WorldWideScience

Sample records for adipose-derived mesenchymal stem

  1. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  2. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  3. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  4. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far.

  5. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  6. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  7. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  8. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Science.gov (United States)

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  9. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  10. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  11. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  12. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan;

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  13. MicroRNA-27b Enhances the Hepatic Regenerative Properties of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Chen, Kuang-Den; Huang, Kuang-Tzu; Lin, Chih-Che; Weng, Wei-Teng; Hsu, Li-Wen; Goto, Shigeru; Nakano, Toshiaki; Lai, Chia-Yun; Kung, Chao-Pin; Chiu, King-Wah; Wang, Chih-Chi; Cheng, Yu-Fan; Ma, Yen-Ying; Chen, Chao-Long

    2016-01-01

    Adipose-derived mesenchymal stem cells (ASCs) are readily available multipotent mesenchymal progenitor cells and have become an attractive therapeutic tool for regenerative medicine. We herein investigated the mechanistic role of how miR-27b modulated regenerative capacities of ASCs. Intravenous administration of miR-27b-transfected ASCs (ASCs-miR-27b) was conducted after 70% partial hepatectomy (PH). After PH, rats injected with ASCs-miR-27b had decreased inflammatory cytokines and increased...

  14. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  15. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Science.gov (United States)

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  16. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes in...

  17. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  18. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    Science.gov (United States)

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  19. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Huang Wu; Miao Li; Yan Liang; Tao Lu; Chun-Yue Duan

    2016-01-01

    Background:Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI).Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI,allowing stem cells to penetrate through the scar and promote recovery of nerve function.This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro.Methods:ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion.Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation.After successful culture,ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained.Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method,ChABC expression was verified using Western blotting,and the migration of ChABC-ADSCs was analyzed using the transwell assay.Results:Secondary collagenase digestion increased the isolation efficiency of primary ADSCs.Following transfection using lentiviral vectors,the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05).And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05).Moreover,ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05).Conclusions:Secondary collagenase digestion can be used to effectively isolate ADSCs.ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC,and ChABC expression significantly enhances the migratory capacity of ADSCs.

  20. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Science.gov (United States)

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  1. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  2. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  3. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  4. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  5. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Science.gov (United States)

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  6. Adipose-Derived Mesenchymal Stem Cells from Ventral Hernia Repair Patients Demonstrate Decreased Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey Lisiecki

    2014-01-01

    Full Text Available Introduction. In adipose tissue healing, angiogenesis is stimulated by adipose-derived stromal stem cells (ASCs. Ventral hernia repair (VHR patients are at high risk for wound infections. We hypothesize that ASCs from VHR patients are less vasculogenic than ASCs from healthy controls. Methods. ASCs were harvested from the subcutaneous fat of patients undergoing VHR by the component separation technique and from matched abdominoplasty patients. RNA and protein were harvested on culture days 0 and 3. Both groups of ASCs were subjected to hypoxic conditions for 12 and 24 hours. RNA was analyzed using qRT-PCR, and protein was used for western blotting. ASCs were also grown in Matrigel under hypoxic conditions and assayed for tubule formation after 24 hours. Results. Hernia patient ASCs demonstrated decreased levels of VEGF-A protein and vasculogenic RNA at 3 days of growth in differentiation media. There were also decreases in VEGF-A protein and vasculogenic RNA after growth in hypoxic conditions compared to control ASCs. After 24 hours in hypoxia, VHR ASCs formed fewer tubules in Matrigel than in control patient ASCs. Conclusion. ASCs derived from VHR patients appear to express fewer vasculogenic markers and form fewer tubules in Matrigel than ASCs from abdominoplasty patients, suggesting decreased vasculogenic activity.

  7. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  8. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    Science.gov (United States)

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties. PMID:27612684

  9. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats

    Directory of Open Access Journals (Sweden)

    Sun Cheuk-Kwan

    2010-06-01

    Full Text Available Abstract Background The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs on brain infarction area (BIA and neurological status in a rat model of acute ischemic stroke (IS was investigated. Methods Adult male Sprague-Dawley (SD rats (n = 30 were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction (control group and IS plus intra-venous ADMSCs (2.0 × 106 (treated interval as controls (treatment group after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. Results The results showed that BIA was larger in control group than in treatment group (p Conclusions ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.

  10. Local transplantation of osteogenic pre-differentiated autologous adipose-derived mesenchymal stem cells may accelerate non-union fracture healing with limited pro-metastatic potency.

    Science.gov (United States)

    Han, Duanyang; Han, Na; Zhang, Peixun; Jiang, Baoguo

    2015-01-01

    Fracture non-union is a serious complication in orthopedic clinical practice. Mesenchymal stem cells are believed to play a vital role in fracture healing process. Among various origins of mesenchymal stem cell, adipose derived stem cells hold great promise especially in clinical milieu. However, the wide spread application of mesenchymal stem cell based therapy is impeded by the pro-metastasis nature of the mesenchymal stem cell itself. Based on the findings from previous studies, we hypothesize that local transplanted osteogenic pre-differentiatiated adipose stem cell may promote the non-union fracture healing. Moreover, the pre-differnetiation stem cells by down-regulating the expression of CCL5 and CCL2. This novel osteogenic pre-differnetiation technique may help clinical orthopedists to resolve the refractory non-union cases and shed new light on other stem cell based therapies to counteract to avoid the pro-metastasis nature of the mesenchymal stem cells. PMID:25785146

  11. Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

    OpenAIRE

    Kim, You-sun; Kim, Ji-Young; Shin, Dong-Myung; Huh, Jin Won; Lee, Sei Won; Oh, Yeon-Mok

    2014-01-01

    Background Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods We used fluorescence optical imaging with quantum dots (QDs) to...

  12. Equine Adipose-Derived Mesenchymal Stem Cells: Phenotype and Growth Characteristics, Gene Expression Profile and Differentiation Potentials

    Directory of Open Access Journals (Sweden)

    Faezeh Alipour

    2015-01-01

    Full Text Available Objective: Because of the therapeutic application of stem cells (SCs, isolation and characterization of different types of SCs, especially mesenchymal stem cells (MSCs, have gained considerable attention in recent studies. Adipose tissue is an abundant and accessible source of MSCs which can be used for tissue engineering and in particular for treatment of musculoskeletal disorders. This study was aimed to isolate and culture equine adipose-derived MSCs (AT-MSCs from little amounts of fat tissue samples and determine some of their biological characteristics. Materials and Methods: In this descriptive study, only 3-5 grams of fat tissue were collected from three crossbred mares. Immediately, cells were isolated by mechanical means and enzymatic digestion and were cultured in optimized conditions until passage 3 (P3. The cells at P3 were evaluated for proliferative capacities, expression of specific markers, and osteogenic, chondrogenic and adipogenic differentiation potentials. Results: Results showed that the isolated cells were plastic adherent with a fibroblast-like phenotype. AT-MSCs exhibited expression of mesenchymal cluster of differentiation (CD markers (CD29, CD44 and CD90 and not major histocompatibility complex II (MHC-II and CD34 (hematopoietic marker. Cellular differentiation assays demonstrated the chondrogenic, adipogenic and osteogenic potential of the isolated cells. Conclusion: Taken together, our findings reveal that equine MSCs can be obtained easily from little amounts of fat tissue which can be used in the future for regenerative purposes in veterinary medicine.

  13. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Nur Shuhaidatul Sarmiza Abdul Halim

    2014-08-01

    Full Text Available Mesenchymal stem cells (MSCs hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1 and enhanced green fluorescent protein (eGFP into human adipose-derived MSCs (hAD-MSCs. The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.

  14. New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

    OpenAIRE

    Cristiano Rodrigues; de Assis, Adriano M.; Moura, Dinara J.; Graziele Halmenschlager; Jenifer Saffi; Léder Leal Xavier; Marilda da Cruz Fernandes; Márcia Rosângela Wink

    2014-01-01

    Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a sma...

  15. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Dawley Rats

    OpenAIRE

    Elhusseini, Fatma M; Saad, Mohamed-Ahdy A.A; Anber, Nahla; Elghannam, Doaa; Sobh, Mohamed-Ahmed; ALSAYED, AZIZA; El-dusoky, Sara; SHEASHAA, HUSSEIN; Abdel-Ghaffar, Hassan; Sobh, Mohamed

    2016-01-01

    Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs) in prevention or amelioration of cisplatin induced acute kidney injury (AKI) in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system o...

  16. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Patrick; C; Baer

    2014-01-01

    Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs’ subpopulations, heterogeneity andculture standardization.

  17. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  18. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway.

    Science.gov (United States)

    Han, Dong; Huang, Wei; Li, Xiang; Gao, Lei; Su, Tao; Li, Xiujuan; Ma, Sai; Liu, Tong; Li, Congye; Chen, Jiangwei; Gao, Erhe; Cao, Feng

    2016-03-01

    Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation. PMID:26607398

  19. Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration

    Institute of Scientific and Technical Information of China (English)

    Han Chao; Zhang Liang; Song Lin; Liu Yang; Zou Wei; Piao Hua; Liu Jing

    2014-01-01

    Background In order to suggest an ideal source of adult stem cells for the treatment of nervous system diseases,MSCs from human adipose tissue and bone marrow were isolated and studied to explore the differences with regard to cell morphology,surface markers,neuronal differentiation capacity,especially the synapse structure formation and the secretion of neurotrophic factors.Methods The neuronal differentiation capacity of human mesenchymal stem cells from adipose tissue (hADSCs) and bone marrow (hBMSCs) was determined based on nissl body and synapse structure formation,and neural factor secretion function.hADSCs and hBMSCs were isolated and differentiated into neuron-like cells with rat brain-conditioned medium,a potentially rich source of neuronal differentiation promoting signals.Specific neuronal proteins and neural factors were detected by immunohistochemistry and enzyme-linked immunosorbent assay analysis,respectively.Results Flow cytometric analysis showed that both cell types had similar phenotypes.Cell growth curves showed that hADSCs proliferated more quickly than hBMSCs.Both kinds of cells were capable of osteogenic and adipogenic differentiation.The morphology of hADSCs and hBMSCs changed during neuronal differentiation and displayed neuronlike cell appearance after 14 days' differentiation.Both hADSCs and hBMSCs were able to differentiate into neuron-like cells based on their production of neuron specific proteins including β-tubulin-Ⅲ,neuron-specific enolase (NSE),nissl bodies,and their ability to secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF).Assessment of synaptop hysin and growth-associated protein-43 (GAP-43) suggested synapse structure formation in differentiated hADSCs and hBMSCs.Conclusions Our results demonstrate that hADSCs have neuronal differentiation potential similar to hBMSC,but with a higher proliferation capacity than hBMSC.Adipose tissue is abundant,easily available and would be a potential ideal

  20. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    Science.gov (United States)

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.

  1. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  2. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  3. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  4. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Science.gov (United States)

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  5. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro.

    Science.gov (United States)

    Dzobo, Kevin; Turnley, Taegyn; Wishart, Andrew; Rowe, Arielle; Kallmeyer, Karlien; van Vollenstee, Fiona A; Thomford, Nicholas E; Dandara, Collet; Chopera, Denis; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. PMID:27527147

  6. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Science.gov (United States)

    Yan, Xueying; Ehnert, Sabrina; Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A; Pelisek, Jaroslav; Nussler, Andreas K

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  7. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Directory of Open Access Journals (Sweden)

    Xueying Yan

    Full Text Available The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a as compared to Ad-MSCs isolated from younger donors (<45 a. 5-hydroxymethylcytosine (5 hmC and 5-methylcytonsine (5 mC distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors.

  8. 5-Azacytidine Improves the Osteogenic Differentiation Potential of Aged Human Adipose-Derived Mesenchymal Stem Cells by DNA Demethylation

    Science.gov (United States)

    Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A.; Pelisek, Jaroslav; Nussler, Andreas K.

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  9. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  10. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration.

    Science.gov (United States)

    Xie, Qing; Wang, Zi; Zhou, Huifang; Yu, Zhang; Huang, Yazhuo; Sun, Hao; Bi, Xiaoping; Wang, Yefei; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Tissue-engineering technology employing genetically-modified mesenchymal stem cells combined with proper scaffolds represents a promising strategy for bone regeneration. Elucidating the underlying mechanisms that govern the osteogenesis of mesenchymal stem cells will give deeper insights into the regulatory patterns, as well as provide more effective methods to enhance bone regeneration. In this study, miR-135 was identified as an osteogenesis-related microRNA that was up-regulated during the osteogenesis of rat adipose-derived stem cells (ADSCs). Gain- and loss-of-function experiments using a lentiviral expression system showed that Homeobox A2 (Hoxa2) was negatively regulated by miR-135, and luciferase reporter assay further indicated that miR-135 repressed Hoxa2 expression through binding to the 3'-untranslated region (3'-UTR) of the Hoxa2 mRNA. In vitro analyses showed that the overexpression of miR-135 significantly enhanced the expression of bone markers and extracellular matrix calcium deposition, whereas the knockdown of miR-135 suppressed these processes. Transduced ADSCs were then combined with poly(sebacoyl diglyceride) (PSeD) scaffold to repair a critical-sized calvarial defects in rats. The results showed that the overexpression of miR-135 significantly promoted new bone formation with higher bone mineral density (BMD) and number of trabeculae (Tb.N), as well as larger areas of newly formed bone and mineralization labeled by tetracycline, calcein and alizarin red. In contrast, the knockdown of miR-135 attenuated these processes. Additionally, immunohistochemical analyses showed that transduced ADSCs participated in new bone formation and a miR-135/Hoxa2/Runx2 pathway might contribute to the regulation of ADSC osteogenesis and bone regeneration. Taken together, our data suggested that miR-135 positively regulated the osteogenesis and bone regeneration of ADSCs both in vitro and in vivo. Thus, the combination of miR-135-modified ADSCs and the PSe

  11. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing.

    Science.gov (United States)

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  12. hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells.

    Science.gov (United States)

    Ren, Y; Han, C; Wang, J; Jia, Y; Kong, L; Eerdun, T; Wu, L; Jiang, D

    2016-01-01

    The aim of this study was to investigate the differentiation potential of adipose-derived mesenchymal stem cells (ADMSCs) into osteoblasts by human bone morphogenetic protein-7 (hBMP-7) induction. ADMSCs were isolated from the subcutaneous adipose tissue of a rabbit, and then transfected with the pcDNA3.1 vector alone and pcDNA3.1-hBMP-7 (hBMP-7), respectively. Untransfected ADMSCs were used as the control group. After transfection, the morphology and green fluorescent protein (GFP) fluorescence intensity of ADMSCs were observed by fluorescent microscopy. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the growth of ADMSCs at 1, 3, and 5 days, respectively. Transmission electron microscopy was performed to observe the ultrastructural morphology of ADMSCs. In addition, ADMSCs were stained with quinalizarin and toluidine blue to reflect the content of osteoblasts and chondrocytes, respectively. Finally, the expression of collagen I and osteocalcin in ADMSCs was detected by western blot. ADMSCs were successfully isolated. Obvious GFP fluorescence and high expression of hBMP-7 demonstrated the successful transfection of hBMP-7. Specific morphological characters with a metabolically active ultrastructure were exhibited on the ADMSCs transfected with hBMP- 7. In addition, the growth rate of ADMSCs transfected with hBMP-7 was significantly higher than that of the cells in the vector and control groups. Successfully induced osteoblast-like cells were identified by an obvious erythrine area and high expression of collagen I and osteocalcin in ADMSCs transfected with hBMP-7. Thus, ADMSCs can be successfully differentiated into osteoblast-like cells by hBMP-7 induction in vitro. PMID:27525862

  13. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  14. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Morgan, Joshua T; Kwon, Heung Sun; Wood, Joshua A; Borjesson, Dori L; Tomarev, Stanislav I; Murphy, Christopher J; Russell, Paul

    2015-06-01

    Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.

  15. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    Science.gov (United States)

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-01

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. PMID:26482937

  16. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Directory of Open Access Journals (Sweden)

    Angelou Valerie

    2016-01-01

    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  17. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar.

    Science.gov (United States)

    Valerie, Angelou; Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  18. Human adipose-derived mesenchymal stem cell could participate in angiogenesis in a mouse model of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Thuy Thi-Thanh Dao

    2016-08-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs transplantation for the treatment of acute hindlimb ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic adipose-derived stem cell (ADSC transplantation in acute hindlimb ischemia mouse model. Methods: Human ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, the survival percentage of grafted cells was 3.62% +/- 2.06% at the injection site and 15.71% +/- 12.29% around the injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% +/- 2.13% at the injection site; 9.12% +/- 7.17% at the opposite of injection site, and 7.22% +/- 4.59% at the lateral gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% +/- 1.60%, and further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% +/- 0.44% and 1.17% +/- 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were decreased to zero, except for CD31 expression at the opposite of injection site (0.72% +/- 1.03%. Histological structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs might play a significant role in the formation of new blood vessel and can

  19. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  20. Chondrogenic potential of adipose-derived stem cells versus bone marrow mesenchymal stem cells%脂肪干细胞与骨髓间充质干细胞成软骨能力的比较**

    Institute of Scientific and Technical Information of China (English)

    安荣泽; 赵俊延; 王兆杰

    2013-01-01

    BACKGROUND:Adipose-derived stem cel s and bone marrow mesenchymal stem cel s are used widely in cartilage tissue engineering, and there are many similarities in biological characteristics between two kinds of cel s. OBJECTIVE:To compare the chondrogenic potential of bone marrow mesenchymal stem cel s and adipose-derived stem cel s in vitro. METHODS:Adipose-derived stem cel s were isolated from the 3-month-old New Zealand white rabbits’ abdomen. Bilateral femurs of rabbits were obtained, and then the bone marrow mesenchymal stem cel s were separated with the adherence screening method. The growth curve of the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were drawn, and the doubling time of two kinds of cel s was compared. Then the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with chondrogenic induction. After induced for 14 days, the adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with toluidine blue staining and type Ⅱ immunohistochemistry staining respectively. RESULTS AND CONCLUSION:Primary bone marrow mesenchymal stem cel s showed aggregative growth, while the primary adipose-derived stem cel s were in single and scattered growth. The proliferation speed of adipose-derived stem cel s was faster than that of bone marrow mesenchymal stem cel s, while the doubling time of adipose-derived stem cel s was shorter than that of the bone marrow mesenchymal stem cel s. After chondrogenic induction for 14 days, both adipose-derived stem cel s and bone marrow mesenchymal stem cel s could express glycosaminoglycans and type Ⅱcol agen, and the expression level of type Ⅱ col agen in bone marrow mesenchymal stem cel s after chondrogenic induction was higher than that in the adipose-derived stem cel s. The in vitro proliferation of adipose-derived stem cel s and bone marrow mesenchymal stem cel s was rapid and stable, but the proliferative ability of adipose-derived

  1. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    OpenAIRE

    Angelou Valerie; Kalodimou Vassiliki; Messini Irini; Psychalakis Nikolaos; Eleftheria Karampela; Papalois Apostolos

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into...

  2. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-01-01

    Full Text Available Acute liver failure (ALF is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  3. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    OpenAIRE

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E.

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised ...

  4. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  5. Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Bae, Yoonhee; Lee, Young Hwa; Lee, Sunray; Han, Jin; Ko, Kyung Soo; Choi, Joon Sig

    2016-11-20

    Mesenchymal stem cells (MSCs) have a great capacity for self-renewal while still maintaining their multipotency, and can differentiate into a variety of cell types. The delivery of genes to a site of injury is a current and interesting field of gene therapy. In the present study, we describe a nonviral gene delivery carrier, glycol chitosan-methyl acrylate-polyethylenimine (GMP) polymer targeted towards human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency, using luciferase (Luc) and a pDNA encoding enhanced green fluorescent protein (EGFP), along with cytotoxicity assays, were performed in human AD-MSCs. The results show that the transfection efficiency of the GMP polymer was similar to that of PEI25kD, and the cytotoxicity was lower. Moreover, human AD-MSCs were treated with the GMP polymer/pDNA polyplex and its cellular uptake and distribution were analyzed by flow cytometry and confocal microscopy. Furthermore, we performed endosomal escape analysis using LysoTracker Red, and found that the conjugated GMP polymer could escape from the endosome to the cytosol. Human AD-MSCs treated with the GMP polymer maintained their potential for osteogenic differentiation and phenotypic expression of human AD-MSCs based on flow cytometry analysis. The present study demonstrates that the GMP polymer can be used as a potential targeted-delivery carrier for effective gene delivery. PMID:27561509

  6. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  7. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  8. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    Directory of Open Access Journals (Sweden)

    Victoria Moreno-Manzano

    2012-08-01

    Full Text Available Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy ethyl ester (CLMA scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration.

  9. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  10. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  11. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  12. Evaluation of AD-MSC (adipose-derived mesenchymal stem cells) as a vehicle for IFN-β delivery in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Mohammadzadeh, Adel; Pourfathollah, Ali Akbar; Shahrokhi, Somayeh; Fallah, Ali; Tahoori, Mohammad Taher; Amari, Afshin; Forouzandeh, Mahdi; Soleimani, Masoud

    2016-08-01

    Interferon-β (IFN-β) is commonly used as a disease modifying drug for the treatment of relapse-remitting multiple sclerosis (RR-MS). However, the underlying mechanism by which IFN-β mediate this immunosuppressive effect is still unknown. In this study, we analyzed the effects of genetically modified adipose-derived mesenchymal stem cells (AD-MSCs) expressing murine interferon beta (MSCs-VP/IFN-β) on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Lymph node mononuclear cells and serum were examined by using RT-PCR and ELISA methods to measure the production of IL-10 and IL-17 gene and protein expression, respectively. Our results indicated that in the MSCs-VP/IFN-β treated group induction of Tregs and IL-10 and reduction of IL-17 were significant. Taken together, we showed that using AD-MSCs expressing IFN-β as an anti-inflammatory agent, offer evidence supporting that the stem cell therapies in EAE conceivably will improve the valuable effects of IFN-β in this autoimmune disease. PMID:27373971

  13. New therapy of skin repair combining adipose-derived mesenchymal stem cells with sodium carboxymethylcellulose scaffold in a pre-clinical rat model.

    Directory of Open Access Journals (Sweden)

    Cristiano Rodrigues

    Full Text Available Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC as a biomaterial, in combination with adipose-derived stem cells (ADSCs, to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL. In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham, but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy.

  14. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2012-06-01

    Full Text Available Abstract Introduction Adipose derived mesenchymal stem cells (ADMSCs, carrying the similar characteristics to bone marrow mesenchymal stem cells, only much more abundant and easier to obtain, may be a promising treatment for liver fibrosis. We aim to investigate the therapeutic potential of ADMSCs transplantation in liver fibrosis caused by carbon tetrachloride (CCl4 in rats as well as its underlying mechanism, and to further explore the appropriate infusion pathway. Methods ADMSCs were isolated, cultured and identified. Placebo and ADMSCs were transplanted via portal vein and tail vein respectively into carbon tetrachloride (CCl4-induced liver fibrosis rats. Computed tomography (CT perfusion scan and microvessel counts were performed to measure the alteration of liver microcirculation after therapy. Liver function tests and histological findings were estimated. Results CT perfusion scan shown significant decrease of hepatic arterial perfusion index, significant increased portal vein perfusion, total liver perfusion in rats receiving ADMSCs from portal vein, and Factor VIII (FVIII immunohistochemical staining shown significant decrease of microvessels in rats receiving ADMSCs from portal vein, indicating microcirculation improvement in portal vein group. Vascular endothelial growth Factor (VEGF was significantly up-regulated in fibrosis models, and decreased after ADMSCs intraportal transplantation. A significant improvement of liver functional test and histological findings in portal vein group were observed. No significance was found in rats receiving ADMSCs from tail vein. Conclusions ADMSCs have a therapeutic effect against CCl4-mediated liver fibrosis. ADMSCs may benefit the fibrotic liver through alteration of microcirculation, evidenced by CT perfusion scan and down-regulation of VEGF. Intraportal transplantation is a better pathway than tail vein transplantation.

  15. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Wu Minjuan

    2016-01-01

    Full Text Available Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs onto the human acellular amniotic membrane (AAM. The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  16. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid

    International Nuclear Information System (INIS)

    In this study, metal-based biomaterials were functionalized with ascorbic acid (LAA). Two types of substrates were used: austenitic steel 316L and titanium Ti6Al4V. Coatings were prepared with the sol–gel method and applied on metal surfaces using the dip-coating technique. Ascorbic acid was delivered with SiO2-coating at concentrations of 0.1 and 0.4 M. The morphology of the surfaces and coatings was determined using scanning electron microscope (SEM), whereas their elemental composition by SEM-EDX. Immobilization of ascorbic acid in the coatings was confirmed with Raman spectroscopy. The biocompatibility of the materials obtained was tested in vitro using both bone marrow- and adipose-derived mesenchymal stem cells (BMMSC and ADMSC, respectively). Proliferation rate and morphology of cells cultured in the presence of designed biomaterials were monitored after 24, 48, 120 and 168 h of propagation. The results obtained indicated that silica coatings doped with 0.4 M LAA had a positive effect on the proliferation rate of investigated cells, and in some cases on the growth pattern of culture. (paper)

  17. Adipose derived mesenchymal stem cell transplantation for Alzheimer's disease%脂肪间充质干细胞移植治疗阿尔茨海默病

    Institute of Scientific and Technical Information of China (English)

    牛颖; 龚锴; 敖强; 赵南明; 张秀芳; 公衍道

    2009-01-01

    阿尔茨海默病是一种神经退行性疾病,其典型特征是进行性神经元缺失,迄今为止还没有一种药物和治疗方法对其彻底根治.随着干细胞技术与理论的发展和完善,阿尔茨海默病的治疗研究主要集中在神经干细胞移植方面.为避免免疫反应,最好用自体干细胞进行移植,而获取自体神经干细胞是非常困难的.与神经干细胞相比,间充质干细胞具有更广泛的来源,可以从肝脏、骨髓、脂肪等多种组织中获得,且具有多向分化潜能的特质,在一定诱导条件下可分化为骨、肌肉、脂肪等多种组织,其中脂肪间充质干细胞因其具有容易获得、对患者损伤小等特性而备受关注.新近研究显示,脂肪间充质干细胞具有神经分化潜能,预测其很可能在阿尔茨海默病治疗中发挥重要作用.%Alzheimer's disease is an irreversible neurodegenerative disease characterized by progressive neuronal loss. To date, there has been no effective medicine or therapy for neurodegenerative disease. With development of stem cell technique and theory, neural stem cell transplantation has been found to be prospective in Alzheimer's disease treatment. However, it was challenged by the deficiency of autologous neural stem cell, which can bypass immunological barrier. Compared with neural stem cells, mesenchymal stem cells exhibit extensive resources, such as liver, bone marrow and adipose, and multiple differentiations into bone, muscle or adipose. Considering the easy access, the minor trauma to the patients, and the neuron differentiation potential of adipose derived mesenchymal stem cells (A-MSC), we hypothesize that A-MSC graft is a potential and innovative strategy for the treatment of Alzheimer's disease.

  18. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus.

    Directory of Open Access Journals (Sweden)

    Richard J Griffeth

    Full Text Available Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP. Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a

  19. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  20. Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects.

    Science.gov (United States)

    Kim, Yongsun; Lee, Seung Hoon; Kang, Byung-Jae; Kim, Wan Hee; Yun, Hui-Suk; Kweon, Oh-Kyeong

    2016-01-01

    Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering. PMID:27610141

  1. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    Science.gov (United States)

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for

  2. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration.

    OpenAIRE

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Tateya, Ichiro; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi

    2014-01-01

    [Objectives/Hypothesis]Vocal fold scarring presents therapeutic challenges. Recently, cell therapy with mesenchymal stromal cells has become a promising approach. The aim of this study was to compare the therapeutic potential of adipose-derived stem cells (ASC) with bone marrow-derived stem cells (BMSC) for vocal fold regeneration. [Study Design]Prospective animal experiments with controls. [Methods]The vocal folds of Sprague-Dawley rats were unilaterally injured. Two months after injury, rat...

  3. Osteogenic and adipogenic differentiation of rabbit adipose-derived mesenchymal stem cells in vitro%体外培养兔脂肪源性间充质干细胞的成骨成脂分化

    Institute of Scientific and Technical Information of China (English)

    李受珉; 吴子征; 王泽; 李智; 张键

    2014-01-01

    背景:脂肪源性间充质干细胞具有自我更新能力且在体外特定条件下具有多向分化潜能,在临床上具有广泛的应用前景。然而,脂肪源性间充质干细胞的分离培养仍存在诸多困难与不足。目的:体外分离培养获得兔脂肪源性间充质干细胞,对其形态学、生物学特性进行观察,并鉴定其向成骨、成脂分化的潜能。方法:切取兔颈背区皮下脂肪,用胶原酶消化法分离兔脂肪源性间充质干细胞,进行体外培养,流式细胞仪检测细胞表面标志物,CCK-8法检测细胞活性并绘制细胞生长曲线。第4代兔脂肪源性间充质干细胞向成脂、成骨诱导分化后进行油红O染色、茜素红染色、碱性磷酸酶染色,观察其成脂、成骨分化潜能。结果与结论:兔脂肪源性间充质干细胞呈长梭形漩涡样贴壁生长,能稳定传代至第10代,增殖能力强;流式细胞仪检测可高表达CD29、CD90及CD44,而CD34和CD45表达较低;成脂诱导后的兔脂肪源性间充质干细胞油红 O 染色呈阳性;成骨诱导后的兔脂肪源性间充质干细胞碱性磷酸酶和茜素红染色均呈阳性,以上结果显示实验成功分离培养出兔脂肪源性间充质干细胞,获得的细胞生长稳定,增殖活跃,高表达间充质干细胞的表面抗原以及具有向成骨、成脂等多向分化的潜能,有望为骨组织工程提供理想的种子细胞。%BACKGROUND:Adipose-derived mesenchymal stem cells have the ability to self-renew and have pluripotent potential under specific conditions in vitro, which have broad application prospects in clinical practice. However, isolation and culture of adipose-derived mesenchymal stem cells stil appear to have many difficulties and shortcomings. OBJECTIVE:To isolate and culture rabbit adipose-derived mesenchymal stem cells in vitro in order to study their morphology, cellsurface markers and biological properties as

  4. In vitro isolation, culture and identification of adipose-derived stem cells*

    Institute of Scientific and Technical Information of China (English)

    Du Guo-jia; Chen Xiao-hong; Zhu Guo-hua; Fan Yan-dong; Wang Yun; Dang Mu-ren

    2013-01-01

    BACKGROUND:Adipose-derived stem cells are easily col ected and abundantly cultured, which can proliferate rapidly when being cultured in vitro. With multi-directional differentiation potential, adipose-derived stem cells are expected as seed cells for tissue engineering. OBJECTIVE:To isolate, culture and identify of adipose-derived stem cells from Sprague-Dawley rats in vitro. METHODS:The subcutaneous adipose tissue was obtained from the iliac region of rats under the aseptic condition, and then was digested with 0.075%type Ⅰ col agenase and cultured in vitro. The morphology and proliferation characteristics of the cells were observed under an inverted phase contrast microscope. The third passage was put into gauge for growth curve by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the cells were also identified by CD44, a stem cellmarker, with immunofluorescence staining. Adipose-derived stem cells were induced and differentiated into adipocytes in Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F-12 containing 10%fetal bovine serum, dexamethasone and insulin, and then the cells were identified with oil red“O”staining. Adipose-derived stem cells were induced and differentiated into neural cells, and then the cells were identified with immunohistochemical staining. RESULTS AND CONCLUSION:The growth curve of adipose-derived stem cells was opposite-like“S”shape, and it strongly expressed CD44 that can designate a stem cell. The passage cells were exposed to a defined medium for adipocyte differentiation, and then could be stained with oil red. After being induced and differentiated into nerve cells, the cells expressed neuron-specific enolase. The adipose-derived stem cells of Sprague-Dawley rats are characterized by easy isolation, culture and proliferation in vitro, expressing related phenotypes of mesenchymal stem cells, as wel as induction and differentiation under certain conditions.

  5. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    OpenAIRE

    Ru Dai; Zongjie Wang; Roya Samanipour; Kyo-in Koo; Keekyoung Kim

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs ...

  6. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma.

    Science.gov (United States)

    Xu, Lihua; Wang, Xu; Wang, Jiani; Liu, Dan; Wang, Yaya; Huang, Zhenqian; Tan, Huo

    2016-06-01

    In this study, we explored how the altered paracrine of adipose mesenchymal stem cells (ADSCs) contributed to the growth and cancer stem cell (CSC) properties of the Burkitt lymphoma cells. Condition mediums from normoxia or hypoxia cultured ADSC (CM-ADSC-N or CM-ADSC-H) were collected, and their effects on growth, colony formation, and apoptosis of Burkitt's lymphoma cells were investigated. Differentially expressed cytokines and inflammatory factors were compared between CM-ADSC-N and CM-ADSC-H. The involvement of differentially expressed IL-10 in growth and CSC properties of Burkitt lymphoma was investigated using both in vitro and in vivo models. Findings of this study showed that hypoxia increased IL-10 secretion from ADSCs, through which the growth and CSC properties of BL2 cells were enhanced. Intratumoral injection of CM-ADSC-H or IL-10 enhanced in vivo Burkitt lymphoma growth in nude mice model at least partly via the JAK2/STAT3 signaling pathway. PMID:26695151

  7. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  8. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis

    OpenAIRE

    Maria Elena Falomo; Letizia Ferroni; Ilaria Tocco; Chiara Gardin; Barbara Zavan

    2015-01-01

    Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs) to...

  9. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants

    OpenAIRE

    Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.

    2012-01-01

    Mesenchymal stem cells (MSCs) are well known for their immunomodulatory capabilities. In particular, their immunosuppressive property is believed to permit their allogeneic or even xenogeneic transplantation into immunocompetent recipients without the use of immunosuppressants. Adipose-derived stem cell (ADSC), owing to its ease of isolation from an abundant tissue source, is a promising MSC for the treatment of a wide range of diseases. ADSC has been shown to lack major histocompatibility co...

  10. COMPARISON OF HUMAN ADIPOSE-DERIVED STEM CELLS AND BONE MARROW-DERIVED STEM CELLS IN A MYOCARDIAL INFARCTION MODEL

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus;

    2012-01-01

    grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were......Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...

  11. Senescence in adipose-derived stem cells and its implications in nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Cristina Mantovani; Giorgio Terenghi; Valerio Magnaghi

    2014-01-01

    Adult mesenchymal stem cells, specifically adipose-derived stem cells have self-renewal and multiple differentiation potentials and have shown to be the ideal candidate for therapeutic applications in regenerative medicine, particularly in peripheral nerve regeneration. Adipose-de-rived stem cells are easily harvested, although they may show the effects of aging, hence their potential in nerve repair may be limited by cellular senescence or donor age. Cellular senescence is a complex process whereby stem cells grow old as consequence of intrinsic events (e.g., DNA damage) or environmental cues (e.g., stressful stimuli or diseases), which determine a permanent growth arrest. Several mechanisms are implicated in stem cell senescence, although no one is exclusive of the others. In this review we report some of the most important factors modulating the senescence process, which can inlfuence adipose-derived stem cell morphology and function, and compromise their clinical application for peripheral nerve regenerative cell therapy.

  12. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-01-01

    Full Text Available Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine.

  13. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo.

