitochondria are protected from Ca2+ depletion and Ca2+ overload by a unique molecular complex that involves Ca2+ sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.

  4. Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons.

    Directory of Open Access Journals (Sweden)

    Luc Dupuis

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS, the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ and subsequent motor neuron degeneration during ALS. METHODOLOGY/PRINCIPAL FINDINGS: We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1, a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. CONCLUSIONS/SIGNIFICANCE: These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases.

  5. Induction of Mitochondrial Dysfunction and Oxidative Stress in Leishmania donovani by Orally Active Clerodane Diterpene

    Science.gov (United States)

    Kathuria, Manoj; Bhattacharjee, Arindam; Sashidhara, Koneni V.; Singh, Suriya Pratap

    2014-01-01

    This study was performed to investigate the mechanistic aspects of cell death induced by a clerodane diterpene (K-09) in Leishmania donovani promastigotes that was previously demonstrated to be safe and orally active against visceral leishmaniasis (VL). K-09 caused depolarization of the mitochondrion and the generation of reactive oxygen species, triggering an apoptotic response in L. donovani promastigotes. Mitochondrial dysfunction subsequently resulted in the release of cytochrome c into the cytosol, impairing ATP production. Oxidative stress caused the depletion of reduced glutathione, while pretreatment with antioxidant N-acetyl cysteine (NAC) was able to abrogate oxidative stress. However, NAC failed to restore the mitochondrial membrane potential or intracellular calcium homeostasis after K-09 treatment, suggesting that the generation of oxidative stress is a downstream event relative to the other events. Caspase-3/-7-like protease activity and genomic DNA fragmentation were observed. Electron microscopy studies revealed gross morphological alterations typical of apoptosis, including severe mitochondrial damage, pyknosis of the nucleus, structural disruption of the mitochondrion-kinetoplast complex, flagellar pocket alterations, and the displacement of organelles. Moreover, an increased number of lipid droplets was detected after K-09 treatment, which is suggestive of altered lipid metabolism. Our results indicate that K-09 induces mitochondrial dysfunction and oxidative stress-mediated apoptotic cell death in L. donovani promastigotes, sharing many features with metazoan apoptosis. These mechanistic insights provide a basis for further investigation toward the development of K-09 as a potential drug candidate for VL. PMID:25070112

  6. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes.

    Directory of Open Access Journals (Sweden)

    Natalia Igosheva

    Full Text Available The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis.Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women.

  7. Neurodegenerative stress related mitochondrial proteostasis

    OpenAIRE

    Fang, Lei

    2015-01-01

    1.1 Background: Mitochondria are the main site of energy production in most cells. Furthermore, they are involved in a multitude of other essential cellular processes, such as regulating the cellular calcium pool, lipid metabolism and programmed cell death. Healthy and functional mitochondria are critical to meet the fundamental needs for almost all cell types, which makes mitochondrial quality control (QC) very important. Given the high energy demand of neuronal cells, their vulnerability...

  8. Pharmacological effect of carvacrol on D: -galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis.

    Science.gov (United States)

    Aristatile, Balakrishnan; Al-Numair, Khalid S; Al-Assaf, Abdullah H; Pugalendi, Kodukkur Viswanathan

    2011-07-01

    The present study aimed at investigating the effect of carvacrol on hepatic mitochondrial enzyme activities and DNA damage in D: -galactosamine (D: -GalN)-induced hepatotoxicity in male albino Wistar rats. The activities of hepatic mitochondrial enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADPH dehydrogenase and cytochrome c oxidase significantly decreased in D: -GalN-hepatotoxic rats, and administration of carvacrol brought these parameters towards normality. In D: -GalN-hepatotoxic rats, the hepatic mitochondrial concentration of thiobarbituric acid reactive substances significantly increased, and administration of carvacrol significantly reduced them towards normality. Furthermore, the activities of enzymatic antioxidants such as superoxide dismutase and glutathione peroxidase and the levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione decreased significantly in the liver mitochondria. Administration of carvacrol returned the enzymatic and non-enzymatic antioxidants towards normality. D: -GalN-hepatotoxic rats had increased DNA damage, which administration of carvacrol significantly decreased. These results suggest that carvacrol has liver mitochondrial antioxidant properties and possesses a defensive effect against mitochondrial enzymes and DNA damage in D: -GalN-induced rats.

  9. Mitochondrial DNA maintenance: an appraisal.

    Science.gov (United States)

    Akhmedov, Alexander T; Marín-García, José

    2015-11-01

    Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS), and Ca(2+) handling to stress responses, cell survival, and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular disorders, cancer, premature aging, and cardiovascular diseases, including myocardial ischemia, cardiomyopathy, and heart failure. Mitochondria are unique as they contain their own genome organized into DNA-protein complexes, so-called mitochondrial nucleoids, along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription, and repair. Although the organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair, and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to oxidative stress and other types of mtDNA damage. Defects in the components of these highly organized machineries, which mediate mtDNA maintenance (replication and repair), may result in accumulation of point mutations and/or deletions in mtDNA and decreased mtDNA copy number impairing mitochondrial function. This review will focus on the mechanisms of mtDNA maintenance with emphasis on the proteins implicated in these processes and their functional role in various disease conditions and aging.

  10. Mitochondrial cytochrome c oxidase deficiency.

    Science.gov (United States)

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  11. Assessing mitochondrial dysfunction in cells.

    Science.gov (United States)

    Brand, Martin D; Nicholls, David G

    2011-04-15

    Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review.

  12. Mitochondrial DNA inheritance after SCNT.

    Science.gov (United States)

    Hiendleder, Stefan

    2007-01-01

    Mitochondrial biogenesis and function is under dual genetic control and requires extensive interaction between biparentally inherited nuclear genes and maternally inherited mitochondrial genes. Standard SCNT procedures deprive an oocytes' mitochondrial DNA (mtDNA) of the corresponding maternal nuclear DNA and require it to interact with an entirely foreign nucleus that is again interacting with foreign somatic mitochondria. As a result, most SCNT embryos, -fetuses, and -offspring carry somatic cell mtDNA in addition to recipient oocyte mtDNA, a condition termed heteroplasmy. It is thus evident that somatic cell mtDNA can escape the selective mechanism that targets and eliminates intraspecific sperm mitochondria in the fertilized oocyte to maintain homoplasmy. However, the factors responsible for the large intra- and interindividual differences in heteroplasmy level remain elusive. Furthermore, heteroplasmy is probably confounded with mtDNA recombination. Considering the essential roles of mitochondria in cellular metabolism, cell signalling, and programmed cell death, future experiments will need to assess the true extent and impact of unorthodox mtDNA transmission on various aspects of SCNT success.