    Science.gov (United States)

    Marycz, Krzysztof; Tomaszewski, Krzysztof A; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine. PMID:27195075

  14. 脂肪源性间充质干细胞在冠心病治疗中的研究进展%Advances in the adipose-derived mesenchymal stem cells on the treatment of coronary heart disease Xi

    Institute of Scientific and Technical Information of China (English)

    郗锐; 冯玙; 李超敏; 武志芳

    2016-01-01

    Mesenchymal stem cells (MSC), also known as multipotential stem cells, are a kind of adult stem cells which have self-replicating and multi-directional differentiation potential. Autologous adipose-derived mesenchymal stem cells (ADSC) can differentiate into the cardiomyocytes after induction. Besides, they have adequate sources and low immunogenicity. In short, ADSC possess a wide application prospect in the study of coronary heart disease. After reading lots of related literatures, recent research status about the ADSC from the following aspects in this paper was discussed, such as the biological characteristics of ADSC, cellular transplantation, tracing in the body, and the treatment of coronary heart disease.%间充质干细胞(MSC)也称为多能干细胞,是一种可自我复制,具有多向分化潜能的成体干细胞群。自体脂肪源性间充质干细胞(ADSC)来源充足,低免疫源性,经诱导后可向心肌细胞分化,在冠心病的研究中极具应用前景。查阅大量相关文献后,现就ADSC的生物学特性、细胞移植、体内示踪及冠心病治疗等方面的近期研究进展进行综合论述。

  15. 棕色脂肪干细胞与白色脂肪干细胞移植对心肌梗死大鼠心功能的影响%Effects of brown adipose-derived mesenchymal stem cells and white adipose-derived mesenchymal stem cells transplantation on cardiac function of rat with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    石金鑫; 刘剑锋; 王海滨; 朱平

    2013-01-01

    Objective To compare the therapeutic effects of brown adipose-derived mesenchymal stem cells (BADSCs)and white adipose-derived mesenchymal stem cells (ADSCs) in rats with acute myocardial infarction,Methods The BADSCs and ADSCs were prepared by enzyme digestion from brown and white adipose tissues isolated from rat shoulder and inguinal regions,respectively,The stem ceils were analyzed by flow cytometry and multipotential differentiation ability.30 rats were randomly divided into PBS control group,ADSCs transplantation group and BADSCs transplantation group,then the acute myocardial infarction model was established.The BADSCs or ADSCs were injected into the edge area of myocardial infarction respectively,the PBS was injected as control.Detailed histological analysis and echocardiography were used to determine the cardiac function and differentiation,vascularization effects of transplantation cells after 4 weeks of transplantation.Results Compared with PBS control group,the heart function improved significantly with decreased fibrosis formation in the BADSCs and ADSCs transplantation at 4 weeks after transplantation (P < 0,05),Immunofluorescence result showed that the cardiac-differentiation ability of BADSCs was much higher than that of ADSCs in vivo,Immunohistochemical results showed that compared with the PBS control group,the micro-vessel density in scar areas increased significantly in the ADSCs transplantation group and BADSCs transplantation group (P < 0,05),and the ADSCs groups increased most (P < 0.05),Conclusion Both transplantation of BADSCs and ADSCs can enhance the cardiac function of myocardial infarction.Although compared with ADSCs,BADSCs has a lower ability of vascularization,but it can improve the heart performance through the high potential of cardiac-differentiation.%目的 对比研究棕色脂肪干细胞(BADSCs)与白色脂肪干细胞(ADSCs)治疗急性心肌梗死大鼠的效果.方法 采用酶消化法分别分离大鼠腹股沟脂

  16. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    Science.gov (United States)

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  17. 脂肪间充质干细胞经肝动脉移植治疗晚期肝病%Adipose-derived mesenchymal stem cell transplantation via the hepatic artery for the treatment of advanced liver diseases

    Institute of Scientific and Technical Information of China (English)

    郭宪立; 刘跃; 周利敏; 胡玥

    2016-01-01

    BACKGROUND:Stem cel transplantation is a promising treatment for advanced liver diseases, and adipose-derived mesenchymal stem cels are a hot topic folowing bone marrow mesenchymal stem cels. OBJECTIVE:To explore the therapeutic effect of adipose-derived mesenchymal stem cels transplantationvia the hepatic artery on advanced liver diseases in rats. METHODS:Forty-five rats were randomized into three groups, 15 rats in each group: control group, model group and transplantation group. Rat models of liver cirrhosis were made in the latter two groups through subcutaneous injection of carbon tetrachloride. Then, 1 mL of CFSE-labeled adipose-derived mesenchymal stem cels was infusedvia the hepatic artery in the transplantation group, and the same volume of normal saline was infused in the model group. Control group had no treatment. Pathological changes, liver function and degree of hepatic fibrosis were observed in the three groups at 4 weeks after treatment. RESULTS AND CONCLUSION:After transplantation, green fluorescence-labeled adipose-derived mesenchymal stem cels were seen in the liver of rats. Hematoxylin-eosin staining and Masson staining showed unclear hepatic lobule structure in the model group with the formation of false lobules, cel cloudy sweling and loose, some degeneration and necrosis, and inflammatory cel infiltration; in the control group, there was nothing abnormal in the liver tissues of rats in the control group; in the transplantation group, the pathological changes of the rat liver were better than those in the model group, but worse than those in the control group. Compared with the model group, the level of serum albumin was higher in the control and transplantation group (P < 0.05), and the levels of bilirubin, aminotransferase and type IV colagen were lower in the control and transplantation group (P < 0.05). Thus, it can be seen that adipose-derived mesenchymal stem cel transplantation can improve liver function and reduce liver fibrosis in

  18. Biphasic Polyurethane/Polylactide Sponges Doped with Nano-Hydroxyapatite (nHAp Combined with Human Adipose-Derived Mesenchymal Stromal Stem Cells for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-10-01

    Full Text Available Cartilage and bone tissue injuries are common targets in regenerative medicine. The degeneration of cartilage tissue results in tissue loss with a limited ability to regenerate. However, the application of mesenchymal stem cells in the course of such condition makes it possible to manage this disorder by improving the structure of the remaining tissue and even stimulating its regeneration. Nevertheless, in the case of significant tissue loss, standard local injection of cell suspensions is insufficient, due to the low engraftment of transplanted cells. Introduction of mesenchymal stem cells on the surface of a compatible biomaterial can be a promising tool for inducing the regeneration by both retaining the cells at the desired site and filling the tissue gap. In order to obtain such a cell-biomaterial hybrid, we developed complex, biphasic polymer blend biomaterials composed of various polyurethane (PU-to-polylactide (PLA ratios, and doped with different concentrations of nano-hydroxyapatite (nHAp. We have determined the optimal blend composition and nano-hydroxyapatite concentration for adipose mesenchymal stem cells cultured on the biomaterial. We applied biological in vitro techniques, including cell viability assay, determination of oxidative stress factors level, osteogenic and chondrogenic differentiation potentials as well as cell proteomic analysis. We have shown that the optimal composition of biphasic scaffold was 20:80 of PU:PLA with 20% of nHAp for osteogenic differentiation, and 80:20 of PU:PLA with 10% of nHAp for chondrogenic differentiation, which suggest the optimal composition of final biphasic implant for regenerative medicine applications.

  19. Therapeutic potential of human adipose-derived stem cells in neurological disorders.

    Science.gov (United States)

    Chang, Keun-A; Lee, Jun-Ho; Suh, Yoo-Hun

    2014-01-01

    Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.

  20. Fluorescent supermagnetic nanoparticles-labeled adipose-derived mesenchymal stem cells in the three-dimensional culture system%荧光磁性纳米粒子标记三维培养系统中的脂肪间充质干细胞

    Institute of Scientific and Technical Information of China (English)

    吕品雷; 苏约翰; 崔大祥; 汪铮

    2015-01-01

    背景:荧光磁性纳米粒子具有量子点和磁粒子的双重特质,生物相容性好,能够被胞吞入细胞质高效地标记细胞。目的:验证荧光磁性纳米粒子标记人脂肪间充质干细胞的可行性。方法:抽脂术抽取健康人脂肪组织,采用Ⅰ型胶原酶消化法分离,贴壁培养纯化人脂肪间充质干细胞。取第6代脂肪间充质干细胞与荧光磁性纳米粒子孵育过夜,采用普鲁士蓝染色、激光共聚焦显微镜检测体外标记细胞情况,荧光成像系统观察荧光磁性纳米粒子标记的干细胞体内示踪效果。结果与结论:普鲁士蓝染色显示荧光磁性纳米粒子以蓝色颗粒的形式分散于脂肪间充质细胞胞质中。激光共聚焦显微镜观察显示人脂肪间充质干细胞的细胞核被Hoechest33258染成蓝色,细胞质被标记成绿色;荧光成像结果表明标记的人脂肪间充质干细胞具有很好的成像效果。结果提示荧光磁性纳米粒子可以作为示踪剂在体外标记人脂肪间充质干细胞,为脂肪间充质干细胞的移植转化研究提供新方法。%BACKGROUND:Fluorescent magnetic nanoparticles with the properties of quantum dots and magnetic particles have good biocompatibility, and can label cels effectively through endocytosis. OBJECTIVE:To validate the feasibility of fluorescent magnetic nanoparticles in labeling human adipose-derived mesenchymal stem cels. METHODS:Healthy human adipose tissue was extracted and adipose-derived mesenchymal stem cels were isolatedin vitro by type I colagenase digestion. Passage 6 cels were incubated with the fluorescent magnetic nanoparticles overnight. Prussian blue staining and laser scanning confocal microscope were used to observe labeled adipose-derived mesenchymal stem celsin vitro after co-culturing with fluorescent magnetic nanoparticles. The tracing effect of labeled adipose-derived mesenchymal stem cels in vivo was detected by fluorescence

  1. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  2. Adipose-derived stem cells: selecting for translational success.

    Science.gov (United States)

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  3. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms.

    Science.gov (United States)

    Yiou, René; Mahrouf-Yorgov, Meriem; Trébeau, Céline; Zanaty, Marc; Lecointe, Cécile; Souktani, Richard; Zadigue, Patricia; Figeac, Florence; Rodriguez, Anne-Marie

    2016-02-01

    Urinary incontinence (UI) and erectile dysfunction (ED) are the most common functional urological disorders and the main sequels of radical prostatectomy (RP) for prostate cancer. Mesenchymal stem cell (MSC) therapy holds promise for repairing tissue damage due to RP. Because animal studies accurately replicating post-RP clinical UI and ED are lacking, little is known about the mechanisms underlying the urological benefits of MSC in this setting. To determine whether and by which mechanisms MSC can repair damages to both striated urethral sphincter (SUS) and penis in the same animal, we delivered human multipotent adipose stem cells, used as MSC model, in an immunocompetent rat model replicating post-RP UI and ED. In this model, we demonstrated by using noninvasive methods in the same animal from day 7 to day 90 post-RP injury that MSC administration into both the SUS and the penis significantly improved urinary continence and erectile function. The regenerative effects of MSC therapy were not due to transdifferentiation and robust engraftment at injection sites. Rather, our results suggest that MSC benefits in both target organs may involve a paracrine process with not only soluble factor release by the MSC but also activation of the recipient's secretome. These two effects of MSC varied across target tissues and damaged-cell types. In conclusion, our work provides new insights into the regenerative properties of MSC and supports the ability of MSC from a single source to repair multiple types of damage, such as those seen after RP, in the same individual.

  4. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  5. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  6. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  7. Adipose-Derived Mesenchymal Cells for Bone Regereneration: State of the Art

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2013-01-01

    Full Text Available Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.

  8. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Niels A. J. Cremers

    2014-10-01

    Full Text Available Mesenchymal stem cell (MSC administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs from wild type (WT and HO-2 knockout (KO mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2 significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  9. Generation of Neurospheres from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Erfang Yang

    2015-01-01

    Full Text Available Transplantation of neural stem cells (NSCs to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF, and epidermal growth factor (EGF; the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.

  10. 血小板衍生内皮细胞生长因子转染脂肪间充质干细胞促进移植脂肪血管化%Platelet-derived endothelial cell growth factor transfection of adipose-derived mesenchymal stem cells promotes vascularization of fat grafts

    Institute of Scientific and Technical Information of China (English)

    伞光; 宋佳

    2015-01-01

    BACKGROUND:Platelet-derived endothelial cel growth factor (PD-ECGF) can promote revascularization in fat transplantation. OBJECTIVE: To explore the dual effects of PD-ECGF and adipose-derived mesenchymal stem cels on the survival rate of fat grafts. METHODS:(1) Adipose-derived mesenchymal stem cels were isolated from the inguinal subcutaneous fat of New Zealand white rabbits, and then cultured. Passage 3 adipose-derived mesenchymal stem cels were divided into experimental group (Lenti-PD-ECGF-EGFP transfected adipose-derived mesenchymal stem cels), control group (Lenti-EGFP transfected adipose-derived mesenchymal stem cels) and blank group (adipose-derived mesenchymal stem cels with no transfection). (2) Lenti-PD-ECGF-EGFP transfected adipose-derived mesenchymal stem cels were cultured in DMEM complete medium, and then mixed with fat tissues as group A; adipose-derived mesenchymal stem cels with no transfection were cultured in DMEM complete medium and then mixed with fat tissues as group B; DMEM complete medium with no cels served as group C. Then, the grafts in groups A, B, C were respectively injected subcutaneously into the upper left, lower left and upper right parts of the rabbits’ black. RESULTS AND CONCLUSION:(1) In the experimental group, PD-ECGF mRNA and protein expressions were significantly higher than those in the control and blank groups (P < 0.05), and cel proliferation was also the fastest. (2) Graft weight and the number of capilaries were greater in group A than groups B and C. These findings indicate that PD-ECGF transfection of adipose-derived mesenchymal stem cels not only can continuously express the PD-ECGF protein, but also can promote the proliferation of adipose-derived mesenchymal stem cels.%背景:血小板衍生内皮细胞生长因子在脂肪移植中可促进血运重建。目的:探索血小板衍生内皮细胞生长因子和脂肪间充质干细胞的双重促进脂肪移植成活率的作用。

  11. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    Science.gov (United States)

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  12. Induction of osteoblast differentiation in human adipose derived stem cells by lanthanum ions

    Institute of Scientific and Technical Information of China (English)

    Harini D; Indra R; Rajaram A; Rama Rajaram

    2014-01-01

    Adipose derived stem cells represent a readily available source of adult stem cells for various biomedical applications. In this study, the proliferation and osteogenic differentiation potential of lanthanum nitrate (La3+) on human adipose derived mesenchy-mal stem cells (hADSCs) were investigated for the first time and compared with that of dexamethasone (Dex). Our results provided evidence that La3+at 50 µmol/L concentration promoted proliferation of hADSCs upto 2.4 fold when treated for 21 d in DMEM me-dium. Treatment of hADSCs with La3+containing osteogenic induction medium (α-MEM with ascorbic acid andβ-glycerophosphate) for 7 d resulted in higher calcium deposition than that in the presence of Dex (0.1 µmol/L) as shown by Alizarin red S and von Kossa staining. Scanning electron micrographs also showed more extracellular matrix mineralization in the presence of La3+. After 7 d of treatment with La3+(10 µmol/L) the expression of RunX2, osteopontin (OP) and osteocalcin (OC) increased 3.4, 5.5 and 2.7 fold re-spectively. Our results provided evidence that in the presence of La3+osteogenic differentiation occurred earlier than that in the pres-ence of Dex.

  13. Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Moriyama

    Full Text Available Genetic modification of human adipose tissue-derived multilineage progenitor cells (hADMPCs is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1 a modified tetracycline (tet-response element composite promoter, (2 a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3 acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV or the elongation factor 1 α (EF-1α promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.

  14. Human adipose-derived stem cells stimulate neuroregeneration.

    Science.gov (United States)

    Masgutov, Ruslan F; Masgutova, Galina A; Zhuravleva, Margarita N; Salafutdinov, Ilnur I; Mukhametshina, Regina T; Mukhamedshina, Yana O; Lima, Luciana M; Reis, Helton J; Kiyasov, Andrey P; Palotás, András; Rizvanov, Albert A

    2016-08-01

    Traumatic brain injuries and degenerative neurological disorders such as Alzheimer's dementia, Parkinson's disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. PMID:26047869

  15. Hearing restoration in a deaf animal model with transplantation of adipose-derived mesenchymal stem cells from guinea pigs%豚鼠脂肪间充质干细胞植入耳聋模型修复听力的作用

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 吉彬; 李兵兵; 毕晓娟; 刘立中

    2014-01-01

    背景:脂肪间充质干细胞是否是治疗因毛细胞退化、缺失所造成的感音神经性聋的福音呢?目的:探讨豚鼠脂肪间充质干细胞经耳蜗鼓阶途径植入感音神经性耳聋动物模型后对听力的修复作用。方法:庆大霉素腹腔注射建立豚鼠感音神经性耳聋动物模型,耳蜗鼓阶途径植入豚鼠脂肪间充质干细胞,分别于植入后1,3周检测听性脑干反应,观察植入脂肪间充质干细胞后耳聋动物听力的变化;并追踪EDU标记的豚鼠脂肪间充质干细胞在耳蜗内的迁移及分布情况。结果与结论:在植入后1周及3周进行听性脑干反应检测,听力较移植前逐渐好转。植入细胞后1周,细胞大多分布在外淋巴液中,部分迁移至耳蜗柯蒂器贴附于基底膜上,植入细胞后3周,细胞不仅迁移并贴附在Corti器基底膜发挥作用,而且部分迁移到蜗神经,植入时间越长,存活细胞越少。结果表明豚鼠脂肪间充质干细胞通过耳蜗鼓阶途径微孔植入,可以定向迁移并存活最终达到提高听力的目的。%BACKGROUND:Can adipose-derived mesenchymal stem cells be used to treat sensorineural deafness caused by hair celldegeneration and loss? OBJECTIVE:To investigate the effect of adipose-derived mesenchymal stem cells from guinea pigs transplanted via the scala tympani on the recovery from sensorineural hearing in an animal model. METHODS:Intraperitoneal injection of gentamicin was performed to prepare sensorineural deafness models in guinea pigs. Then, adipose-derived mesenchymal stem cells from guinea pig were transplanted via the scala tympani. After 1 and 3 weeks, auditory brainstem responses were detected to observe the hearing variation after adipose-derived mesenchymal stem celltransplantation. Meanwhile, the migration and distribution of EDU-labeled adipose-derived mesenchymal stem cells in the cochlea were traced. RESULTS AND CONCLUSION:After 1 and 3

  16. Good manufacturing practice-compliant isolation and culture of human adipose derived stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-04-01

    Full Text Available Adipose-derived stem cells (ADSCs are excellent for regenerative medicine. Like mesenchymal stem cells, ADSCs possess multi-potent differentiation capacity that enables them to differentiate into osteoblasts, chondrocytes and adipocytes, as well as trans-differentiation into other cells. ADSC transplantation has gained attention in recent years, especially in vitro expanded ADSC transplantation. This study aimed to provide a new method to in vitro primarily culture and secondary culture of ADSCs that were compliant with good manufacturing practice for clinical applications. Stromal vascular fraction (SVF was extracted from adipose tissue by commercial kits. SVF was expanded in vitro in medium with non-allogeneic supplements. Cultured ADSCs maintained immune-phenotype, karyotype, and differentiation potential after ten passages. Moreover, ADSCs at 15th passage could not form tumors in NOD/SCID mice. This research produced a suitable protocol for clinical applications of expanded ADSCs. [Biomed Res Ther 2014; 1(4.000: 133-141

  17. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Institute of Scientific and Technical Information of China (English)

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  18. Neuronal differentiation of adipose-derived stem cells and their transplantation for cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Guoping Tian; Xiaoguang Luo; Jin Zhou; Jinge Wang; Bing Xu; Li Li; Feng Zhu; Jian Han; Jianping Li; Siyang Zhang

    2012-01-01

    OBJECTIVE: To review published data on the biological characteristics, differentiation and applications of adipose-derived stem cells in ischemic diseases.DATA RETRIEVAL: A computer-based online search of reports published from January 2005 to June 2012 related to the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia was performed in Web of Science using the key words"adipose-derived stem cells", "neural-like cells", "transplantation", "stroke", and "cerebral ischemia". SELECTION CRITERIA: The documents associated with the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia were selected, and those published in the last 3-5 years or in authoritative journals were preferred in the same field. Totally 89 articles were obtained in the initial retrieval, of which 53 were chosen based on the inclusion criteria. MAIN OUTCOME MEASURES: Biological characteristics and induced differentiation ofadipose-derived stem cells and cell transplantation for disease treatment as well as the underlying mechanism of clinical application. RESULTS: The advantages of adipose-derived stem cells include their ease of procurement, wide availability, rapid expansion, low tumorigenesis, low immunogenicity, and absence of ethical constraints. Preclinical experiments have demonstrated that transplanted adipose-derived stem cells can improve neurological functions, reduce small regions of cerebral infarction, promote angiogenesis, and express neuron-specific markers. The improvement of neurological functions was demonstrated in experiments using different methods and time courses of adipose-derived stem cell transplantation, but the mechanisms remain unclear.CONCLUSION: Further research into the treatment of ischemic disease by adipose-derived stem cell transplantation is needed to determine their mechanism of action.

  19. Adipose-derived stem cells and platelet-rich plasma: the keys to functional periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-09-01

    Numerous different types of periodontal tissue regeneration therapies have been developed clinically with variable outcomes and serious limitations. A key goal of periodontal therapy is to regenerate the destroyed periodontal tissues including alveolar bone, cementum and periodontal ligament. The critical factors in attaining successful periodontal tissue regeneration are the correct recruitment of cells to the site and the production of a suitable extra cellular matrix consistent with the periodontal tissues. Adipose tissue, from which mesenchymal stem cells can be harvested easily and safely, is an especially attractive stem cell source, because adipose-derived stem cells have a strong potential for cell differentiation and growth factor secretion. Meanwhile, the usefulness of platelet-rich plasma in the field of dental surgery has attracted attention. Therapeutic effects of platelet-rich plasma are believed to occur through the provision of concentrated levels of platelet-derived growth factors. Further, recent reports suggested the effect of platelet-rich plasma on mesenchymal stem cell proliferation, differentiation and survival rate. Therefore, the admixture of mesenchymal stem cells and platelet-rich plasma may indicate the great potential for tissue regenerations including periodontal tissue regeneration. In this review, the potential of adipose-derived stem cells and platelet-rich plasma is introduced. Of particular interest, the usefulness in periodontal tissue regeneration and future perspective is discussed.

  20. Adipose-derived mesenchymal stem cells combined with platelet gel for repair of intervertebral disc degeneration in rats%脂肪间充质干细胞复合血小板凝胶修复兔椎间盘退变★

    Institute of Scientific and Technical Information of China (English)

    孟繁星; 李放; 叶超群; 阴彦斌; 高阳

    2013-01-01

      背景:富含血小板的血浆凝胶作为三维支架使其中干细胞可以呈立体生长,同时富含血小板的血浆凝胶又释放大量生长因子,促进脂肪间充质干细胞增殖及分化。目的:探讨脂肪间充质干细胞-富含血小板的血浆凝胶复合体注入兔椎间盘退变模型后的修复作用。方法:取兔动脉血采用二次离心法制备自体富血小板血浆,取兔肩胛间区脂肪分离培养脂肪间充质干细胞,制备脂肪间充质干细胞-富含血小板的血浆凝胶复合体。新西兰大白兔随机分为对照组、模型组、富含血小板的血浆凝胶组和脂肪间充质干细胞-富含血小板的血浆凝胶复合体组,后3组以穿刺法制备椎间盘退变模型,退变模型制备完成2周后,富含血小板的血浆凝胶组和脂肪间充质干细胞-富含血小板的血浆凝胶复合体组分别对退变间盘中注射相应材料。结果与结论:兔椎间盘退变后,间隙明显降低,髓核信号明显降低,髓核内基质高,密度染色较深;而经富含血小板的血浆凝胶和脂肪间充质干细胞-富含血小板的血浆凝胶复合体治疗后,上述症状明显改善,且脂肪间充质干细胞-富含血小板的血浆凝胶复合体的治疗效果更好。提示对退变椎间盘内注射富含血小板的血浆凝胶支架及脂肪间充质干细胞-富含血小板的血浆凝胶复合体均有利于减少退变对椎间盘的影响,其中脂肪间充质干细胞-富含血小板的血浆凝胶复合体注射效果更为突出。%BACKGROUND: Platelet-rich plasma gel serves as a three-dimensional scaffold in which stem cel s can exhibit a three-dimensional growth. Meanwhile, platelet-rich plasma gel can release large amounts of growth factors to promote the proliferation and differentiation of adipose-derived mesenchymal stem cel s. OBJECTIVE: To explore the repair effect of injection of autologous platelet rich plasma-adipose

  1. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  2. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  3. 脂肪间充质干细胞的体外诱导和成血管作用%Induction of adipose-derived mesenchymal stem cells in vitro and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    张亚; 周云; 贾立山; 翟景梅; 苗小芬; 王睿

    2011-01-01

    目的 研究在体外诱导脂肪间充质干细胞(ADMSCs)向内皮细胞分化、在立体培养基上的血管形成情况.方法 将传至第三代的ADMSCs用内皮细胞诱导液、Matrigel三维培养基进行诱导培养,对ADMSCs和诱导细胞选用CD31、CD44细胞表面抗原在流式细胞仪检测表达情况,用HE染色、FⅧ-RAg免疫组织化学染色及倒置显微镜、透射电镜等进行观察鉴定.结果流式细胞仪上检测ADMSCs的表达为CD44阳性、CD31阴性,诱导的细胞CD31阳性、CD44阴性.诱导细胞14d倒置显微镜下呈铺路石样形态,FⅧ-RAg染色细胞呈阳性,透射电镜下在细胞浆内见到内皮细胞特有标志物Weibel-Palade小体。ADMSCs在Matrigel三维培养基上诱导,24h细胞迁徙成团、有伪足伸出,诱导7d伸出的细胞形成交叉网格状,13d形成较长血管,20d较长血管粗而多、出现小分叉,30d长血管、分叉血管变粗厚;FⅧ-RAg染色后诱导血管亦呈阳性.结论 脂肪间充质干细胞在体外经诱导能向内皮细胞分化、能形成血管,可作为促进组织工程移植物血管化的良好的种子细胞.%Objective To study in vitro induction of adipose-derived mesenchymal stem cells (ADMSCs) into endothelial cells and blood vessel formation on three-dimensional (3D) media. Methods The 3rd passage ADMSCs were induced in vitro into endothelial cells on conditional medium and grew on Matrigel medium. The cell surface antigens CD31 and CD44 were detected with flow cytometric analysis before and after induction. HE staining, FⅧ-RAg immunohistochemical staining, inverted microscope and transmission electron microscope were used for morphological study.Results The expression of CD44 was positive and CD31 negative in ADMSCs in flow cytometric analysis.After induction,CD31 became positive while CD44 was negative. Paving-stone-like cell appearance was seen under inverted microscope 14 days after induction.The cells were FⅧ-RAg positively

  4. 功能性自组装纳米多肽水凝胶负载脂肪间充质干细胞的研究%Functionalized self-assembling peptide hydrogel loaded with adipose derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    刘占鳌; 黄文柏; 周冠洲; 范鲁峰; 邵闻冲; 胡三元; 孙念峰

    2015-01-01

    目的 观察功能性自组装多肽的理化性质、自组装成水凝胶特性及对细胞进行三维培养.方法 合成RADA、RGD、KLT 3种多肽并制备RAD/KLT/RGD多肽混合溶液,盐溶液诱发多肽溶液自组装成水凝胶.原代培养脂肪间充质干细胞并对其进行鉴定,使用水凝胶对其三维培养来观察其在水凝胶中的生长,并设置RAD/KLT水凝胶组做对比.结果 多肽溶液成功自组装成水凝胶,干细胞在三维培养中迁移、分化并有成管腔的趋势,RAD/KLT/RGD水凝胶[(87.75±4.79)个细胞/视野]较对比组[(65.50±6.25)个细胞/视野]黏附生长了更多的细胞(P<0.05).结论 RAD/KLT/RGD功能性自组装纳米多肽水凝胶是一种更为优良的组织工程框架材料.%Objective To observe the properties of the functionalized self-assembling peptide hydrogel, and investigate the three-dimensional culture of the adipose derived mesenchymal stem cells (Ad-MSCs).Methods Peptides (RADA, RGD and KLT) were prepared and functionalized self-assembling peptide solution (RAD/KLT/RGD) was prepared by mixing RADA, RGD and KLT solutions with a volume ratio of 2:1:1.Ad-MSCs were isolated, cultured and identified.After the peptide hydrogel was successfully formed via the self-assemble process, three-dimensional cell culture was performed.And RAD/KLT hydrogel was designed as the control group.Results After the peptide solution was induced by phosphate buffer (PBS), hydrogel was constructed.Ad-MSCs stretched well and connected each other, inclined to format lumen structure when three-dimensional culture was done.RAD/KLT/RGD hydrogel [(87.75 ± 4.79) cells per visual field] contained more cells than control group [(65.50 ± 6.25) cells per visual field, P < 0.05].Conclusion Functionalized self-assembling peptide hydrogel RAD/KLT/RGD can be a more suitable tissue engineering scaffold.

  5. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  6. The Role of Adipose-Derived Stem Cells in Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Riccardo Schweizer

    2015-01-01

    Full Text Available Conventional breast cancer extirpation involves resection of parts of or the whole gland, resulting in asymmetry and disfiguration. Given the unsatisfactory aesthetic outcomes, patients often desire postmastectomy reconstructive procedures. Autologous fat grafting has been proposed for reconstructive purposes for decades to restore form and anatomy after mastectomy. Fat has the inherent advantage of being autologous tissue and the most natural-appearing filler, but given its inconsistent engraftment and retention rates, it lacks reliability. Implementation of autologous fat grafts with cellular adjuncts, such as multipotent adipose-derived stem cells (ADSCs, has shown promising results. However, it is pertinent and critical to question whether these cells could promote any residual tumor cells to proliferate, differentiate, or metastasize or even induce de novo carcinogenesis. Thus far, preclinical and clinical study findings are discordant. A trend towards potential promotion of both breast cancer growth and invasion by ADSCs found in basic science studies was indeed not confirmed in clinical trials. Whether experimental findings eventually correlate with or will be predictive of clinical outcomes remains unclear. Herein, we aimed to concisely review current experimental findings on the interaction of mesenchymal stem cells and breast cancer, mainly focusing on ADSCs as a promising tool for regenerative medicine, and discuss the implications in clinical translation.

  7. Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells.

    Science.gov (United States)

    Rinella, Letizia; Marano, Francesca; Berta, Laura; Bosco, Ornella; Fraccalvieri, Marco; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-03-01

    Mesenchymal stem cells are precursors of myofibroblasts, cells deeply involved in promoting tissue repair and regeneration. However, since myofibroblast persistence is associated with the development of tissue fibrosis, the use of tools that can modulate stem cell differentiation toward myofibroblasts is central. Extracorporeal shock waves are transient short-term acoustic pulses first employed to treat urinary stones. They are a leading choice in the treatment of several orthopedic diseases and, notably, they have been reported as an effective treatment for patients with fibrotic sequels from burn scars. Based on these considerations, the aim of this study is to define the role of shock waves in modulating the differentiation of human adipose-derived stem cells toward myofibroblasts. Shock waves inhibit the development of a myofibroblast phenotype; they down-regulate the expression of the myofibroblast marker alpha smooth muscle actin and the extracellular matrix protein type I collagen. Functionally, stem cells acquire a more fibroblast-like profile characterized by a low contractility and a high migratory ability. Shock wave treatment reduces the expression of integrin alpha 11, a major collagen receptor in fibroblastic cells, involved in myofibroblast differentiation. Mechanistically, the resistance of integrin alpha 11-overexpressing cells to shock waves in terms of alpha smooth muscle actin expression and cell migration and contraction suggests also a role of this integrin in the translation of shock wave signal into stem cell responses. In conclusion, this in vitro study shows that stem cell differentiation toward myofibroblasts can be controlled by shock waves and, consequently, sustains their use as a therapeutic approach in reducing the risk of skin and tissue fibrosis. PMID:26808471

  8. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    OpenAIRE

    Wan Safwani Wan Kamarul Zaman; Makpol Suzana; Sathapan Somasundaram; Chua Kien

    2012-01-01

    Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study...

  9. 脂肪间充质干细胞移植对心肌梗死后炎症反应及心室重构的影响%Effect of adipose-derived mesenchymal stem cell transplantation on inflammatory response and ventricular remodeling after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    樊艳; 王建军; 魏峰; 樊晓海; 马爱群

    2014-01-01

    BACKGROUND:Whether adipose-derived mesenchymal stem cells are able to exert immunomodulatory effects in the treatment of myocardial infarction, as wel as the best time, is less reported. OBJECTIVE:To observe the effect of adipose-derived mesenchymal stem cells on inflammatory reaction and ventricular remodeling after myocardial infarction, and to explore the possible mechanisms of adipose-derived mesenchymal stem cells for the treatment of myocardial infarction. METHODS:Enzyme digestion method was employed to isolate and culture rat adipose-derived mesenchymal stem cells. By ligation of the left anterior descending coronary artery, we established animal models of myocardial infarction in 40 rats. The rats were randomly divided into four groups:sham group, control group (injected high-glucose Dulbecco’s modified Eagle’s medium), 3-hour transplantation group (transplanted adipose-derived mesenchymal stem cells after 3 hours of myocardial infarction), 7-day transplantation group (transplanted adipose-derived mesenchymal stem cells after 7 days of myocardial infarction). After 14 days of operation, the levels of tumor necrosis factor-αand interleukin-10 in the plasma were detected by enzyme linked immunosorbent assay. After 28 days of operation, the left ventricular end diastolic diameter, left ventricular end systolic diameter, left ventricular ejection fraction and left ventricular fractional shortening were measured by echocardiography. RESULTS AND CONCLUSION:Compared with the control group, in the 3-hour transplantation group and 7-day transplantation group, the levels of tumor necrosis factor-αwere significantly lower (P  目的:观察移植的脂肪间充质干细胞对心肌梗死后炎症反应及心室重构的影响,探讨脂肪间充质干细胞治疗心肌梗死的可能机制。  方法:酶消化法分离培养大鼠脂肪间充质干细胞,40只大鼠结扎左冠状动脉前降支建立心肌梗死模型后随机数字表法均分

  10. From bench to bedside: use of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Feisst V

    2015-11-01

    Full Text Available Vaughan Feisst,1 Sarah Meidinger,1 Michelle B Locke2 1Dunbar Laboratory, School of Biological Sciences, 2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand Abstract: Since the discovery of adipose-derived stem cells (ASC in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation. Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. Keywords: standardization, bystander effect, stromal cells, mesenchymal stem cells, stromal vascular fraction

  11. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis.

    Directory of Open Access Journals (Sweden)

    Claudia Chavez-Munoz

    Full Text Available Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS. After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC; these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca(2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca(2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a

  12. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun;

    2012-01-01

    for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  13. Adipose-Derived Stem Cells (ADSC) and Aesthetic Surgery: A Mini Review

    OpenAIRE

    Mehrabani, Davood; Mehrabani, Golshid; Zare, Shahrokh; Manafi, Ali

    2013-01-01

    In cell therapy and regenerative medicine, a reliable source of stem cells together with cytokine growth factors and biomaterial scaffolds seem necessary. As adipose tissue is easy accessible and is abundant source of adult stem cells and can differentiate along multiple lineages, it can be considered as a good candidate in aesthetic medicine. The clinical application of adipose-derived stem cells (ASCs) is reviewed in this article.

  14. Characterization of vocal fold regeneration after adipose-derived mesenchymal stem cells implanting%自体脂肪间充质干细胞移植促进声带修复再生的实验研究

    Institute of Scientific and Technical Information of China (English)

    胡蓉; 徐文; 范尔钟

    2010-01-01

    autologous adipose-derived mesenchymal stem cells ( ADSC ), and to observe the characteristics of lamina propria of the vocal folds and its major extracellular matrix ( ECM ), as well as the growth features of ADSC. Methods The lamina propria was injured by localized resection in fifty-three vocal folds of thirty-four rabbits.Isolation, culture and identification of ADSC were performed in twenty rabbits. Three to five days after vocal folds injury, autogeneic ADSC were implanted into the injured vocal folds. As control, scaffolds ( collagen or hyaluronic acid) and none were injected into eighteen and fifteen vocal folds respectively. Larynges were harvested at 15 days, 40 days and 3, 6, 12 months after operation. The growth and distribution of ADSC were detected by DAPI stain. Meanwhile, HE staining was performed for histopathologic research, Masson trichrome staining, Alcian Blue staining and immunohistochemical staining were used for collagen,hyaluronic acid and fibronection respectively. Results ADSC showed a spindle-shaped adherent growth,with multi-differentiation potential. After implanting into the injured vocal fold, ADSC can survive in vocal fold lamina propria. In ADSC implanting group, the morphology and histologic structure of vocal folds were similar to normal in six and twelve months after ADSC implanting respectively. collagen had an increasing trend in three months, with the disorderly distribution in the vocal fold lamina propria, then it became decreasing until the twelveth month, when concentration closed to normal, however, distribution of collagen was a little irregular. The content of hyaluronic acid increased within forty days and distributed in the lamina propria, then gradually reduced to normal levels in the following twelve months, and limited in the superficial and middle layers of lamina propria, which closed to normal. Fibronectin in the lamina propria continued to scattered at the peak levels at fortieth day, then decreased in the later twelve

  15. Sox9 Modulates Proliferation and Expression of Osteogenic Markers of Adipose-Derived Stem Cells (ASC

    Directory of Open Access Journals (Sweden)

    Sabine Stöckl

    2013-05-01

    Full Text Available Background: Mesenchymal stem cells (MSC are promising tools for tissue-engineering and musculoskeletal regeneration. They reside within various tissues, like adipose tissue, periosteum, synovia, muscle, dermis, blood and bone marrow, latter being the most common tissue used for MSC isolation. A promising alternative source for MSC is adipose tissue due to better availability and higher yield of MSC in comparison to bone marrow. A drawback is the yet fragmentary knowledge of adipose-derived stem cell (ASC physiology in order to make them a safe tool for in vivo application. Methods/Results: Here, we identified Sox9 as a highly expressed and crucial transcription factor in undifferentiated rat ASC (rASC. In comparison to rat bone marrow-derived stem cells (rBMSC, mRNA and protein levels of Sox9 were significantly higher in rASC. To study the role of Sox9 in detail, we silenced Sox9 with shRNA in rASC and examined proliferation, apoptosis and the expression of osteogenic differentiation markers. Our results clearly point to a difference in the expression profile of osteogenic marker genes between undifferentiated rASC and rBMSC in early passages. Sox9 silencing induced the expression of osteocalcin, Vegfα and Mmp13, and decreased rASC proliferation accompanied with an induction of p21 and cyclin D1 expression and delayed S-phase entry. Conclusions: We suggest a pro-proliferative role for Sox9 in undifferentiated rASC which may explain the higher proliferation rate of rASC compared to rBMSC. Moreover, we propose an osteogenic differentiation delaying role of Sox9 in rASC which suggests that Sox9 expression is needed to maintain rASC in an undifferentiated, proliferative state.

  16. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  17. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    Science.gov (United States)

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  18. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    Science.gov (United States)

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  19. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-01-01

    Full Text Available Currently, equine metabolic syndrome (EMS, an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC. Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN and horses suffering from EMS (ASCEMS. ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO and reactive oxygen species (ROS in these cells, accompanied by reduced superoxide dismutase (SOD activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS.

  20. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts

    Directory of Open Access Journals (Sweden)

    You Li

    2012-01-01

    Full Text Available Abstract Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467 involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs. Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.

  1. Transplantation of adipose derived mesenchymal stem cells for treatment of type 1 diabetes mellitus%脂肪间充质干细胞移植治疗1型糖尿病

    Institute of Scientific and Technical Information of China (English)

    许评; 刘建安

    2015-01-01

    The diabetes mellitus of type 1 severely threats human health. Transplantation of cells from pancreatic islet can provide normal pancreatic islet cells for human body. At the same time, it can replace cells from pancreatic islet which are destroyed by type 1 diabetes mellitus. As a result, normal blood glucose levels can be achieved, and in order to prevent and delay the development of various diabetic complications. As the research of stem cell continues, after induced mesenchymal stem cells were transplanted to type 1 diabetes mellitus patients, we have got better results. Of course, many problems are found. Even so, the transplantion of induced adipose tissue-derived mesenchymal stem cells for clinical treatment of type 1 diabetes has brought new hope, and pointed out the direction.%1型糖尿病严重威胁人类健康,胰岛细胞移植可为机体提供正常的胰岛组织细胞,替代体内已被疾病破坏的胰岛细胞,从而维持正常的血糖水平,达到阻止或延缓并发症的发生,为胰岛素依赖的糖尿病带来新的治疗方案。随着干细胞研究的深入,间充质干细胞诱导后移植治疗1型糖尿病取得了进一步的发展,当然随着研究的深入发现了许多亟待解决的问题,即便如此,脂肪间充质干细胞诱导后移植为临床治疗1型糖尿病带来了新的希望,并指明了方向。

  2. 脂肪间充质干细胞移植治疗1型糖尿病%Transplantation of adipose derived mesenchymal stem cells for treatment of type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    许评; 刘建安

    2015-01-01

    1型糖尿病严重威胁人类健康,胰岛细胞移植可为机体提供正常的胰岛组织细胞,替代体内已被疾病破坏的胰岛细胞,从而维持正常的血糖水平,达到阻止或延缓并发症的发生,为胰岛素依赖的糖尿病带来新的治疗方案。随着干细胞研究的深入,间充质干细胞诱导后移植治疗1型糖尿病取得了进一步的发展,当然随着研究的深入发现了许多亟待解决的问题,即便如此,脂肪间充质干细胞诱导后移植为临床治疗1型糖尿病带来了新的希望,并指明了方向。%The diabetes mellitus of type 1 severely threats human health. Transplantation of cells from pancreatic islet can provide normal pancreatic islet cells for human body. At the same time, it can replace cells from pancreatic islet which are destroyed by type 1 diabetes mellitus. As a result, normal blood glucose levels can be achieved, and in order to prevent and delay the development of various diabetic complications. As the research of stem cell continues, after induced mesenchymal stem cells were transplanted to type 1 diabetes mellitus patients, we have got better results. Of course, many problems are found. Even so, the transplantion of induced adipose tissue-derived mesenchymal stem cells for clinical treatment of type 1 diabetes has brought new hope, and pointed out the direction.

  3. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  4. Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

    OpenAIRE

    Yong, Kar Wey; Pingguan-Murphy, Belinda; Xu, Feng; Abas, Wan Abu Bakar Wan; Choi, Jane Ru; Omar, Siti Zawiah; Azmi, Mat Adenan Noor; Chua, Kien Hui; Safwani, Wan Kamarul Zaman Wan

    2015-01-01

    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, in...

  5. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    OpenAIRE

    Bajek, Anna; GURTOWSKA, NATALIA; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from ...

  6. Adipose-Derived Stem Cell Collection and Characterization in Bottlenose Dolphins (Tursiops truncatus)

    OpenAIRE

    Johnson, Shawn P.; Catania, Jeffrey M.; Harman, Robert J.; Jensen, Eric D.

    2012-01-01

    To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal ...

  7. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    OpenAIRE

    Cecilia Brännmark; Alexandra Paul; Diana Ribeiro; Björn Magnusson; Gabriella Brolén; Annika Enejder; Anna Forslöw

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to c...

  8. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model

    OpenAIRE

    Zhang, Qi; Liu, Li-Na; Yong, Qi; Deng, Jing-Cheng; Cao, Wei-Gang

    2015-01-01

    Introduction Redundant collagen deposition at sites of healing dermal wounds results in hypertrophic scars. Adipose-derived stem cells (ADSCs) exhibit promise in a variety of anti-fibrosis applications by attenuating collagen deposition. The objective of this study was to explore the influence of an intralesional injection of ADSCs on hypertrophic scar formation by using an established rabbit ear model. Methods Twelve New Zealand albino rabbits were equally divided into three groups, and six ...

  9. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells

    OpenAIRE

    Duscher, Dominik; Luan, Anna; Rennert, Robert C; Atashroo, David; Maan, Zeshaan N; Brett, Elizabeth A.; Whittam, Alexander J.; Ho, Natalie; Lin, Michelle; Hu, Michael S.; Graham G Walmsley; Wenny, Raphael; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from t...

  10. Adipose-derived stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  11. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Galateanu Bianca

    2012-06-01

    Full Text Available Abstract Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs. Results Culture-expanded cells isolated from the stromal vascular fraction (SVF, corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix, and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix. Both hydrogels showed a porous structure under scanning electron microscopy (SEM and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for

  12. 体外诱导人脂肪间充质干细胞成管状结构的实验研究%An experimental study of tubular structure inducted by human adipose derived mesenchymal stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    白晓智; 陶克; 李小强; 张月; 石继红; 汤朝武; 胡大海

    2012-01-01

    Objective To explore the feasibility of tubular structure inducted by human adipose derived mesenehymal stem cells (ADSCs), which provide the theoretical basis for the three-dimensional reconstruction of duet-like structures in vitro. Methods ADSCs were isolated and cultured in vitro, and expression of CD29 , CD31 and CD34, CD45, CD90, GDI05 in ADSCs were detected with flow (ytometry. ADSCs were induced into osteoeytes and lipoeytes by osteogenic induction medium ( 10% fetid bovine serum, 0. 1 μmol/L dexametha-sonc, 200 μmol/L ascorbic acid, 10 mmol/L β-glyecrophosphatc, DMEM culture medium )and adipogenie induction medium (10% fetal bovine serum, 1μmol/L, dexamethasone, 200 μmol/L indomcthaein, 0.5 mmol/L IBMX, 10 mg/L insulin in DMEM culture medium ) in vitro, respectively and then identificated by alkaline phosphatase staining and oil red O staining. The third generation of cultured ADSCs treated with DMEM conditioned medium (10% fetal bovine serum and 40 ng/ml HGF )were inducted into the three-dimensiona tubular structures in Matrigcl glue. Results The cultured human .ADSCs proliferated well with fusiform shape. Flow cy-tometry results showed rates of positive expression of CD29, CD90 and CDI05 were 86.4%, 97.7%, 89.8%, respectively; the positive rates of CD3I , CD34, CD45 expression were 4.1%, 3.7% , 2.3%,respectively. The induced cells were presented the phenotypie characteristics of the lipoeytes and bone osteoeytes which showed tubular structures at 5 days after treating by HGF in Matrigcl. Conclusion ADSCs could be used in tissue engi neering research, like constructing glandular duct-like structures.%目的 探索体外诱导人脂肪间充质干细胞成管状结构的可行性,为体外三维重建腺管样结构提供理论基础.方法 体外分离培养脂肪间充质干细胞,采用流式细胞仪检测细胞表面标记CD29、CD31、CD34、CD45、CD90、CD105的表达.经成骨诱导液(体积分数为10%胎牛血清,0.1μmol/L地塞米松,200

  13. Successful Isolation of Viable Adipose-Derived Stem Cells from Human Adipose Tissue Subject to Long-Term Cryopreservation: Positive Implications for Adult Stem Cell-Based Therapeutics in Patients of Advanced Age

    Directory of Open Access Journals (Sweden)

    Sean M. Devitt

    2015-01-01

    Full Text Available We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days from patients of varying ages (26–62 years. Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved 2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  14. Neurogenic Differentiation of Murine Adipose Derived Stem Cells Transfected with EGFP in vitro

    Institute of Scientific and Technical Information of China (English)

    方忠; 杨琴; 熊伟; 李光辉; 肖骏; 郭风劲; 李锋; 陈安民

    2010-01-01

    Some studies indicate that adipose derived stem cells(ADSCs)can differentiate into adipogenic,chondrogenic,myogenic,and osteogenic cells in vitro.However,whether ADSCs can be induced to differentiate into neural cells in vitro has not been clearly demonstrated.In this study,the ADSCs isolated from the murine adipose tissue were cultured and transfected with the EGFP gene,and then the cells were induced for neural differentiation.The morphology of those ADSCs began to change within two days which developed i...

  15. Adhesion and proliferation of adipose derived mesenchymal stromal cells on chitosan scaffolds with different degree of deacetylation

    Directory of Open Access Journals (Sweden)

    Rogulska O. Yu.

    2014-03-01

    Full Text Available Aim. Selection of the optimal scaffold for the creation of tissue engineering constructs is a key challenge of biotechnology. In this study we investigated the biocompatibility of human adipose derived mesenchymal stromal cells (MSCs within the three-dimensional matrices based on the chitosan with a different degree of deacetylation. Methods. MSCs were seeded on the chitosan scaffolds by a perfusion method and cultured for 7 days. The morphology, viability, metabolic activity and distribution of the cells within the matrices were analyzed. Results. The level of MSCs adhesion to the surface of the chitosan scaffolds with low degree of deacetylation (67 % was insignificant, the cells were round and formed aggregates. In the chitosan scaffolds with a high degree of deacetylation (82 % the cells attached to the surface of matrices, were able to spread and proliferate. Conclusions. The chitosan scaffolds with a high degree of deacetylation and the human adipose derived MSCs can be used for the creation of bioengineered structures.

  16. Lead tolerance of metallothionein -overexpressed human adipose -derived mesenchymal stem cells%金属硫蛋白修饰人脂肪来源间充质干细胞对铅的耐受性研究

    Institute of Scientific and Technical Information of China (English)

    张芸; 纪惜銮; 罗朝霞; 杨顺; 刘晓雷; 李结明; 谢亮; 姜舒

    2015-01-01

    目的:构建携带金属硫蛋白( MT)基因的慢病毒载体,验证其在人脂肪来源间充质干细胞( hADSCs)中的表达及分析其对铅中毒的作用。方法通过慢病毒载体pLenti-CMV-hChR 2(E123T-H134R)-EYFP系统,构建MT基因过表达慢病毒载体pLenti-CMV-MT2A-EYFP,感染hADSCs,构建携带MT基因的hADSCs ( MT-hADSCs),应用免疫细胞荧光法检测金属硫蛋白的表达情况。实验分为空白对照组、空载病毒组、重组病毒感染组分析MT-hADSCs对铅的耐受性,采用MTT法检测各组细胞的存活率。结果成功构建携带金属硫蛋白基因的慢病毒载体pLenti-CMV-MT2A-EYFP感染hADSCs,金属硫蛋白获得有效表达,MTT法检测结果显示重组病毒感染组细胞与空白对照组和空载病毒感染组细胞的存活率相比显著提高,具有统计学意义( P<0.05)。结论通过慢病毒载体在hADSCs中有效表达的金属硫蛋白可提高hADSCs对铅的耐受性,证实金属硫蛋白能降低重金属铅对细胞的毒性作用。%Objective The lentiviral vector was recombined with metal-lothionein ( MT) gene to identify the MT overexpression in human adi-pose-derived mesenchymal stem cells ( hADSCs) after transfection and then to study the lead tolerance of genetically modified hADSCs with MT (MT-hADSCs).Methods The recombinant plenti-CMV-MT2A-EYFP vector was constructed with pLenti -CMV -hChR 2 ( E123 T -H134R)-EYFP and MT2A gene for transfecting hADSCs to obtain the MT-hADSCs.The overexpression of MT in hADSCs was identified by immunofluorescence assay.The MTT method was used to assess the cell viability of hADSCs, hADSCs transfected with empty vector, and MT-hADSCs, all of which were treated with lead acetate.Results The re-combinant plenti -CMV -MT2A -EYFP was successfully constructed and transfected into hADSCs.The overexpression of MT was positively detected in the MT -hADSCs.The tolerance of MT-hADSCs to

  17. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    International Nuclear Information System (INIS)

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  18. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  19. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro.

    Science.gov (United States)

    van Vollenstee, Fiona A; Jackson, Carlo; Hoffmann, Danie; Potgieter, Marnie; Durandt, Chrisna; Pepper, Michael S

    2016-10-01

    Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.

  20. Estrogen Receptor α and β in Mouse: Adipose-Derived Stem Cell Proliferation, Migration, and Brown Adipogenesis In Vitro

    Directory of Open Access Journals (Sweden)

    Wentian Zhang

    2016-05-01

    Full Text Available Background/Aims: Adipose-derived stem cells (ASCs belong to mesenchymal stem cells and may play a potential role as seeding cells in stem cell transplantation. To be able to exploit stem cells as therapeutic tool, their defects in some important cellular functions, such as low survival rate and cellular activity, should be considered. This is especially the case for stem cells that are intended for transplantation. Of note, stem cell responses to hormones should be considered since estrogen is known to play a critical role in stem cell behavior. However, different impacts of the estrogen receptor (ER types α and β have not been fully determined in ASC function. In this study, we investigated effects of ERα and ERβ on ASC proliferation, migration, as well as in adipogenesis. Methods: ASCs obtained from mice were cultured with 100nM ERα or ERβ agonist PPT and DPN, respectively. The ERα and ERβ antagonist ICI 182,780 (100nM was used as control. Results: Compared to ERβ, ERα appears more potent in improving ASC proliferation and migration. Investigation of adipogenesis revealed that ERβ played a significant role in suppressing ASC-mediated brown tissue adipogenesis which is in contrast to ERα. These results correlated with reduced mRNA expression of UCP-1, PGC-1α and PPAR-γ. Conclusions: ERα plays a more critical role in promoting ASC proliferation and migration while ERβ is more potent in suppressing ASC brown adipose tissue differentiation mediated by decreased UCP-1, PGC-1α and PPAR-γ expression.

  1. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    Science.gov (United States)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  2. Role of Adipose-derived Stem Cells in Fat Grafting and Reconstructive Surgery

    Science.gov (United States)

    Tan, Shaun S; Ng, Zhi Yang; Zhan, Weiqing; Rozen, Warren

    2016-01-01

    Autologous fat grafting is commonly utilised to reconstruct soft tissue defects caused by ageing, trauma, chronic wounds and cancer resection. The benefits of fat grafting are minimal donor site morbidity and ease of availability through liposuction or lipectomy. Nonetheless, survival and longevity of fat grafts remain poor post-engraftment. Various methods to enhance fat graft survival are currently under investigation and its stem cell constituents are of particular interest. Cell-assisted lipotransfer refers to the addition of adipose-derived stem cell (ASC) rich component of stromal vascular fraction to lipoaspirate, the results of which have proven promising. This article aims to review the role of ASCs in fat grafting and reconstructive surgery.

  3. Immunomodulatory Effects of Adipose-Derived Stem Cells: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Angelo A. Leto Barone

    2013-01-01

    Full Text Available Adipose-derived stromal cells (ASCs are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions or feared (i.e., solid organ or reconstructive transplantation. Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulation in vitro and in vivo and discuss their potential in regulating the immune system in the context of transplantation.

  4. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  5. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing.

    Science.gov (United States)

    Koenen, Paola; Spanholtz, Timo A; Maegele, Marc; Stürmer, Ewa; Brockamp, Thomas; Neugebauer, Edmund; Thamm, Oliver C

    2015-02-01

    Wound healing is a complex biological process that requires a well-orchestrated interaction of mediators as well as resident and infiltrating cells. In this context, mesenchymal stem cells play a crucial role as they are attracted to the wound site and influence tissue regeneration by various mechanisms. In chronic wounds, these processes are disturbed. In a comparative approach, adipose-derived stem cells (ASC) were treated with acute and chronic wound fluids (AWF and CWF, respectively). Proliferation and migration were investigated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and transwell migration assay. Gene expression changes were analysed using quantitative real time-polymerase chain reaction. AWF had a significantly stronger chemotactic impact on ASC than CWF (77·5% versus 59·8% migrated cells). While proliferation was stimulated by AWF up to 136·3%, CWF had a negative effect on proliferation over time (80·3%). Expression of b-FGF, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was strongly induced by CWF compared with a mild induction by AWF. These results give an insight into impaired ASC function in chronic wounds. The detected effect of CWF on proliferation and migration of ASC might be one reason for an insufficient healing process in chronic wounds.

  6. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  7. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Science.gov (United States)

    Aji, Kaisaier; Maimaijiang, Munila; Aimaiti, Abudusaimi; Rexiati, Mulati; Azhati, Baihetiya; Tusong, Hamulati

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs. PMID:27493668

  8. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis

    Institute of Scientific and Technical Information of China (English)

    Qiaozhi Wang; Lile Zhou; Yong Guo; Guangyi Liu; Jiyan Cheng; Hong Yu

    2013-01-01

    Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10%Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Si-nensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in-ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani-sole-induced group, and the expression of glial fibril ary acidic protein was negative. After they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem celldifferentiation into neuron-like cells and produce less cytotoxicity.

  9. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Science.gov (United States)

    2012-01-01

    Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs. PMID:22221649

  10. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Wan Safwani Wan Kamarul Zaman

    2012-01-01

    Full Text Available Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP, Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs.

  11. Immunomagnetic Separation of Fat Depot-Specific Sca1high Adipose-Derived Stem Cells (Ascs)

    Science.gov (United States)

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1, 2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3, 4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs. PMID:27583550

  12. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  13. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen;

    2009-01-01

    In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent...... adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  14. Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres.

    Science.gov (United States)

    Dromard, C; Bourin, P; André, M; De Barros, S; Casteilla, L; Planat-Benard, V

    2011-04-01

    With the goal of obtaining clinically safe human adipose-derived stroma/stem cells (ASC) and eliminating the use of serum, we have developed a new culture system that allows the expansion of ASC as spheres in a defined medium. These spheres can be passaged several times. They are not only aggregated cells but rather originate from single cells as clonal spheres can be obtained after seeding at very low density and reform clonal spheres after dissociation. These spheres can also revert to monolayer growth when plated in medium containing human plasma and even generate fibroblast-like colonies (CFU-f). Under several differentiation-specific media, spheres-derived ASC maintain their capacity to differentiate into osteoblasts, endothelial cells and adipocytes. These results indicate that human ASC can be maintained in a serum-free 3D culture system, which is of great interest for the expansion in bioreactors of autologous ASC and their use in clinical trials.

  15. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  16. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  17. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  18. Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds.

    Science.gov (United States)

    Kosaraju, Revanth; Rennert, Robert C; Maan, Zeshaan N; Duscher, Dominik; Barrera, Janos; Whittam, Alexander J; Januszyk, Michael; Rajadas, Jayakumar; Rodrigues, Melanie; Gurtner, Geoffrey C

    2016-02-01

    Adipose-derived mesenchymal stem cells (ASCs) are appealing for cell-based wound therapies because of their accessibility and ease of harvest, but their utility is limited by poor cell survival within the harsh wound microenvironment. In prior work, our laboratory has demonstrated that seeding ASCs within a soft pullulan-collagen hydrogel enhances ASC survival and improves wound healing. To more fully understand the mechanism of this therapy, we examined whether ASC-seeded hydrogels were able to modulate the recruitment and/or functionality of endogenous progenitor cells. Employing a parabiosis model and fluorescence-activated cell sorting analysis, we demonstrate that application of ASC-seeded hydrogels to wounds, when compared with injected ASCs or a noncell control, increased the recruitment of provascular circulating bone marrow-derived mesenchymal progenitor cells (BM-MPCs). BM-MPCs comprised 23.0% of recruited circulating progenitor cells in wounds treated with ASC-seeded hydrogels versus 8.4% and 2.1% in those treated with controls, p functional modulation of BM-MPCs, we demonstrate a statistically significant increase in BM-MPC migration, proliferation, and tubulization when exposed to hydrogel-seeded ASC-conditioned medium versus control ASC-conditioned medium (73.8% vs. 51.4% scratch assay closure; 9.1% vs. 1.4% proliferation rate; 10.2 vs. 5.5 tubules/HPF; p assays). BM-MPC expression of genes related to cell stemness and angiogenesis was also significantly increased following exposure to hydrogel-seeded ASC-conditioned medium (p functionality to effect greater neovascularization. PMID:26871860

  19. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  20. Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-04-01

    Full Text Available Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05% and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs and olfactory ensheathing cells (OECs. The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.

  1. AN EVALUATION OF THE SAFETY OF ADIPOSE-DERIVED STEM CELLS

    Directory of Open Access Journals (Sweden)

    Ngoc Bich Vu

    2015-09-01

    Full Text Available The adipose tissue contains a large numbers of stem cells; adipose-derived stem cells (ADSCs can be em- ployed in regenerative medicine. This study was aimed at isolating ADSCs and evaluating the safety of ADSCs in mouse models. Stromal vascular fraction (SVF was collected from the adipose tissue using collagenase. ADSCs were then isolated from SVFs by in vitro culture. The stemness of the ADSCs was evaluated in vitro based on their self-renewal potential, po- tential to differentiate into osteoblasts, and adipocytes, and the expression of specific markers. Finally, the tumor forma- tion ability of ADSCs was evaluated in vivo in athymic mice. Results showed that 100% of the ADSC samples developed well and maintained homogeneity up to passage 10. The ADSCs were completely sterilized and could not form tumors in athymic mice. These initial results showed that ADSCs were safe for use in stem cell therapy. [Biomed Res Ther 2015; 2(9.000: 359-365

  2. 重组人骨形态发生蛋白2调节人脂肪间充质干细胞表达血管内皮生长因子***★%Recombinant human bone morphogenetic protein-2 adjusts expression of vascular endothelial growth factor in human adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    曹鑫; 金格勒; 杨毅; 陈慧锦; 殷剑

    2013-01-01

    BACKGROUND: Recombinant bone morphogenetic protein-2 can promote tissue engineering bone vascularization, but its biological rules targeting human cel s are not clear. At present, there is in which report on recombinant bone morphogenetic protein-2 adjusts the expression of vascular endothelial growth factor in human cel s. OBJECTIVE: To observe and compare the expression of vascular endothelial growth factor in human adipose-derived mesenchymal stem cel s on gene level and protein level at different time points after induced with human recombinant bone morphogenetic protein-2. METHODS: Adipose-derived mesenchymal stem cel s were separated from adult human adipose tissues and cultured until passage 3, then divided into induced group and control group. The cel s in the induced group were induced by human recombinant bone morphogenetic protein-2 which final concentration was 100 μg/L, then the samples were col ected at 3, 6, 12, 18, 24, 36 and 48 hours after induction. Reverse transcription-PCR and enzyme-linked immunosorbent assay were used to detect vascular endothelial growth factor expression on gene level and protein level, compared with the control group. RESULTS AND CONCLUSION: Human recombinant bone morphogenetic protein-2 adjusted vascular endothelial growth factor expression of adipose mesenchymal stem cel s in a time-dependent manner, and the expression of vascular endothelial growth factor changed at different time points. Compared with the control group, human recombinant bone morphogenetic protein-2 could suppress vascular endothelial growth factor expression at 3-6 hours (P < 0.05), while at 18-24 hours, human recombinant bone morphogenetic protein-2 could promote vascular endothelial growth factor expression (P < 0.05). These two time periods should be paid attention when using human recombinant bone morphogenetic protein-2 to promote tissue engineering bone vascularization.%  背景:重组人骨形态发生蛋白2可以促进组织工程骨

  3. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    Science.gov (United States)

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.

  4. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    Science.gov (United States)

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  5. Applicability of adipose-derived stem cells in type 1 diabetes mellitus.

    Science.gov (United States)

    Lin, Hui-Ping; Chan, Tzu-Min; Fu, Ru-Huei; Chuu, Chih-Pin; Chiu, Shao-Chih; Tseng, Yu-Hsiung; Liu, Shih-Ping; Lai, Kuang-Chi; Shih, Mu-Chin; Lin, Zung-Sheng; Chen, Hsin-Shui; Yeh, Da-Chuan; Lin, Shinn-Zong

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is a form of early onset diabetes mellitus characterized by the autoimmune destruction of insulin-producing cells (IPCs), resulting in hyperglycemia and abnormal glucose metabolism. There are currently no treatments available capable of completely curing the symptoms associated with the loss or functional defects of IPCs. Nonetheless, stem cell therapy has demonstrated considerable promise in the replacement of IPCs with immunomodulatory functions to overcome the defects caused by T1DM. Adipose-derived stem cells (ADSCs) are particularly suitable for use in cell transplantation therapy, especially when seeking to avoid the ethical issues and tumorigenic complications commonly associated with embryos or induced pluripotent stem cells. Cell-based treatments have demonstrated therapeutic advantages and clinical applicability of ADSCs in T1DM, ensuring their suitability for transplantation therapy. This manuscript focuses on the benefits and possible mechanisms in a T1DM-relevant model and displays positive results from finished or ongoing human clinical trials. We also discuss and hypothesize potential methods to further enhance the therapeutic efficacy of these efforts, such as a humanized rodent model and gene therapies for IPC clusters, to meet the clinical applicability of the standard.

  6. Applicability of adipose-derived stem cells in type 1 diabetes mellitus.

    Science.gov (United States)

    Lin, Hui-Ping; Chan, Tzu-Min; Fu, Ru-Huei; Chuu, Chih-Pin; Chiu, Shao-Chih; Tseng, Yu-Hsiung; Liu, Shih-Ping; Lai, Kuang-Chi; Shih, Mu-Chin; Lin, Zung-Sheng; Chen, Hsin-Shui; Yeh, Da-Chuan; Lin, Shinn-Zong

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is a form of early onset diabetes mellitus characterized by the autoimmune destruction of insulin-producing cells (IPCs), resulting in hyperglycemia and abnormal glucose metabolism. There are currently no treatments available capable of completely curing the symptoms associated with the loss or functional defects of IPCs. Nonetheless, stem cell therapy has demonstrated considerable promise in the replacement of IPCs with immunomodulatory functions to overcome the defects caused by T1DM. Adipose-derived stem cells (ADSCs) are particularly suitable for use in cell transplantation therapy, especially when seeking to avoid the ethical issues and tumorigenic complications commonly associated with embryos or induced pluripotent stem cells. Cell-based treatments have demonstrated therapeutic advantages and clinical applicability of ADSCs in T1DM, ensuring their suitability for transplantation therapy. This manuscript focuses on the benefits and possible mechanisms in a T1DM-relevant model and displays positive results from finished or ongoing human clinical trials. We also discuss and hypothesize potential methods to further enhance the therapeutic efficacy of these efforts, such as a humanized rodent model and gene therapies for IPC clusters, to meet the clinical applicability of the standard. PMID:25621468

  7. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Fan, Jun; Sun, Zhongjie

    2016-06-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(-/-) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(-/-) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(-/-) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs' differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. Stem Cells 2016;34:1615-1625. PMID:26865060

  8. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  9. Irradiation Response of Adipose-derived Stem Cells under Three-dimensional Culture Condition

    Institute of Scientific and Technical Information of China (English)

    DU Ya Rong; PAN Dong; CHEN Ya Xiong; XUE Gang; REN Zhen Xin; LI Xiao Man; ZHANG Shi Chuan; HU Bu Rong

    2015-01-01

    Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem cells (ASCs) under three-dimensional culture condition. Methods ASCs were isolated and cultured in low attachment dishes to form three-dimensional (3D) spheres in vitro. The neuronal differentiation potential and stem-liked characteristics was monitored by using immunofluoresence staining and flow cytometry in monolayer and 3D culture. To investigate the irradiation sensitivity of 3D sphere culture, the fraction of colony survival and micronucleus were detected in monolayer and 3D culture. Soft agar assays were performed for measuring malignant transformation for the irradiated monolayer and 3D culture. Results The 3D cultured ASCs had higher differentiation potential and an higher stem-like cell percentage. The 3D cultures were more radioresistant after either high linear energy transfer (LET) carbon ion beam or low LET X-ray irradiation compared with the monolayer cell. The ASCs’ potential of cellular transformation was lower after irradiation by soft agar assay. Conclusion These findings suggest that adipose tissue cell are relatively genomic stable and resistant to genotoxic stress.

  10. A study on isolation,cultivation and biological characterisitics of human adipose derived mesenchymal stem cells in vitro%人脂肪间充质干细胞分离培养及其生物学特性的实验研究

    Institute of Scientific and Technical Information of China (English)

    匡世军; 郑有华; 张志光

    2010-01-01

    目的 探索人脂肪间充质干细胞(adipose tissue-derived mesenchymal stem cells,ADMSCs)分离培养的方法 及体外扩增的条件,观察ADMSCs的生物学特性.方法 以腹部手术患者皮下脂防组织为材料,采用Ⅰ型胶原酶消化法及贴壁法分离培养ADMSCs,在含10%胎牛血清的低糖DMEM培养基中贴壁培养,倒置显微镜观察,流式细胞仪检测细胞表面标记CD29、CD44、CD105、CD31、CD34、CD106的表达,透射电镜及扫描电镜下观察ADMSCs超微结构,流式细胞仪测定细胞周期.结果 原代和传代细胞呈梭形外观,生长增殖能力良好.CD29、CD44、CD105均呈阳性表达,阳性率分别为95.3%、98.6%和86.5%;而CD31、CD34、CD106阳性率分别为3.5%、2.6%、1.3%.透射电镜观察显示ADMSCs表现出早期幼稚细胞形态的特点,流式细胞仪检测显示84.8%的细胞处于G0/G1期.结论 酶消化法能有效地从人脂肪组织分离培养人ADSCs,细胞生长稳定,增殖能力活跃,为今后ADMSCs的分离培养提供了更简单有效的方法 .%Objective To explore a practical method for effective isolation and culture of human adipose derived mesenchymal stem cells (ADMSCs) and observe its biological characteristics.Methods Subcutaneous adipose tissue were collected. Primary ADMSCs were isolated subsequently by the method of stirring type Ⅰ collagenase digestion and adhering to culture flask. The morphological changes of ADMSCs were observed under an inserted microscope. The expressions of CD29, CD44, CD105,CD31, CD34, and CD106 were detected by flow cytometry (FCM). Ultrastructure of ADMSCs were observed via electron microscopy. Cell cycle was analyzed by flow cytometry. Results ADSCs in both primary and passage culture were fusiform shapes, and stable in growth with active proliferation. The cells were in latency for 2 days, converted into growth period on day 3 and entered the stable phase on day 5. FCM results indicated that the positive rates of CD29, CD44, CD

  11. Multilineage co-culture of adipose-derived stem cells for tissue engineering.

    Science.gov (United States)

    Zhao, Yimu; Waldman, Stephen D; Flynn, Lauren E

    2015-07-01

    Stem cell interactions through paracrine cell signalling can regulate a range of cell responses, including metabolic activity, proliferation and differentiation. Moving towards the development of optimized tissue-engineering strategies with adipose-derived stem cells (ASCs), the focus of this study was on developing indirect co-culture models to study the effects of mature adipocytes, chondrocytes and osteoblasts on bovine ASC multilineage differentiation. For each lineage, ASC differentiation was characterized by histology, gene expression and protein expression, in the absence of key inductive differentiation factors for the ASCs. Co-culture with each of the mature cell populations was shown to successfully induce or enhance lineage-specific differentiation of the ASCs. In general, a more homogeneous but lower-level differentiation response was observed in co-culture as compared to stimulating the bovine ASCs with inductive differentiation media. To explore the role of the Wnt canonical and non-canonical signalling pathways within the model systems, the effects of the Wnt inhibitors WIF-1 and DKK-1 on multilineage differentiation in co-culture were assessed. The data indicated that Wnt signalling may play a role in mediating ASC differentiation in co-culture with the mature cell populations. PMID:23135884

  12. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  13. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  14. New insight on obesity and adipose-derived stem cells using comprehensive metabolomics.

    Science.gov (United States)

    Mastrangelo, Annalaura; Panadero, María I; Pérez, Laura M; Gálvez, Beatriz G; García, Antonia; Barbas, Coral; Rupérez, Francisco J

    2016-07-15

    Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms that are still poorly understood. In the present study we used a multiplatform [LC/MS, GC/MS and capillary electrophoresis/MS (CE/MS)], metabolomics, untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obesity-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium), from obesity- and non-obesity-derived ASCs of humans or mice, were characterized to provide valuable information. Metabolites associated with glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and the polyol pathway were increased in the footprint of obesity-derived human ASCs, indicating alterations in carbohydrate metabolism, whereas, from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs' metabolome were provided that enhance our understanding of the processes underlying ASCs' stemness capacity and its relationship with obesity, in different cell models. PMID:27208167

  15. Measurement of the biophysical properties of porcine adipose-derived stem cells by a microperfusion system.

    Science.gov (United States)

    Wang, Jianye; Zhao, Gang; Zhang, Pengfei; Wang, Zhen; Zhang, Yunhai; Gao, Dayong; Zhou, Ping; Cao, Yunxia

    2014-12-01

    Adipose-derived stem cells (ADSCs), which are an accessible source of adult stem cells with capacities for self-renewal and differentiation into various cell types, have a promising potential in tissue engineering and regenerative medicine strategies. To meet the clinical demand for ADSCs, cryopreservation has been applied for long-term ADSC preservation. To optimize the addition, removal, freezing, and thawing of cryoprotective agents (CPAs) applied to ADSCs, we measured the transport properties of porcine ADSCs (pADSCs). The cell responses of pADSCs to hypertonic phosphate-buffered saline and common CPAs, dimethyl sulfoxide, ethylene glycol, and glycerol were measured by a microperfusion system at temperatures of 28, 18, 8, and -2°C. We determined the osmotically inactive cell volume (Vb), hydraulic conductivity (Lp), and CPA permeability (Ps) at various temperatures in a two-parameter model. Then, we quantitatively analyzed the effect of temperature on the transport properties of the pADSC membrane. Biophysical parameters were used to optimize CPA addition, removal, and freezing processes to minimize excessive shrinkage of pADSCs during cryopreservation. The biophysical properties of pADSCs have a great potential for effective optimization of cryopreservation procedures. PMID:25445459

  16. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field

    Science.gov (United States)

    Mardani, Mohammad; Roshankhah, Shiva; Hashemibeni, Batool; Salahshoor, Mohammadreza; Naghsh, Erfan; Esfandiari, Ebrahim

    2016-01-01

    Background: Since when the cartilage damage (e.g., with the osteoarthritis) it could not be repaired in the body, hence for its reconstruction needs cell therapy. For this purpose, adipose-derived stem cells (ADSCs) is one of the best cell sources because by the tissue engineering techniques it can be differentiated into chondrocytes. Chemical and physical inducers is required order to stem cells to chondrocytes differentiating. We have decided to define the role of electric field (EF) in inducing chondrogenesis process. Materials and Methods: A low frequency EF applied the ADSCs as a physical inducer for chondrogenesis in a 3D micromass culture system which ADSCs were extracted from subcutaneous abdominal adipose tissue. Also enzyme-linked immunosorbent assay, methyl thiazolyl tetrazolium, real time polymerase chain reaction and flowcytometry techniques were used for this study. Results: We found that the 20 minutes application of 1 kHz, 20 mv/cm EF leads to chondrogenesis in ADSCs. Although our results suggest that application of physical (EF) and chemical (transforming growth factor-β3) inducers at the same time, have best results in expression of collagen type II and SOX9 genes. It is also seen EF makes significant decreased expression of collagens type I and X genes. Conclusion: The low frequency EF can be a good motivator to promote chondrogenic differentiation of human ADSCs. PMID:27308269

  17. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Riis, Simone; Nielsen, Frederik Mølgaard; Pennisi, Cristian Pablo; Zachar, Vladimir; Fink, Trine

    2016-03-01

    Adipose-derived stem cells (ASCs) are being tested in clinical trials related to cell-based regenerative therapies. Although most of the current expansion protocols for ASCs use fetal calf serum (FCS), xenogeneic-free medium supplements are greatly desired. This study aims to compare the effect of FCS, human platelet lysate (hPL), and a fully defined medium on the initiation and maintenance of ASC cultures. ASCs obtained from five donors were cultured in five different media: StemPro, Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% hPL, or α-minimum essential medium (A-MEM) supplemented with 5% hPL, 10% hPL, or 10% FCS. The effect of media on proliferation, colony-forming units (CFUs), attachment, and morphology was assessed along with cell size, granularity, and immunophenotype. StemPro greatly compromised the initiation of ASC cultures, which could not survive more than a few passages. Cells cultured in A-MEM proliferated at a faster rate than in DMEM, and hPL significantly enhanced cell size, granularity, and proliferation compared with FCS. All media except StemPro supported CFUs equally well. Analysis of surface markers revealed higher levels of CD73 and CD105 in FCS-cultured ASCs, whereas increased levels of CD146 were found in hPL-cultured cells. Multiparametric flow cytometric analysis performed after seven passages revealed the existence of four distinct ASC subpopulations, all positive for CD73, CD90, and CD105, which mainly differed by their expression of CD146 and CD271. Analysis of the different subpopulations might represent an important biological measure when assessing different medium formulations for a particular clinical application. PMID:26838270

  18. Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

    Science.gov (United States)

    Razavi, Shahnaz; Razavi, Mohamad Reza; Ahmadi, Nafiseh; Kazemi, Mohammad

    2015-01-01

    Objective(s): Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively. Results: Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P<0.05). Immunocytochemical and real time RT-PCR analysis revealed that the expression of precursor and mature neuronal markers (nestin and MAP2) was significantly higher in the E2 treated cell cultures when compared to the untreated cell cultures (P<0.05). Conclusion: According to our findings, estrogen can promote proliferation and neuronal differentiation of human ADSCs. PMID:26557969

  19. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  20. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  1. Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy.