  13. Cardiolipin and mitochondrial cristae organization.

    Science.gov (United States)

    Ikon, Nikita; Ryan, Robert O

    2017-03-20

    A fundamental question in cell biology, under investigation for over six decades, is the structural organization of mitochondrial cristae. Long known to harbor electron transport chain proteins, crista membrane integrity is key to establishment of the proton gradient that drives oxidative phosphorylation. Visualization of cristae morphology by electron microscopy/tomography has provided evidence that cristae are tube-like extensions of the mitochondrial inner membrane (IM) that project into the matrix space. Reconciling ultrastructural data with the lipid composition of the IM provides support for a continuously curved cylindrical bilayer capped by a dome-shaped tip. Strain imposed by the degree of curvature is relieved by an asymmetric distribution of phospholipids in monolayer leaflets that comprise cristae membranes. The signature mitochondrial lipid, cardiolipin (~18% of IM phospholipid mass), and phosphatidylethanolamine (34%) segregate to the negatively curved monolayer leaflet facing the crista lumen while the opposing, positively curved, matrix-facing monolayer leaflet contains predominantly phosphatidylcholine. Associated with cristae are numerous proteins that function in distinctive ways to establish and/or maintain their lipid repertoire and structural integrity. By combining unique lipid components with a set of protein modulators, crista membranes adopt and maintain their characteristic morphological and functional properties. Once established, cristae ultrastructure has a direct impact on oxidative phosphorylation, apoptosis, fusion/fission as well as diseases of compromised energy metabolism.

  14. Behavioral Public Administration

    DEFF Research Database (Denmark)

    Grimmelikhuijsen, Stephan; Jilke, Sebastian; Olsen, Asmus Leth

    2017-01-01

    Behavioral public administration is the analysis of public administration from the micro-level perspective of individual behavior and attitudes by drawing on insights from psychology on the behavior of individuals and groups. The authors discuss how scholars in public administration currently draw...... theories. As such, behavioral public administration complements traditional public administration. Furthermore, it could be a two-way street for psychologists who want to test the external validity of their theories in a political-administrative setting. Finally, four principles are proposed to narrow...

  15. ADMINISTRATIVE CONTRACTS. DELIMITATIONS

    Directory of Open Access Journals (Sweden)

    Liana Teodora PASCARIU

    2016-12-01

    Full Text Available Article examines whether all contracts of public persons are administrative contracts; in other words, if the administration may conclude contracts that, according to their legal nature, are not administrative. If we start from the definition of administrative contracts as it appears in Law no. 554/2004, these include contracts by public authorities which concern the enhancement of public property execution of works of public interest, public services, public procurement and other administrative contracts provided by special laws and subject to the jurisdiction of the administrative courts.

  16. Prediction Method of Safety Mud Density in Depleted Oilfields

    Directory of Open Access Journals (Sweden)

    Yuan Jun-Liang

    2013-04-01

    Full Text Available At present, many oilfields were placed in the middle and late development period and the reservoir pressure depleted usually, resulting in more serious differential pressure sticking and drilling mud leakage both in the reservoir and cap rock. In view of this situation, a systematic prediction method of safety mud density in depleted oilfields was established. The influence of reservoir depletion on stress and strength in reservoir and cap formation were both studied and taken into the prediction of safety mud density. The research showed that the risk of differential pressure sticking and drilling mud leakage in reservoir and cap formation were both increased and they were the main prevention object in depleted oilfields drilling. The research results were used to guide the practice drilling work, the whole progress gone smoothly.

  17. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  18. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    Science.gov (United States)

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  19. Individual differences in dopamine level modulate the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua

    2016-01-01

    Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching.

  20. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    Science.gov (United States)

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  1. Groundwater depletion in the United States (1900-2008)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the...

  2. Hydroxide depletion in dilute supernates stored in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1985-10-10

    Free hydroxide ion in dilute supernates are depleted by reaction with atmospheric carbon dioxide to form bicarbonate and carbonate species and by reaction with acidic compounds formed by the radiolytic decomposition of tetraphenylborate salts. A model of the kinetics and thermodynamics of absorption of carbon dioxide in the waste tanks has been developed. Forecasts of the rate of hydroxide depletion and the requirements for sodium hydroxide to maintain technical standards have been made for the washed sludge and washed precipitate storage tanks. Hydroxide depletion is predicted to have a minimal impact on sludge processing operations. However, in-tank precipitation and downstream DWPF operations are predicted to be significantly affected by hydroxide depletion in Tank 49H. The installation of a carbon dioxide scrubber on Tank 49H may be justified in view of the decrease in alkali content and variation in the melter feed.

  3. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction.

    Science.gov (United States)

    Dolga, Amalia M; Netter, Michael F; Perocchi, Fabiana; Doti, Nunzianna; Meissner, Lilja; Tobaben, Svenja; Grohm, Julia; Zischka, Hans; Plesnila, Nikolaus; Decher, Niels; Culmsee, Carsten

    2013-04-12

    Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.

  4. The ins and outs of mitochondrial calcium.

    Science.gov (United States)

    Finkel, Toren; Menazza, Sara; Holmström, Kira M; Parks, Randi J; Liu, Julia; Sun, Junhui; Liu, Jie; Pan, Xin; Murphy, Elizabeth

    2015-05-22

    Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

  5. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  6. Mitochondrial morphology-emerging role in bioenergetics.

    Science.gov (United States)

    Galloway, Chad A; Lee, Hakjoo; Yoon, Yisang

    2012-12-15

    Dynamic change in mitochondrial shape is a cellular process mediated mainly by fission and fusion of mitochondria. Studies have shown that mitochondrial fission and fusion are directly and indirectly associated with mitochondrial maintenance, bioenergetic demand, and cell death. Changes in mitochondrial morphology are frequently observed in response to changes in the surrounding cellular milieu, such as metabolic flux, that influence cellular bioenergetics. Connections between morphological regulation and the bioenergetic status of mitochondria are emerging as reciprocally responsive processes, though the nature of the signaling remains to be defined. Given the pivotal role mitochondria play in cellular fate, tight regulation of fission and fusion is therefore critical to preserving normal cellular physiology. Here we describe recent advancements in the understanding of the mechanisms governing mitochondrial morphology and their emerging role in mitochondrial bioenergetics.

  7. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations.

    Science.gov (United States)

    Barbosa, Daniel José; Serrat, Romàn; Mirra, Serena; Quevedo, Martí; de Barreda, Elena Goméz; Àvila, Jesús; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Lourdes Bastos, Maria de; Capela, João Paulo; Soriano, Eduardo; Carvalho, Félix

    2014-06-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.

  8. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function.