    Science.gov (United States)

    Riis, S; Zachar, V; Boucher, S; Vemuri, M C; Pennisi, C P; Fink, T

    2015-06-08

    Since the discovery of adipose-derived stem cells (ASCs), there have been high expectations of their putative clinical use. Recent advances support these expectations, and it is expected that the transition from pre-clinical and clinical studies to implementation as a standard treatment modality is imminent. However ASCs must be isolated and expanded according to good manufacturing practice guidelines and a basic assurance of quality, safety, and medical effectiveness is needed for authorisation by regulatory agencies, such as European Medicines Agency and US Food and Drug Administration. In this review, a collection of studies investigating the influence of different steps of the isolation and expansion protocol on the yield and functionality of ASCs has been presented in an attempt to come up with best recommendations that ensure potential beneficial clinical outcome of using ASCs in any therapeutic setting. If the findings confirm the initial observations of beneficial effects of ASCs, the path is paved for implementing these ASC-based therapies as standard treatment options.

  2. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Yang XL

    2014-08-01

    Full Text Available Xinlin Yang, Ching-Ju Li, Yueping Wan, Pinar Smith, Guowei Shang, Quanjun Cui Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA Abstract: Antioxidants were implicated as potential reagents to enhance osteogenesis, and nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fullerene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs. Fullerol was not toxic against human ADSCs at concentrations up to 10 µM. At a concentration of 1 µM, fullerol reduced cellular reactive oxygen species after a 5-day incubation either in the presence or in the absence of osteogenic media. Pretreatment of fullerol for 7 days increased the osteogenic potential of human ADSCs. Furthermore, when incubated together with osteogenic medium, fullerol promoted osteogenic differentiation in a dose-dependent manner. Finally, fullerol proved to promote expression of FoxO1, a major functional isoform of forkhead box O transcription factors that defend against reactive oxygen species in bone. Although further clarification of related mechanisms is required, the findings may help further development of a novel approach for bone repair, using combined treatment of nano-fullerol with ADSCs. Keywords: polyhydroxylated fullerene, bone repair, reactive oxygen species, forkhead box protein O1

  3. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  4. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  5. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  6. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn

    2014-01-01

    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  7. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh.

    Science.gov (United States)

    Deng, Meng; Gu, Yunpeng; Liu, Zhenjun; Qi, Yue; Ma, Gui E; Kang, Ning

    2015-01-01

    Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  8. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    Science.gov (United States)

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders.

  9. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage

    OpenAIRE

    Pham, Phuc Van; Bui, Khanh Hong-Thien; Ngo, Dat Quoc; Vu, Ngoc Bich; Truong, Nhung Hai; Phan, Nhan Lu-Chinh; Le, Dung Minh; Duong, Triet Dinh; Nguyen, Thanh Duc; Le, Vien Tuong; Phan, Ngoc Kim

    2013-01-01

    Introduction Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation t...

  10. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.

    Science.gov (United States)

    Guilak, Farshid; Lott, Kristen E; Awad, Hani A; Cao, Qiongfang; Hicok, Kevin C; Fermor, Beverley; Gimble, Jeffrey M

    2006-01-01

    Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.

  11. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    López, Melany; Bollag, Roni J; Yu, Jack C; Isales, Carlos M; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating

  12. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating

  13. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  14. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    Science.gov (United States)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  15. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia;

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...... for subsequent clinical use. In the isolation step, several enzymes were compared with respect to yield of nucleated cells and precursor cells. Our results showed, that the interdonor variablility was greater than differences between individual enzymes. For propagation of cells, different types of media, sera...

  16. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells

    International Nuclear Information System (INIS)

    Trabecular bone has an interconnected porous structure, which influences cellular responses, biochemical transport and mechanical strength. Appropriately mimicking this structural organization in biomaterial scaffolds can facilitate more robust bone tissue regeneration and integration by providing a native microenvironment to the cells. This study examined the effect of pore size on human adipose-derived stem/stromal cell (ASC) osteogenesis within poly(ε-caprolactone) (PCL) scaffolds. Scaffold pore size was controlled by porogen leaching of custom-made paraffin particles with three different size ranges: P200 (< 500 µm), P500 (500–1000 µm), and P1000 (1000–1500 µm). Scaffolds produced by leaching these particles exhibited highly interconnected pores and rough surface structures that were favorable for cell attachment and ingrowth. The osteogenic response of ASCs was evaluated following 3 weeks of in vitro culture using biochemical (ALP, Ca2+/DNA content), mechanical (compression test) and histological (H and E and von Kossa staining) analyses. It was observed that while the total number of cells was similar for all scaffolds, the cell distributions and osteogenic properties were affected by the scaffold pore size. ASCs were able to bridge smaller pores and grow uniformly within these scaffolds (P200) while they grew as a layer along the periphery of the largest pores (P1000). The cell-biomaterial interactions specific to the latter case led to enhanced osteogenic responses. The ALP activity and Ca2+ deposition were doubled in P1000 scaffolds as compared to P200 scaffolds. A significant difference was observed between the compressive strength of unseeded and seeded P1000 scaffolds. Therefore, we demonstrated that the use of scaffolds with pores that are in the range of 1 mm enhances in vitro ASC osteogenesis, which may improve their performance in engineered bone substitutes. (paper)

  17. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    Directory of Open Access Journals (Sweden)

    Meng Deng

    2015-01-01

    Full Text Available Adipose-derived stem cell (ADSC is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  18. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    International Nuclear Information System (INIS)

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  19. Pharmacological priming of adipose-derived stem cells promotes myocardial repair.

    Science.gov (United States)

    Burchfield, Jana S; Paul, Ashley L; Lanka, Vishy; Tan, Wei; Kong, Yongli; McCallister, Camille; Rothermel, Beverly A; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-01-01

    Adipose-derived stem cells (ADSCs) have myocardial regeneration potential, and transplantation of these cells following myocardial infarction (MI) in animal models leads to modest improvements in cardiac function. We hypothesized that pharmacological priming of pre-transplanted ADSCs would further improve left ventricular functional recovery after MI. We previously identified a compound from a family of 3,5-disubstituted isoxazoles, ISX1, capable of activating an Nkx2-5-driven promoter construct. Here, using ADSCs, we found that ISX1 (20 mM, 4 days) triggered a robust, dose-dependent, fourfold increase in Nkx2-5 expression, an early marker of cardiac myocyte differentiation and increased ADSC viability in vitro. Co-culturing neonatal cardiomyocytes with ISX1-treated ADSCs increased early and late cardiac gene expression. Whereas ISX1 promoted ADSC differentiation toward a cardiogenic lineage, it did not elicit their complete differentiation or their differentiation into mature adipocytes, osteoblasts, or chondrocytes, suggesting that re-programming is cardiomyocyte specific. Cardiac transplantation of ADSCs improved left ventricular functional recovery following MI, a response which was significantly augmented by transplantation of ISX1- pretreated cells. Moreover, ISX1-treated and transplanted ADSCs engrafted and were detectable in the myocardium 3 weeks following MI, albeit at relatively small numbers. ISX1 treatment increased histone acetyltransferase (HAT) activity in ADSCs, which was associated with histone 3 and histone 4 acetylation. Finally, hearts transplanted with ISX1-treated ADSCs manifested significant increases in neovascularization, which may account for the improved cardiac function. These findings suggest that a strategy of drug-facilitated initiation of myocyte differentiation enhances exogenously transplanted ADSC persistence in vivo, and consequent tissue neovascularization, to improve cardiac function. PMID:26755814

  20. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available BACKGROUND: Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection. CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple

  1. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiao-bing JIN; Yong-sheng SUN; Ke ZHANG; Jing WANG; Xiao-dong JU; Si-quan LOU

    2007-01-01

    Aim: To examine the chondrogenic potential of human adipose derived stem cells (hASC) induced by human transforming growth factor beta2 (hTGF beta2) in vitro, and to investigate if predifferentiated hASC can produce neocartilage in vivo. Methods: hASC were isolated from subcutaneous adipose tissue and cul-tured in pellets with the addition of hTGF beta2. Chondrogenic differentiation was assayed by RT-PCR, Western blotting, toluidine blue staining, and immuno-histochemistry staining for collagen type Ⅱ. For the in vivo study, intact induced cell pellets or the released cells embedded in alginate gel with different concentra-tions were implanted subcutaneously in nude mice. Specimens were harvested at different time points and carried with histological and immunohistochemistry ex-amination to evaluate the cartilage formation. Results: RT-PCR analysis revealed that hASC produced aggrecan and collagen type Ⅱ after 7 d of induction and continued throughout the culture period. This was also demonstrated by the Western blot analysis, positive staining of toluidine blue, and immunohistochem-istry for collagen type Ⅱ. After reseeding in the monolayer, the cells isolated from the pellets displayed a polygonal morphology compared with the primary spindle shape, hASC were released from the induced cell pellets when embedded in alginate gel (implanted cell concentration=5x106/mL or higher). They produced neocartilage after 12 weeks in vivo culture; however, intact induced cell pellets implanted subcutaneously rapidly lost their differentiated phenotype. Conclusion:Chondrogenesis of hASC in vitro can be induced by combining pellet culture and hTGF beta2 treatment. Predifferentiated hASC embedded in alginate gel have the ability of producing neocartilage in vivo.

  2. Effects of melatonin on the proliferation and differentiation of rat adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Zaminy Arash

    2008-01-01

    Full Text Available Background: Osteogenesis driven by adipose-derived stem cells (ADSCs is regulated by physiological and pathological factors. Accumulating evidence from in vitro and in vivo experiments suggests that melatonin may have an influence on bone formation. However, little is known about the effects of melatonin on osteogenesis, which thus remains to be elucidated. This study was performed to determine whether melatonin at physiological concentrations (0.01-10 nM could affect the in vitro proliferation and osteogenic differentiation of rat ADSCs. Materials and Methods: ADSCs were isolated from the fat of adult rats. After cell expansion in culture media and through three passages, osteogenesis was induced in a monolayer culture using osteogenic medium with or without melatonin at physiological concentrations (0.01-10 nM. After four weeks, the cultures were examined for mineralization by Alizarin Red S and von Kossa staining and for alkaline phosphatase (ALP activity using an ALP kit. Cell viability and apoptosis were also assayed by 3-(4, 5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTT assay and flow cytometry, respectively. Results: The results indicated that at physiological concentrations, melatonin suppressed proliferation and differentiation of ADSCs. These data indicate that ADSCs exposed to melatonin, had a lower ALP activity in contrast to the cells exposed to osteogenic medium alone. Similarly, mineral deposition (calcium level also decreased in the presence of melatonin. Flow cytometry confirmed that cell growth had decreased and that the numbers of apoptotic cells had increased. Conclusion: These results suggest that the physiological concentration of melatonin has a negative effect on ADSC osteogenesis.

  3. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Olivia S. [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Fonseca, Vera C. [Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Darling, Eric M., E-mail: Eric_Darling@brown.edu [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Department of Orthopaedics, Brown University, Providence, RI (United States); School of Engineering, Brown University, Providence, RI (United States)

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  4. Inhibition of pancreatic stellate cell activity by adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    Fu-Xiang Yu; Long-Feng Su; Chun-Lei Dai; Yang Wang; Yin-Yan Teng; Jun-Hui Fu; Qi-Yu Zhang; Yin-He Tang

    2015-01-01

    BACKGROUND: Pancreatic stellate cells (PSCs) play a critical role in the development of pancreatic ifbrosis. In this study we used a novel method to isolate and culture rat PSCs and then investigated the inhibitory effects of adipose-derived stem cells (ADSCs) on activation and proliferation of PSCs. METHODS: Pancreatic tissue was obtained from Sprague-Dawley rats for PSCs isolation. Transwell cell cultures were adopted for co-culture of ADSCs and PSCs. PSCs prolifera-tion and apoptosis were determined using CCK-8 and lfow cytometry, respectively.α-SMA expressions were analyzed using Western blotting. The levels of cytokines [nerve growth factor (NGF), interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1)] in conditioned medium were detected by ELISA. Gene expression (MMP-2, MMP-9 and TIMP-1) was analyzed using qRT-PCR. RESULTS: This method produced 17.6±6.5×103 cells per gram of the body weight with a purity of 90%-95% and a viability of 92%-97%. Co-culture of PSCs with ADSCs signiifcantly inhib-ited PSCs proliferation and induced PSCs apoptosis. Moreover,α-SMA expression was signiifcantly reduced in PSCs+ADSCs compared with that in PSC-only cultures, while expression of ifbrinolytic proteins (e.g., MMP-2 and MMP-9) was up-regulated and anti-ifbrinolytic protein (TIMP-1) was down-regulated. In addition, NGF expression was up-regulated, but IL-10 and TGF-β1 expressions were down-regulated in the co-culture conditioned medium compared with those in the PSC-only culture medium. CONCLUSIONS: This study provided an easy and reliable technique to isolate PSCs. The data demonstrated the inhibi-tory effects of ADSCs on the activation and proliferation of PSCsin vitro.

  5. Differentiation of human adipose-derived stem cells into brite (brown-in-white adipocytes

    Directory of Open Access Journals (Sweden)

    Didier F Pisani

    2011-11-01

    Full Text Available It is well established now that adult humans possess active brown adipose tissue which represents a potential pharmacological target to combat obesity and associated diseases. We had shown previously that human multipotent adipose-derived stem (hMADS cells are able to differentiate into cells which exhibit the key properties of human white adipocytes, and to convert into functional brown adipocytes upon PPARγ activation that could explain UCP1-expressing cells within islets surrounded by white adipocytes. Herein we further characterize hMADS cells differentiation into brown adipocytes that behave like mouse brite adipocytes previously described. We analyzed the expression of gene markers known to be associated with mouse white and brown adipocytes. When shifting from a white to a brown fat cell phenotype, the striking enhancement of uncoupling activity appears mainly due, if not all, to an increase in UCP1 expression whereas induction of UCP2 is weak and UCP3 expression is unchanged. Conversion of white hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. Furthermore our data show that, in contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is not induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. No primary or clonal precursor cells of human brown adipocytes have been obtained so far that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable cell model to delineate the formation and/or the uncoupling capacity of human brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.

  6. Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3 D bio-printing%人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨

    Institute of Scientific and Technical Information of China (English)

    宋杨; 王晓飞; 王宇光; 孙玉春; 吕培军

    2016-01-01

    Objective:To construct human adipose-derived mesenchymal stem cells (hASCs)-biomate-rial mixture 3D bio-printing body and detect its osteogenesis in vivo,and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.Methods:P4 hASCs were used as seed cells,whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP)staining and alizarin red staining after 1 4 d of osteogenic induction.The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1 ×1 06/mL),and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company,Germany),in which the cells’survival rate was detected by live-dead cell double fluorescence staining.Next,the printing body was osteogeni-cally induced for 1 week to gain the experimental group;and the sodium alginate-gelatin mixture without cells was also printed to gain the control group.Both the experimental group and the control group were implanted into the back of the nude mice.After 6 weeks of implantation,the samples were collected,HE staining,Masson staining,immunohistochemical staining and Inveon Micro CT test were preformed to analyze their osteogenic capability.Results:The cells’survival rate was 89%±2% after printing.Six weeks after implantation,the samples of the control group were mostly degraded,whose shape was irregu-lar and gel-like;the samples of the experimental group kept their original size and their texture was tough.HE staining and Masson staining showed that the bone-like tissue and vessel in-growth could be observed in the experimental group 6 weeks after implantation,immunohistochemical staining showed that the result of osteocalcin was positive,and Micro CT results showed that samples of the experimental group had a higher density and the new bone volume was 1 8%±1%.Conclusion:hASCs-biomaterial mixture 3D bio-printing body has capability of ectopic bone formation in nude mice,and it is

  7. RESEARCH AND APPLICATION PROGRESS OF ADIPOSE-DERIVED STEM CELLS%脂肪源性干细胞研究及其应用进展

    Institute of Scientific and Technical Information of China (English)

    聂绪强; 陈怀红; 唐宁; 卞卡

    2011-01-01

    目的 对脂肪源性干细胞(adipose-derived stem cells,ADSCs)的生化特征、应用进展及前景等进行综述.方法 广泛查阅近年关于ADSCs的实验研究及临床研究文献,并进行整理、综合与分析.结果 ADSCs取材方便,易于培养,分化潜能巨大,可在体外稳定增殖传代.ADSCs在动物实验和临床应用中均取得重大进步,已广泛应用于临床进行心血管疾病、代谢性疾病、脑病的治疗及组织工程修复.结论 ADSCs逐渐取代了BMSCs,已成为干细胞研究的重点和热点.%Objective To review the biochemical characteristics, application progress, and prospects of the adipose-derived stem cells (ADSCs). Methods The recent original experimental and clinical literature about ADSCs was extensively-reviewed and analyzed. Results ADSCs can be readily harvested in large numbers from adipose tissue with properties of stable proliferation and potential differentiation in vitro. Significant progress of ADSCs is made in the animal experiment and the clinical application. It has been widely used in the clinical treatment of cardiovascular disease, metabolic disease, encephalopathy, and tissue engineering repair. Conclusion ADSCs have gradually replaced bone marrow mesenchymal stem cells and become the focused hot spot of regenerative medicine and stem cells.

  8. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  9. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Melany López

    Full Text Available The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs. These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate, two polymers (PVA and ficoll, two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide, a disaccharide (trehalose, and a calcium chelator (EGTA to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the

  10. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  11. Biological characteristics of human adipose-derived stem cells and their response to periostin in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Ying; YANG Xin; NIE Fang-fei; ZHAO Xia; QIN Ze-lian; LI Jian-ning

    2013-01-01

    Background Many studies on periostin have focused on its role in tumors and vascular reconstruction.However,the effect of periostin on stem cell function remains unclear.The aim of this study was to enhance vitality in adipose-derived stem cells (ADSCs),the effect of periostin on the function of ADSCs was observed.Methods Human ADSCs (hADSCs) were isolated from human adipose tissue by collagenase I digestion and collected in multi-periods for in vitro culture.CD29,CD34,CD44,CD45 and CD105 were detected by flow cytometry.In addition,directed differentiation of hADSCs was induced using adipogenic,osteogenic and chondrogenic induction mediums.The induced morphological changes were observed using oil red O,Alizarin red and alcian blue staining.Periostin was administered to hADSCs in an acidic environment.The treatments of cells were divided into three groups:a periostin group (P); an acidic control group (A); a normal group (N).Then the resulting cell proliferation and migration were detected using a Cell Counting Kit-8 (CCK-8) and a transwell chamber assay,respectively.Results The detection rates of CD29,CD44,CD105,CD34 and CD45 were 98.89%,93.73%,8699%,0.19% and 0.16%.The specific staining of cells was positive after induction culture.The mean absorbance of the cells in group P and A at 12 hours were 16.67% and 22.22% greater than group N,respectively (P <0.01).The mean absorbance of cells from group P was 20.00% greater than that of group A at 48 hours (P <0.05).The mean number of migratory cells per visual field in group A was 50.38% lower than that in group N (P <0.05).The migratory cell number in group P was 119.98% greater than that in group A (P <0.05).Conclusions The acidic environment impacted hADSC proliferation and inhibited cell migration.However,periostin was able to promote the proliferation and migration of hADSCs despite the acidic environment.

  12. 脂肪间充质干细胞分泌的Exosome促进结肠癌细胞系上皮间质转化%Exosomes from human adipose-derived mesenchymal stem cells promote epithelial mesenchymal transition in colon cancer

    Institute of Scientific and Technical Information of China (English)

    孙昭; 薛春玲; 高鹤丽; 白春梅; 赵林; 韩钦

    2015-01-01

    Objective To study the influence of exosome derived from mesenchymal stem cell (MSC) on the epi-thelial mesenchymal transition (EMT) of colon cancer cell line HCT8. Method MSC were separated from human ad-ipose tissue and cultured, of which the differentiation potential was identified. The MSC-derived exosomes were ob-served using TEM, and the antibody expression was detected by western blot. HCT8 cells were co-cultured with MSC-derived exosome. The expression of epithelial and mesenchymal markers was detected by real time PCR and Western blot. Transwell chambers were used in the in vitro migration and invasion assay. Result Human adipose de-rived MSC secreted 40-100 nm particles, which have the typical characteristics of exosomes as expressing CD63, HSP70 and HSP90. With the treatment of MSC-derived exosome, the expression of epithelial related markers E-cad-herin and ZO-1 was down-regulated while the expression of mesenchymal marker Fibronectin was up-regulated, and the migration and invasion capacity of HCT8 cells were enhanced. Conclusion MSC-derived exosomes promotes mi gration of the colon cancer cell line HCT8.%目的:研究间充质干细胞(mesenchymal stem cell,MSC)来源的Exosome对结肠癌细胞系HCT8上皮间质转化(epithelial mesenchymal transition,EMT)的影响。方法从人脂肪组织中分离出MSC后,对MSC进行培养并传代,并对MSC的分化能力进行鉴定。在人脂肪来源的MSC中提取Exosome后,用透射电子显微镜观察并拍照,并用蛋白质印迹法检测其抗原表达情况。在HCT8培养体系中加入人脂肪来源的MSC分泌的Exosome ,定量PCR和蛋白质印迹法检测上皮和间质转化相关标志物的表达,细胞侵袭和迁移实验检测人脂肪来源的MSC分泌的Exosome对HCT8迁移和侵袭的影响。结果人脂肪来源的MSC具有多系分化能力,人脂肪来源的Exosome直径为40~100 nm ,表达CD63、HSP70和HSP90,下调HCT8

  13. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-zhen; GAI Lu-yue; LIU Hong-wei; JIN Qin-hua; HUANG Jian-hua; ZHU Xian-yang

    2007-01-01

    Background Adipose-derived stem cells (ADSCs) are capable of differentiating into cardiomyogenic and endothelial cells in vitro. We tested the hypothesis that transplantation of ADSCs into myocardial scar may regenerate infracted myocardium and restore cardiac function.Methods ADSCs were isolated from the fatty tissue of New Zealand white rabbits and cultured in Iscove's modified dulbecco's medium. Three weeks after ligation of left anterior descending coronary artery of rabbits, either a graft of untreated ADSCs (UASCs, n=14), 5-azacytidine-pretreated ADSCs (AASCs, n=13), or phosphate buffer saline (n=13)were injected into the infarct region. Transmural scar size, cardiac function, and immunohistochemistry were performed 5 weeks after cell transplantation.Results ADSCs in culture demonstrated a fibroblast-like appearance and expressed CD29, CD44 and CD105. Five weeks after cell transplantation, transmural scar size in AASC-implanted hearts was smaller than that of the other hearts.Many ADSCs were differentiated into cardiomyocytes. The AASCs in the prescar appeared more myotube-like. AASCs in the middle of the scar and UASCs, in contrast, were poorly differentiated. Some ADSCs were differentiated into endothelial cells and participate in vessel-like structures formation. All the ADSC-implanted hearts had a greater capillary density in the infarct region than did the control hearts. Statistical analyses revealed significant improvement in left ventricular ejection fraction, myocardial performance index, end-diastolic pressure, and peak +dP/dt, in two groups of ADSC-implanted hearts relative to the control hearts. AASC-implanted hearts had higher peak -dP/dt values than did control, higher ejection fraction and peak +dP/dtvalues than did UASC-implanted hearts.Conclusions ADSCs transplanted into the myocardial scar tissue formed cardiac islands and vessel-like structures,induced angiogenesis and improved cardiac function. 5-Azacytidine pretreatment before

  14. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    OpenAIRE

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  15. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  16. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications

    Directory of Open Access Journals (Sweden)

    Chung E

    2013-01-01

    Full Text Available Eunna Chung,1 Seung Yun Nam,1,2 Laura M Ricles,1 Stanislav Y Emelianov,1,2 Laura J Suggs11Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USAAbstract: Evaluating the regenerative capacity of a tissue-engineered device in a noninvasive and synchronous manner is critical to determining the mechanisms for success in clinical applications. In particular, directly tracking implanted cells in a three-dimensional (3D scaffold is desirable in that it enables the monitoring of cellular activity in a specific and localized manner. The authors' group has previously demonstrated that the PEGylation of fibrin results in a 3D scaffold that supports morphologic and phenotypic changes in mesenchymal stem cells that may be advantageous in wound healing applications. Recently, the authors have evaluated adipose-derived stem cells (ASCs as a mesenchymal cell source to regenerate skin and blood vessels due to their potential for proliferation, differentiation, and production of growth factors. However, tracking and monitoring ASCs in a 3D scaffold, such as a PEGylated fibrin gel, have not yet been fully investigated. In the current paper, nanoscale gold spheres (20 nm as cell tracers for ASCs cultured in a PEGylated fibrin gel were evaluated. An advanced dual-imaging modality combining ultrasound and photoacoustic imaging was utilized to monitor rat ASCs over time. The ASCs took up gold nanotracers and could be detected up to day 16 with high sensitivity using photoacoustic imaging. There were no detrimental effects on ASC morphology, network formation, proliferation, and protein expression/secretion (ie, smooth muscle α-actin, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9 associated with gold nanotracers. Therefore, utilization of gold nanotracers can be an effective strategy to monitor the regenerative process of a stem cell

  17. Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure

    Directory of Open Access Journals (Sweden)

    Rasmussen Jeppe

    2008-10-01

    Full Text Available Abstract Background For the accurate determination of gene expression changes during growth and differentiation studies on adipose-derived stem cells (ASCs, quantitative real-time RT-PCR has become a method of choice. The technology is very sensitive, however, without a proper selection of reference genes, to which the genes of interest are normalized, erroneous results may be obtained. Results In this study, we have compared the gene expression levels of a panel of twelve widely used reference genes during hypoxic culture, osteogenic and chondrogenic differentiation, and passaging of primary human ASCs. We found that several of the commonly used reference genes including 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and beta-actin were unsuitable for normalization in the conditions we tested, whereas tyrosine 3/tryptophan 5-monooxygenase activation protein (YMHAZ, TATAA-box binding protein (TBP, beta-glucuronidase (GUSB were the most stable across all conditions. Conclusion When determining gene expression levels in adipose-derived stem cells, we recommend normalizing transcription levels to the geometric mean of YMHAZ, TBP and GUSB.

  18. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity.

    Directory of Open Access Journals (Sweden)

    Jyun-Yi Wu

    Full Text Available Mesenchymal stem cell (MSC-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2, Interleukin-1β (IL-1β, Interleukin-6 (IL-6, and Interleukin-8 (IL-8. LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm². The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP, which acts to down-regulate nuclear factor kappa B (NF-κB transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy.

  19. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells

    Science.gov (United States)

    El Atat, Oula; Antonios, Diane; Hilal, George; Hokayem, Nabil; Abou-Ghoch, Joelle; Hashim, Hussein; Serhal, Rim; Hebbo, Clara; Moussa, Mayssam; Alaaeddine, Nada

    2016-01-01

    The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells. PMID:27632538

  20. Current progress in use of adipose derived stem cells inperipheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Shomari DL Zack-Williams; Peter E Butler; Deepak M Kalaskar

    2015-01-01

    Unlike central nervous system neurons; those in theperipheral nervous system have the potential for fullregeneration after injury. Following injury, recovery iscontrolled by schwann cells which replicate and modulatethe subsequent immune response. The level of nerverecovery is strongly linked to the severity of the initialinjury despite the significant advancements in imagingand surgical techniques. Multiple experimental modelshave been used with varying successes to augment thenatural regenerative processes which occur following nerveinjury. Stem cell therapy in peripheral nerve injury maybe an important future intervention to improve the bestattainable clinical results. In particular adipose derivedstem cells (ADSCs) are multipotent mesenchymal stemcells similar to bone marrow derived stem cells, which arethought to have neurotrophic properties and the ability todifferentiate into multiple lineages. They are ubiquitouswithin adipose tissue; they can form many structuresresembling the mature adult peripheral nervous system.Following early in vitro work; multiple small and largeanimal in vivo models have been used in conjunction withconduits, autografts and allografts to successfully bridgethe peripheral nerve gap. Some of the ADSC relatedneuroprotective and regenerative properties have beenelucidated however much work remains before a modelcan be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview ofprogress made in the use of ADSC in PNI, with discussionon the role of a tissue engineered approach for PNI repair.

  1. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    Science.gov (United States)

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  2. Experimental study of adipose-derived mesenchymal stem cells in rats transfected into the insulin-secreting cells in vitro%大鼠脂肪间充质干细胞体外转染为胰岛素分泌细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    葛亮; 赵建勇; 孙诚谊; 贾文胜

    2013-01-01

    目的 探讨脂肪间充质干细胞(ADMSCs)体外转染成为胰岛素分泌细胞的可能性及其在不同浓度葡萄糖环境下的胰岛素分泌情况.方法 以未转染的ADMSCs作为对照组,含有PcDNA3.1的ADMSCs作为空载体组,含有PcDNA3.1-hINS的ADMSCs作为重组载体组,转染后再将重组载体组根据培养时间不同分为1、6、12、18 d组,并将重组载体18 d组根据葡萄糖浓度的不同分为高糖组和低糖组.RT-PCR扩增人胰岛素基因,并构建含有人胰岛素基因的真核表达重组载体PcDNA3.1-hINS.经离心消化法获得ADMSCs,并通过流式细胞仪检测.瞬时转染,RT-PCR测各组胰岛素DNA的转录,ELISA法检测各组胰岛素分泌量,并对重组载体18 d组行葡萄糖刺激实验,计量资料以x±s表示,多组间的比较采用方差分析,两组比较采用t检验.结果 流式细胞仪检测ADMSCs表面抗原:CD44、CD90、CD106表达阳性,CD34、CD45、CD11b表达阴性.RT-PCR法检测重组载体组有胰岛素DNA转录,对照组和空载体组均无转录.ELISA法检测重组载体1、6、12、18 d组胰岛素分泌量分别为(4.7±0.8)mIU/L、(8.8±0.5)mIU/L、(8.9±0.8) mIU/L、(8.6±0.6) mIU/L,与对照组的(1.3±0.6) mIU/L和空载体组的(1.7±0.8)mIU/L分别比较,差异均有统计学意义(t=10.09,32.64,22.20,55.53;9.23,27.56,19.43,51.25,P<0.05);重组载体1d组与6、12、18 d组的胰岛素分泌量分别比较,差异有统计学意义(t=12.77,12.26,13.93,P<0.05);而6、12、18 d组间的胰岛素分泌量比较,差异无统计学意义(F=45.67,P>0.05).高糖组和低糖组胰岛素分泌量比较,差异有统计学意义(t=2.03,P<0.05).葡萄糖刺激实验阴性.结论 ADMSCs成功转染为胰岛素分泌细胞,并可以稳定分泌胰岛素,虽然胰岛素分泌量不能根据葡萄糖的浓度改变而改变,但仍为干细胞治疗糖尿病提供了一种新的种子细胞.%Objective To investigate the possibility of transfection of adipose-derived

  3. Experimental study of adipose-derived mesenchymal stem cells in rats transfected into the insulin-secreting cells in vitro%大鼠脂肪间充质干细胞体外转染为胰岛素分泌细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    葛亮; 赵建勇; 孙诚谊; 贾文胜

    2013-01-01

    目的 探讨脂肪间充质干细胞(ADMSCs)体外转染成为胰岛素分泌细胞的可能性及其在不同浓度葡萄糖环境下的胰岛素分泌情况.方法 以未转染的ADMSCs作为对照组,含有PcDNA3.1的ADMSCs作为空载体组,含有PcDNA3.1-hINS的ADMSCs作为重组载体组,转染后再将重组载体组根据培养时间不同分为1、6、12、18 d组,并将重组载体18 d组根据葡萄糖浓度的不同分为高糖组和低糖组.RT-PCR扩增人胰岛素基因,并构建含有人胰岛素基因的真核表达重组载体PcDNA3.1-hINS.经离心消化法获得ADMSCs,并通过流式细胞仪检测.瞬时转染,RT-PCR测各组胰岛素DNA的转录,ELISA法检测各组胰岛素分泌量,并对重组载体18 d组行葡萄糖刺激实验,计量资料以x±s表示,多组间的比较采用方差分析,两组比较采用t检验.结果 流式细胞仪检测ADMSCs表面抗原:CD44、CD90、CD106表达阳性,CD34、CD45、CD11b表达阴性.RT-PCR法检测重组载体组有胰岛素DNA转录,对照组和空载体组均无转录.ELISA法检测重组载体1、6、12、18 d组胰岛素分泌量分别为(4.7±0.8)mIU/L、(8.8±0.5)mIU/L、(8.9±0.8) mIU/L、(8.6±0.6) mIU/L,与对照组的(1.3±0.6) mIU/L和空载体组的(1.7±0.8)mIU/L分别比较,差异均有统计学意义(t=10.09,32.64,22.20,55.53;9.23,27.56,19.43,51.25,P<0.05);重组载体1d组与6、12、18 d组的胰岛素分泌量分别比较,差异有统计学意义(t=12.77,12.26,13.93,P<0.05);而6、12、18 d组间的胰岛素分泌量比较,差异无统计学意义(F=45.67,P>0.05).高糖组和低糖组胰岛素分泌量比较,差异有统计学意义(t=2.03,P<0.05).葡萄糖刺激实验阴性.结论 ADMSCs成功转染为胰岛素分泌细胞,并可以稳定分泌胰岛素,虽然胰岛素分泌量不能根据葡萄糖的浓度改变而改变,但仍为干细胞治疗糖尿病提供了一种新的种子细胞.%Objective To investigate the possibility of transfection of adipose-derived

  4. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J;

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  5. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  6. Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds.

    Science.gov (United States)

    Tseng, Ling-Fang; Wang, Jing; Baker, Richard M; Wang, Guirong; Mather, Patrick T; Henderson, James H

    2016-08-01

    Recent advances in shape memory polymers have enabled the study of programmable, shape-changing, cytocompatible tissue engineering scaffolds. For treatment of bone defects, scaffolds with shape memory functionality have been studied for their potential for minimally invasive delivery, conformal fitting to defect margins, and defect stabilization. However, the extent to which the osteogenic differentiation capacity of stem cells resident in shape memory scaffolds is preserved following programmed shape change has not yet been determined. As a result, the feasibility of shape memory polymer scaffolds being employed in stem cell-based treatment strategies remains unclear. To test the hypothesis that stem cell osteogenic differentiation can be preserved during and following triggering of programmed architectural changes in shape memory polymer scaffolds, human adipose-derived stem cells were seeded in shape memory polymer foam scaffolds or in shape memory polymer fibrous scaffolds programmed to expand or contract, respectively, when warmed to body temperature. Osteogenic differentiation in shape-changing and control scaffolds was compared using mineral deposition, protein production, and gene expression assays. For both shape-changing and control scaffolds, qualitatively and quantitatively comparable amounts of mineral deposition were observed; comparable levels of alkaline phosphatase activity were measured; and no significant differences in the expression of genetic markers of osteogenesis were detected. These findings support the feasibility of employing shape memory in scaffolds for stem cell-based therapies for bone repair.

  7. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy.

    Science.gov (United States)

    Cronk, Stephen M; Kelly-Goss, Molly R; Ray, H Clifton; Mendel, Thomas A; Hoehn, Kyle L; Bruce, Anthony C; Dey, Bijan K; Guendel, Alexander M; Tavakol, Daniel N; Herman, Ira M; Peirce, Shayn M; Yates, Paul A

    2015-05-01

    Diabetic retinopathy is characterized by progressive vascular dropout with subsequent vision loss. We have recently shown that an intravitreal injection of adipose-derived stem cells (ASCs) can stabilize the retinal microvasculature, enabling repair and regeneration of damaged capillary beds in vivo. Because an understanding of ASC status from healthy versus diseased donors will be important as autologous cellular therapies are developed for unmet clinical needs, we took advantage of the hyperglycemic Akimba mouse as a preclinical in vivo model of diabetic retinopathy in an effort aimed at evaluating therapeutic efficacy of adipose-derived stem cells (mASCs) derived either from healthy, nondiabetic or from diabetic mice. To these ends, Akimba mice received intravitreal injections of media conditioned by mASCs or mASCs themselves, subsequent to development of substantial retinal capillary dropout. mASCs from healthy mice were more effective than diabetic mASCs in protecting the diabetic retina from further vascular dropout. Engrafted ASCs were found to preferentially associate with the retinal vasculature. Conditioned medium was unable to recapitulate the vasoprotection seen with injected ASCs. In vitro diabetic ASCs showed decreased proliferation and increased apoptosis compared with healthy mASCs. Diabetic ASCs also secreted less vasoprotective factors than healthy mASCs, as determined by high-throughput enzyme-linked immunosorbent assay. Our findings suggest that diabetic ASCs are functionally impaired compared with healthy ASCs and support the utility of an allogeneic injection of ASCs versus autologous or conditioned media approaches in the treatment of diabetic retinopathy.