    Science.gov (United States)

    O'Connell, Kelly A; Dabkowski, Erinne R; de Fatima Galvao, Tatiana; Xu, Wenhong; Daneault, Caroline; de Rosiers, Christine; Stanley, William C

    2013-06-01

    High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca(2+)-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca(2+) uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.

  9. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels.

    Science.gov (United States)

    Ruiz, A; Alberdi, E; Matute, C

    2014-04-10

    Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca(2+) homeostasis. However, the Ca(2+) signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca(2+) levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca(2+) homeostasis using cameleon-based mitochondrial Ca(2+) and cytosolic Ca(2+) ([Ca(2+)]i) live imaging. We observed that NCLX-driven mitochondrial Ca(2+) exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca(2)]i concomitant with a Ca(2+) accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca(2+) efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca(2+)]i increase by blocking voltage-gated Ca(2+) channels (VGCCs), whereas it did not induce depletion of ER Ca(2+) stores. Moreover, mitochondrial Ca(2+) overload was reduced as a consequence of diminished Ca(2+) entry through VGCCs. The decrease in cytosolic and mitochondrial Ca(2+) overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca(2+) dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

  10. Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef.

    Science.gov (United States)

    McKeith, Russell O; King, D Andy; Grayson, Adria L; Shackelford, Steven D; Gehring, Kerri B; Savell, Jeffrey W; Wheeler, Tommy L

    2016-06-01

    Beef carcasses exhibiting four levels of dark cutting severity (DCS): Severe, Moderate, Mild, and Shady were compared to Control carcasses to investigate biochemical traits contributing to the dark cutting condition. Color attributes of Longissimus lumborum (LL) were measured after grading and during simulated retail display. Mitochondrial abundance and efficiency, bloomed oxymyoglobin, reducing ability, glycolytic potential, myoglobin concentration, and protein solubility and oxidation were determined. Glycolytic potential and lactate concentrations decreased (Pdark cutting condition is associated with greater oxidative metabolism coupled with less efficient mitochondria resulting in depletion of glycogen during stress.

  11. The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia.

    Science.gov (United States)

    Hu, Zhiqiang; Tu, Jian

    2015-01-01

    The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86 ± 11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P syringomyelia.

  12. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation.

    Science.gov (United States)

    Moncunill-Massaguer, Cristina; Saura-Esteller, José; Pérez-Perarnau, Alba; Palmeri, Claudia Mariela; Núñez-Vázquez, Sonia; Cosialls, Ana M; González-Gironès, Diana M; Pomares, Helena; Korwitz, Anne; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; Langer, Thomas; Iglesias-Serret, Daniel; Gil, Joan

    2015-12-08

    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa(-/-)/Bim(-/-) MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway.

  13. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  14. Conditional depletion of nuclear proteins by the Anchor Away system.

    Science.gov (United States)

    Fan, Xiaochun; Geisberg, Joseph V; Wong, Koon Ho; Jin, Yi

    2011-01-01

    Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. This unit describes a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from the nucleus.

  15. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast.

    Science.gov (United States)

    Dürr, Mark; Escobar-Henriques, Mafalda; Merz, Sandra; Geimer, Stefan; Langer, Thomas; Westermann, Benedikt

    2006-09-01

    Mitochondria constantly fuse and divide to adapt organellar morphology to the cell's ever-changing physiological conditions. Little is known about the molecular mechanisms regulating mitochondrial dynamics. F-box proteins are subunits of both Skp1-Cullin-F-box (SCF) ubiquitin ligases and non-SCF complexes that regulate a large number of cellular processes. Here, we analyzed the roles of two yeast F-box proteins, Mfb1 and Mdm30, in mitochondrial dynamics. Mfb1 is a novel mitochondria-associated F-box protein. Mitochondria in mutants lacking Mfb1 are fusion competent, but they form aberrant aggregates of interconnected tubules. In contrast, mitochondria in mutants lacking Mdm30 are highly fragmented due to a defect in mitochondrial fusion. Fragmented mitochondria are docked but nonfused in Deltamdm30 cells. Mitochondrial fusion is also blocked during sporulation of homozygous diploid mutants lacking Mdm30, leading to a mitochondrial inheritance defect in ascospores. Mfb1 and Mdm30 exert nonredundant functions and likely have different target proteins. Because defects in F-box protein mutants could not be mimicked by depletion of SCF complex and proteasome core subunits, additional yet unknown factors are likely involved in regulating mitochondrial dynamics. We propose that mitochondria-associated F-box proteins Mfb1 and Mdm30 are key components of a complex machinery that regulates mitochondrial dynamics throughout yeast's entire life cycle.

  16. Keshan disease and mitochondrial cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    YANG Fuyu

    2006-01-01

    Keshan disease (KD) is a potentially fatal form of cardiomyopathy (disease of the heart muscle) endemic in certain areas of China. From 1984 to 1986, a national comprehensive scientific investigation on KD in Chuxiong region of Yunnan Province in the southwest China was conducted. The investigation team was composed of epidemiologists, clinic doctors, pathologists, biochemists, biophysicists and specialists in ecological environment. Results of pathological, biochemical and biophysical as well as clinical studies showed: an obvious increase of enlarged and swollen mitochondria with distended crista membranes in myocardium from patients with KD; significant reductions in the activity of oxidative phosphorylation (succinate dehydrogenase, cytochrome oxidase, succinate oxidase, H+-ATPase) of affected mitochondria; decrease in CoQ, cardiolipin, Se and GSHPx activity, while obvious increase in the Ca2+ content. So, it was suggested that mitochondria are the predominant target of the pathogenic factors of KD. Before Chuxiong KD survey only a few cases of mitochondrial cardiomyopathy were studied. During the multidisciplinary scientific investigation on KD in Chuxiong a large amount of samples from KD cases and the positive controls were examined. On the basis of the results obtained it was suggested that KD might be classified as a "Mitochondrial Cardiomyopathy" endemic in China. This is one of the achievements in the three years' survey in Chuxiong and is valuable not only to the deeper understanding of pathogenic mechanism of KD but also to the study of mitochondrial cardiomyopathy in general.Keshan disease is not a genetic disease, but is closely related to the malnutrition (especially microelement Se deficiency). KD occurs along a low Se belt, and Se supplementation has been effective in prevention of such disease. The incidence of KD has sharply decreased along with the steady raise of living standard and realization of preventive measures. At present, patients of

  17. Protective effect of Phyllanthus fraternus against bromobenzene-induced mitochondrial dysfunction in rat kidney

    Institute of Scientific and Technical Information of China (English)