  8. Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells

    International Nuclear Information System (INIS)

    The inflammatory response clinically observed after radiation has been described to correlate with elevated expression of cytokines and adhesion molecules by endothelial cells. Therapeutic compensation for this microvascular compromise could be an important approach in the treatment of irradiated wounds. Clinical reports describe the potential of adipose-derived stem cells to enhance wound healing, but the underlying cellular mechanisms remain largely unclear. Human dermal microvascular endothelial cells (HDMEC) and human adipose-derived stem cells (ASC) were cultured in a co-culture setting and irradiated with sequential doses of 2 to 12 Gy. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (FGF), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the supernatants using enzyme-linked immunosorbent assay (ELISA). Irradiated HDMEC and ASC as well as non-irradiated co-cultures, HDMEC or ASC respectively were used as controls. Cell count was significantly reduced in irradiated co-cultures of HDMEC and ASC compared to non-irradiated controls. Levels of IL-6, FGF, ICAM-1 and VCAM-1 in the supernatants of the co-cultures were significantly less affected by external radiation in comparison to HDMEC. The increased expression of cytokines and adhesion molecules by HDMEC after external radiation is mitigated in the co-culture setting with ASC. These in vitro changes seem to support the clinical observation that ASC may have a stabilizing effect when injected into irradiated wounds

  9. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    International Nuclear Information System (INIS)

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker® staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: ► Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. ► p53 expression does not appreciably influence the biology of Schwann or stem cells. ► Notch 2 expression was similar in cells derived from animals of different ages. ► Proliferation rates of dMSC varied little over time or with animal age.

  10. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Cristina [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden); Raimondo, Stefania [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Haneef, Maryam S. [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Geuna, Stefano [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Terenghi, Giorgio [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Shawcross, Susan G., E-mail: sue.shawcross@manchester.ac.uk [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Wiberg, Mikael [Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden)

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.

  11. Extracts of adipose derived stem cells slows progression in the R6/2 model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wooseok Im

    Full Text Available Stem cell therapy is a promising treatment for incurable disorders including Huntington's disease (HD. Adipose-derived stem cell (ASC is an easily available source of stem cells. Since ASCs can be differentiated into nervous stem cells, it has clinically feasible potential for neurodegenerative disease. In addition, ASCs secrete various anti-apoptotic growth factors, which improve the symptoms of disease from transplanted ASCs. Thus, cell-free extracts of ASCs (ASCs-E could be a potential candidate for treatment of HD. Here, we investigated effects of ASCs-E on R6/2 HD mouse model and neuronal cells. In R6/2 HD model, injection of ASCs-E improved the performance in Rotarod test. ASCs-E also ameliorated striatal atrophy and mutant huntingtin aggregation in the striatum. In Western blot increased expressions of p-Akt, p-CREB and PGC1α were noted by injection of ASCs-E, when comparing to the R6/2 HD model. Neuro2A neuroblastoma cells treated with ASCs-E showed increased expression of p-CREB and PGC1α. In conclusion, ASCs-E delayed disease progression in animal model of HD by restoring of CREB-PGC1α pathway and could be a potential resource for treatment of HD.

  12. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    Science.gov (United States)

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.

  13. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    OpenAIRE

    Phuc Van Pham; Khanh Hong-Thien Bui; Triet Dinh Duong; Nhan Thanh Nguyen; Thanh Duc Nguyen; Vien Tuong Le; Viet Thanh Mai; Nhan Lu-Chinh Phan; Dung Minh Le and Ngoc Kim Ngoc

    2014-01-01

    Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs) show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in ...

  14. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture.

    Science.gov (United States)

    Lei, Lei; Liao, WeiMing; Sheng, PuYi; Fu, Ming; He, AiShan; Huang, Gang

    2007-06-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: 61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t x log2/logNt - logN0" was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the 61 years old group (statistical analysis of variance (ANOVA), P=0.002, PhADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  15. Correlation between ECM guidance and actin polymerization on osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Keller, Vivian; Deiwick, Andrea; Pflaum, Michael; Schlie-Wolter, Sabrina

    2016-10-01

    The correlation between extracellular matrix (ECM) components, cell shape, and stem cell guidance can shed light in understanding and mimicking the functionality of stem cell niches for various applications. This interplay on osteogenic guidance of human adipose-derived stem cells (hASCs) was focus of this study. Proliferation and osteogenic markers like alkaline phosphatase activity and calcium mineralization were slightly increased by the ECM components laminin (LA), collagen I (COL), and fibronectin (FIB); with control medium no differentiation occurred. ECM guided differentiation was rather dependent on osterix than on Runx2 pathway. FIB significantly enhanced cell elongation even in presence of actin polymerization blockers cytochalasin D (CytoD) and ROCK inhibitor Y-27632, which generally caused more rounded cells. Except for the COL surface, both inhibitors increased the extent of osterix, while the Runx2 pathway was more sensitive to the culture condition. Both inhibitors did not affect hASC proliferation. CytoD enabled osteogenic differentiation independently from the ECM, while it was rather blocked via Y-27632 treatment; on FIB the general highest extent of differentiation occurred. Taken together, the ECM effect on hASCs occurs indirectly and selectively via a dominant role of FIB: it sustains osteogenic differentiation in case of a tension-dependent control of actin polymerization.

  16. Characterization of mesenchymal stem cells derived from equine adipose tissue

    OpenAIRE

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  17. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Directory of Open Access Journals (Sweden)

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  18. Evaluation of Methylcellulose and Dimethyl Sulfoxide as the Cryoprotectants in a Serum-Free Freezing Media for Cryopreservation of Adipose-Derived Adult Stem Cells

    OpenAIRE

    Thirumala, Sreedhar; Gimble, Jeffrey M.; Devireddy, Ram V.

    2010-01-01

    Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii...

  19. Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Loan Thi-Tung Dang

    2015-01-01

    Full Text Available Diabetes mellitus is a high incidence disease that has increased rapidly in recent years. Many new therapies are being studied and developed in order to find an effective treatment. An ideal candidate is stem cell therapy. In this study, we investigated the differentiation of adipose derived stem cells (ADSCs into pseudo-islets in defined medium in vitro, to produce large quantities of insulin-producing cells (IPCs for transplantation. ADSCs isolated from adipose tissue were induced to differentiate into islet-like insulin-producing cell clusters in vitro by inducing medium DMEM/F12 containing nicotinamide, N2, B27, bFGF, and insulin-transferrin-selenite (ITS. Differentiated cells were analyzed for properties of IPCs, including storage of Zn2+ by dithizone staining, insulin production by ELISA and immunochemistry, and beta cell-related gene expression by reverse transcriptase PCR. The results showed that after 2 weeks of differentiation, the ADSCs aggregated into cell clusters, and after 4 weeks they formed islets, 50 and ndash;400 micrometers in diameter. These islet cells exhibited characteristics of pancreatic beta cells as they were positive for dithizone staining, expressed insulin in vitro and C-peptide in the cytoplasm, and expressed pancreatic beta cell-specific genes, including Pdx-1, NeuroD, and Ngn3. These results demonstrate that ADSCs can be used to produce a large number of functional islets for research as well as application. [Biomed Res Ther 2015; 2(1.000: 184-192

  20. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    Science.gov (United States)

    Schendzielorz, P.; Froelich, K.; Rak, K.; Gehrke, T.; Scherzad, A.; Hagen, R.; Radeloff, A.

    2016-01-01

    Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique. PMID:27375746

  1. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  2. Therapeutic effects of mouse adipose-derived stem cells and losartan in the skeletal muscle of injured mdx mice.

    Science.gov (United States)

    Lee, Eun-Mi; Kim, Ah-Young; Lee, Eun-Joo; Park, Jin-Kyu; Lee, Myeong-Mi; Hwang, Meeyul; Kim, Choong-Yong; Kim, Shin-Yoon; Jeong, Kyu-Shik

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder caused by mutations in the dystrophin gene. Adipose-derived stem cells (ASCs) are an attractive source of cells for stem cell therapy. Losartan has been reported to improve ASC transplantation in injured mouse muscles. In the present study, we investigated whether the combined treatment of losartan and ASCs in the injured muscles of mdx mice improves regeneration. The combined treatment of ASCs and losartan remarkably improved muscle regeneration and induced muscle hypertrophy. In addition, ASCs and losartan treatment downregulated transforming growth factor-β and inhibited muscle fibrosis. We observed cells coexpressing green fluorescent protein (GFP) and dystrophin in the muscle samples of mice transplanted with GFP-positive ASCs. In the coculture in vitro experiment, we also observed that the GFP ASCs differentiated into dystrophin-expressing myotubes. The present study shows that the combination of transplanted ASCs and treatment with losartan ameliorated muscle fibrosis and improved muscle regeneration in injured mdx mice. Thus, we suggest that combined treatment with losartan and ASCs could help to improve muscle regeneration in the muscles of injured patients, including DMD patients.

  3. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  4. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  5. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    Directory of Open Access Journals (Sweden)

    P. Schendzielorz

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342 represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL, with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.

  6. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China); Tang, Zhi-hui, E-mail: tang_zhihui@live.cn [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China)

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  7. Does Freeze-Thawing Influence the Effects of Platelet Concentrates? An In Vitro Study on Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ceci, Caterina; Niada, Stefania; Del Fabbro, Massimo; Lolato, Alessandra; Taschieri, Silvio; Giannasi, Chiara; Brini, Anna Teresa

    2016-03-01

    Human adipose-derived stem cells (hASCs) have been proposed as a possible therapy for tissue regeneration in aesthetic, plastic, and reconstructive surgery. Today, platelet concentrates are used in a wide range of disciplines, but their storage has become a controversial aspect. The purpose of this in vitro study was to evaluate the effect of plasma rich in growth factors (PRGF), after a freeze-thawing cycle, on the proliferation and biological activity of progenitor cells involved in soft tissue healing. Different formulations of activated PRGF were added to hASCs cultured in serum-free medium. Cell proliferation was assessed by MTT test and cell count up to 7 and 12-day incubation. Osteo-differentiation ability of hASCs was also tested after 7 and 14-day incubation by alkaline phosphatase assay. The effects of 4 PRGF preparations (fresh/frozen and with/without platelets) were compared with corresponding formulations of plasma poor in growth factors and with standard medium. hASCs cultured in the presence of platelet concentrates increased proliferation rate with respect to cells grown in standard medium without significant differences among all the tested plasma formulations on cell viability up to 12 days of culture. PRGF activity is preserved after cryopreservation and platelet-rich preparations promoted osteo-differentiation of hASCs at day 7. In conclusion, PRGF supports the proliferation and the differentiation of progenitor cells in vitro also when applied after cryopreservation. Platelet concentrates, either alone or in combination with mesenchymal stem cells, might be a valuable tool in the field of tissue regeneration. PMID:26872279

  8. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging

    International Nuclear Information System (INIS)

    Objective: Strategies to overcome the problem of extensive early stem cell loss following transplantation requires a method to quantitatively assess their efficacy. This study compared the ability of sodium/iodide symporter (NIS) and enhanced green fluorescent protein (EGFP) imaging to monitor the effectiveness of treatments to enhance early stem cell survival. Methods: Human adipose-derived stem cells (ADSCs) transduced with an adenoviral vector to express both NIS and EGFP were mixed with culture media (control), matrigel (matrigel group) or pro-survival cocktail (PSC group), and 5 × 106 cells were injected into thigh muscles of C57BL/6 mice. Animals underwent serial optical imaging and 99mTcO4- scintigraphy. Image-based EGFP fluorescence and 99mTcO4- uptake was measured by region-of-interest analysis, and extracted tissues were measured for 99mTc activity. Fluorescent intensity measured from homogenized muscle tissue was used as reference for actual amount of viable ADSCs. Results: ADSCs were efficiently transduced to express EGFP and NIS without affecting proliferative capacity. The absence of significant apoptosis was confirmed by annexin V FACS analysis and Western blots for activated caspase-3. Both fluorescence optical imaging and 99mTcO4- scintigraphy visualized implanted cells in living mice for up to 5 days. However, optical imaging displayed large variations in fluorescence intensity, and thus failed to detect difference in cell survival between groups or its change over time. In comparison, 99mTcO4- scintigraphy provided more reliable assessment of within-in group donor cell content as well as its temporal change. As a result, NIS imaging was able to discern beneficial effects of matrigel and pro-survival cocktail treatment on early ADSC survival, and provided quantitative measurements that correlated to actual donor cell content within implanted tissue. Conclusion: NIS reporter imaging may be useful for noninvasively assessing the efficacies of

  9. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    Science.gov (United States)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  10. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in p

  11. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    International Nuclear Information System (INIS)

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering

  12. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress.

    Directory of Open Access Journals (Sweden)

    Sarah Strauß

    Full Text Available The development of large tissue engineered bone remains a challenge in vitro, therefore the use of hybrid-implants might offer a bridge between tissue engineering and dense metal or ceramic implants. Especially the combination of the pseudoelastic implant material Nitinol (NiTi with adipose derived stem cells (ASCs opens new opportunities, as ASCs are able to differentiate osteogenically and therefore enhance osseointegration of implants. Due to limited knowledge about the effects of NiTi-structures manufactured by selective laser melting (SLM on ASCs the study started with an evaluation of cytocompatibility followed by the investigation of the use of SLM-generated 3-dimensional NiTi-structures preseeded with ASCs as osteoimplant model. In this study we could demonstrate for the first time that osteogenic differentiation of ASCs can be induced by implant-mediated mechanical stimulation without support of osteogenic cell culture media. By use of an innovative implant design and synthesis via SLM-technique we achieved high rates of vital cells, proper osteogenic differentiation and mechanically loadable NiTi-scaffolds could be achieved.

  13. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells.

    Science.gov (United States)

    Kawakami, Miyuki; Ishikawa, Hiroshi; Tanaka, Akira; Mataga, Izumi

    2016-07-01

    Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues. PMID:26842556

  14. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.

    Science.gov (United States)

    Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo

    2016-07-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p valueG but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs.

  15. Involvement of cAMP in the Human Serum-Induced Migration of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Lee, Minji; Koh, Wonyoung; Kim, Bomee; Chung, Hyeju; Cho, Gahyang; Kim, Haekwon

    2016-06-01

    Previously we observed that human adipose-derived stem cells (hADSCs) could form aggregation during culture in the presence of human serum (HS). In the present study, we have examined if the aggregation might result from the cell migration and analyzed the difference of cell adhesivity after culture in various conditions. When cells were cultured in fetal bovine serum (FBS) alone, there was no morphological change. Similarly, cells pretreated with FBS for 1 day or cultured in a mixture of FBS and HS showed little change. In contrast, cells cultured in HS alone exhibited formation of cell-free area (spacing) and/or cell aggregation. When cells cultured in FBS or pretreated with FBS were treated with 0.06% trypsin, almost cells remained attached to the dish surfaces. In contrast, when cells cultured in HS alone were examined, most cells detached from the dish by the same treatment. Treatment of cells with forskolin, isobutylmethyl xanthine (IBMX) or LY294002 inhibited the formation of spacing whereas H89 or Y27632 showed little effect. When these cells were treated with 0.06% trypsin after culture, most cells detached from the dishes as cells cultured in HS alone did. However, cells treated with IBMX exhibited weaker adhesivity than HS alone. Based on these observations, it is suggested that HS treatment might decrease the adhesivity and induce three-dimensional migration of hADSCs, in the latter of which cAMP signaling could be involved. PMID:27660827

  16. Adipose-Derived Stem Cells Alleviate Radiation-Induced Muscular Fibrosis by Suppressing the Expression of TGF-β1

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-01-01

    Full Text Available We aim to investigate the effects of adipose-derived stem cells (ASCs transplantation on irradiation-induced skeletal muscle fibrosis. Sixty-four rabbits were randomly divided into ASCs group and PBS group followed by irradiation at unilateral hip with a single dose of 80 Gy. Nonirradiated side with normal skeletal muscle served as normal control. Skeletal muscle tissues were collected from eight rabbits in each group at 1 w, 4 w, 8 w, and 26 w after irradiation. Migration of ASCs was observed in the peripheral tissues along the needle passage in the injured muscle. The proportion of the area of collagen fibers to the total area in sections of ASCs group was lower than those of PBS groups at 4 w, 8 w, and 26 w after irradiation. Significant decrease was noted in the integrated optimal density of the transforming growth factor β1 (TGF-β1 in the ASCs group compared with those of PBS group at 4 w, 8 w, and 26 w after irradiation. Moreover, the expression of TGF-β1 was lower in the ASCs group compared to those of the PBS group at each time point determined by Western blot analysis. ASCs transplantation could alleviate irradiation fibrosis by suppressing the level of TGF-β1 in the irradiated skeletal muscle.

  17. Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Peihua Zhang

    2016-01-01

    Full Text Available Tissue inhibitor of metalloproteinases-1 (TIMP-1 is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs. Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2, and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs.

  18. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Directory of Open Access Journals (Sweden)

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  19. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.

    Science.gov (United States)

    Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo

    2016-07-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs. PMID:27382350

  20. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review.

    Science.gov (United States)

    Freese, Kyle E; Kokai, Lauren; Edwards, Robert P; Philips, Brian J; Sheikh, M Aamir; Kelley, Joseph; Comerci, John; Marra, Kacey G; Rubin, J Peter; Linkov, Faina

    2015-04-01

    Obesity is a well recognized risk factor for several types of cancers, many of which occur solely or disproportionately in women. Adipose tissue is a rich source of adipose-derived stem cells (ASC), which have received attention for their role in cancer behavior. The purpose of this systematic review is to present the existing literature on the role of ASCs in the growth, development, progression, and metastasis of cancer, with an emphasis on malignancies that primarily affect women. To accomplish this goal, the bibliographic database PubMed was systematically searched for articles published between 2001 and 2014 that address ASCs' relationship to human cancer. Thirty-seven articles on ASCs' role in human cancer were reviewed. Literature suggests that ASCs exhibit cancer-promoting properties, influence/are influenced by the tumor microenvironment, promote angiogenesis, and may be associated with pathogenic processes through a variety of mechanisms, such as playing a role in hypoxic tumor microenvironment. ASCs appear to be important contributors to tumor behavior, but research in areas specific to women's cancers, specifically endometrial cancer, is scarce. Also, because obesity continues to be a major health concern, it is important to continue research in this area to improve understanding of the impact adiposity has on cancer incidence.

  1. The Use of Human Adipose-Derived Stem Cells in the Treatment of Physiological and Pathological Vulvar Dystrophies

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause and pathological (lichen sclerosus, vulvar graft-versus-host disease conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect.

  2. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs)

    Science.gov (United States)

    Dinescu, Sorina; Galateanu, Bianca; Albu, Madalina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta

    2013-01-01

    Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications. PMID:23325052

  3. Effects of γ-secretase inhibition on the proliferation and vitamin D3 induced osteogenesis in adipose derived stem cells

    International Nuclear Information System (INIS)

    As a γ-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D3 induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D3. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D3 treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cells cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.

  4. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wenyue Li

    Full Text Available Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7 that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1 onto the surface of poly-lactic-co-glycolic acid (PLGA substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs, being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP, osteocalcin (OC, and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  5. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  6. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    LEI Lei; LIAO WeiMing; SHENG PuYi; FU Ming; HE AiShan; HUANG Gang

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering, hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21-40years old, 41-60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45,CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell,and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro.The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t log2/logNt - logN0 "was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=-0.002, P<0.05). These findings suggested that a higher level of hADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  7. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell’s replication activity and the donor’s age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21―40 years old, 41―60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula “ log2T D = t logN t ? logN 0” was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These find- ings suggested that a higher level of hADAS cells replication activity was found in the younger dona- tors, and they represent novel and valuable seed cells for studies of tissue engineering.

  8. Low Intensity Laser Irradiation and Growth Factors Influence Differentiation of Adipose Derived Stem Cells into Smooth Muscle Cells in a Coculture Environment over a Period of 72 Hours

    Directory of Open Access Journals (Sweden)

    Bernard Mvula

    2014-01-01

    Full Text Available Stem cells have the ability to self-renew and differentiate into several specialised cells. Low intensity laser irradiation (LILI has been shown to have positive effects on cells including adipose derived stem cells (ADSCs. Growth factors such as retinoic acid and transforming growth factor (TGF-β1 play significant roles in the differentiation of cells. This study aimed at investigating the role of LILI and growth factors on differentiation of adipose derived stem cells cocultured with smooth muscle cells (SMCs. The study used isolated human adipose derived stem cells and smooth muscle commercial cells (SKUT-1. The cells were cocultured directly in the ratio 1 : 1 using the established methods with and without growth factors (retinoic acid and TGF-β1 and then exposed to LILI at a wavelength of 636 nm with 5 J/cm2 using a diode laser. The cellular proliferation and expression of the both cell type markers were assessed using optical density and flow cytometry at 24 h and 72 h. The study showed that LILI increased the proliferation of cocultured cells. The expression of the smooth muscle cell markers increased in the coculture groups that were exposed to LILI in the presence of growth factors while those of the ADSCs decreased.

  9. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering.

    Science.gov (United States)

    Wankhade, Umesh D; Shen, Michael; Kolhe, Ravindra; Fulzele, Sadanand

    2016-01-01

    Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT), it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC) have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future.

  10. Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin

    Directory of Open Access Journals (Sweden)

    Rodney K. Chan

    2012-01-01

    Full Text Available Large body surface area burns pose significant therapeutic challenges. Clinically, the extent and depth of burn injury may mandate the use of allograft for temporary wound coverage while autografts are serially harvested from the same donor areas. The paucity of donor sites in patients with burns involving large surface areas highlights the need for better skin substitutes that can achieve early and complete coverage and retain normal skin durability with minimal donor requirements. We have isolated autologous stem cells from the adipose layer of surgically debrided burned skin (dsASCs, using a point-of-care stem cell isolation device. These cells, in a collagen—polyethylene glycol fibrin-based bilayer hydrogel, differentiate into an epithelial layer, a vascularized dermal layer, and a hypodermal layer. All-trans-retinoic acid and fenofibrate were used to differentiate dsASCs into epithelial-like cells. Immunocytochemical analysis showed a matrix- and time-dependent change in the expression of stromal, vascular, and epithelial cell markers. These results indicate that stem cells isolated from debrided skin can be used as a single autologous cell source to develop a vascularized skin construct without culture expansion or addition of exogenous growth factors. This technique may provide an alternative approach for cutaneous coverage after extensive burn injuries.

  11. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a guinea pig model of acoustic trauma

    OpenAIRE

    Wanda Lattanzi

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Several evidences indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This...

  12. Grafting and Early Expression of Growth Factors from Adipose-Derived Stem Cells Transplanted into the Cochlea, in a Guinea Pig Model of Acoustic Trauma

    OpenAIRE

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This st...

  13. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery

    OpenAIRE

    Niada, S; L.M. Ferreira; Arrigoni, E.; Addis, A.; M. Campagnol; E. Broccaioli; Brini, A T

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Metho...

  14. Undifferentiated Human Adipose-derived Stromal/Stem Cells loaded onto Wet-Spun Starch-polycaprolactone Scaffolds Enhance Bone Regeneration: Nude Mice Calvarial Defect in vivo Study

    OpenAIRE

    Carvalho, Pedro P.; Leonor, Isabel B.; Smith, Brenda J.; Dias, Isabel R.; Reis, Rui L.; Jeffrey M Gimble; Gomes, Manuela E.

    2013-01-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect.

  15. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    OpenAIRE

    Han-Tsung Liao; Jyh-Ping Chen; Ming-Yih Lee

    2013-01-01

    Three-dimensional porous polycaprolactone (PCL) scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP) to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs). The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differen...

  16. Characterization of human adipose-derived stem cells Caracterização de células-tronco do tecido adiposo humano

    OpenAIRE

    Silvana Gaiba; Lucimar Pereira de França; Jerônimo Pereira de França; Lydia Masako Ferreira

    2012-01-01

    PURPOSE: There is a growing scientific interest in the plasticity and therapeutic potential of adipose-derived stem cells (ASCs), which are multipotent and abundant in adipose tissue and can differentiate in vitro into multiple lineages, including adipocytes, chondrocytes, osteoblasts, neural cells, endothelial cells and cardiomyocytes. The aim of this study was to isolate, cultivate and identify ASCs. METHODS: Human adipose precursor cells were obtained from subcutaneous abdominal tissue. Re...

  17. Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and β-catenin signaling

    OpenAIRE

    Xu, Xiao; Wang, Hong-yi; Zhang, Yu; Liu, Yang; Li, Yan-qi; Tao, Kai; Wu, Chu-Tse; Jin, Ji-De; Liu, Xiao-Yan

    2014-01-01

    Background It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging ani...

  18. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment

    Science.gov (United States)

    Yang, Mei; Zhang, Ge-Ge; Wang, Teng; Wang, Xi; Tang, Yan-Hong; Huang, He; Barajas-Martinez, Hector; Hu, Dan; Huang, Cong-Xin

    2016-01-01

    T-box 18 (TBX18) plays a crucial role in the formation and development of the head of the sinoatrial node. The objective of this study was to induce adipose-derived stem cells (ADSCs) to produce pacemaker-like cells by transfection with the TBX18 gene. A recombinant adenovirus vector carrying the human TBX18 gene was constructed to transfect ADSCs. The ADSCs transfected with TBX18 were considered the TBX18-ADSCs. The control group was the GFP-ADSCs. The transfected cells were co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs). The results showed that the mRNA expression of TBX18 in TBX18-ADSCs was significantly higher than in the control group after 48 h and 7 days. After 7 days of co-culturing with NRVMs, there was no significant difference in the expression of the myocardial marker cardiac troponin I (cTnI) between the two groups. RT-qPCR and western blot analysis showed that the expression of HCN4 was higher in the TBX18-ADSCs than in the GFP-ADSCs. The If current was detected using the whole cell patch clamp technique and was blocked by the specific blocker CsCl. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) showed approximately twice the current density compared with the ADSCs. Our study indicated that the TBX18 gene induces ADSCs to differentiate into pacemaker-like cells in the cardiac microenvironment. Although further experiments are required in order to assess safety and efficacy prior to implementation in clinical practice, this technique may provide new avenues for the clinical therapy of bradycardia. PMID:27632938

  19. Isolation, purification and preservation of adipose-derived stem cells:research progress and future development%脂肪干细胞分离、纯化和保存:研究进展与未来方向

    Institute of Scientific and Technical Information of China (English)

    陈犹白; 陈聪慧; Qixu Zhang; 韩岩

    2016-01-01

    背景:2001年,Zuk 等从吸脂术抽出的脂肪中发现了脂肪干细胞,揭开了干细胞研究的新篇章。近年来的研究证实,干细胞广泛存在于体内各组织,但脂肪干细胞以其来源广泛、获取简单等优点,一直以来是整形修复科、组织工程和再生医学等相关学科的研究重点。  目的:从脂肪组织的取材、脂肪干细胞的分离、纯化、传代培养和冻存等方面进行综述,讨论上述过程中影响脂肪干细胞产量、增殖和分化能力的主要因素,同时提出目前的问题和未来的研究方向。  方法:于2015年9月10日在PubMed中以(adipose stem cels[Title]) OR (adipose-derived stem cels[Title]) OR (adipose-derived mesenchymal stem cels[Title])作为检索式进行检索,在SinoMed中以(“脂肪干细胞”[中文标题:智能])or(“脂肪间充质干细胞”[中文标题:智能])作为检索式进行检索。通过标题及摘要判断其主要内容,最终选取81篇代表性文献。文章还介绍了美国德克萨斯大学MD安德森肿瘤中心整形科和TRAMCEL实验室(Tissue Regeneration and Molecular Cel Engineering Lab)的相关经验。  结果与结论:脂肪组织分布广泛,给脂肪干细胞提供了充足的来源。利用吸脂术获得脂肪组织,患者痛苦小,供区损伤低。胶原酶消化法操作简单,产量高,仍然是基础实验中脂肪干细胞的主要分离方法,但是临床应用中一般不分离脂肪干细胞,或者利用临床级的无异种胶原酶甚至无酶的分离方法。脂肪干细胞的产量、表型、增殖和分化能力等生物学特性会受到取材和分离过程中多种因素的影响,因此目前需要制定标准化的脂肪干细胞分离准则。%BACKGROUND:In 2001, Zuk et al found adipose-derived stem cels (ASCs) from the aspirate of liposuction for the first time, which launched a new era of stem cel research. In recent years, stem cels

  20. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    OpenAIRE

    Kyu-Sup Cho; Mi-Kyung Park; Shin-Ae Kang; Hee-Young Park; Sung-Lyong Hong; Hye-Kyung Park; Hak-Sun Yu; Hwan-Jung Roh

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allerg...

  1. Pdcd4 restrains the self-renewal and white-to-beige transdifferentiation of adipose-derived stem cells.

    Science.gov (United States)

    Bai, Y; Shang, Q; Zhao, H; Pan, Z; Guo, C; Zhang, L; Wang, Q

    2016-01-01

    The stemness maintenance of adipose-derived stem cells (ADSCs) is important for adipose homeostasis and energy balance. Programmed cell death 4 (Pdcd4) has been demonstrated to be involved in the development of obesity, but its possible roles in ADSC function and adipogenic capacity remain unclear. In this study, we demonstrate that Pdcd4 is a key controller that limits the self-renewal and white-to-beige transdifferentiation of ADSCs. Pdcd4 deficiency in mice caused stemness enhancement of ADSCs as evidenced by increased expression of CD105, CD90, Nanog and Oct4 on ADSCs, together with enhanced in situ proliferation in adipose tissues. Pdcd4 deficiency promoted proliferation, colony formation of ADSCs and drove more ADSCs entering the S phase accompanied by AKT activation and cyclinD1 upregulation. Blockade of AKT signaling in Pdcd4-deficient ADSCs led to a marked decline in cyclinD1, S-phase entry and cell proliferation, revealing AKT as a target for repressing ADSC self-renewal by Pdcd4. Intriguingly, depletion of Pdcd4 promoted the transdifferentiation of ADSCs into beige adipocytes. A reduction in lipid contents and expression levels of white adipocyte markers including C/EBPα, PPAR-γ, adiponectin and αP2 was detected in Pdcd4-deficient ADSCs during white adipogenic differentiation, substituted by typical beige adipocyte characteristics including small, multilocular lipid droplets and UCP1 expression. More lactate produced by Pdcd4-deficient ADSCs might be an important contributor to the expression of UCP1 and white-to-beige transdifferentiation. In addition, an elevation of UCP1 expression was confirmed in white adipose tissues from Pdcd4-deficient mice upon high-fat diet, which displayed increased energy expenditure and resistance to obesity as compared with wild-type obese mice. These findings provide evidences that Pdcd4 produces unfavorable influences on ADSC stemness, which contribute to adipose dysfunction, obesity and metabolic syndromes, thereby

  2. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.

    Science.gov (United States)

    Zanetti, A S; McCandless, G T; Chan, J Y; Gimble, J M; Hayes, D J

    2015-04-01

    In this study, three different akermanite:poly-ϵ-caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose-derived stem cells (hASC). Pure ceramic scaffolds [CellCeram™, custom-made, 40:60 wt%; β-tricalcium phosphate (β-TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL-containing scaffolds had the highest porosity but CellCeram™ had the greatest pore size. In general, compression strength in PCL-containing scaffolds was greater than in ceramic scaffolds. PCL-containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL-containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL-6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds.

  3. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells.

    Science.gov (United States)

    Cheung, Hoi Ki; Han, Tim Tian Y; Marecak, Dale M; Watkins, John F; Amsden, Brian G; Flynn, Lauren E

    2014-02-01

    An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation. PMID:24331712

  4. Transplanted Adipose-Derived Stem Cells Ameliorate Testicular Dysfunction In A D-Galactose-Induced Aging Rat Model.

    Science.gov (United States)

    Yang, Chun; Du, Yi-Kuan; Wang, Jun; Luan, Ping; Yang, Qin-Lao; Huang, Wen-Hua; Yuan, Lin

    2015-10-01

    Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis. PMID:25728126

  5. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.

    Science.gov (United States)

    Hutton, Daphne L; Moore, Erika M; Gimble, Jeffrey M; Grayson, Warren L

    2013-09-01

    Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor

  6. Scaffold-free Three-dimensional Graft From Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction

    Science.gov (United States)

    Dufrane, Denis; Docquier, Pierre-Louis; Delloye, Christian; Poirel, Hélène A.; André, Wivine; Aouassar, Najima

    2015-01-01

    Abstract Long bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions. Human ASCs (obtained from subcutaneous adipose tissue of 6 patients and expanded up to passage 4) were incubated in osteogenic media and supplemented with demineralized bone matrix to obtain the scaffold-free 3D osteogenic structure as confirmed in vitro by histomorphometry for osteogenesis and mineralization. The 3D “bone-like” structure was finally transplanted for 3 patients with bone tumor and 3 patients with bone pseudarthrosis (2 congenital, 1 acquired) to assess the clinical feasibility, safety, and efficacy. Although minor clones with structural aberrations (aneuploidies, such as tri or tetraploidies or clonal trisomy 7 in 6%–20% of cells) were detected in the undifferentiated ASCs at passage 4, the osteogenic differentiation significantly reduced these clonal anomalies. The final osteogenic product was stable, did not rupture with forceps manipulation, did not induce donor site morbidity, and was easily implanted directly into the bone defect. No acute (development, were associated with the graft up to 4 years after transplantation. We report for the first time that autologous ASC can be fully differentiated into a 3D osteogenic-like implant without any scaffold. We demonstrated that this engineered tissue can safely promote osteogenesis in extreme conditions of bone nonunions with minor donor site morbidity and no oncological side effects. PMID

  7. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair.

    Directory of Open Access Journals (Sweden)

    Dezhong Yang

    Full Text Available BACKGROUND: Recent studies have demonstrated that transplantation of adipose-derived stem cell (ADSC can improve cardiac function in animal models of myocardial infarction (MI. However, the mechanisms underlying the beneficial effect are not fully understood. In this study, we characterized the paracrine effect of transplanted ADSC and investigated its relative importance versus direct differentiation in ADSC transplantation mediated cardiac repair. METHODOLOGY/PRINCIPAL FINDINGS: MI was experimentally induced in mice by ligation of the left anterior descending coronary artery. Either human ADSC, conditioned medium (CM collected from the same amount of ADSC or control medium was injected into the peri-infarct region immediately after MI. Compared with the control group, both ADSC and ADSC-CM significantly reduced myocardial infarct size and improved cardiac function. The therapeutic efficacy of ADSC was moderately superior to ADSC-CM. ADSC-CM significantly reduced cardiomyocyte apoptosis in the infarct border zone, to a similar degree with ADSC treatment. ADSC enhanced angiogenesis in the infarct border zone, but to a stronger degree than that seen in the ADSC-CM treatment. ADSC was able to differentiate to endothelial cell and smooth muscle cell in post-MI heart; these ADSC-derived vascular cells amount to about 9% of the enhanced angiogenesis. No cardiomyocyte differentiated from ADSC was found. CONCLUSIONS: ADSC-CM is sufficient to improve cardiac function of infarcted hearts. The therapeutic function of ADSC transplantation is mainly induced by paracrine-mediated cardioprotection and angiogenesis, while ADSC differentiation contributes a minor benefit by being involved in angiogenesis. Highlights 1 ADSC-CM is sufficient to exert a therapeutic potential. 2. ADSC was able to differentiate to vascular cells but not cardiomyocyte. 3. ADSC derived vascular cells amount to about 9% of the enhanced angiogenesis. 4. Paracrine effect is the major

  8. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  9. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  10. Adipose-derived stem cells differentiate into vascular endothelial cells%脂肪源干细胞向血管内皮细胞的分化**

    Institute of Scientific and Technical Information of China (English)

    刘琳; 张亚; 周云; 翟景梅; 曹戌

    2013-01-01

      BACKGROUND: Adipose-derived stem cel s are regarded as the potential seed cel s for tissue engineering due to abundance in vivo, rapid proliferation in vitro, and capacity of multi-directional differentiation. Accumulated evidence supports that adipose-derived stem cel s can be induced to differentiate into endothelial cel s and to promote angiogenesis. OBJECTIVE: To study the biological characteristics of vascular endothelial cel s differentiated from rabbit adipose-derived stem cel s cultured in vitro. METHODS: Adipose tissues were obtained from the epididymal fat pads of the rabbits. And adipose-derived stem cel s were isolated from adipose tissues by col agenase digestion and cultured in vitro to passage 3. Vascular endothelial growth factor and basic fibroblast growth factor within endothelial cel growth medium were used to induce adipose-derived stem cel s differentiation into endothelial-like cel s. Cel morphology was observed and growth curves were drawn before and after induction. Flow cytometry and immunohistochemistry were used to analyze the morphology and type of adipose-derived stem cel s and the differentiated cel s. RESULTS AND CONCLUSION: Rabbit adipose-derived stem cel s grew wel , and passage 3 adipose-derived stem cel s presented fibroblast-like growth. The growth curve was like “S” shape. No significant change in cel morphology was detected within passage 15. Vimentin was positive on passage 3 adipose-derived stem cel s by indirect immunofluorescence methods. The positive CD44 expression and negative CD32 expression were detected in passage 3 adipose-derived stem cel s by flow cytometric analysis. After induction, CD31 became positive while CD44 was negative. Paving stone-like cel appearance was seen under inverted microscope 21 days after induction. The differentiated cel s were Factor VIII-related antigen positively stained with immunohistological method, and Weibel-Palade body was observed under a transmission electron microscope

  11. Amplification of rabbit adipose-derived stem cells using explants culture method%组织块贴壁法扩增兔脂肪干细胞

    Institute of Scientific and Technical Information of China (English)

    刘琴; 王丽平; 喻晶; 陈芳; 刁波; 张宜

    2014-01-01

    BACKGROUND:The rabbit adipose-derived stem cells are mostly isolated by type I col agenase digestion, but rarely by explants culture method. OBJECTIVE:To isolate rabbit adipose-derived stem cells for adipogenic and osteogenic differentiation. METHODS:The rabbit adipose-derived stem cells were isolated from rabbit adipose by explants culture method, and cultured in vitro fol owed by morphological observation. The grow curve and cellsurface markers CD29, CD44, CD45 of passage 3 cells were analyzed respectively by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry;cells from the third passages were induced for adipogenic and osteogenic differentiation by different revulsants, and cells were examined by oil red O staining and alizarin red staining . RESULTS AND CONCLUSION:The rabbit adipose-derived stem cells cultured in vitro exhibited a spindle-shaped appearance and could rapidly expand. Flow cytometry analysis revealed that the third passage of rabbit adipose-derived stem cells was positive for CD29, CD44, but negative for CD45. Rabbit adipose-derived stem cells were positive for oil red O staining at 14 days of adipogenic induction, and positive for alizarin red staining at 14 days of osteogenic induction. In conclusion, we could successful y isolate rabbit adipose-derived stem cells using explants culture method.%背景:研究显示兔脂肪干细胞的体外分离方法大多数为Ⅰ型胶原酶消化法,采用组织块贴壁法扩增兔脂肪干细胞尚不多见。  目的:采用组织块贴壁法从兔脂肪组织中分离培养兔脂肪干细胞,并进行成脂、成骨的诱导分化。  方法:采用组织块贴壁法分离出兔脂肪干细胞,进行体外培养,观察其形态特征。取对数生长期的第3代细胞,用MTT法绘制其生长曲线;流式细胞仪检测其表面抗原CD29、CD44、CD45的表达情况;分别用成脂和成骨诱导培养液诱导其向脂肪细胞和成骨细胞

  12. Isolation and culture of mouse adipose-derived stem cells and their homing to the intestinal tract%小鼠脂肪间充质干细胞的分离培养及肠道归巢

    Institute of Scientific and Technical Information of China (English)

    侯晓琳; 郁卫东; 崔梅花; 何湘君; 梁君

    2015-01-01

    背景:脂肪来源间充质干细胞因其取材安全、创伤小、易纯化、增殖快等优点而备受关注。目的:建立一种有效、快速分离培养较高纯度小鼠脂肪间充质干细胞的方法,荧光标记后探索其是否可在体内向肠道归巢。方法:取小鼠腹股沟及附睾脂肪,用0.1%Ⅰ型胶原酶消化得到单细胞,并与剩余未消化脂肪组织块一起接种,贴壁培养获得脂肪间充质干细胞,通过细胞形态、细胞表型、生长动力学、成骨成脂分化潜能4个方面进行鉴定,并将脂肪间充质干细胞用PKH67标记后经尾静脉注射移植到溃疡性结肠炎模型小鼠体内,观察其向肠道的归巢情况。结果与结论:脂肪间充质干细胞镜下呈梭形,快速增殖呈漩涡状排列,细胞高表达 CD29、CD44、CD90,不表达CD45。成骨诱导碱性磷酸酶染色显示有黑色颗粒生成,茜素红S染色呈红色结节,成脂诱导油红O染色显示有大量脂滴。细胞生长曲线显示第3-5天为对数增长期,细胞生长活力良好。结肠冰冻切片在荧光显微镜下可见绿色荧光光点,并随时间推移有增加趋势。以上结果表明采用胶原酶消化加组织块贴壁法体外分离培养的脂肪间充质干细胞增殖快、纯度高,可向成骨成脂细胞分化,在体内可向结肠归巢并增殖。%BACKGROUND:Adipose-derived mesenchymal stem cels have gained more and more attention due to their high safety, less invasiveness, easy purification and rapid proliferation. OBJECTIVE:To isolate and culture adipose-derived mesenchymal stem cels efficiently and rapidly with high purity and then to explore the cel homing to the intestinal tract after fluorescence labeling. METHODS: Mouse adipose tissue obtained from the groin and epididymis was asepticaly isolated and digested with 0.1% colagenase I. Then the digested cels and undigested adipose tissue were cultured together in the dish to harvest

  13. 脂肪干细胞诱导分化的现状及前景%Induced differentiation of adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    赵娜

    2015-01-01

    背景:脂肪干细胞是由中胚层发育而来的多能干细胞,在特殊的生长因子和环境等诱导培养条件下,可以向不同的谱系分化。目的:详细阐述脂肪干细胞诱导分化的条件及鉴定方法。方法:应用计算机检索万方数据库及PubMed数据库2005至2014年10年间的文献,中文检索词为“脂肪干细胞,诱导,分化”;英文检索词为“adipose derived stem cels,differentiation”。依据纳入排除标准选择37篇文献进行归纳总结。结果与结论:脂肪干细胞在抗坏血酸、胰岛素、地塞米松、转化生长因子β作用下可向软骨细胞分化;成脂诱导液的配方包括3-异丁基-1-甲基黄嘌呤(IBMX)、胰岛素、地塞米松、吲哚美辛;成骨分化常用的诱导剂包含地塞米松或维生素 D3、抗坏血酸,β-甘油磷酸钠;碱性成纤维细胞生长因子、表皮生长因子及维生素B27可联合应用诱导脂肪干细胞成神经分化;向心肌细胞分化普遍应用的诱导因子是5-氮杂胞苷;血管内皮生长因子和碱性成纤维细胞生长因子共同作用可以诱导脂肪干细胞向血管内皮细胞分化。随着分子生物学和细胞生物学的迅速发展,脂肪干细胞的分化研究也会更加深入,在目前对脂肪干细胞诱导分化现象观察的基础上,应加强对其内在的分子机制及调控脂肪干细胞可塑性的基因和蛋白的研究。%BACKGROUND:Adipose-derived stem cels are pluripotent stem cels developed from the mesoderm, which can differentiate into different lineages induced by specific growth factors and under certain environmental conditions. OBJECTIVE: To describe the induced differentiation and identification of adipose-derived stem cels in detail. METHODS:A computer-based search of Wanfang and PubMed databases was performed for relevant articles published from 2005 to 2014 using the keywords of “adipose derived stem cels, induced

  14. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  15. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration.

    Science.gov (United States)

    Wan, Wenbing; Zhang, Shiwen; Ge, Liangpeng; Li, Qingtao; Fang, Xingxing; Yuan, Quan; Zhong, Wen; Ouyang, Jun; Xing, Malcolm

    2015-01-01

    Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC)-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone) for 12 weeks. Investigating with microcomputer tomography, the ADSC-laden paper-stacking membranes showed the most significant bone reconstruction, and from a morphological perspective, this group occupied 90% of the surface area of the defect, produced the highest bone regeneration volume, and showed the highest bone mineral density of 823.06 mg/cm(3). From hematoxylin and eosin and Masson staining, the new bone tissue was most evident in the ADSC-laden scaffold group. Using quantitative polymerase chain reaction analysis from collected tissues, we found that the ADSC-laden paper-stacking membrane group presented the highest osteogenic-related gene expressions of osteocalcin, osteopontin, osteoprotegerin, bone sialoprotein, runt-related transcription factor 2, and osterix (two to three times higher than the control group, and 1.5 times higher

  16. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells : Are mesenchymal stromal cells involved in scar formation?

    NARCIS (Netherlands)

    van den Bogaerdt, Antoon J.; van der Veen, Vincent C.; van Zuijlen, Paul P. M.; Reijnen, Linda; Verkerk, Michelle; Bank, Ruud A.; Middelkoop, Esther; Ulrich, Magda M. W.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  17. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ariadne Cristiane Cabral Cruz

    2012-12-01

    Full Text Available Bone morphogenetic protein type 2 (BMP-2 is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2 or absence (ASCs+OM of BMP-2. The alkaline phosphatase (ALP activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II, osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity, intermediate (osteonectin and osteocalcin, or final (calcium deposition phases, suggesting that the exogenous addition of BMP-2 did not improve

  18. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    Science.gov (United States)

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  19. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    International Nuclear Information System (INIS)

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs

  20. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  1. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.

    Directory of Open Access Journals (Sweden)

    Kersti Jääger

    Full Text Available BACKGROUND: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. METHODOLOGY/PRINCIPAL FINDINGS: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs and dermal fibroblasts (FBs along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs.

  2. In vivo cell tracking imaging of hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate labeled adipose derived stem cells (ADSCs) in rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Lee, Kyo Chul [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    Monitoring of transplanted stem cells for cardiac repair is important part in regenerative medicine. Direct cell labeling techniques using [{sup 18}F]FDG, [{sup 64}Cu]PTSM and [{sup 99m}Tc]-HMPAO have been developed for in vivo imaging. Especially, {sup 18}F-labeled derivates have been widely used for direct labeling agent. But the {sup 18}F has short half life (T{sub 1/2}={approx}2 h), thus this imaging agent has limitation of in vivo imaging. We used {sup 123}I or {sup 124}I which has relative long half life, to track the transplanted stem cells for a long-term imaging. This study is aimed to track the transplanted adipose derived stem cells (ADSCs) in rat heart using hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate ([{sup 123,} {sup 124}I]HIB) mediated direct labeling method in vivo

  3. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration.

    Science.gov (United States)

    Xu, Fang-Tian; Liang, Zhi-Jie; Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-06-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.

  4. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in the present study, we applied adipose tissue-derived MSCs to osteoarthritis treatment. This study aimed to evaluate the clinical efficiency of autologous adipose tissue-derived MSC transplantation in patients with confirmed osteoarthritis at grade II and III. Adipose tissue was isolated from the belly, and used for extraction of the stromal vascular fraction (SVF. The SVF was mixed with activated platelet- rich plasma before injection. The clinical efficiencies were evaluated by the pain score (VAS, Lysholm score, and MRI findings. We performed the procedure in 21 cases from 2012 to 2013. All 21 patients showed improved joint function after 8.5 months. The pain score decreased from 7.6+/-0.5 before injection to 3.5+/-0.7 at 3 months and 1.5+/-0.5 at 6 months after injection. The Lysholm score increased from 61+/-11 before injection to 82+/-8.1 after injection. Significant improvements were noted in MRI findings, with increased thickness of the cartilage layer. Moreover, there were no side-effects or complications related to microorganism infection, graft rejection, or tumorigenesis. These results provide a new opportunity for osteoarthritis treatment. Level of evidence: IV. [Biomed Res Ther 2014; 1(1.000: 02-08

  5. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  6. A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composite scaffolds (HTPSs, which have an additional β-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects.

  7. Extraction and identification of human adipose-derived stem cells%人脂肪干细胞的提取和鉴定

    Institute of Scientific and Technical Information of China (English)

    吴尉; 梁芳; 宋小琴; 胡平安; 刘敏

    2015-01-01

    BACKGROUND:Adipose-derived stem cel s are totipotent stem cel s in the adipose tissue, and have the function of self-renewal and multi-directional differentiation. Human adipose-derived stem cel s are ideal seed cel s with stable genetic milieu and few rejections. OBJECTIVE:To extract human adipose-derived stem cel s from human omental adipose tissue and to identify the cel s by adipogenic and osteogenic induction. METHODS:Omental adipose tissues were col ected from surgical patients to isolate and culture adipose-derived stem cel s using type I col agenase digestion, filtration and centrifugation. Cel growth was observed and proliferative curve of human adipose-derived stem cel s were drawn by cel counting method to calculate the doubling time at logarithmic growth phase. After adipogenic and osteogenic induction, induced cel s were identified using oil red O and alizarin red staining, respectively. RESULTS AND CONCLUSION:Human adipose-derived stem cel s were successful y isolated from the omentum tissues of surgical patients. Adherent cel s were fusiform-shaped and like fibroblasts. The growth curve of passage 3 cel s was in S shape, and the doubling time was 45.90 hours. After adipogenic and osteogenic induction for 2 and 3 hours, respectively, oil red O staining showed unequal-sized orange fat droplets, and alizarin red staining showed typical calcified nodules that were in orange. These findings indicate that adipose-derived stem cel s have the adipogenic and osteogenic capacity.%背景:脂肪干细胞是存在于脂肪中的全能干细胞,具备自我更新能力与多向分化潜能,遗传背景相当稳定,体内植入后免疫排斥少,是一种比较理想的种子细胞。目的:提取人大网膜脂肪干细胞,并进行成脂和成骨分化能力鉴定。  方法:收集手术患者大网膜的脂肪组织,经Ⅰ型胶原酶消化、过滤、离心后进行原代培养,观察细胞生长状态;用细胞计

  8. Clinical studies on the ex-vivo expansion of autologous adipose derived stem cells for the functional reconstruction of mucous membrane in empty nose syndrome

    Directory of Open Access Journals (Sweden)

    Liang LI

    2014-10-01

    Full Text Available Objective To analyze and evaluate the feasibility and effectiveness of using autologous adipose derived stem cells (ASCs for rebuilding the function of nasal mucosa in patients with empty nose syndrome (ENS. Methods Autologous adipose tissue 15-20ml were obtained from each of 5 ENS patients admitted from Aug. 2013 to Feb. 2014, and from which stem cells were isolated, cultured and expanded in vitro. The phenotype, differentiation, and genetic stability of the third generation of amplified stem cells were identified. For the patients with rudimental turbinate (n=3, ASCs were injected into the damaged nasal mucosa for 4 times (once every 10 days. For the patients with no rudimental turbinate (n=2, autologous pure fat granules 1-5ml were extracted after 3 times of ASCs injection into the damaged nasal mucosa, and mixed with the 3rd-6th generation of ASCs for inferior or middle nasal turbinate angioplasty. Nasal endoscopic examination was performed before treatment and 3, 6 and 9 months after treatment for comparison, and the data of SNOT-20 questionnaire, nasality resistance and nasal mucociliary clearance action were statistically analyzed. Results With injection transplantation of the 3rd-6th generation of ASCs in 2 patients with no rudimental turbinate, and 3, 6 and 9 months after the combined ASCs and fat granules transplantation in 3 patients with rudimental turbinate, nasal endoscopy showed that no obvious absorption in conchoplasty, nasal mucosa was improved significantly, and same as SNOT-20 scores, with statistically significant difference (P0.05. Conclusions The reconstruction of mucosa function by nasal turbinate angioplasty combined with adipose derived stem cells and autologous adipose transplantation may significantly improve the symptoms in patients with ENS with lasting effects. It is a new procedure which is helpful for the mucosal repair in patients with ENS. DOI: 10.11855/j.issn.0577-7402.2014.10.11

  9. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    2014-01-01

    Full Text Available Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13 and enhanced Th1 cytokine (IFN-γ and regulatory cytokines (IL-10 and TGF-β in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.

  10. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    Science.gov (United States)

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  11. Isolation, culture and identification of adipose-derived stem cells from mouse epididymis%小鼠附睾脂肪干细胞的分离培养及鉴定

    Institute of Scientific and Technical Information of China (English)

    张鉴清; 季佳霖; 崔新明; 张祺; 李艳茹

    2014-01-01

    BACKGROUND:As a new kind of adult stem cells, adipose-derived stem cells get more and more attention, because of rich source, drawing materials easily and powerful proliferation. OBJECTIVE:To isolate and culture adipose-derived stem cells from the epididymal adipose tissue in mice, and to identify their biological characteristics. METHODS:Adipose tissue was obtained from epididymis in mice by aseptical y cutting. The tissue was digested using col agenase. Adipose-derived stem cells were separated and purified by using one digestion, multiple col ection method and differential adhesion method. The morphology of adipose-derived stem cells was observed using inverted microscopy and transmission electron microscopy. Growth curve of adipose-derived stem cells was drawn. Immunophenotype of adipose-derived stem cells was identified by flow cytometry. Adipose-derived stem cells were induced to differentiate into adipocytes and osteocytes using cellinductors. Compatibility of adipose-derived stem cells and col agen scaffold material was observed using scanning electron microscope. RESULTS AND CONCLUSION:Adipose-derived stem cells exhibited long spindle-like or fibroblast-like appearance, grew intensively and arranged in scrol and fascicular shape. In vitro, adipose-derived stem cells could be passaged to passage 9 under the inverted microscope. Under the transmission electron microscope, adipose-derived stem cells showed abundant microvil i on the cellsurface. The nuclei were big in size. Some organel es were seen in cytoplasma, such as mitochondria and rough endoplasmic reticulum. Adipose-derived stem cells expressed CD44 and CD29, did not express CD34. After inducing by inductor, many smal lipid droplets were seen in the cytoplasm of adipose-derived stem cells. The smal lipid droplets were dyed red with oil red O. After induction of osteogenic inductor, the boundary line among adipose-derived stem cells was not clear and the structure of cells was fuzzy in the growth

  12. 小鼠附睾脂肪干细胞的分离培养及鉴定%Isolation, culture and identification of adipose-derived stem cells from mouse epididymis

    Institute of Scientific and Technical Information of China (English)

    张鉴清; 季佳霖; 崔新明; 张祺; 李艳茹

    2014-01-01

    BACKGROUND:As a new kind of adult stem cells, adipose-derived stem cells get more and more attention, because of rich source, drawing materials easily and powerful proliferation. OBJECTIVE:To isolate and culture adipose-derived stem cells from the epididymal adipose tissue in mice, and to identify their biological characteristics. METHODS:Adipose tissue was obtained from epididymis in mice by aseptical y cutting. The tissue was digested using col agenase. Adipose-derived stem cells were separated and purified by using one digestion, multiple col ection method and differential adhesion method. The morphology of adipose-derived stem cells was observed using inverted microscopy and transmission electron microscopy. Growth curve of adipose-derived stem cells was drawn. Immunophenotype of adipose-derived stem cells was identified by flow cytometry. Adipose-derived stem cells were induced to differentiate into adipocytes and osteocytes using cellinductors. Compatibility of adipose-derived stem cells and col agen scaffold material was observed using scanning electron microscope. RESULTS AND CONCLUSION:Adipose-derived stem cells exhibited long spindle-like or fibroblast-like appearance, grew intensively and arranged in scrol and fascicular shape. In vitro, adipose-derived stem cells could be passaged to passage 9 under the inverted microscope. Under the transmission electron microscope, adipose-derived stem cells showed abundant microvil i on the cellsurface. The nuclei were big in size. Some organel es were seen in cytoplasma, such as mitochondria and rough endoplasmic reticulum. Adipose-derived stem cells expressed CD44 and CD29, did not express CD34. After inducing by inductor, many smal lipid droplets were seen in the cytoplasm of adipose-derived stem cells. The smal lipid droplets were dyed red with oil red O. After induction of osteogenic inductor, the boundary line among adipose-derived stem cells was not clear and the structure of cells was fuzzy in the growth

  13. Uses of mesenchymal stem cells

    OpenAIRE

    M. Delgado; González-Rey, Elena; Büscher, Dirk

    2008-01-01

    The invention relates to the use of mesenchymal stem cells (MSCs) for treating systemic infiammatory response syndrome (SIRS) in a subject. The invention provides compositions, uses and methods for the treatment of SIRS.

  14. Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells

    International Nuclear Information System (INIS)

    A poly(DL-lactic-co-glycolic acid) (PLGA) sandwiched adipose derived stem cell (ADSC)/fibrin tubular construct, fabricated using a step-by-step mold/extraction method, was characterized in this work. The ADSCs were also induced into smooth-muscle-like cells using growth factors such as hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), transforming growth factor β1 (TGFβ1), and basic fibroblast growth factor (b-FGF). Compared with the non-induced cells, the proliferation ability of induced cells was much smaller. The PLGA sandwiched cell/hydrogel construct was shown to be useful for controlling the cellular microenvironment and cellular behaviors such as growth, migration, proliferation and differentiation. This strategy seems promising in tissue engineering and organ manufacturing.

  15. The effects of progestrone on the in-vitro expression of P0, S100 and Krox20 genes in adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Khanlarkhani N

    2011-05-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Adipose-derived stem cells (ADSCs have noticeable self-renewal ability and can differentiate into several cell lines such as adipocytes, osteoblasts, chondrocytes, and myocytes. Progesterone plays a significant role in the myelination of peripheral nerves. Regarding the role of progesterone on the myelination of peripheral nervous system, we evaluated its effects on the in-vitro expression of P0, S100 and Krox20 mRNA in adipose-derived stem cells."n"nMethods : In this experimental study, rat adipose-derived stem cells were isolated from the inguinal region of the animals and were evaluated by flow cytometry before culture. In preinduction phase, the cells were sequentially treated with various factors such as β-mercaptoethanol and all-trans-retinoic acid, followed by different induction mixtures.  The cells were divided into four groups including two control groups (receiving either fibroblast and platelet derived-growth factors, or fibroblast growth factor, platelet derived-growth factor, forskolin and heregulin and two experimental groups (receiving either fibroblast growth factor, platelet derived-growth factor, forskolin and progesterone, or fibroblast growth factor, platelet derived-growth factor

  16. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  17. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  18. 脂肪干细胞在眼科的应用及研究进展%Development and application of adipose-derived stem cells in ophthalmology

    Institute of Scientific and Technical Information of China (English)

    李宏松; 邹俊

    2013-01-01

    Adipose-derived stem cells ( ADSCs ) are multipotent population of cells with multipotential differentiation capability, which can differentiate into mesoderm including adipocyte osteoblasts and chondroblasts in specific conditions, even the endoderm cells like hepatocyte and and ectoderm cells like neurocyte. Besides, ADSC has many advantages like easy access and light damage to selected area, which enables it to become a hotspot in tissue repair area. This paper made a classified summary on the biological characteristics of corneal epithelium and its application in research to offer beneficial hints to the research of ADSC application in ophthalmology.%脂肪干细胞( adipose-derived stem cells , ADSCs )是存在于脂肪组织的间充质干细胞,具有多向分化潜能,在特定的条件下可以分化为脂肪细胞、成骨细胞、成软骨细胞等中胚层细胞,甚至可以跨胚层分化为神经细胞等外胚层细胞及肝细胞等内胚层细胞。ADSCs还有易于获取、对取材区损伤小等众多优势,使其成为组织修复等领域的热点之一。本文对ADSCs的生物学特性及其在眼科领域的研究进行了分类总结,以期为 ADSCs在眼科的应用研究给予有益的提示。

  19. 小鼠脂肪来源干细胞向成骨及软骨细胞的诱导分化★%Adipose-derived stem cells differentiate into osteoblasts and chondrocytes

    Institute of Scientific and Technical Information of China (English)

    刘晓潭; 徐海斌; 路坦

    2013-01-01

    BACKGROUND: Adipose-derived stem cel s can be separated and obtained from fat tissue. Fat tissue distributes in the whole body, and can be easily obtained in large quantities and has less damage to the donor site when drawing. OBJECTIVE: To identify the methods of in vitro isolating and culturing of mice adipose-derived stem cel s, to induce the adipose-derived stem cel s to differentate into chondrocytes and osteoblasts and to investigate the feasibility of being seed cel s in tissue engineering. METHODS: The adipose-derived stem cel s were isolated from the epididymal fat tissue of Kunming mice. Primary adipose-derived stem cel s were obtained and purified by col agenase Ⅰ digestion and differential adherence method. The adipose-derived stem cel s were induced with osteogenic induction medium, and then gomori alkaline phosphatase staining and alizarin red calcium nodules staining were performed to detect the differentiation of adipose-derived stem cel s; the adipose-derived stem cel s were induced with cartilage induction medium, and the toluidine blue staining, safranin-O staining and type Ⅱ col agen immunohistochemistry testing were performed to detect the differentiation of adipose-derived stem cel s. RESULTS AND CONCLUSION: The adipose-derived stem cel s were spindle-shaped and in adherent growth. After primary cultured for 7-9 days, the cel s could reach 90% confluence. After passaged to the third generation, the cel morphology was in consistency, and the growth curve of the passaged adipose-derived stem cel s presented “S” shape. The expressions of CD29 and CD44 antigens were positive detected with cel -specific antigen test, but the expressions of CD34 and CD45 were negative. After osteoblast-inducing culture, the differentiation of adipose-derived stem cel s towards osteoblasts was verified positively by alkaline phosphatase staining and alizarin red staining. After chondrocyte-inducing culture, the differentiation of adipose-derived stem cel s

  20. Effects of adipose-derived mesenchymal stem cells over-expressing glial cell line-derived neurotrophic factor on electrically injured sciatic nerve of rats%过表达胶质细胞源性神经营养因子的脂肪源性间充质干细胞对大鼠电损伤坐骨神经的作用

    Institute of Scientific and Technical Information of China (English)

    杨晨; 胡大海; 郑朝; 白晓智; 王耀军; 汤朝武

    2015-01-01

    Objective To observe the effects of adipose-derived mesenchymal stem cells (ADSCs) with continous over-expression of glial cell line-derived neurotrophic factor (GDNF) on the motor function recovery and nerve regeneration of sciatic nerve of rats after electrical injury.Methods Five SD rats were collected to prepare ADSCs with over-expression of GDNF.One hundred and fifty SD rats were divided into normal control group (N),GDNF-ADSCs group (GA),ADSCs group (A),GDNF group (G),and physiological saline group (P) according to the random number table,with 30 rats in each group.Rats in group N were routinely fed without treatment,and rats in the other 4 groups were inflicted with electrical injury on sciatic nerve of thigh of the right hind leg.Rats in groups GA,A,G,and P were respectively injected with 100 μL suspension of ADSCs with over-expression of GDNF (1 × 107 cells per mL),100 μL ADSCs suspension (1 × 107 cells per mL),100 μL GDNF solution (100 mg/L),and 100 μL physiological saline to the surface of the injured nerves immediately after injury.Six rats of each group were collected for measuring hind limb stride from post injury week (PIW) 1 to 8,and morphology of the sciatic nerves was observed in PIW 8.In PIW 4,the protein expression of GDNF of sciatic nerves of the rest rats in each group was determined with Western blotting.Data were processed with one-way analysis of variance,analysis of variance of repeated measurement,and SNK test.Results Compared with that of group N,the hind limb stride values in groups GA,A,G,and P were significantly lower at each time point (with P values below 0.05).Compared with those of group P,the hind limb stride values in group GA from PIW 3 to 8,in group A in PIW 3,5,and 7,and in group G in PIW 3,5,7,and 8 were significantly longer (with P values below 0.05).The hind limb stride values in group GA from PIW 4 to 8 were respectively (10.83 ± 0.97),(13.25±1.40),(12.86±1.42),(14.06±1.50),and (15.09 ±1.17) cm,which were

  1. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose.

    Directory of Open Access Journals (Sweden)

    Shengchang Zhang

    Full Text Available INTRODUCTION: Glycation products accumulate during aging of slowly renewing tissue, including skin, and are suggested as an important mechanism underlying the skin aging process. Adipose-derived cells are widely used in the clinic to treat ischemic diseases and enhance wound healing. Interestingly, adipose-derived stem cells (ASCs are also effective in anti-aging therapy, although the mechanism underlying their effects remains unknown. The purpose of the present study was to examine the anti-aging effect of ASCs in a D-galactose-induced aging animal model and to clarify the underlying mechanism. MATERIALS AND METHODS: Six-week-old nude mice were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, mice were randomized to receive subcutaneous injections of 106 green fluorescent protein (GFP-expressing ASCs, aminoguanidine (AG or phosphate-buffered saline (PBS. Control mice received no treatment. We examined tissue histology and determined the activity of senescence-associated molecular markers such as superoxide dismutase (SOD and malondialdehyde (MDA. RESULTS: Transplanted ASCs were detectable for 14 days and their GFP signal disappeared at day 28 after injection. ASCs inhibited advanced glycation end product (AGE levels in our animal model as well as increased the SOD level and decreased the MDA level, all of which act to reverse the aging phenotype in a similar way to AG, an inhibitor of AGE formation. Furthermore, ASCs released angiogenic factors in vivo such as vascular endothelial growth factor, suggesting a skin trophic effect. CONCLUSIONS: These results demonstrate that ASCs may contribute to the regeneration of skin during aging. In addition, the data shows that ASCs provide a functional benefit by glycation suppression, antioxidation, and trophic effects in a mouse model of aging.

  2. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-124I-iodobenzoate in rat myocardial infarction model

    International Nuclear Information System (INIS)

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with 124I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with 124I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by 124I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-124I-iodobenzoate (124I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with 124I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of 124I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by 124I-HIB labeling. In vivo tracking of the 124I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, 124I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials

  3. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Woo, Sang-Keun; Lee, Kyo Chul; An, Gwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Pandya, Darpan [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Park, Noh Won; Nahm, Sang-Soep; Eom, Ki Dong [College of Veterinary Medicine, Konkuk University, Seoul (Korea, Republic of); Kim, Kwang Il; Lee, Tae Sup [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Chan Wha [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kang, Joo Hyun [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoo, Jeongsoo, E-mail: yooj@knu.ac.kr [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Lee, Yong Jin, E-mail: yjlee@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.

  4. Enhancement of Matrix Metalloproteinase-2 (MMP-2 as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Yoshie Arai

    2016-06-01

    Full Text Available Human adipose-derived stem cells (hASCs have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.

  5. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    Science.gov (United States)

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434

  6. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  7. Fluorescent dye CM-DiI labeled rat adipose derived stem cells%CM-DiI标记大鼠脂肪干细胞的效力

    Institute of Scientific and Technical Information of China (English)

    宋起滨; 刘晓燕; 曹惠鹃; 于冬梅; 黄昕昕

    2012-01-01

    BACKGROUND: Dil derivative CM-Dil easily insets, disperses and stably binds to the whole cell membrane because of water-solubility and chloromethylated active sulfydryl, which leads to rapid, even and long-lasting staining.OBJECTIVE: To further validate the feasibility of fluorescent dye CM-Dil in labeling rat adipose derived stem cells.METHODS: Rat inguinal fat tissue was resected and adipose derived stem cells were isolated in vitro by collagenasedigestion. Passage 3 cells were divided into a control group and an experimental group. The experimental group cellswere labeled with 4 mg/L CM-Dil. At 6, 12, 24 and 48 hours, CM-Dil-labeled adipose derived stem cells were traced in vivo.RESULTS AND CONCLUSION: Under fluorescent microscope, CM-Dil labeled cells showed cytoplasm and cellmembrane with red fluorescence, CM-Dil labeled adipose derived stem cells exhibited a shuttle-shaped normalappearance. CM-Dil positive rate was 100%. In the early period, the cells were fluorescent ring-shaped, and 48 hours later,fluorescent granules increased and fluorescence intensity enhanced. No fluorescence was found in cell nucleus. Therewas no significant difference in cell morphology, content of lactic dehydrogenase in supernatant and MTT value betweenexperimental group and control group (P > 0.05). At 4 hours after cell transplantation, cells with red fluorescence could beobserved in the heart and lung tissue. CM-DiI can effectively label adipose derived stem cells cultured in vitro and expressstably in cells. CM-Dil-labeled cells have good morphology and no toxicity to living cells.%背景:CM-DiI是DiI的衍生物,因具有一定的水溶性,且含有氯甲基化活性巯基部分,使其更易嵌入、弥散并稳固地结合到整个细胞膜上,使染色更快捷、均匀、持久.目的:进一步验证荧光染料CM-DiI标记大鼠脂肪干细胞的可行性.方法:切取大鼠腹股沟区皮下脂肪组织,采用胶原酶消化法体外分离培养脂肪干细胞,取第3代

  8. Experimental Study on Allograft of Rabbit Adipose-derived Stem Cells Transplantation%兔异体脂肪干细胞移植的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨涛; 杨勇; 刘斌; 李龙; 令狐大科; 刘彦普

    2013-01-01

    Objective: To establish an animal model for the injectable allo-transplantation fat tissue transplantation and to investigate the morphological and immunologic changes of rejection after ear allo-transplantation in rabbit. Methods: 30 healthy New Zealand white rabbits were divided into three groups randomly. The autologous adipose granule (AG) were implanted in the ears of the rabbits as the experiment group A(N=6). The autologous adipose granule (AG) combined with platelet-rich fibrin(PRF) were implanted in ears as the experiment group B(N=6). The autologous adipose granule(AG) combined with autologous adipose-derived stem cells(ADSCs)were implanted in ears as the experiment group C(N=6). The autologous adipose granule(AG) combined with platelet-rich fibrin(PRF) and autologous adipose-derived stem cells(ADSCs) were implanted in the ears were the control group D(N=6). The autologous adipose granule (AG) combined with platelet-rich fibrin (PRF) and allo-transplantation adipose-derived stem cells (ADSCs) were implanted in the ears were the control group E(N=6).At month 1,3 and 6 after transplantation, the level of CD4/CD8 in lymph cells and IL-2, IL-4 in plasma of the rabbits were examined. Results: At 1,3and 6 months after surgery, the differences of the two groups D, E and group A, B, C were statistical significant (P 0.05). Conclusion: The autologous adipose granule (AG) combined with platelet-rich fibrin (PRF) and autologous adipose-derived stem cells (ADSCs) can improve the survival rate of transplanted fat tissue and provide experimental basis for clinical fat allo-transplantation.%目的:建立一种可注射异体脂肪移植模型,观察兔异体脂肪干细胞(adipose-derived stem cells,ADSCs)复合自体脂肪颗粒(adipose granule,AG)和富血小板纤维蛋白(platelet-rich fibrin,PRF)移植后的形态学和免疫学的变化,为临床异体脂肪干细胞移植提供一种实验依据.方法:取30只健康新西兰家兔,随机分成5组:A组,(N=6),

  9. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels

    Science.gov (United States)

    Wang, Yuguang; Huang, Ying-Ying; Wang, Yong; Lyu, Peijun; Hamblin, Michael R.

    2016-01-01

    Human adipose-derived stem cells (hASCs) have the potential to differentiate into several different cell types including osteoblasts. Photobiomodulation (PBM) or low level laser therapy (LLLT) using red or near-infrared wavelengths has been reported to have effects on both proliferation and osteogenic differentiation of stem cells. We examined the effects of delivering four different wavelengths (420 nm, 540 nm, 660 nm, 810 nm) at the same dose (3 J/cm2) five times (every two days) on hASCs cultured in osteogenic medium over three weeks. We measured expression of the following transcription factors by RT-PCR: RUNX2, osterix, and the osteoblast protein, osteocalcin. The 420 nm and 540 nm wavelengths were more effective in stimulating osteoblast differentiation compared to 660 nm and 810 nm. Intracellular calcium was higher after 420 nm and 540 nm, and could be inhibited by capsazepine and SKF96365, which also inhibited osteogenic differentiation. We hypothesize that activation of light-gated calcium ion channels by blue and green light could explain our results. PMID:27650508

  10. Electrospun poly(L-lactide/poly(ε-caprolactone blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid (PLLA and poly (ε-caprolactone (PCL are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.

  11. eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering.

    Science.gov (United States)

    McIlhenny, Stephen; Zhang, Ping; Tulenko, Thomas; Comeau, Jason; Fernandez, Sarah; Policha, Aleksandra; Ferroni, Matthew; Faul, Elizabeth; Bagameri, Gabor; Shapiro, Irving; DiMuzio, Paul

    2015-11-01

    This study evaluates the durability of a novel tissue engineered blood vessel (TEBV) created by seeding a natural vascular tissue scaffold (decellularized human saphenous vein allograft) with autologous adipose-derived stem cells (ASC) differentiated into endothelial-like cells. Previous work with this model revealed the graft to be thrombogenic, likely due to inadequate endothelial differentiation as evidenced by minimal production of nitric oxide (NO). To evaluate the importance of NO expression by the seeded cells, we created TEBV using autologous ASC transfected with the endothelial nitric oxide synthase (eNOS) gene to produce NO. We found that transfected ASC produced NO at levels similar to endothelial cell (EC) controls in vitro which was capable of causing vasorelaxation of aortic specimens ex vivo. TEBV (n = 5) created with NO-producing ASC and implanted as interposition grafts within the aorta of rabbits remained patent for two months and demonstrated a non-thrombogenic surface compared to unseeded controls (n = 5). Despite the xenograft nature of the scaffold, the TEBV structure remained well preserved in seeded grafts. In sum, this study demonstrates that upregulation of NO expression within adult stem cells differentiated towards an endothelial-like lineage imparts a non-thrombogenic phenotype and highlights the importance of NO production by cells to be used as endothelial cell substitutes in vascular tissue engineering applications.

  12. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.

    Science.gov (United States)

    Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2015-07-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications.

  13. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    Science.gov (United States)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  14. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells.

    Science.gov (United States)

    Requicha, João F; Viegas, Carlos A; Muñoz, Fernando; Azevedo, Jorge M; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2014-09-01

    Human and canine periodontium are often affected by an inflammatory pathology called periodontitis, which is associated with severe damages across tissues, namely, in the periodontal ligament, cementum, and alveolar bone. However, the therapies used in the routine dental practice, often consisting in a combination of different techniques, do not allow to fully restore the functionality of the periodontium. Tissue Engineering (TE) appears as a valuable alternative approach to regenerate periodontal defects, but for this purpose, it is essential to develop supportive biomaterial and stem cell sourcing/culturing methodologies that address the complexity of the various tissues affected by this condition. The main aim of this work was to study the in vitro functionality of a newly developed double-layer scaffold for periodontal TE. The scaffold design was based on a combination of a three-dimensional (3D) fiber mesh functionalized with silanol groups and a membrane, both made of a blend of starch and poly-ɛ-(caprolactone). Adipose-derived stem cells (canine adipose stem cells [cASCs]) were seeded and cultured onto such scaffolds, and the obtained constructs were evaluated in terms of cellular morphology, metabolic activity, and proliferation. The osteogenic potential of the fiber mesh layer functionalized with silanol groups was further assessed concerning the osteogenic differentiation of the seeded and cultured ASCs. The obtained results showed that the proposed double-layer scaffold supports the proliferation and selectively promotes the osteogenic differentiation of cASCs seeded onto the functionalized mesh. These findings suggest that the 3D structure and asymmetric composition of the scaffold in combination with stem cells may provide the basis for developing alternative therapies to treat periodontal defects more efficiently.