    Vadde Ramakrishna; Sriram Gopi; Oruganti H.Setty

    2012-01-01

    Phyllanthus fraternus (PF) (Euphorbiaceae) is used in ancient Indian traditional phytomedicine to treat various human diseases including hepatic and renal disorders.The present study was designed to investigate the protective effect of PF aqueous extract against bromobenzene-induced mitochondrial dysfunction in rat kidney,compared with vitamin E used as positive control.Male Wistar rats divided into six (A-F) groups and the experimental animals were administered bromobenzene with or without prior administration of PF extract or vitamin E.Animals were sacrificed and the kidneys obtained for studying mitochondrial function and histopathology.Administration of bromobenzene caused significant changes,including decrease in the mitochondrial respiration and P/O ratios,an increase in lipid peroxidation and protein oxidation,and a decrease in the activities of antioxidant enzymes (catalase,superoxide dismutase,glutathione reductase,and glutathione peroxidase) in mitochondria with significant histopathological changes in the kidney.However,prior administration of the PF extract showed significant protection against bromobenzene induced renal damage by reversing all above parameters.Mitochondrial dysfunction induced by bromobenzene was protected much better with the PF extract than with vitamin E.These results suggested that the Phyllanthus fraternus extract is an efficient armament against nephrotoxicity induced by bromobenzene.

  18. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available PURPOSE: Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. METHODS: Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. RESULTS: Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease. CONCLUSIONS: These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  19. Mitochondrial Diseases: Clinical Features- Management of Patients

    Directory of Open Access Journals (Sweden)

    Filiz Koc

    2003-02-01

    Full Text Available Mitochondria are unique organells which their own DNA in cells. Human mitochondrial DNA is circular, double-stranded molecule and small. Because all mitochondria are contributed by the ovum during the formation of the zygote, the mitochondrial genom is transmitted by maternal inheritance. Multisystem disorders such as deafness, cardiomyopathy, miyopathy can be seen in mitochondrial diseases. [Archives Medical Review Journal 2003; 12(0.100: 14-31

  20. Mitochondrial Diseases: Clinical Features- Management of Patients

    OpenAIRE

    Filiz Koc; Yakup Sarica

    2003-01-01

    Mitochondria are unique organells which their own DNA in cells. Human mitochondrial DNA is circular, double-stranded molecule and small. Because all mitochondria are contributed by the ovum during the formation of the zygote, the mitochondrial genom is transmitted by maternal inheritance. Multisystem disorders such as deafness, cardiomyopathy, miyopathy can be seen in mitochondrial diseases. [Archives Medical Review Journal 2003; 12(0.100): 14-31

  1. Mitochondrial Replacement Therapy in Reproductive Medicine

    OpenAIRE

    Wolf, Don P; Mitalipov, Nargiz; Mitalipov, Shoukhrat

    2014-01-01

    Mitochondrial dysfunction is implicated in disease and in age-related infertility. Mitochondrial replacement therapies (MRT) in oocytes or zygotes such as pronuclear (PNT), spindle (ST) or polar body (PBT) transfer could prevent second generation transmission of mitochondrial DNA (mtDNA) defects. PNT, associated with high levels of mtDNA carryover in mice but low levels in human embryos, carries ethical issues secondary to donor embryo destruction. ST, developed in primates, supports normal d...

  2. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  3. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    Science.gov (United States)

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  4. The Optimal Depletion of Exhaustible Resource under Different Commitment

    Institute of Scientific and Technical Information of China (English)

    Zhou Wei; Wu Kangping

    2012-01-01

    There are few papers in the literature focusing on the issue of the optimal depletion of exhaustible resources in the framework of variable time preference. This paper attempts to analyze the pure consumption of exhaustible resource under hy- perbolic time preference, and to discuss the optimal depletion rate and the effect of the protection of the exhaustible resource under different commitment abilities. The results of model show that the case of the hyperbolic discount with the full commitment of the govemment is equivalent to the case of constant discount of the social planner problem. In that case, the optimal depletion rate and the initial consumption of exhaustible resource are the slowest. On the contrary, they are the highest and the myopic behaviors lead to excessive consumption of exhaustible resources inevitably without commitment. Otherwise, in the case of partial commit- ment, the results are between the cases of full commitment and of no commitment. Therefore, with the hyperbolic time preference, the optimal depletion rate of resource depends on the commitment ability. Higher commitment ability leads to lower effective rate of time preference, and consequently, lower depletion rate and lower initial depletion value. The improvement of commitment ability can decrease the impatience and myopia behaviors, and contribute to the protection of the exhaustible resources.

  5. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  6. Administration on Aging

    Science.gov (United States)

    ... Federal Initiatives Career Opportunities Contact Us Administration on Aging (AoA) The Administration on Aging (AOA) is the ... themselves. Back to top Older Americans Act and Aging Network To meet the diverse needs of the ...

  7. Transportation Security Administration

    Science.gov (United States)

    ... content Official website of the Department of Homeland Security Transportation Security Administration A - Z Index What Can I Bring? ... form Search the Site Main menu Administrator Travel Security Screening Special Procedures TSA Pre✓® Passenger Support Travel ...

  8. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression

    Institute of Scientific and Technical Information of China (English)

    Weiwei Huang; Min Yu; Yang Jiao; Jie Ma; Mingxing Ma; Zehua Wang; Hong Wu; Deyong Tan

    2011-01-01

    Mitochondrial transcription termination factor 2 (mTERF2) is a mitochondriai matrix protein that binds to the mitochondriai DNA.Previous studies have shown that overexpression of mTERF2 can inhibit cell proliferation, but the mechanism has not been well defined so far.This study aimed to present the binding pattern of mTERF2 to the mitochondrial DNA (mtDNA) in vivo, and investigated the biological function of mTERF2 on the replication of mtDNA, mRNA transcription, and protein translation.The mTERF2 binding to entire mtDNA was identified via the chromatin immunoprecipitation analysis.The mtDNA replication efficiency and expression levels of mitochondria genes were significantly inhibited when the mTERF2 was overexpressed in HeLa cells.The inhibition level of mtDNA content was the same with the decreased levels of mRNA and mitochondrial protein expression.Overall, the mTERF2 might be a cell growth inhibitor based on its negative effect on mtDNA replication, which eventually own-regulated all of the oxidative phosphorylation components in the mitochondria that were essential for the cell's energy metabolism.

  9. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...... and mutations. More recently, a particular role of mitochondrial dysfunction has been suggested, arising from mitochondrial DNA variations or acquired mutations in PD pathogenesis. The present review summarizes and weighs the evidence in support of mitochondrial DNA (mtDNA) variations as important contributors...

  10. Mitochondrial Cristae: Where Beauty Meets Functionality.

    Science.gov (United States)

    Cogliati, Sara; Enriquez, Jose A; Scorrano, Luca

    2016-03-01

    Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.