  15. 不同部位脂肪源性干细胞的生物学特性比较☆%Comparison of biological characteristics of adipose-derived stem cells from different parts

    Institute of Scientific and Technical Information of China (English)

    林立新; 黄勇; 王玉婷; 王鹏; 王学明; 姜蕾; 林冠妤

    2013-01-01

      背景:大鼠不同部位来源的脂肪源性干细胞在体外培养时的特性是否存在差异目前尚无定论。目的:比较同一只大鼠不同部位来源的脂肪源性干细胞在体外培养时的生长特性和成脂诱导分化能力的差异。方法:无菌操作下取 F344大鼠腹股沟及腹腔大网膜脂肪组织各5 mL,Ⅰ型胶原酶酶解法分离出脂肪源性干细胞,细胞计数后进行体外培养,观察其形态特征和生长状态,MTT 法测定不同部位细胞的倍增时间。取不同部位来源的第2代脂肪源性干细胞进行成脂诱导,诱导14 d 进行油红 O 染色,观察不同部位来源的脂肪源性干细胞的成脂分化能力。结果与结论:在同一只大鼠内脏大网膜脂肪获得的脂肪源性干细胞数目为(281±10)×107 L-1,明显多于腹股沟皮下脂肪的(85±5)×107 L-1(P <0.01)。从内脏大网膜脂肪与腹股沟皮下脂肪获得的脂肪源性干细胞分别于第5,6天进入指数增长期;第9,10天到达平台期;倍增时间为50 h 和60 h 左右。传代后的细胞生长分化活跃,呈成纤维细胞样,成脂诱导后,大网膜组织来源的脂肪源性干细胞的成脂诱导分化率明显高于腹股沟组织来源的脂肪源性干细胞[(38.90±2.86)%,(35.30±3.29)%,P <0.01]。可见同一只大鼠不同部位脂肪组织分离得到的脂肪源性干细胞数目不同,体外成脂诱导分化能力亦存在差异。%BACKGROUND: Whether the differences exist between adipose-derived stem cells isolated from different parts of rats when cultured in vitro has been poorly understood. OBJECTIVE: To compare the growth characteristics and adipogenic ability of adipose-derived stem cells isolated from different parts of rats. METHODS: Freshly isolated adipose-derived stem cells were obtained from 5 mL inguinal groove and greater omentum adipose tissue of F344 rats using type Ⅰ col agenase digestion method. Then, adipose-derived

  16. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Han-Tsung Liao

    2013-10-01

    Full Text Available Three-dimensional porous polycaprolactone (PCL scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs. The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differentiation capability of PASCs in osteogenic medium toward the osteoblast lineage, judging from elevated alkaline phosphatase activity and up-regulated osteogenic genes expression. For in vivo study, a 3 cm × 3 cm mandible defect was created in pigs and reconstructed by implanting acellular PCL scaffolds or PCL/PRP/PASCs constructs. Both groups showed new bone formation, however, the new bone volume was 5.1 times higher for PCL/PRP/PASCs 6 months post-operation. The bone density was less and loose in the acellular PCL group and the Young’s modulus was only 29% of normal bone. In contrast, continued and compact bone formation was found in PCL/PRP/PASCs and the Young’s modulus was 81% that of normal bone. Masson’s trichrome stain, immunohistochemical analysis of osteocalcin and collagen type I also confirmed new bone formation.

  17. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype.

    Science.gov (United States)

    Zhou, Xiaopeng; Tao, Yiqing; Wang, Jingkai; Liu, Dongyu; Liang, Chengzhen; Li, Hao; Chen, Qixin

    2016-07-01

    Type II collagen is reported to have the capability of guiding adipose-derived stem cells (ADSCs) to differentiate towards a nucleus pulposus (NP)-like phenotype. So this study aimed to establish a three-dimensional (3D) collagen scaffold using N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide and N-hydroxysuccinimide (EDAC/NHS) to increase the efficiency of ADSC differentiation into NP-like cells. Physical properties, such as porosity, biodegradation, and microstructure, and biological characteristics such as cytotoxicity, cell proliferation, and expression of relevant genes and proteins were measured to evaluate the efficacy of different scaffolds. Collagen scaffolds cross-linked with EDAC/NHS exhibited higher biological stability, better spatial structure, and higher gene and protein expression of functional markers such as aggrecan, SOX9 and COL2 than those of other groups. Based on the results, freeze-dried type II collagen cross-linked with EDAC/NHS formed the best 3D scaffold, for inducing ADSC proliferation and differentiation toward a NP-like phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1687-1693, 2016. PMID:26940048

  18. Undifferentiated Human Adipose-derived Stromal/Stem Cells loaded onto Wet-Spun Starch-polycaprolactone Scaffolds Enhance Bone Regeneration: Nude Mice Calvarial Defect in vivo Study

    Science.gov (United States)

    Carvalho, Pedro P.; Leonor, Isabel B.; Smith, Brenda J.; Dias, Isabel R.; Reis, Rui L.; Gimble, Jeffrey M.; Gomes, Manuela E.

    2014-01-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect. Human ASCs were isolated from lipoaspirate of five female donors, cryopreserved and pooled together. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an SPCL scaffold alone, or SPCL scaffold with human ASCs. Histological analysis and Micro-CT imaging of the retrieved implants were performed. Improved new bone deposition and osseointegration was observed in SPCL loaded with hASC engrafted calvarial defects as compared to control groups that showed little healing. Non differentiated human ASCs enhance ossification of non-healing nude mice calvarial defects, and wet-spun SPCL confirmed its suitability for bone tissue engineering. This study supports the potential translation for ASC use in the treatment of human skeletal defects. PMID:24123913

  19. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells.

    Science.gov (United States)

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Tzu-Chieh; Fan, Shih-Chen; Wang, Duo-Hsiang; Chen, Jia-Jin Jason; Wu, Chia-Ching; Lin, Sheng-Che

    2014-02-01

    Suboptimal repair occurs in a peripheral nerve gap, which can be partially restored by bridging the gap with various biosynthetic conduits or cell-based therapy. In this study, we developed a combination of chitosan coating approach to induce neurosphere cells from human adipose-derived stem cells (ASCs) on chitosan-coated plate and then applied these cells to the interior of a chitosan-coated silicone tube to bridge a 10-mm gap in a rat sciatic nerve. Myelin sheath degeneration and glial scar formation were discovered in the nerve bridged by the silicone conduit. By using a single treatment of chitosan-coated conduit or neurosphere cell therapy, the nerve gap was partially recovered after 6 weeks of surgery. Substantial improvements in nerve regeneration were achieved by combining neurosphere cells and chitosan-coated conduit based on the increase of myelinated axons density and myelin thickness, gastrocnemius muscle weight and muscle fiber diameter, and step and stride lengths from gait analysis. High expressions of interleukin-1β and leukotriene B4 receptor 1 in the intra-neural scarring caused by using silicone conduits revealed that the inflammatory mechanism can be inhibited when the conduit is coated with chitosan. This study demonstrated that the chitosan-coated surface performs multiple functions that can be used to induce neurosphere cells from ASCs and to facilitate nerve regeneration in combination with a cells-assisted coated conduit. PMID:24360575

  20. Allogeneic Transplantation of an Adipose-Derived Stem Cell Sheet Combined With Artificial Skin Accelerates Wound Healing in a Rat Wound Model of Type 2 Diabetes and Obesity.

    Science.gov (United States)

    Kato, Yuka; Iwata, Takanori; Morikawa, Shunichi; Yamato, Masayuki; Okano, Teruo; Uchigata, Yasuko

    2015-08-01

    One of the most common complications of diabetes is diabetic foot ulcer. Diabetic ulcers do not heal easily due to diabetic neuropathy and reduced blood flow, and nonhealing ulcers may progress to gangrene, which necessitates amputation of the patient's foot. This study attempted to develop a new cell-based therapy for nonhealing diabetic ulcers using a full-thickness skin defect in a rat model of type 2 diabetes and obesity. Allogeneic adipose-derived stem cells (ASCs) were harvested from the inguinal fat of normal rats, and ASC sheets were created using cell sheet technology and transplanted into full-thickness skin defects in Zucker diabetic fatty rats. The results indicate that the transplantation of ASC sheets combined with artificial skin accelerated wound healing and vascularization, with significant differences observed 2 weeks after treatment. The ASC sheets secreted large amounts of several angiogenic growth factors in vitro, and transplanted ASCs were observed in perivascular regions and incorporated into the newly constructed vessel structures in vivo. These results suggest that ASC sheets accelerate wound healing both directly and indirectly in this diabetic wound-healing model. In conclusion, allogeneic ASC sheets exhibit potential as a new therapeutic strategy for the treatment of diabetic ulcers.

  1. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Banks, Jessica M; Mozdzen, Laura C; Harley, Brendan A C; Bailey, Ryan C

    2014-10-01

    Biomaterial designs are increasingly incorporating multiple instructive signals to induce a desired cell response. However, many approaches do not allow orthogonal manipulation of immobilized growth factor signals and matrix stiffness. Further, few methods support patterning of biomolecular signals across a biomaterial in a spatially-selective manner. Here, we report a sequential approach employing carbodiimide crosslinking and benzophenone photoimmobilization chemistries to orthogonally modify the stiffness and immobilized growth factor content of a model collagen-GAG (CG) biomaterial. We subsequently examined the singular and combined effects of bone morphogenetic protein (BMP-2), platelet derived growth factor (PDGF-BB), and CG membrane stiffness on the bioactivity and osteogenic/adipogenic lineage-specific gene expression of adipose derived stem cells, an increasingly popular cell source for regenerative medicine studies. We found that the stiffest substrates direct osteogenic lineage commitment of ASCs regardless of the presence or absence of growth factors, while softer substrates require biochemical cues to direct cell fate. We subsequently describe the use of this approach to create overlapping patterns of growth factors across a single substrate. These results highlight the need for versatile approaches to selectively manipulate the biomaterial microenvironment to identify synergies between biochemical and mechanical cues for a range of regenerative medicine applications.

  2. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Science.gov (United States)

    Gugerell, Alfred; Kober, Johanna; Laube, Thorsten; Walter, Torsten; Nürnberger, Sylvia; Grönniger, Elke; Brönneke, Simone; Wyrwa, Ralf; Schnabelrauch, Matthias; Keck, Maike

    2014-01-01

    An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea) (PEUU) and poly[(L-lactide-co-ε-caprolactone)-co-(L-lysine ethyl ester diisocyanate)-block-oligo(ethylene glycol)-urethane] (PEU), containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs) were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  3. The Effect of Conditioned Media of Adipose-Derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing

    Directory of Open Access Journals (Sweden)

    Bing-Rong Zhou

    2013-01-01

    Full Text Available Objective. To evaluate the benefits of conditioned medium of Adipose-derived stem cells (ADSC-CM on wound healing after fractional carbon dioxide laser resurfacing (FxCR on human skin. Materials and Methods. Nineteen subjects were treated with FxCR on the bilateral inner arms. ADSC-CM was applied on FxCR site of one randomly selected arm. Transepidermal water loss (TEWL, skin color, and gross-elasticity of FxCR site on both arms were measured. Skin samples were taken by biopsy from three subjects 3 weeks after treatment for histopathological manifestations and mRNA expressions of procollagen types I and III, elastin genes were noted. Results. The index of erythema, melanin, and TEWL of the ADSC-CM-treated skin were significantly lower than those of the control side. The mRNA expression of type III procollagen in ADSC-CM-treated group at 3 weeks posttreatment was 2.6 times of that of the control group. Conclusion. Application of allograft ADSC-CM is an effective method for enhancing wound healing after FxCR, by reducing transient adverse effects such as erythema, hyperpigmentation, and increased TEWL.

  4. In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications.

    Science.gov (United States)

    Lequeux, Charlotte; Rodriguez, Jonathan; Boucher, Fabien; Rouyer, Ondine; Damour, Odile; Mojallal, Ali; Auxenfans, Céline

    2015-11-01

    Soft tissue reconstruction is a challenge in plastic surgery, when replacing lost materials and correcting contour defects. Many permanent and temporary fillers have been used to restore the volume of these lesions, but often with poor results and even complications. Adipose-derived stem/stromal cells (ASCs) and adipose tissue engineering have been suggested as valuable alternatives. In order to inject these cultured cells, it was essential to find a suitable vehicle. The purpose of this study was to evaluate Cytocare(®), an injectable medical device, composed of hyaluronic acid plus amino acids, vitamins and mineral salts. First, ASC viability and bioavailability in the 3 different available Cytocare(®) formulations using the MTT test were assessed; then an animal experiment, testing the tolerance after intradermal injections of both Cytocare(®) alone and with ASCs was carried out. Our in vitro results demonstrate a high biocompatibility of Cytocare(®) resulting in a better viability of ASCs when cultured in Cytocare(®) compared to culture medium (p < 0.05, Mann and Whitney). Cytocare(®) also permits their bioavailability and proliferation, making it a potential transfer vehicle that can retain the cells before their integration around the recipient site. Finally, our animal experiment shows that the ASC + Cytocare(®) combination is well tolerated. In conclusion, Cytocare(®) can be used as a biocompatible scaffold for cultured ASCs in therapeutic treatments, ensuring ASC bioavailability, as well as evidence of excellent tolerance in nude mice. PMID:26282247

  5. Molecular Characterization of Equine APRIL and its Expression Analysis During the Adipogenic Differentiation of Equine Adipose-Derived Stem Cell In Vitro.

    Science.gov (United States)

    Wu, Haitao; Bi, Xiaolin; Cao, Fang; Zhu, Cuicui; Liu, Hongzhen; Song, Jinyun; Ma, Lei; Ma, Li; Zhang, Yi; Zhao, Dongwei; Liu, Hongyan; Xu, Xinzhou; Zhang, Shuangquan

    2016-10-01

    A proliferation inducing ligand (APRIL) is a member of the TNF superfamily. It shares two receptors with B-cell activating factor (BAFF), B-cell maturation antigen (BCMA), and transmembrane activator and CAML interactor (TACI). Herein, the equine APRIL was identified from equine adipose-derived stem cell (ASC), and the protein expression of APRIL and its related molecules were detected during the adipogenic differentiation of equine ASC in vitro. The equine APRIL gene was located on chromosome 11, spans 1852 base pairs (bp). Its open reading frame covers 753 bp, encoding a 250-amino acid protein with the typical TNF structure domain. During the two weeks' adipogenic differentiation of equine ASC, although the protein expression of APRIL and TACI had an insignificant change, that of BCMA increased significantly. Moreover, with the addition of recombinant protein His6-sAPRIL, a reduced differentiation of equine ASC toward adipocyte was detected. These results may provide the basis for investigating the role of APRIL in ASC adipogenic differentiation. PMID:27565870

  6. Differentiated adipose-derived stem cells act synergistically with RGD-modified surfaces to improve neurite outgrowth in a co-culture model.

    Science.gov (United States)

    de Luca, A C; Faroni, A; Downes, S; Terenghi, G

    2016-08-01

    Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23950058

  7. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  8. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  9. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency.

    Science.gov (United States)

    Shi, Li Bing; Cai, Hong Xia; Chen, Long Kun; Wu, Yan; Zhu, Shou An; Gong, Xiao Nan; Xia, Ya Xian; Ouyang, Hong Wei; Zou, Xiao Hui

    2014-02-01

    In this study we developed a tissue engineered bulking agent that consisted of adipose-derived stem cells (ADSCs) and silk fibroin microspheres to treat stress urinary incontinence caused by severe intrinsic sphincter deficiency (ISD). ISD models were established by completely transection of the bilateral pudendal nerve (PNT) and confirmed by the decreased leak-point pressure (LPP) and increased lumen area of urethra. Injection of silk fibroin microspheres could recover LPP and lumen area at 4 weeks but its efficacy disappears at 8, 12 weeks. Moreover, it was exciting to find that tissue engineered bulking agent brought long-term efficacy (at 4, 8, 12 weeks post-injection) on the recovery of LPP and lumen area. Concomitantly with the function, tissue engineered bulking agent treated group also improved the urethral sphincter structure as exhibited by better tissue regeneration. The findings showed that silk fibroin microspheres alone could work effectively in short-term, while tissue engineered bulking agent that combined silk fibroin microspheres with ADSCs exhibited promising long-term efficacy. This study developed a new strategy of tissue engineered bulking agent for future ISD therapy.

  10. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    Full Text Available Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate (PBLG polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group and non-induced hASC/PBLG complex (ASC/PBLG group served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  11. Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells

    International Nuclear Information System (INIS)

    Collagen gels have been extensively used as three-dimensional (3D) cell culture systems. To enhance their mechanical properties, the manufacture of collagen-based gels with agarose has been proposed. However, little is known about the stability of these gels under cold storage conditions. The consequences of cold storage on biological tissues for clinical applications are known to be significant; yet, they have not been considered on hydrogels used for in vitro experiments. This work studies the effect of extended cold storage on the stability of collagen and collagen-agarose hydrogels using rheometry and scanning electron microscopy. In addition, cell-matrix interactions of adipose-derived stem cells (ADSC) have been studied using these gels. Results show that both the storage modulus (G′) and loss modulus (G″) of pure collagen gels gradually decrease with extended cold storage along the 30 days of the study, while G′ and G″ increase in collagen-agarose gels under the same conditions. Moreover, significant changes in both moduli of collagen-agarose gels were only found after 30 days of cold storage, while in the case of collagen gels significant changes were already detected after 7 days. Finally, a reduction in the ability of ADSC to remodel the gel after prolonged cold storage was observed. To the best of our knowledge, this is the first work proving that cold storage of hydrogels prior to cell culture might have a significant impact on their mechanical properties and cell–matrix interactions. (paper)

  12. Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model.

    Science.gov (United States)

    Fang, Kaixiu; Song, Wen; Wang, Lifeng; Xu, Xiaoru; Tan, Naiwen; Zhang, Sijia; Wei, Hongbo; Song, Yingliang

    2016-09-01

    Although titanium (Ti) implants are considered to be an optimal choice for the replacement of missing teeth, it remains difficult to obtain sufficient osseointegration in patients with type 2 diabetes mellitus (T2DM). The present study aimed to investigate whether adipose-derived stem cells (ASCs) may be used to improve Ti implant osseointegration in T2DM conditions with the addition of semaphorin 3A (Sema3A), a recently identified osteoprotective protein. Cell morphology was observed using a scanning electron microscope. Cell proliferation was determined using Cell Counting Kit‑8. Osteogenic differentiation was confirmed by the staining of alkaline phosphatase, collagen secretion and calcium deposition. An in vivo evaluation was performed in the T2DM rat model, which was induced by a high‑fat diet and a low‑dose streptozotocin intraperitoneal injection. A Sema3A‑modified ASC sheet was wrapped around the Ti implant, which was subsequently inserted into the tibia. The rats were then exposed to Sema3A stimulation. The morphology and proliferation ability of ASCs remained unchanged; however, their osteogenic differentiation ability was increased. Micro‑computed tomography scanning and histological observations confirmed that formation of new bone was improved with the use of the Sema3A-modified ASCs sheet. The present study indicated that the Sema3A‑modified ASCs sheet may be used to improve osseointegration under T2DM conditions. PMID:27484405

  13. Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model

    Science.gov (United States)

    Fang, Kaixiu; Song, Wen; Wang, Lifeng; Xu, Xiaoru; Tan, Naiwen; Zhang, Sijia; Wei, Hongbo; Song, Yingliang

    2016-01-01

    Although titanium (Ti) implants are considered to be an optimal choice for the replacement of missing teeth, it remains difficult to obtain sufficient osseointegration in patients with type 2 diabetes mellitus (T2DM). The present study aimed to investigate whether adipose-derived stem cells (ASCs) may be used to improve Ti implant osseointegration in T2DM conditions with the addition of semaphorin 3A (Sema3A), a recently identified osteoprotective protein. Cell morphology was observed using a scanning electron microscope. Cell proliferation was determined using Cell Counting Kit-8. Osteogenic differentiation was confirmed by the staining of alkaline phosphatase, collagen secretion and calcium deposition. An in vivo evaluation was performed in the T2DM rat model, which was induced by a high-fat diet and a low-dose streptozotocin intraperitoneal injection. A Sema3A-modified ASC sheet was wrapped around the Ti implant, which was subsequently inserted into the tibia. The rats were then exposed to Sema3A stimulation. The morphology and proliferation ability of ASCs remained unchanged; however, their osteogenic differentiation ability was increased. Micro-computed tomography scanning and histological observations confirmed that formation of new bone was improved with the use of the Sema3A-modified ASCs sheet. The present study indicated that the Sema3A-modified ASCs sheet may be used to improve osseointegration under T2DM conditions. PMID:27484405

  14. Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via lncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway.

    Science.gov (United States)

    Shi, Sirong; Peng, Qiang; Shao, Xiaoru; Xie, Jing; Lin, Shiyu; Zhang, Tao; Li, Qianshun; Li, Xiaolong; Lin, Yunfeng

    2016-08-01

    Self-assembled tetrahedral DNA nanostructures (TDNs) with precise sizes have been extensively applied in various fields owing to their exceptional mechanical rigidity, structural stability, and modification versatility. In addition, TDNs can be internalized by mammalian cells and remain mainly intact within the cytoplasm by escaping degradation by nucleases. Here, we studied the effects of TDNs on cell migration and the underlying molecular mechanisms. TDNs remarkably enhanced the migration of rat adipose-derived stem cells and down-regulated the long noncoding RNA (lncRNA) XLOC 010623 to activate the mRNA expression of Tiam1 and Rac1. Furthermore, TDNs highly up-regulated the mRNA and protein expression of RHOA, ROCK2, and VCL. These results indicate that TDNs suppressed the transcription of lncRNA XLOC 010623 and activated the TIAM1/RAC1 and RHOA/ROCK2 signaling pathways to promote cell migration. On the basis of these findings, TDNs show a high potential for application in tissue repair and regenerative medicine as a functional three-dimensional DNA nanomaterial. PMID:27403707

  15. Effects of {gamma}-secretase inhibition on the proliferation and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wei [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, 14, 3rd Section of Renmin South Road, Chengdu 610041 (China); Xiong, Zhonghua [Department of Intensive Care Unit, Sichuan Cancer Hospital and Research Institute, Chengdu (China); Cai, Xiaoxiao; Huang, Yuanding; Li, Xiaoyu; Yang, Xingmei; Liu, Lei; Tang, Wei [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, 14, 3rd Section of Renmin South Road, Chengdu 610041 (China); Lin, Yunfeng, E-mail: yunfenglin@scu.edu.cn [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, 14, 3rd Section of Renmin South Road, Chengdu 610041 (China); Tian, Weidong, E-mail: drtianwd@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, 14, 3rd Section of Renmin South Road, Chengdu 610041 (China)

    2010-02-12

    As a {gamma}-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D{sub 3}. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D{sub 3} treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cells cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.

  16. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells.

    Directory of Open Access Journals (Sweden)

    Ying Dai

    Full Text Available Cell fate and function can be regulated and reprogrammed by intrinsic genetic program, extrinsic factors and niche microenvironment. Direct reprogramming has shown many advantages in the field of cellular reprogramming. Here we tried the possibility to generate corneal endothelia (CE -like cells from human adipose-derived stem cells (ADSCs by the non-genetic direct reprogramming of recombinant cell-penetrating proteins Oct4/Klf4/Sox2 (PTD-OKS and small molecules (purmorphamine, RG108 and other reprogramming chemical reagents, as well as biomimetic platforms of simulate microgravity (SMG bioreactor. Co-cultured with corneal cells and decellularized corneal ECM, Reprogrammed ADSCs revealed spherical growth and positively expressing Nanog for RT-PCR analysis and CD34 for immunofluorescence staining after 7 days-treatment of both purmorphamine and PTD-OKS (P-OKS and in SMG culture. ADSCs changed to CEC polygonal morphology from spindle shape after the sequential non-genetic direct reprogramming and biomimetic platforms. At the same time, induced cells converted to weakly express CD31, AQP-1 and ZO-1. These findings demonstrated that the treatments were able to promote the stem-cell reprogramming for human ADSCs. Our study also indicates for the first time that SMG rotary cell culture system can be used as a non-genetic means to promote direct reprogramming. Our methods of reprogramming provide an alternative strategy for engineering patient-specific multipotent cells for cellular plasticity research and future autologous CEC replacement therapy that avoids complications associated with the use of human pluripotent stem cells.

  17. Transplantation of adipose-derived stem cells with fibrin glue for treatment of acute myocardial infarction in rat

    Institute of Scientific and Technical Information of China (English)

    张雪莲

    2013-01-01

    Objective To investigate the cell survival of the combination of fibrin glue and adiposederived stem cells(ADSCs) in rats when implanted into ischemic myocardium and the improvement of heart function. Methods The rat ADSCs were isolated from the subcutaneous adipose

  18. Isolating culture and identification of adipose-derived stem cells%脂肪组织来源干细胞的分离培养及鉴定

    Institute of Scientific and Technical Information of China (English)

    傅荣; 游晓波; 鲁峰

    2011-01-01

    Objective To explore a way to isolate and culture adipose-derived stem cells ( ASCs) from the liposuction aspirates, and observe the cell growth kinetics, morphology, differentiation capability, cell aging, and surface marker profiles. Methods From the liposuction aspirates, ASCs were isolated by enzymatic digestion,and the cultured cells appearance observed. The cell viability was evaluated with MTT chromatometry. Flow cytometry was performed for cell cycle analysis,and acridine orange staining was utilized for cell aging evaluation. The surface molecule expression was detected by flow cytometry and immunohistochemistry. Adipogenic differentiation of ASCs was assessed by Oil Red O staining. Results Primarily cultured ASCs adhered to the culture plates had a fibroblastic appearance and strong proliferation capacity as shown by MTT chromatometry. ASCs also showed characteristics of stem by cell cycle a-nalysis. The expressions of CD29,CD44,and CD34 were observed in ASCs by flow cytometry. Expressions of VⅢ factor,CD31 ,CD34, CD105 and SMA were observed in ASCs by immunohistochemistry. Oil Red 0 staining of the ASCs after 2 weeks of culture demonstrated numerous intracellular lipid droplets. Conclusions ASCs can be isolated from autologous liposuction aspirates of human via enzymatic digestion and cultured ex vivo. These cells are fibroblast-like cells expressing cell surface markers of stem cells with strong prolif-erative ability,and can be induced to differentiate into adipose tissue.%目的 探讨脂肪组织来源干细胞(adipose-derived stem cells,ASCs)的分离、培养、分化和鉴定的方法,为进一步的实验研究提供理论依据.方法 酶消化法处理脂类抽吸物,分离培养ASCs,观察细胞形态;四甲基偶氮唑盐(MTT)比色法测细胞活性并绘制细胞生长曲线,流式细胞仪测定细胞周期,丫啶橙染色检测细胞的衰老;流式细胞仪、免疫组织化学染色法鉴定表面分子表达;成脂定向诱导

  19. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May;

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  20. Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice.

    Directory of Open Access Journals (Sweden)

    Hongxiu Ning

    Full Text Available Efforts to develop peripheral blood-derived nature killer (NK cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs and umbilical cord blood (UCB requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs, which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities.

  1. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-08-01

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering. PMID:26225549

  2. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  3. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds.

    Science.gov (United States)

    de Paula, Ana Cláudia Chagas; Zonari, Alessandra Arcoverde Cavalcanti; Martins, Thaís Maria da Mata; Novikoff, Silviene; da Silva, Alexandra Rodrigues Pereira; Correlo, Vitor Manuel; Reis, Rui L; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2013-01-01

    Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.

  4. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart.

    Directory of Open Access Journals (Sweden)

    Jianfeng Liu

    Full Text Available Reactive oxygen species (ROS, which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative

  5. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Wan W

    2015-02-01

    Full Text Available Wenbing Wan,1–3,* Shiwen Zhang,2–4,* Liangpeng Ge,2,3,5 Qingtao Li,1 Xingxing Fang,1 Quan Yuan,4 Wen Zhong,6 Jun Ouyang,1 Malcolm Xing1,2,7 1Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada; 3Manitoba Institute of Child Health, Winnipeg, MB, Canada; 4Sichuan University, Chengdu, People’s Republic of China; 5Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China; 6Department of Textile Sciences, University of Manitoba, Winnipeg, MB, Canada; 7Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada *These authors contributed equally to this work Abstract: Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone for 12 weeks. Investigating

  6. Co-culture of adipose-derived stem cells and osteoblasts under different conditions%不同培养条件下脂肪干细胞与成骨细胞的共培养

    Institute of Scientific and Technical Information of China (English)

    张扬; 刘大诚; 杨效宁

    2014-01-01

    BACKGROUND:After co-culture with osteoblasts, bone marrow stem cells can be induced to differentiate into osteoblasts. Whether adipose-derived stem cells co-cultured with osteoblasts can differentiate into osteoblasts or not? OBJECTIVE:To observe whether adipose-derived stem cells co-cultured with osteoblasts can differentiate into osteoblasts. METHODS:Adipose-derived stem cells and osteoblasts were isolated from New Zealand white rabbits. Then, passage 3 adipose-derived stem cells were co-cultured with passage 2 osteoblasts in 10%or 5%fetal bovine serum for 14 days. RESULTS AND CONCLUSION:After 7 days of co-culture, some adipose-derived stem cells became round in the two groups. After 14 days of co-culture, adipose-derived stem cells highly differentiated and differentiated cells were similar to mature osteoblasts that were positive for alkaline phosphatase staining and alizarin red staining. The mRNA expression of type I col agen and osteocalcin increased in both two group, especial y in the 10%fetal bovine serum group. These findings indicate that adipose-derived stem cells co-cultured with osteoblasts can differentiate into osteoblasts induced by high-concentration serum culture.%背景:成骨细胞与骨髓干细胞共培养后可以诱导骨髓干细胞向成骨细胞分化,成骨细胞与脂肪干细胞共培养是否也能诱导向成骨细胞分化呢?目的:观察脂肪干细胞与成骨细胞共培养后能否向成骨细胞分化。方法:分离新西兰大白兔脂肪干细胞和成骨细胞,待脂肪干细胞生长至3代,成骨细胞生长至2代时,进行共培养。根据培养时血清浓度不同分为10%胎牛血清共培养组和5%胎牛血清共培养组,共培养14 d。结果与结论:共培养7 d后,2组脂肪干细胞均出现部分变圆。14 d后,脂肪干细胞高度分化与成熟成骨细胞相似,碱性磷酸酶染色阳性、茜素红染色阳性,其Ⅰ型胶原和骨钙素mRNA表达均增高,以10%胎

  7. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  8. Correction of diabetic erectile dysfunction with adipose derived stem cells modified with the vascular endothelial growth factor gene in a rodent diabetic model.

    Directory of Open Access Journals (Sweden)

    Guihua Liu

    Full Text Available The aim of this study was to determine whether adipose derived stem cells (ADSCs expressing vascular endothelial growth factor (VEGF gene can improve endothelial function, recover the impaired VEGF signaling pathway and enhance smooth muscle contents in a rat diabetic erectile dysfunction (DED model. DED rats were induced via intraperitoneal injection of streptozotocin (40 mg/kg, and then screened by apomorphine (100 µg/kg. Five groups were used (n = 12/group-Group 1 (G1: intracavernous injection of lentivirus-VEGF; G2: ADSCs injection; G3: VEGF-expressing ADSCs injection; G4: Phosphate buffered saline injection; G1-G4 were DED rats; G5: normal rats. The mean arterial pressure (MAP and intracavernosal pressure (ICP were measured at days 7 and 28 after the injections. The components of the VEGF system, endothelial, smooth muscle, pericytes markers in cavernoursal tissue were assessed. On day 28 after injection, the group with intracavernosum injection of ADSCs expressing VEGF displayed more efficiently and significantly raised ICP and ICP/MAP (p<0.01 than those with ADSCs or lentivirus-VEGF injection. Western blot and immunofluorescent analysis demonstrated that improved erectile function by ADSCs-VEGF was associated with increased expression of endothelial markers (VEGF, VEGF R1, VEGF R2, eNOS, CD31 and vWF, smooth muscle markers (a-actin and smoothelin, and pericyte markers (CD146 and NG2. ADSCs expressing VEGF produced a therapeutic effect and restored erectile function in diabetic rats by enhancing VEGF-stimulated endothelial function and increasing the contents of smooth muscle and pericytes.

  9. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma.

    Science.gov (United States)

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs' implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of

  10. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a guinea pig model of acoustic trauma

    Directory of Open Access Journals (Sweden)

    Anna Rita Fetoni

    2014-10-01

    Full Text Available Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Several evidences indicate adipose-derived stem cells (ASCs as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features.This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASC transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASC implantation.These results indicate that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantantion, providing an original proof of principle, which could pave the way for further developments of ASC

  11. Electrospun poly(ester-Urethane- and poly(ester-Urethane-Urea fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Alfred Gugerell

    Full Text Available An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea (PEUU and poly[(L-lactide-co-ε-caprolactone-co-(L-lysine ethyl ester diisocyanate-block-oligo(ethylene glycol-urethane] (PEU, containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  12. Co-culture of adipose-derived stem cells and endothelial cells in fibrin induces angiogenesis and vasculogenesis in a chorioallantoic membrane model.

    Science.gov (United States)

    Strassburg, Sandra; Nienhueser, Henrik; Björn Stark, G; Finkenzeller, Günter; Torio-Padron, Nestor

    2016-06-01

    Neovascularization of adipose tissue equivalents is a crucial step in successful adipose tissue engineering, since insufficient vascularization results in graft resorption in an in vivo situation. A possible cellular approach to overcome this limitation is the co-implantation of adipose-derived stem cells (ASCs) with endothelial cells to stimulate the formation of a vascular network. We investigated the potential of ASCs derived from human abdominal fat tissue co-cultured with endothelial progenitor cells (EPCs) from human peripheral blood to stimulate neovascularization of fibrin constructs on the chorioallantoic membrane (CAM) of fertilized chicken eggs, in direct comparison to human umbilical vein endothelial cells (HUVECs). After 9 days of incubation, cell-fibrin constructs were explanted and histologically evaluated with respect to ingrowth of avian blood vessels into the construct and formation of human blood vessels by co-implanted endothelial cells. When administered on the CAM, ASCs successfully guided host vasculature into the construct (angiogenesis) and guided formation of capillary-like structures by co-implanted human endothelial cells (vasculogenesis), with HUVECs being superior to EPCs, leading to a perfused avian and human capillary network within the fibrin construct. However, the results also showed that perfused human blood vessels were only observed near the CAM compared to unperfused capillary-like structures near the top of the construct, indicating that perfusion of the cell-fibrin construct takes longer than 9 days. In conclusion, as blood vessel formation is an essential step during adipogenic differentiation, the data support our hypothesis that cellular communication between transplanted ASCs and endothelial cells is beneficial for vasculogenesis. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23712963

  13. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

    Science.gov (United States)

    Liu, Yun-Song; Sun, Yu-chun; Wang, Yu-guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects. PMID:27332814

  14. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Wang

    Full Text Available Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs in three-dimensional (3D bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN. Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM compared with that in normal proliferation medium (PM. Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects.

  15. Plasma Surface Modification of Polyhedral Oligomeric Silsequioxane-Poly(carbonate-urea) Urethane with Allylamine Enhances the Response and Osteogenic Differentiation of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Chaves, Camilo; Alshomer, Feras; Palgrave, Robert G; Kalaskar, Deepak M

    2016-07-27

    This study present amino functionalization of biocompatible polymer polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane (POSS-PCU) using plasma polymerization process to induce osteogenic differentiation of adipose derived stem cells (ADSCs). Optimization of plasma polymerization process was carried out keeping cell culture application in mind. Thus, samples were rigorously tested for retention of amino groups under both dry and wet conditions. Physio-chemical characterization was carried out using ninhydrin test, X-ray photon spectroscopy, scanning electron microscopy, and static water contact analysis. Results from physio chemical characterization shows that functionalization of the amino group is not stable under wet conditions and optimization of plasma process is required for stable bonding of amino groups to the POSS-PCU polymer. Optimized samples were later tested in vitro in short and long-term culture to study differentiation of ADSCs on amino modified samples. Short-term cell culture shows that initial cell attachment was significantly (p PCU) compared to unmodified POSS-PCU. NH2-POSS-PCU samples also facilitates osteogenic differentiation of ADSCs as confirmed by immunological staining of cells for extracellular markers such as collagen Type I and osteopontin. Quantification of total collagen and ALP activity also shows significant (p PCU samples compared to unmodified POSS-PCU. A pilot study also confirms that these optimized amino modified POSS-PCU samples can further be functionalized using bone inducing peptide such as KRSR using conventional wet chemistry. This further provides an opportunity for biofunctionalization of the polymer for various tissue specific applications. PMID:27384590

  16. Enhanced biological performance of human adipose-derived stem cells cultured on titanium-based biomaterials and silicon carbide sheets for orthopaedic applications.