  11. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  12. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrop

  13. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency.

    Science.gov (United States)

    Cagnone, Gael L M; Tsai, Te-Sha; Makanji, Yogeshwar; Matthews, Pamela; Gould, Jodee; Bonkowski, Michael S; Elgass, Kirstin D; Wong, Ashley S A; Wu, Lindsay E; McKenzie, Matthew; Sinclair, David A; St John, Justin C

    2016-03-18

    An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte's mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes.

  14. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  15. Cloudera administration handbook

    CERN Document Server

    Menon, Rohit

    2014-01-01

    An easy-to-follow Apache Hadoop administrator's guide filled with practical screenshots and explanations for each step and configuration. This book is great for administrators interested in setting up and managing a large Hadoop cluster. If you are an administrator, or want to be an administrator, and you are ready to build and maintain a production-level cluster running CDH5, then this book is for you.

  16. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Science.gov (United States)

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County... construction, operation, and decommissioning of a fluorine extraction and depleted uranium...

  17. ADMINISTRATIVE JUSTICE IN POLAND

    Directory of Open Access Journals (Sweden)

    J. Turłukowski

    2016-01-01

    Full Text Available This article begins with an analysis of the development of administrative justice in Poland over the last centuries. In particular, the author examines administrative jurisdiction before 1918, when Poland regained its independence, the period of the Duchy of Warsaw, the Kingdom of Poland, and the practice on Polish territory under Austrian and Prussian control. The author then moves to modern law by presenting the judicial system in Poland in general, especially the differences between the separate systems of general courts and administrative courts, and analyses the jurisdiction of voivodship (regional administrative courts, and the basic principles of judicial and administrative proceedings. The focus of study is mainly devoted to judicial and administrative procedure, rather than an administrative process of citizens before administrative authorities regulated in a separate Code of Administrative Procedure. The article describes the role of the judge (pointing out the differences between the active role of first instance judges and the limited capabilities of the judges of the appeal and the powers of the Supreme Court, in particular its power to adopt resolutions, which has agreat importance for the unification of the jurisprudence. A brief analysis is given to class actions, which in the Polish legal system are inadmissible in court and administrative proceedings. The articles provides a statistical cross-section illustrating the role of administrative jurisdiction. The author concludes with observations pointing up the progress of administrative jurisdiction in Poland, not only in the legal sense, but also in the cultural sense.

  18. Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency.

    NARCIS (Netherlands)

    Willems, P.H.G.M.; Smeitink, J.A.M.; Koopman, W.J.H.

    2009-01-01

    Mitochondrial NADH:ubiquinone oxidoreductase or complex I (CI) is a frequently affected enzyme in cases of mitochondrial disorders. However, the cytopathological mechanism of the associated pediatric syndromes is poorly understood. Evidence in the literature suggests a connection between mitochondri

  19. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Science, 20 Dongdajie Street, Fengtai District, Beijing 100071 (China); Wang, Weidong, E-mail: wwdwyl@sina.com [Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Li, Rong, E-mail: yuhui_hao@126.com [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China)

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  20. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  1. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  2. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...

  3. The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Delhey, Leanna M.; Nur Kilinc, Ekim; Yin, Li; Slattery, John C.; Tippett, Marie L.; Rose, Shannon; Bennuri, Sirish C.; Kahler, Stephen G.; Damle, Shirish; Legido, Agustin; Goldenthal, Michael J.; Frye, Richard E.

    2017-01-01

    Treatment for mitochondrial dysfunction is typically guided by expert opinion with a paucity of empirical evidence of the effect of treatment on mitochondrial activity. We examined citrate synthase and Complex I and IV activities using a validated buccal swab method in 127 children with autism spectrum disorder with and without mitochondrial disease, a portion of which were on common mitochondrial supplements. Mixed-model linear regression determined whether specific supplements altered the absolute mitochondrial activity as well as the relationship between the activities of mitochondrial components. Complex I activity was increased by fatty acid and folate supplementation, but folate only effected those with mitochondrial disease. Citrate synthase activity was increased by antioxidant supplementation but only for the mitochondrial disease subgroup. The relationship between Complex I and IV was modulated by folate while the relationship between Complex I and Citrate Synthase was modulated by both folate and B12. This study provides empirical support for common mitochondrial treatments and demonstrates that the relationship between activities of mitochondrial components might be a marker to follow in addition to absolute activities. Measurements of mitochondrial activity that can be practically repeated over time may be very useful to monitor the biochemical effects of treatments. PMID:28208802

  4. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    Science.gov (United States)

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

  5. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  6. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury.

    Science.gov (United States)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei; Yu, Ning; Liu, Jia

    2015-06-01

    The mitochondrial calcium uniporter (MCU) transports free Ca(2+) into the mitochondrial matrix, maintaining Ca(2+) homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca(2+) concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca(2+) transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury.

  7. High-dose clevudine impairs mitochondrial function and glucose-stimulated insulin secretion in INS-1E cells

    Directory of Open Access Journals (Sweden)

    Jang Yoon-Ok

    2012-01-01

    Full Text Available Abstract Background Clevudine is a nucleoside analog reverse transcriptase inhibitor that exhibits potent antiviral activity against hepatitis B virus (HBV without serious side effects. However, mitochondrial myopathy has been observed in patients with chronic HBV infection taking clevudine. Moreover, the development of diabetes was recently reported in patients receiving long-term treatment with clevudine. In this study, we investigated the effects of clevudine on mitochondrial function and insulin release in a rat clonal β-cell line, INS-1E. Methods The mitochondrial DNA (mtDNA copy number and the mRNA levels were measured by using quantitative PCR. MTT analysis, ATP/lactate measurements, and insulin assay were performed. Results Both INS-1E cells and HepG2 cells, which originated from human hepatoma, showed dose-dependent decreases in mtDNA copy number and cytochrome c oxidase-1 (Cox-1 mRNA level following culture with clevudine (10 μM-1 mM for 4 weeks. INS-1E cells treated with clevudine had reduced total mitochondrial activities, lower cytosolic ATP contents, enhanced lactate production, and more lipid accumulation. Insulin release in response to glucose application was markedly decreased in clevudine-treated INS-1E cells, which might be a consequence of mitochondrial dysfunction. Conclusions Our data suggest that high-dose treatment with clevudine induces mitochondrial defects associated with mtDNA depletion and impairs glucose-stimulated insulin secretion in insulin-releasing cells. These findings partly explain the development of diabetes in patients receiving clevudine who might have a high susceptibility to mitochondrial toxicity.

  8. Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats.

    Science.gov (United States)

    Liang, Nan; Wang, Peng; Wang, Shilei; Li, Shuhong; Li, Yu; Wang, Jinying; Wang, Min

    2014-06-01

    The mitochondrial calcium uniporter (MCU) transports Ca2+ from the cytoplasm to the mitochondrial matrix and thus maintains Ca2+ homeostasis. Previous studies have reported that inhibition of MCU by ruthenium red (RR) protects the brain from ischemia/reperfusion (I/R) injury and that mitochondrial fission plays an important role in I/R injury. However, it is still not known whether MCU affects mitochondrial fission. In the present study, treatment with RR was found to decrease the concentration of free calcium in the mitochondria, calcineurin enzyme activity and dynamin-related protein 1 expression, and treatment with spermine was found to have the opposite effect in organisms subjected to occlusion of the middle cerebral artery lasting 2 h followed by 24 h reperfusion. These results indicate that MCU may be related to mitochondrial fission via modulating mitochondrial Ca2+ uptake and this relationship between MCU and mitochondrial fission may protect the brain from I/R injury.

  9. Ethics of modifying the mitochondrial genome

    NARCIS (Netherlands)

    Bredenoord, A. L.; Dondorp, W.; Pennings, G.; De Wert, G.

    2011-01-01

    Recent preclinical studies have shown the feasibility of specific variants of nuclear transfer to prevent mitochondrial DNA disorders. Nuclear transfer could be a valuable reproductive option for carriers of mitochondrial mutations. A clinical application of nuclear transfer, however, would entail g

  10. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  11. Parkin suppresses Drp1-independent mitochondrial division.

    Science.gov (United States)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division.

  12. Emerging Therapeutic Approaches to Mitochondrial Diseases

    Science.gov (United States)

    Wenz, Tina; Williams, Sion L.; Bacman, Sandra R.; Moraes, Carlos T.

    2010-01-01

    Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to…

  13. The Neurologic Manifestations of Mitochondrial Disease

    Science.gov (United States)

    Parikh, Sumit

    2010-01-01

    The nervous system contains some of the body's most metabolically demanding cells that are highly dependent on ATP produced via mitochondrial oxidative phosphorylation. Thus, the neurological system is consistently involved in patients with mitochondrial disease. Symptoms differ depending on the part of the nervous system affected. Although almost…

  14. Mitochondrial accumulation of APP and Abeta

    DEFF Research Database (Denmark)

    Pavlov, Pavel F; Petersen, Anna Camilla Hansson; Glaser, Elzbieta;

    2009-01-01

    mitochondrial function of neurons within specific brain regions. This is accompanied by an elevated production of reactive oxygen species contributing to increased rates of neuronal loss in the AD-affected brain regions. In this review, we will discuss the role of mitochondrial function and dysfunction in AD...

  15. SNP-finding in pig mitochondrial ESTs

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Cirera Salicio, Susanna; Gilchrist, M.J.;

    2008-01-01

    The Sino-Danish pig genome project produced 685 851 ESTs (Gorodkin et al. 2007), of which 41 499 originated from the mitochondrial genome. In this study, the mitochondrial ESTs were assembled, and 374 putative SNPs were found. Chromatograms for the ESTs containing SNPs were manually inspected...

  16. [Mitochondrial diseases; thinking beyond organ specialism necessary

    NARCIS (Netherlands)

    Smits, B.W.; Smeitink, J.A.M.; Engelen, B.G.M. van

    2008-01-01

    Mitochondrial disorders are caused by a defect in intracellular energy production. In general, these are multi-system disorders, predominantly affecting organs with high energy requirements. Due to the fact that mitochondrial disorders are not as rare as is generally assumed, and due to the diversit

  17. Mitochondrial transcription: How does it end

    Energy Technology Data Exchange (ETDEWEB)

    J Byrnes; M Garcia-Diaz

    2011-12-31

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  18. Mytoe: automatic analysis of mitochondrial dynamics.

    NARCIS (Netherlands)

    Lihavainen, E.; Makela, J.; Spelbrink, J.N.; Ribeiro, A.S.

    2012-01-01

    SUMMARY: We present Mytoe, a tool for analyzing mitochondrial morphology and dynamics from fluorescence microscope images. The tool provides automated quantitative analysis of mitochondrial motion by optical flow estimation and of morphology by segmentation of individual branches of the network-like

  19. NFU1 gene mutation and mitochondrial disorders

    Directory of Open Access Journals (Sweden)

    Yasemin G Kurt

    2016-01-01

    Full Text Available Mitochondrial respiratory chains consist of approximately 100 structural proteins. Thirteen of these structural proteins are encoded by mitochondrial DNA (mtDNA, and the others by nuclear DNA (nDNA. Mutation in any of the mitochondrial structural-protein related genes, regardless of whether they are in the nDNA or mtDNA, might cause mitochondrial disorders. In the recent past, new nuclear genes required for assembly, maintenance, and translation of respiratory chain proteins have been found. Mutation in these genes might also cause mitochondrial disorders (MD. NFU1 gene is one of such genes and has a role in the assembly of iron–sulfur cluster (ISC. ISCs are included in a variety of metalloproteins, such as the ferredoxins, as well as in enzymatic reactions and have been first identified in the oxidation-reduction reactions of mitochondrial electron transport. It is important to be aware of NFU1 gene mutations that may cause severe mitochondrial respiratory chain defects, mitochondrial encephalomyopathies and death, early in life.

  20. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  1. Mitochondrial transcription: how does it end?

    Science.gov (United States)

    Byrnes, James; Garcia-Diaz, Miguel

    2011-01-01

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  2. Correcting mitochondrial fusion by manipulating mitofusin conformations

    Science.gov (United States)

    Franco, Antonietta; Kitsis, Richard N.; Fleischer, Julie A.; Gavathiotis, Evripidis; Kornfeld, Opher S.; Gong, Guohua; Biris, Nikolaos; Benz, Ann; Qvit, Nir; Donnelly, Sara K; Chen, Yun; Mennerick, Steven; Hodgson, Louis; Mochly-Rosen, Daria; Dorn, Gerald W

    2017-01-01

    Summary Mitochondria are dynamic organelles, remodeling and exchanging contents during cyclic fusion and fission. Genetic mutations of mitofusin (Mfn) 2 interrupt mitochondrial fusion and cause the untreatable neurodegenerative condition, Charcot Marie Tooth disease type 2A (CMT2A). It has not been possible to directly modulate mitochondrial fusion, in part because the structural basis of mitofusin function is incompletely understood. Here we show that mitofusins adopt either a fusion-constrained or fusion-permissive molecular conformation directed by specific intramolecular binding interactions, and demonstrate that mitofusin-dependent mitochondrial fusion can be regulated by targeting these conformational transitions. Based on this model we engineered a cell-permeant minipeptide to destabilize fusion-constrained mitofusin and promote the fusion-permissive conformation, reversing mitochondrial abnormalities in cultured fibroblasts and neurons harboring CMT2A gene defects. The relationship between mitofusin conformational plasticity and mitochondrial dynamism uncovers a central mechanism regulating mitochondrial fusion whose manipulation can correct mitochondrial pathology triggered by defective or imbalanced mitochondrial dynamics. PMID:27775718

  3. Wall depletion length of a channel-confined polymer

    Science.gov (United States)

    Cheong, Guo Kang; Li, Xiaolan; Dorfman, Kevin D.