    Science.gov (United States)

    Lopa, S; De Girolamo, L; Arrigoni, E; Stanco, D; Rimondini, L; Baruffaldi Preis, F W; Lanfranchi, L; Ghigo, M; Chiesa, R; Brini, A T

    2011-01-01

    It is well known that the surface properties of biomaterials may affect bone-healing processes by modulating both cell viability and osteogenic differentiation. In this study we evaluated proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) cultured on three prototypes of titanium disks and on thin layers of silicon carbide (SiC-PECVD), a material characterized by a high hardness and wear resistance. Our data indicated that all the tested surfaces supported cell growth, in particular, hASCs seeded on both titanium treated by a double-step etching process (TIT) and titanium modified by two Anodic Spark Deposition processes (TAA) grew better respect to the ones cultured on titanium obtained by KOH alkali etching process on TAA (TAAK). Furthermore, hASCs well colonized SiC-PECVD surface, showing a quite similar viability to cells cultured on plastic (PA). TIT and TAA better supported osteogenic differentiation of hASCs compared to PA, as shown by a marked increase of both alkaline phosphatase activity and calcified extracellular matrix deposition; in contrast TAAK did not positively affect hASCs differentiation. SiC-PECVD did not alter osteogenic differentiation of hASC cells: indeed, ALP and calcium deposition levels were comparable to those of cells cultured on plastic. Furthermore, we observed similar results testing hASCs either pre-differentiated for 14 days in osteogenic medium or directly differentiated on biomaterials. Our study suggests that modifications of titanium surface may improve osteo-integration of implant devices and that SiC-PECVD may represent a valid alternative for the coating of prosthetic devices to reduce wear and metallosis events.

  17. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma.

    Science.gov (United States)

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs' implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of

  18. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  19. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression

    Directory of Open Access Journals (Sweden)

    Hao T

    2016-01-01

    Full Text Available Tong Hao,1,2,* Jin Zhou,2,* Shuanghong Lü,3,* Boguang Yang,2,4 Yan Wang,2 Wancai Fang,2,4 Xiaoxia Jiang,2 Qiuxia Lin,2 Junjie Li,2 Changyong Wang1,21School of Life Science and Technology, Harbin Institute of Technology, Harbin, 2Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 3Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 4Department of Polymer Science, Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China*These authors contributed equally to this workAbstract: Zero-dimensional fullerenes can modulate the biological behavior of a variety of cell lines. However, the effects and molecular mechanisms of proliferation and cardiomyogenic differentiation in brown adipose-derived stem cells (BADSCs are still unclear. In this study, we report the initial biological effects of fullerene-C60 on BADSCs at different concentrations. Results suggest that fullerene-C60 has no cytotoxic effects on BADSCs even at a concentration of 100 µg/mL. Fullerene-C60 improves the MAPK expression level and stem cell survival, proliferation, and cardiomyogenesis. Further, we found that the fullerene-C60 modulates cardiomyogenic differentiation. Fullerene-C60 improves the expression of cardiomyocyte-specific proteins (cTnT and α-sarcomeric actinin. At elevated concentration, fullerene-C60 reduces the incidence of diminished spontaneous cardiac differentiation of BADSCs with time. At the genetic level, fullerene-C60 (5 µg/mL also improves the expression of cTnT. In addition, fullerene-C60 promotes the formation of gap junction among cells. These findings have important implications for clinical application of fullerenes in the treatment of myocardial infarction.Keywords: C60, BADSCs, molecular

  20. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    Science.gov (United States)

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. Methods We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. Results We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC’s derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using β-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. Conclusions Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content. PMID:27358894

  1. A review on adipogenic differentiation of adipose-derived stem cells%脂肪干细胞成脂分化的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈犹白; 陈聪慧(综述); Qixu Zhang; 韩岩(审校)

    2016-01-01

    Soft tissue defect results from trauma and tumor resection is the common problem in plastic surgery. Existing methods such as tissue flap transplantation, artificial material filling and fat transplantation are not perfect. Adipose-derived stem cells (ASCs) are multipotent stem cells isolated from adipose tissue. Stem cell therapy and adipose tissue engineering based on the adipogenic differentiation capacity of ASCs are promising in plastic and aesthetic surgery and regenerative medicine. The in vitro induction of ASCs differentiation towards adipocyte using medication and chemical was well established. Previous studies showed that various scaffold including decellularized adipose tissue scaffold facilitated ASCs adhesion, proliferation and adipogenic differentiation through mimicking in vivo microenvironment, however its mechanism is not well understood. Factors which could affect ASCs adipocyte differentiation include donor factors such as species, age, gender, anatomic site, and harvesting technique; experimental factors such as cell subpopulation, cell passage, culture condition, and cryopreservation;growth factors such as epidermal growth factor, fibroblast growth factor, vascular endothelial growth factor, insulin-like growth factor, bone morphogenetic proteins, and Nel-like type 1 molecule; hormones such as insulin, glucocorticoids, estrogen, growth hormone, and leptin; chemical like IBMX, paclitaxel and glucagon-like peptide-1;physical factors like radiation and laser; other factors such as Toll-like receptors, platelet-rich plasma and fibrin, human adenovirus-36,and core binding factorα1. Therefore, it is crucial to combine the abovementioned factors and scaffold for improvement of ASCs proliferation and specific differentiation. This review focused on the induction and verification methods, factors and their mechanisms of ASCs adipogenic differentiation. We also introduced our experience and looked forward the future research interest of ASCs adipogenic

  2. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  3. Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jong-Ho Kim

    Full Text Available Adipose-derived stem cells (ADSCs have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERT in vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI

  4. Impact of electrospun nanofibres orientation on mesenchymal stem cell adhesion and morphology

    International Nuclear Information System (INIS)

    Electrospun nanofibrous materials mimicking the architecture of native extracellular matrix (ECM) hold great promise as scaffolds in tissue engineering. In order to optimize the properties of nanofibrous scaffolds it is important to understand the impact of fibres’ organization on cell behaviour. Herein, we investigated the effect of nanofibres (NFs) alignment on human adipose-derived mesenchymal stem cells (hAD-MSCs) adhesion and morphology. Electrospun composite fibrinogen/poly-lactic acid (FNG/PLA) NF scaffolds with same composition and comparable fibre size were fabricated into randomly oriented and aligned configuration and stem cells adhesion was characterized by the meaning of overall cell morphology, actin cytoskeleton organization and expression of molecules, involved in the development of focal adhesion complexes. We found that hAD-MSCs altered their morphology, actin cytoskeleton and cell attachment in accordance with nanofibre orientation while cell spreading, focal adhesions and expression of β1 and αN integrin receptors were not influenced significantly by fibre orientation. These results confirmed that fibre alignment of scaffold guide cellular arrangement and could be beneficial for stem differentiation and therefore for the successful scaffolds development if its contact guidance coincided with the cell shape and cytoskeletal tension. Key words: electrospinning, human adipose-derived stem cells, fibrinogen/polylactic acid hybrid nanofibres

  5. 脂肪干细胞体外诱导分化的研究进展%The Conditions of Induced Differentiation of Adipose Derived Stem Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    高宇; 余庆雄(综述); 李青峰(审校)

    2014-01-01

    Adipose derived stem cells (ADSC), a type of pluripotent stem cells, are isolated from adipose tissue and can be induced into adipose cells, osteoblasts, cartilage cells, muscle cells, nerve cells and so on. Many factors are involved in this process. In this paper, the biological characteristics, the conditions and factors that related to the differentiation of ADSC were reviewed.%脂肪干细胞(Adipose Derived Stem Cells,ADSC)是从脂肪组织中分离得到的一种具有多向分化潜能的干细胞,能分化成为脂肪细胞、成骨细胞、软骨细胞、肌细胞、神经细胞等多种组织细胞,很多因素参与这一过程的发生发展,现就脂肪干细胞的生物学特性及体外诱导分化的条件及影响因素进行综述。

  6. 脂肪干细胞表型和标记物的研究进展%A review on phenotype and markers of adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    陈犹白; 陈聪慧(综述); Qixu Zhang; 韩岩(审校)

    2016-01-01

    No consensus has been made so far on the specific markers of adipose-derived stem cells (ASCs) due to the differences of fat donor,micro-environment between in vivo and in vitro,cell passages and lack of standard of harvest,isolation,culture,et al.We reviewed all markers of ASCs and found that most positive markers are stromal cells and mesenchymal stem cells markers, while most negative markers were hematopoietic cells markers.The controversial markers of ASCs were basically bone marrow stem cells (BMSCs),vascular endothelial cells and pericytes markers. In vivo, fresh-isolated ASCs and ASCs from initial passages of in vitro expansion were CD34+, however the expression of CD34 was decreasing with long-term expansion in vitro and ifnally vanish. This was the reason of controversy on CD34 expression from literatures and the evidence that ASCs have different phenotypes in vivo and in vitro.Furthermore,stemness markers like Stro-1 were important and promising in identifying ASCs, however further studies are needed to determine their role in ASCs identiifcation. According to the phenotypic differences between Stromal vascular fraction (SVF) cells and ASCs subpopulations,we speculated that ASCs in vivo may origin from BMSCs,pericytes or ifbroblasts. We compared the phenotypes of ASCs with BMSCs and found that ASCs are CD36+/CD49d+/ CD48f-/CD104-, while BMSCs were the opposite,which could be used to identify ASCs from BMSCs.Finally,we introduced the experience of Tissue Regeneration and Molecular Cell Engineering Lab, Department of Plastic Surgery, MD Anderson Cancer Center and predicted the future research interests of ASCs phenotypes and markers based on our experience and current issues.%由于脂肪供体、提取方法、分离、培养、体内外微环境、鉴定时的细胞代数和检测方法等诸多因素的差异,迄今为止尚未发现脂肪干细胞(adipose-derived stem cell,ASCs)的特异性标记物。本文总结了所有ASCs的相关标记物

  7. Differentiation of adipose-derived stem cells toward nucleus pulposuslike cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhicheng; Li Fang; Tian Haiquan; Guan Kai; Zhao Guangmin; Shan Jianlin; Ren Dajiang

    2014-01-01

    Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adipose-derived stem cells (ADSCs) are multipotent and can be differentiated toward nucleus pulposus (NP)-Iike cells.A hypoxic environment may be important for differentiation to NP-like cells because the intervertebral disc is an avascular tissue.Hence,we investigated the induction effects of hypoxia and an injectable 3D chitosan-alginate (C/A) gel scaffold on ADSCs.Methods The C/A gel scaffold consisted of medical-grade chitosan and alginate.Gel porosity was calculated by liquid displacement method.Pore microstructure was analyzed by light and scanning electron microscopy.ADSCs were isolated and cultured by conventional methods.Passage 2 BrdU-labeled ADSCs were co-cultured with the C/A gel.ADSCs were divided into three groups (control,normoxia-induced,and hypoxia-induced groups).In the control group,cells were cultured in 10% FBS/DMEM.Hypoxia-induced and normoxia-induced groups were induced by adding transforming growth factor-β1,dexamethasone,vitamin C,sodium pyruvate,proline,bone morphogenetic protein-7,and 1% ITS-plus to the culture medium and maintaining in 2% and 20% O2,respectively.Histological and morphological changes were observed by light and electron microscopy.ADSCs were characterized by flow cytometry.Cell viability was investigated by BrdU incorporation.Proteoglycan and type Ⅱ collagen were measured by safranin O staining and the Sicool method,respectively.mRNA expression of hypoxia-inducing factor-1α (HIF-1α),aggrecan,and Type Ⅱ collagen was determined by reverse transcription-polymerase chain reaction.Results C/A gels had porous exterior surfaces with 80.57% porosity and 50-200 μm pore size.Flow cytometric analysis of passage 2 rabbit ADSCs showed high CD90 expression,while CD45 expression was very low.The morphology of

  8. Influence of different oxygen partial pressures on cytokines secreted from human adipose-derived stem cells%不同氧分压时人脂肪干细胞细胞因子的分泌

    Institute of Scientific and Technical Information of China (English)

    姜亦瑶; 刘晓程; 裴宇; 朱德琳

    2013-01-01

    背景:不同氧分压对人脂肪来源干细胞分泌细胞因子的影响目前尚未定论,这些差异可能由于研究者对于氧分压的选取不同而造成影响。  目的:检测不同氧分压对人脂肪来源干细胞分泌细胞因子的影响。  方法:体外分离培养人脂肪来源干细胞进行免疫表型进行鉴定。将人脂肪来源干细胞分别在1%,3%,5%,10%,21%氧分压的环境中培养24 h后,使用实时定量PCR和酶联免疫吸附法对人脂肪来源干细胞分泌的血管内皮生长因子、肝细胞生长因子、神经细胞生长因子、角质细胞生长因子,在基因水平以及蛋白水平上进行检测分析。  结果与结论:人脂肪来源的人脂肪来源干细胞阳性表达 CD71,CD73,CD90,CD105,阴性表达 CD34, CD45,CD54及HLA-DR。经单因素方差分析统计,在基因水平上,低氧环境(体积分数1%,3%氧)均可促进人脂肪来源干细胞显著性高表达血管内皮生长因子、神经生长因子(P均0.05)。在蛋白水平上,低氧促进人脂肪来源干细胞分泌肝细胞生长因子、血管内皮生长因子蛋白(P均 OBJECTIVE:To investigate the influence of different oxygen partial pressures on cytokines secreted from human adipose-derived stem cells. METHODS:Human adipose-derived stem cells were cultured in vitro and identified by its immunophenotype. Human adipose-derived stem cells were divided into five groups and cultured under different oxygen partial pressure conditions (1%, 3%, 5%, 10%, 21%) for 24 hours, respectively. With quantitative real-time PCR and enzyme linked immunosorbent assay, the secretion of cytokines, vascular endothelial growth factor, hepatocyte growth factor, nerve growth factor, keratinocyte growth factor, from human adipose-derived stem cells were analyzed on the gene and protein levels. RESULTS AND CONCLUSION:Human adipose-derived stem cells were positive for CD71, CD73, CD90, CD105 and

  9. Serum-free culture promotes rat adipose-derived stem cells differentiating into endothelial cells%无血清培养促进脂肪干细胞向血管内皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    郭峘杉; 颜玲

    2013-01-01

    BACKGROUND:There are few reports about the effect of serum-free culture on the differentiation of rat adipose-derived stem cel s into vascular endothelial cel s. OBJECTIVE:To investigate the isolation, serum-free culture of rat adipose-derived stem cel s differentiating into vascular endothelial cel s. METHODS:The rat adipose-derived stem cel s were isolated from male Sprague-Dawley rats and expanded to the third passage by enzymatic digestion-adherent explants method. In the experimental group, rat adipose-derived stem cel s were cultured in serum-free medium for 24 hours. In the control group, rat adipose-derived stem cel s were cultured in low-glucose Dulbecco’s modified Eagle’s medium containing 10%fetal bovine serum. After that, the cel s were cultured in inducing medium for 3 weeks to differentiate into vascular endothelial cel s. RESULTS AND CONCLUSION:The rat adipose-derived stem cel s grew as polygonal or fusiform-shaped adherent cel s when cultured in vitro, which could stably proliferate and passage. The rat adipose-derived stem cel s showed very low expression of CD31, a cel surface marker, after passages. After directional differentiations into vascular endothelial cel s, the cel s were pebble-shaped under the inverted microscope. Expression of CD31 was up-regulated, which was much higher in the experimental group than the control group. The induced cel s in the experimental group had stronger abilities than those in the control group to swal ow Dil-labeled acetylated low-density lipoprotein and form tube-like structures on the matrigel after differentiation into vascular endothelial cel s. So, rat adipose-derived stem cel s could be highly successful y induced to differentiate into vascular endothelial cel s in vitro after serum-free culture.%背景:无血清培养对大鼠脂肪干细胞向血管内皮细胞诱导分化影响的报道甚少。  目的:观察无血清培养大鼠脂肪干细胞后向血管内皮细胞诱导分化的情况

  10. Isolation, culture and identification of adipose-derived stem cells in mice%鼠脂肪干细胞的分离、培养和鉴定

    Institute of Scientific and Technical Information of China (English)

    朱灿红; 张旦红; 陈正荣; 王美娟; 张亚

    2016-01-01

    Objective:To investigate the method of isolation, culture and identification of ADSCs, so as to provide a reliable source of cells for tissue engineering, cell therapy and gene therapy. Methods: ADSCs were isolated and purified from adipose tissues of mice by repeated adherence, and their shapes were observed. Growth curve was studied by using MTT method. Cells surface markers were identified through flow cytometry; ADSCs were induced by different inducing me-dia to test their differentiation potentials. Results: On the second day ADSCs were a small population of polygonal, trian-gle-shaped cells and most population of spindle shaped cells, On the fifth day, cells grew in colonies and were of fibrob-last-like morphology. On the tenth day, cells were homogenously of spindle-shaped appearance and were circinately ar-ranged. The shape of the passaged cells was similar with that of the primary cells;The growth curve of ADSCs appeared as a typical ‘S-shaped curve’. 96.6% of the cells were positive for CD90 and 85.3% for CD44.Only 0.5% of the cells were positive for CD45 and CD11b. Oil droplets of induced ADSCs became red by Oil Red-O staining test;It appeared as black particles within the cells by modified Gomori staining and a black mineralized nodule within the cells by Von kossa stain-ing; Cartilage nodule like structures were blue by Alcian blue staining. Conclusions: ADSCs were isolated from adipose tissue by using repeated adherence method in mice, they were accorded with all the characteristics of stem cells, which provided a rich source of stem cells for the clinical application of stem cells.%目的:研究脂肪干细胞(adipose-derived stem cells,ADSCs)的分离、培养和鉴定的方法,为组织工程、细胞疗法、基因疗法提供可靠的细胞来源。方法:采用反复贴壁法从小鼠脂肪组织中分离、纯化脂肪干细胞,观察其细胞形态,MTT法测定其生长曲线,流式细胞仪对干细胞表面标志物进

  11. Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Mundra, Vaibhav; Gerling, Ivan C.; Mahato, Ram I.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomdulators has been explored in cell/organ t...

  12. Mesenchymal stem cells in regenerative rehabilitation

    OpenAIRE

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this re...

  13. Mesenchymal Stem Cells in Cardiology.

    Science.gov (United States)

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  14. Mesenchymal stem cells in regenerative rehabilitation

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  15. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

    Science.gov (United States)

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-01-01

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future. PMID:27703175

  16. Adipose-Derived Cells (Stromal Vascular Fraction Transplanted for Orthopedical or Neurological Purposes: Are They Safe Enough?

    Directory of Open Access Journals (Sweden)

    Katarzyna Siennicka

    2016-01-01

    Full Text Available Although mesenchymal stem cells are used in numerous clinical trials, the safety of their application is still a matter of concern. We have analysed the clinical results of the autologous adipose-derived stem cell treatment (stromal vascular fraction (SVF containing adipose-derived stem cells, endothelial progenitors, and blood mononuclear cells for orthopedic (cartilage, bone, tendon, or combined joint injuries and neurologic (multiple sclerosis diseases. Methods of adipose tissue collection, cell isolation and purification, and resulting cell numbers, viability, and morphology were considered, and patient’s age, sex, disease type, and method of cell administration (cell numbers per single application, treatment numbers and frequency, and methods of cell implantation were analysed and searched for the unwanted clinical effects. Results of cellular therapy were compared retrospectively to those obtained with conventional medication without SVF application. SVF transplantation was always the accessory treatment of patients receiving “standard routine” therapies of their diseases. Clinical experiments were approved by the Bioethical Medical Committees supervising the centers where patients were hospitalised. The conclusion of the study is that none of the treated patients developed any serious adverse event, and autologous mesenchymal stem (stromal cell clinical application is a safe procedure resulting in some beneficial clinical effects (not analysed in this study.

  17. Adipose-Derived Cells (Stromal Vascular Fraction) Transplanted for Orthopedical or Neurological Purposes: Are They Safe Enough?

    Science.gov (United States)

    Zolocinska, Aleksandra; Stepien, Karolina; Lubina-Dabrowska, Natalia; Maciagowska, Marzena; Mazur, Slawomir; Zdanowicz, Urszula; Smigielski, Robert; Stepien, Adam

    2016-01-01

    Although mesenchymal stem cells are used in numerous clinical trials, the safety of their application is still a matter of concern. We have analysed the clinical results of the autologous adipose-derived stem cell treatment (stromal vascular fraction (SVF) containing adipose-derived stem cells, endothelial progenitors, and blood mononuclear cells) for orthopedic (cartilage, bone, tendon, or combined joint injuries) and neurologic (multiple sclerosis) diseases. Methods of adipose tissue collection, cell isolation and purification, and resulting cell numbers, viability, and morphology were considered, and patient's age, sex, disease type, and method of cell administration (cell numbers per single application, treatment numbers and frequency, and methods of cell implantation) were analysed and searched for the unwanted clinical effects. Results of cellular therapy were compared retrospectively to those obtained with conventional medication without SVF application. SVF transplantation was always the accessory treatment of patients receiving “standard routine” therapies of their diseases. Clinical experiments were approved by the Bioethical Medical Committees supervising the centers where patients were hospitalised. The conclusion of the study is that none of the treated patients developed any serious adverse event, and autologous mesenchymal stem (stromal) cell clinical application is a safe procedure resulting in some beneficial clinical effects (not analysed in this study).

  18. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M;

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  19. Protective Effect of Adipose Derived Stem Cells on Radiation Damaged Rat%脂肪间充质干细胞对辐射损伤大鼠的防护效果研究

    Institute of Scientific and Technical Information of China (English)

    许文黎; 张伟; 秦秀军; 岳娟; 李曙芳; 王永丽; 闻建华

    2013-01-01

    This study is to explore the protective effect of allogeneic adipose derived mesenchymal stem cells (ADSCs ) in radiation-injured rats which were induced by 60 Co gamma rays irradiation .After total body irradi-ation dose of 4 Gy and 7 Gy ,transplanted ADSCs to ADSCs implantion groups ,control group and irradiation group injected with saline ,with the injection volume 10 mL/kg body weight .0 ,2 ,4 ,9 ,16 ,29 days after ir-radiation were performed on five rats blood tests ,5 ,16 ,34 days after irradiation were performed on five rats blood biochemical tests . Peripheral blood displayed that the leukocyte cell of ADSCs implantion group were higher than the irradiated control group ,no acute or chronic toxicity and GVHD performance in the convales-cent after irradiation , indicating that ADSCs implantion help improve the body resistance to infection and strengthen the body’s defenses adaptation function ;red blood cells and hemoglobin of implantion group were higher than the irradiated control group during the recovery period described ADSCs promote hematopoietic sys-tem recovery after radiation damage .%目的:建立60 Coγ射线照射诱发SD大鼠辐射损伤模型,移植异体脂肪间充质干细胞(ADSCs ),探讨ADSCs对辐射损伤大鼠的防护效果。方法SPF级雄性SD大鼠75只,随机分为对照组、4 Gy单纯照射组、7 Gy单纯照射组、4 Gy ADSCs植入组、7 Gy ADSCs植入组,每组15只。大鼠经60 Co治疗机一次性4 Gy、7 Gy剂量全身照射后,ADSCs植入组尾静脉注射ADSCs ,注射体积为10 mL/Kg体重,对照组和单纯照射组注射等体积的无菌生理盐水。于照射后0、2、4、9、16、29天分别对五组大鼠进行血液学检查,照射后5、16、34天分别对五组大鼠进行血液生化学检查。结果外周血象结果显示,在照射后的极期和恢复期,ADSCs植入组的白细胞均高于单纯照射组;在恢复期,ADSCs植入组的红细胞和血红蛋白高于单

  20. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  1. Turning Stem Cells into Mesenchymal Tissues

    OpenAIRE

    Tiziano Barberi; Willis, Lucy M.; Socci, Nicholas D.; Lorenz Studer

    2005-01-01

    BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilinea...

  2. Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism.

    Science.gov (United States)

    Tatsumi, Kohei; Ohashi, Kazuo; Matsubara, Yoshinori; Kohori, Ayako; Ohno, Takahiro; Kakidachi, Hiroshi; Horii, Akihiro; Kanegae, Kazuko; Utoh, Rie; Iwata, Takanori; Okano, Teruo

    2013-02-01

    Mesenchymal stem cells (MSCs) have shown extreme clinical promise as a therapeutic regenerative system in the treatment of numerous types of diseases. A recent report, however, documented lethal pulmonary thromboembolism in a patient following the administration of adipose-derived MSCs (ADSCs). In our study, we designed experiments to examine the role of tissue factor (TF), which is highly expressed at the level of mRNA and localized to the cell surface of cultured MSCs, as a triggering factor in the procoagulative cascade activated by infused MSCs. A high mortality rate of ~85% in mice was documented following intravenous infusion of mouse ADSCs within 24 h due to the observation of pulmonary embolism. Rotation thromboelastometry and plasma clotting assay demonstrated significant procoagulation by the cultured mouse ADSCs, and preconditioning of ADSCs with an anti-TF antibody or usage of factor VII deficient plasma in the assay successfully suppressed the procoagulant properties. These properties were also observed in human ADSCs, and could be suppressed by recombinant human thrombomodulin. In uncultured mouse adipose-derived cells (ADCs), the TF-triggered procoagulant activity was not observed and all mice infused with these uncultured ADCs survived after 24 h. This clearly demonstrated that the process of culturing cells plays a critical role in sensitizing these cells as a procoagulator through the induction of TF expression. Our results would recommend that clinical applications of MSCs to inhibit TF activity using anti-coagulant agents or genetic approaches to maximize clinical benefit to the patients.

  3. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  4. In vivo injectable human adipose tissue regeneration by adipose-derived stem cells isolated from the fluid portion of liposuction aspirates.

    Science.gov (United States)

    Dong, Ziqing; Luo, Lin; Liao, Yunjun; Zhang, Yunsong; Gao, Jianhua; Ogawa, Rei; Ou, Chunquan; Zhu, Ming; Yang, Bo; Lu, Feng

    2014-06-01

    Liposuction aspirates separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and isolated from the fluid portion termed liposuction aspirate fluid (LAF) cells, both of which contain adipose-derived stromal cells (ASCs). Here, we examined the biological differences between PLA and LAF cells and then tested the differentiation capacity of LAF cells in vivo. The cell surface marker and the multiple differentiation ability of fresh isolated PLA and LAF cells and which from passaged 3-5 were examined in vitro. LAF cells were then incubated in adipogenic medium, stained with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), mixed with fibrin glue then injected to nude mice; fibrin glue without cells was as a control. Three months later, the transplants were subjected to macroscopic observation and histological analysis. PLA and LAF cells were similar in growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed increased expression of CD29, CD44, CD133 and HLA DR and decreased expression of CD34. In vivo differentiation assay showed the mixture of LAF cells and fibrin glue formed adipose tissue which contained red fluorescent DiI-positive adipocytes. LAF cells can be harvested more easily than PLA cells. The in vivo adipogenic capacity suggested LAF cells would be useful and valuable for cell-based therapies and soft tissue reconstruction.

  5. Isolation of human adipose-derived stem cells and the identification of biological characteristics%人脂肪源性干细胞的分离及生物学性状的鉴定

    Institute of Scientific and Technical Information of China (English)

    王洁晴; 柏树令; 侯伟健; 佟浩; 田晓红; 徐赫

    2011-01-01

    Objective To establish a method to isolate and culture adipose-derived stem cells (ASCs) from the human liposuction aspirates, and conduct observations of the cell morphology、 growth kinetics、 surface markers and differentiating capacity. Method Adipose tissues were obtained from 4 healthy adult women who were experienced abdominal liposuction. ASCs, from liposuction aspirates, were isolated by enzymatic digestion, and were cultured to passage 20, the morphology of the cultured cells was observed. The cell viability was evaluated with MTT, and compared among passage 3,9, 15 and 20. Cell growth curve was generated. The cell cycle and the surface marker profiles were detected by flow cytometry. Adipogenic differentiation and osteogenic differentiation of ASCs was assessed by oil red O and Alizarin Red staining respectively. Results The ASCs present a vortex pattern growth with a fibroblast-like appearance,and as shown by MTT, proliferation activity was strong when they subcultured to passage 15, then gradually slowed down,significantly reduced when they passed to passage 20. Statistical analysis showed that passage 20 and passage 3,9,15 were significantly different (P < 0.05 ). ASCs also showed characteristics of stem cell cycle. The positive expression of mesenchymal stem cell markers CD90, CD44 and negative expression of hematopoietic stem cell marker CD34, the blood cell marker CD45 ,the endothelial cell marker CD31 were observed in ASCs by flow cytometry. In addition, the expression of CD49d was low and of CD106 was negative. Oil red O staining of ASCs after adipogenic induction demonstrated numerous intracellular lipid droplets. Calcium nodules could seen after osteogenic induction and Alizarin red staining was positive. Conclusion ASCs can be isolated from human liposuction aspirates and expressing cell surface markers of stem cells with strong proliferative ability. ASCs also can be induced to differentiate into adipose tissue and osseous tissue under

  6. Influence of Autologus Adipose Derived Stem Cells and PRP on Regeneration of Dehiscence-Type Defects in Alveolar Bone: A Comparative Histochemical and Histomorphometric Study in Dogs

    Science.gov (United States)

    Aziz Aly, Lobna Abdel; El- Menoufy, Hala; Hassan, Amal; Ragae, Alyaa; Atta, Hazem Mahmoud; Roshdy, Nagwa Kamal; Rashed, Laila Ahmed; Sabry, Dina

    2011-01-01

    Background and Objectives: Autogenous bone grafts is considered to be the best choice for reconstructive surgery. Adipose Derived Stromal Cells (ASCs) represents a promising tool for new clinical concepts in supporting cellular therapy. The goal of our study was to investigate bone regeneration following application of autologous ASCs with or without Platelet-Rich Plasma (PRP) at dehiscence-type defects in alveolar bone in dogs. Methods and Results: Standardized buccal dehiscence defects (4× 3×3 mm) were surgically created in eighteen dogs, the defects were grafted with either ASCs -PRP, ASCs alone, or without grafting material. Three months later; a bone core was harvested from grafted and non grafted sites for histological, histochemical and histomorphometric assessment. There was no evidence of inflammation or adverse tissue reaction with either treatment. Defects grafted with ASCs-PRP showed a significantly higher result (p≤ 0.05), with a mean area % of spongy bone and compact bone of (64.96±5.37 and 837.62±24.95), compared to ASCs alone (47.65±1.43 and 661.92±12.65) and without grafting (33.55± 1.74 and 290.85±7.27) respectively. The area % of lamellated bone increased significantly reaching its highest level in group A followed by group B. Also a significant increase in area % of neutral mucopolysaccharides and calcified reactivity of Masson|s Trichrome stain in groups A and B compared to group C was obtained. Conclusions: Our results suggest that, the addition of PRP to ASCs enhances bone formation after 3 months and may be clinically effective in accelerating postsurgical healing in both periodontal and maxillofacial surgical applications. PMID:24298335

  7. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF, Adipose-derived Stem Cells (ASCs and those labeled by superparamagnetic iron oxide (SPIO nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT assay, proliferation by cell counting and bromodeoxyuridine (BrdU incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF, Insulin-like Growth Factor-1 (IGF-1, Transforming Growth Factor Beta 1 (TGF-β1, genetic markers comprising Stem Cell Antigen-1 (Sca1, Octamer-4 (Oct-4, ATP-binding Cassette Subfamily B Member 1 (ABCB1, adipogenic marker genes containing Lipoprotein Lipase (LPL, Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ, and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1 and Osterix (OSX. Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling.

  8. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZHAO Robert ChunHua

    2009-01-01

    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. About 35% -5% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. It is associated with considerable morbidity and mortality, particularly in patients who do not respond to primary therapy, which usually consists of glucocorticoids(steroids). Most of the available second-line and third-line treatments for sterold-refractory acute GVHD induce severe immunodeficiency, which is commonly accompanied by lethal infectious complications. Mesenchymal stem cells (MSCs) have been shown to mediate immunomodulatory effects. The recently elucidated immunosuppreseive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants, MSCs have been used in patients with steroid-refractory acute GVHD, and encouraging responses have been obtained in many studies. The utility of MSCs for the treatment of GVHD is becoming clear.

  9. Research Progresses of Adipose-derived Stem Cells in Wound Repair%脂肪干细胞在创伤修复领域的研究进展

    Institute of Scientific and Technical Information of China (English)

    张俊磊(综述); 张培华(审校)

    2014-01-01

    Adipose-derived stem cells( ADSCs) are pluripotent stem cells population residing in adipose tissue with multi-directional differentiation potential.In recent years,with the development of tissue engineer-ing, ADSCs have been used as seed cells to promote tissue repair,regeneration and renew of vascular,bone, cartilage,tendons,nerves,and skin.Here is to make a review of the isolation,culture,identification and dif-ferentiation potential of DSCs and the latest research progresses of its application in bone tissue engineering and wound healing.%脂肪干细胞( ADSCs)来源于脂肪组织,是具有多方向分化潜能的多能干细胞。近年来,随着组织工程学的发展,ADSCs作为种子细胞,能促使血管、骨、软骨、肌腱、神经、皮肤等组织的修复、再生及更新。该文主要介绍ADSCs的分离、培养、鉴定、分化潜能及其在骨组织工程和创面修复中的最新应用进展。

  10. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  11. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  12. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael McLaughlin

    2016-01-01

    Full Text Available The administration of human adipose-derived stem cells (ASCs represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR. ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase and BMP-2 (4.7 ± 1.3-fold increase and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease and FGF-2 (33 ± 9.0-fold decrease. No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  13. Experimental study on autologous of rabbit adipose - derived stem cells transplantation%兔脂肪干细胞增强脂肪移植效果的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨涛; 杨勇; 王艳; 胡晓光

    2014-01-01

    Objective:To establish an animal model for the injectable transPlantation fat tissue transPlantation and to investigate the morPhological changes of rejection after ear transPlantation in rabbit. Methods:All 24 healthy New Zealand white rabbits were divided into four grouPs randomly. The autologous adiPose granule(AG)were imPlanted in the ears of the rabbits as the exPeriment grouP A(n = 6). The autologous adiPose granule(AG)combined with Platelet - rich fibrin(PRF)were imPlanted in ears as the exPeriment grouP B(n = 6). The autologous adiPose gran-ule(AG)combined with autologous adiPose - derived stem cells(ADSCs)were imPlanted in ears as the exPeriment grouP C(n = 6). The autologous adiPose granule(AG)combined with Platelet - rich fibrin(PRF)and autologous adiPose - derived stem cells(ADSCs)were imPlanted in the ears were the control grouP D(n = 6). At month 1,3 and 6 after transPlantation,the survival rates of transPlanted ears,eE staining,rabbit ears light transmission exPeri-ments were Performed. Results:At month 1,3 and 6 after transPlantation,the survival rates of transPlanted ears,eE staining,rabbit ears light transmission exPeriments,the differences of the grouP D and grouP A,B,C were statistical significant(P ﹤ 0. 05). Conclusion:The adiPose granule(AG)combined with Platelet - rich fibrin(PRF)and adi-Pose - derived stem cells(ADSCs)can imProve the survival rate of transPlanted fat tissue and Provide exPerimental basis for clinical fat transPlantation.%目的:建立兔耳脂肪移植模型,观察兔脂肪干细胞( adiPose - derived stem cells,ADSCs)复合脂肪颗粒(adiPose granule,AG)和富血小板纤维蛋白(Platelet - rich fibrin,PRF)移植后的形态学变化,为临床脂肪干细胞移植提供实验依据。方法:以健康新西兰家兔为实验动物,共取24只,随机分成4组(n =6):A 组移植物为 AG;B 组 AG + PRF;C 组 AG + ADSCs;D 组 AG + PRF + ADSCs。在术后1、3、6个月,用 B

  14. Roles of adipose-derived stem cells and hepatocyte growth factor in the treatment of gastric ulcer%脂肪间充质干细胞与HGF在胃溃疡治疗中的作用

    Institute of Scientific and Technical Information of China (English)

    陈志锋; 黄聪武

    2012-01-01

    消化性溃疡(peptic ulcer,PU)是全球性常见病,其高复发率仍是当前PU治疗中的一大难题.而脂肪间充质干细胞(adipose derived stem cell,ADSC)具有多向分化能力,以及分泌肝细胞生长因子(hepatocyte growth factor,HGF)、血管内皮生长因子(vascular endothelial growth factor,VEGF)等生长因子的特性.因此,利用ADSC移植治疗胃溃疡,或可增强胃溃疡患者的胃黏膜屏障,有望成为一种新颖的治疗手段.本文就PU的治疗现状、ADSC和HGF的生物学特性、ADSC和HGF的相关研究进展作一综述.

  15. A SAGE View of Mesenchymal Stem Cells

    OpenAIRE

    Phinney, Donald G.

    2009-01-01

    Mesenchymal stem cells (MSCs) were initially defined by their capacity to differentiate into connective tissue cell lineages and support hematopoiesis. More recently, MSCs have demonstrated some degree of therapeutic efficacy in a broad range of diseases including neurological and auto-immune disorders, stroke, diabetes, and chronic inflammatory conditions. An emerging paradigm suggests that MSCs alter the tissue microenvironment via paracrine signaling to induce angiogenesis, alter immune ce...

  16. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations

    OpenAIRE

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P.; Stryhn, Henrik; McDuffee, Laurie A.

    2015-01-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow asp...

  17. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  18. Safety in mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Matthie Robert

    2014-01-01

    Full Text Available To date, adult stem cell therapy has some achievements in the treatment of chronic disease. However, some risks in stem cell transplantation still serve as high barriers obstructing the pulling of these therapies into clinical use. Tumorigenecity is of almost concern after it is injected into patients. However, all clinical studies indexed in PubMed showed that there were no cases of tumor after transplantation. Especially in recent study published in Cell Death and Disease, Wang et al. (2013 showed that long-term cultured mesenchymal stem cells could develop the genomic mutations but cannot undergo malignant transformation. Moreover, the study also revealed these stem cells as capable of forming tumors. This commentary assesses the data generated to date, and discusses the conclusions drawn from various studies. [Biomed Res Ther 2014; 1(1.000: 21-24

  19. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    OpenAIRE

    Mou