    2017-02-01

    Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.

  4. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  5. Attempted Depletion of Passenger Leukocytes by Irradiation in Pigs

    Directory of Open Access Journals (Sweden)

    Hao-Chih Tai

    2011-01-01

    Full Text Available Allograft/xenograft rejection is associated with “passenger leukocyte” migration from the organ into recipient lymph nodes. In Study 1, we attempted to deplete leukocytes from potential kidney “donor” pigs, using two regimens of total body irradiation. A dose of 700 cGy was administered, followed by either 800 cGy (“low-dose” or 1,300 cGy (“high dose” with the kidneys shielded. Neither regimen was entirely successful in depleting all leukocytes, although remaining T and 8 cell numbers were negligible. Study 2 was aimed at providing an indication of whether near-complete depletion of leukocytes had any major impact on kidney allograft survival. In non-immunosuppressed recipient pigs, survival of a kidney from a donor that received high-dose irradiation was compared with that of a kidney taken from a non-irradiated donor. Kidney graft survival was 9 and 7 days, respectively, suggesting that depletion had little impact on graft survival. The lack of effect may have been related to (i inadequate depletion of passenger leukocytes, thus not preventing a direct T cell response, (ii the presence of dead or dying leukocytes (antigens, thus not preventing an indirect T cell response, or (iii constitutive expression of MHC class II and B7 molecules on the porcine vascular endothelium, activating recipient T cells.

  6. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  7. Tissue Taurine Depletion Alters Metabolic Response to Exercise and Reduces Running Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2014-01-01

    Full Text Available Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of control mice. Blood lactate level was elevated by >3-fold during treadmill running in TauTKO mice but remained largely unaltered by exercise in WT mice. Blood glucose was cleared faster during treadmill running in TauTKO mice than WT mice. AMP-activated kinase (AMPK β-2 subunit was reduced in TauTKO muscle concomitant with a reduction in α1 and α2 subunits of AMPK. The level of PPARα and its targets, Gpx3, Cpt2, and Echs1, were also decreased in TauTKO muscle. Collectively, taurine depletion impairs metabolic adaptation to exercise in skeletal muscle, a phenomenon associated with a downregulation of AMPK and diminished NADH utilization by the mitochondrial respiratory chain. These findings suggest a crucial role of taurine in regulating energy metabolism in skeletal muscle of exercising TauTKO mice, changes that contribute to impaired exercise endurance.

  8. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    Science.gov (United States)

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  9. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  10. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival and

    Directory of Open Access Journals (Sweden)

    Dmytro Starenki

    2015-12-01

    Full Text Available BackgroundMedullary thyroid carcinoma (MTC is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenografts by inducing apoptosis and RET downregulation. These observations led us to hypothesize that mitochondria are potential therapeutic targets for MTC. This study further tests this hypothesis using1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (MKT-077, a water-soluble rhodocyanine dye analogue, which can selectively accumulate in mitochondria.MethodsThe effects of MKT-077 on cell proliferation, survival, expression of RET and tumor protein 53 (TP53, and mitochondrial activity were determined in the human MTC lines in culture and in mouse xenografts.ResultsMKT-077 induced cell cycle arrest in TT and MZ-CRC-1. Intriguingly, MKT-077 also induced RET downregulation and strong cell death responses in TT cells, but not in MZ-CRC-1 cells. This discrepancy was mainly due to the difference between the capacities of these cell lines to retain MKT-077 in mitochondria. The cytotoxicity of MKT-077 in TT cells was mainly attributed to oxidative stress while being independent of TP53. MKT-077 also effectively suppressed tumor growth of TT xenografts.ConclusionMKT-077 can suppress cell survival of certain MTC subtypes by accumulating in mitochondria and interfering with mitochondrial activity although it can also suppress cell proliferation via other mechanisms. These results consistently support the hypothesis that mitochondrial targeting has therapeutic potential for MTC.

  11. Mitochondrial H2O2 generated from electron transport chain complex 1 stimulates muscle differentiation

    Institute of Scientific and Technical Information of China (English)

    Seonmin Lee; Eunyoung Tak; Jisun Lee; MA Rashid; Michael P Murphy; Joohun Ha; Sung Soo Kim

    2011-01-01

    Mitochondrial reactive oxygen species(mROS)have been considered detrimental to cells. However, their physiological roles as signaling mediators have not been thoroughly explored. Here, we investigated whether mROS generated from mitochondrial electron transport chain(mETC)complex I stimulated muscle differentiation. Our results showed that the quantity of mROS was increased and that manganese superoxide dismutase(MnSOD)was induced via NF-KB activation during muscle differentiation. Mitochondria-targeted antioxidants(MitoQ and MitoTEMPOL)and mitochondria-targeted catalase decreased mROS quantity and suppressed muscle differentiation without affecting the amount of ATP Mitochondrial alterations, including the induction of mitochondrial transcription factor A and an increase in the number and size of mitochondria, and functional activations were observed during muscle differentiation. In particular, increased expression levels of mETC complex I subunits and a higher activity of complex I than other complexes were observed. Rotenone, an inhibitor of mETC complex I, decreased the mitochondrial NADH/NAD+ ratio and mROS levels during muscle differentiation. The inhibition of complex I using small interfering RNAs and rotenone reduced mROS levels, suppressed muscle differentiation, and depleted ATP levels with a concomitant increase in glycolysis. From these results, we conclude that complex I-derived O2, produced through reverse electron transport due to enhanced metabolism and a high activity of complex I, was dismutated into H2O2 by MnSOD induced via NF-KB activation and that the dismutated mH202 stimulated muscle differentiation as a signaling messenger.

  12. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    Science.gov (United States)

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  13. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  14. Mitochondrial Modification Techniques and Ethical Issues

    Directory of Open Access Journals (Sweden)

    Lucía Gómez-Tatay

    2017-02-01

    Full Text Available Current strategies for preventing the transmission of mitochondrial disease to offspring include techniques known as mitochondrial replacement and mitochondrial gene editing. This technology has already been applied in humans on several occasions, and the first baby with donor mitochondria has already been born. However, these techniques raise several ethical concerns, among which is the fact that they entail genetic modification of the germline, as well as presenting safety problems in relation to a possible mismatch between the nuclear and mitochondrial DNA, maternal mitochondrial DNA carryover, and the “reversion” phenomenon. In this essay, we discuss these questions, highlighting the advantages of some techniques over others from an ethical point of view, and we conclude that none of these are ready to be safely applied in humans.

  15. Mitochondrial Modification Techniques and Ethical Issues

    Science.gov (United States)

    Gómez-Tatay, Lucía; Hernández-Andreu, José M.; Aznar, Justo

    2017-01-01

    Current strategies for preventing the transmission of mitochondrial disease to offspring include techniques known as mitochondrial replacement and mitochondrial gene editing. This technology has already been applied in humans on several occasions, and the first baby with donor mitochondria has already been born. However, these techniques raise several ethical concerns, among which is the fact that they entail genetic modification of the germline, as well as presenting safety problems in relation to a possible mismatch between the nuclear and mitochondrial DNA, maternal mitochondrial DNA carryover, and the “reversion” phenomenon. In this essay, we discuss these questions, highlighting the advantages of some techniques over others from an ethical point of view, and we conclude that none of these are ready to be safely applied in humans. PMID:28245555

  16. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and imported to the mitochondrial matrix posttranslationally. In an effort to understand the complex mechanisms underlying control of RNA turnover and surveillance in eukaryotic organisms, we are studying the structure of the mitochondrial degradosome as a model system for the more complex exosomes. Dss1p...

  17. Assessment of posttranslational modification of mitochondrial proteins.

    Science.gov (United States)

    Ande, Sudharsana R; Padilla-Meier, G Pauline; Mishra, Suresh

    2015-01-01

    Mitochondria play vital roles in the maintenance of cellular homeostasis. They are a storehouse of cellular energy and antioxidative enzymes. Because of its immense role and function in the development of an organism, this organelle is required for the survival. Defects in mitochondrial proteins lead to complex mitochondrial disorders and heterogeneous diseases such as cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases. It is widely known in the literature that some of the mitochondrial proteins are regulated by posttranslational modifications. Hence, designing methods to assess these modifications in mitochondria will be an important way to study the regulatory roles of mitochondrial proteins in greater detail. In this chapter, we outlined procedures to isolate mitochondria from cells and separate the mitochondrial proteins by two-dimensional gel electrophoresis and identify the different posttranslational modifications in them by using antibodies specific to each posttranslational modification.

  18. Targeting mitochondrial function to treat optic neuropathy.

    Science.gov (United States)

    Gueven, Nuri; Nadikudi, Monila; Daniel, Abraham; Chhetri, Jamuna

    2016-07-28

    Many reports have illustrated a tight connection between vision and mitochondrial function. Not only are most mitochondrial diseases associated with some form of vision impairment, many ophthalmological disorders such as glaucoma, age-related macular degeneration and diabetic retinopathy also show signs of mitochondrial dysfunction. Despite a vast amount of evidence, vision loss is still only treated symptomatically, which is only partially a consequence of resistance to acknowledge that mitochondria could be the common denominator and hence a promising therapeutic target. More importantly, clinical support of this concept is only emerging. Moreover, only a few drug candidates and treatment strategies are in development or approved that selectively aim to restore mitochondrial function. This review rationalizes the currently developed therapeutic approaches that target mitochondrial function by discussing their proposed mode(s) of action and provides an overview on their development status with regards to optic neuropathies.

  19. Mitochondrial abnormalities in the myofibrillar myopathies.

    Science.gov (United States)

    Jackson, S; Schaefer, J; Meinhardt, M; Reichmann, H

    2015-11-01

    Myofibrillar myopathies are a genetically diverse group of skeletal muscle disorders, with distinctive muscle histopathology. Causative mutations have been identified in the genes MYOT, LDB3, DES, CRYAB, FLNC, BAG3, DNAJB6, FHL1, PLEC and TTN, which encode proteins which either reside in the Z-disc or associate with the Z-disc. Mitochondrial abnormalities have been described in muscle from patients with a myofibrillar myopathy. We reviewed the literature to determine the extent of mitochondrial dysfunction in each of the myofibrillar myopathy subtypes. Abnormal mitochondrial distribution is a frequent finding in each of the subtypes, but a high frequency of COX-negative or ragged red fibres, a characteristic finding in some of the conventional mitochondrial myopathies, is a rare finding. Few in vitro studies of mitochondrial function have been performed in affected patients.

  20. Mitochondrial involvement in propofol-induced cardioprotection: An in vitro study in human myocardium

    Science.gov (United States)

    Zhu, Lan; Gress, Steeve; Gérard, Jean-Louis; Allouche, Stéphane; Hanouz, Jean-Luc

    2016-01-01

    Propofol has been shown to exert cardioprotection, but the underlying mechanisms remain incompletely understood. We examined: (1) whether propofol-induced cardioprotection depended on the time and the dose of administration; (2) the role of mitochondrial adenosine triphosphate-sensitive potassium channels, nitric oxide synthase, and mitochondrial respiratory chain activity in propofol-induced cardioprotection. Human right atrial trabeculae were obtained during cardiopulmonary bypass for coronary artery bypass and aortic valve replacement. Isometric force of contraction of human right atrial trabeculae hanged in an oxygenated Tyrode’s solution was recorded during 30-min hypoxia and 60-min reoxygenation (Control). Propofol 0.1, 1, and 10 µM was administered: (1) 5 min before hypoxia until the end of the experiment; (2) 5 min followed by 5-min washout before hypoxia; (3) during the reoxygenation period, propofol 10 µM was administered in presence of 5-hydroxydecanoate (antagonist of mitochondrial adenosine triphosphate-sensitive potassium channels), and NG-nitro-L-arginine methyl ester (inhibitor of nitric oxide synthase). In addition, mitochondria were isolated from human right atrial at 15 min of reoxygenation. The effect of propofol on activity of the mitochondrial respiratory chain complexes was evaluated by spectrophotometry. The force of contraction (% of baseline) and the complex activity between the different groups were compared with an analysis of variance and post hoc test. Propofol 10 µM administered during the reoxygenation period significantly improved the recovery of force of contraction at the end of reoxygenation (82 ± 6% of baseline value vs. 49 ± 6% in Control; P mitochondrial respiratory chain complexes, in reoxygenation period, compared to their respective untreated controls. In conclusion, in human myocardium, propofol-induced cardioprotection was mediated by mitochondrial adenosine triphosphate-sensitive potassium