Adiabatic invariants in stellar dynamics. 2: Gravitational shocking
Weinberg, Martin D.
1994-01-01
A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.
Directory of Open Access Journals (Sweden)
P. Savoini
2005-12-01
Full Text Available Test particle simulations are performed in order to analyze in detail the dynamics of transmitted electrons through a supercritical, strictly perpendicular, collisionless shock. In addition to adiabatic particles, two distinct nonadiabatic populations are observed surprisingly: (i first, an over-adiabatic population characterized by an increase in the gyrating velocity higher than that expected from the conservation of the magnetic moment µ, and (ii second, an under-adiabatic population characterized by a decrease in this velocity. Results show that both nonadiabatic populations have their pitch angle more aligned along the magnetic field than the adiabatic one at the time these hit the shock front. The formation of "under" and "over-adiabatic" particles strongly depends on their local injection conditions through the large amplitude cross-shock potential present within the shock front. A simplified theoretical model validates these results and points out the important role of the electric field as seen by the electrons. A classification shows that both nonadiabatic electrons are issued from the core part of the upstream distributionÊ function. In contrast, suprathermal and tail electrons only contribute to the adiabatic population; nevertheless, the core part of the upstream distribution contributes at a lower percentage to the adiabatic electrons. Under-adiabatic electrons are characterized by small injection angles θ_{inj}≤90°, whereas "over-adiabatic" particles have high injection angles θ_{inj}>90° (where θ_{inj} is the angle between the local gyrating velocity vector and the shock normal.
Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats
Pain, J C
2007-01-01
Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.
Developing shock-capturing difference methods
Institute of Scientific and Technical Information of China (English)
TU Guo-hua; YUAN Xiang-jiang; LU Li-peng
2007-01-01
A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.
The turbulent destruction of clouds - III. Three dimensional adiabatic shock-cloud simulations
Pittard, J M
2015-01-01
We present 3D hydrodynamic simulations of the adiabatic interaction of a shock with a dense, spherical cloud. We compare how the nature of the interaction changes with the Mach number of the shock, M, and the density contrast of the cloud, chi. We also examine the differences with 2D axisymmetric calculations, perform detailed resolution tests, and compare ``inviscid'' results to those obtained with the inclusion of a k-epsilon subgrid turbulence model. We find that resolutions of 32-64 cells per cloud radius are the minimum necessary to capture the dominant dynamical processes in 3D simulations. In contrast to our earlier 2D work, we find that 3D inviscid and k-epsilon simulations typically show very good agreement. As such, there does not appear to be any compelling reason for using the k-epsilon subgrid model in 3D calculations, though it remains very useful for 2D calculations. Clouds accelerate and mix up to 5 times faster when they are poorly resolved. This has implications for numerical simulations of ...
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves.
Shrivastava, Shamit; Kang, Kevin Heeyong; Schneider, Matthias F
2015-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave's amplitude, and the splitting of the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be closely tied to the thermodynamic blockage of nerve pulse propagation.
WEIGHTED COMPACT SCHEME FOR SHOCK CAPTURING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A new class of finite difference schemes--the weighted compact schemes are proposed. According to the idea of the WENO schemes, the weighted compact scheme is constructed by a combination of the approximations of derivatives on candidate stencils with properly assigned weights so that the non-oscillatory property is achieved when discontinuities appear. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the weighted compact scheme. This new scheme not only preserves the characteristic of standard compact schemes and achieves high order accuracy and high resolution using a compact stencil,but also can accurately capture shock waves and discontinuities without oscillation, Numerical examples show that the new scheme is very promising and successful.``
Heavy-ion-acoustic solitary and shock waves in an adiabatic multi-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.A.; Rahman, M.M.; Mamun, A.A., E-mail: armanplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Hossen, M.R. [Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka (Bangladesh)
2015-08-15
The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments. (author)
Simulation of Quasi-Adiabatic Beam Capture into Acceleration at the Nuclotron
Volkov, V I; Issinsky, I B; Kovalenko, A D
2003-01-01
The routine RF system being used at the Nuclotron allows one to inject the beam at ramping magnetic field with following acceleration at constant amplitude of accelerating voltage. At these conditions at least a half of the particles circulating in the vacuum chamber after injection is not captured in longitudinal acceptance. At the same time vacuum chamber sizes permit to extend the momentum spread of the beam enough to make gymnastic with it inside the stable zone of longitudinal phase space on the flat magnetic field at injection. A quasi-adiabatic capture was considered for increasing the Nuclotron beam intensity. Simulation of such a kind of process with subsequent acceleration was performed. It was shown that in this case it is possible to capture and accelerate up to 100 % of the injected beam.
Numerical study on the suppression of shock induced separation on the non-adiabatic wall
Lee, Doug-Bong
2000-12-01
A numerical model is constructed to simulate the interaction of supersonic ( M=2.4) oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The turbulence model is Spalart-Allmaras model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall bleeding is applied at the shock foot position. As a result of the parametric study, the best position of the bleeding slot is selected. The position of the bleeding is very important for the separation suppression. If the bleeding is applied upstream of shock foot, then separation reoccurs after the bleeding slot. If the bleeding is applied downstream of shock foot, the upstream boundary layer is little influenced and still separated. The bleeding vent width is about same as the upstream boundary layer thickness and suction mass flow is 20 to 80 % of the flow rate in the upstream boundary layer. The bleeding mass flow rate is very sensitive to the bleeding vent position if we fix the vent outlet pressure. The final configuration of the shock reflection pattern approaches to the non-viscous value when wall bleeding is applied at the shock impinging point.
Petruk, O; Beshley, V
2015-01-01
Gamma-rays from hadronic collisions are expected from supernova remnants (SNRs) located near molecular clouds. The temperature on the shock interacting with the dense environment quickly reaches $10^5$ K. The radiative losses of plasma become essential in the evolution of SNRs. They decrease the thermal pressure and essentially increase the density behind the shock. The presence of ambient magnetic field may considerably alter the behavior of the post-adiabatic SNRs comparing to hydrodynamic scenario. In the present paper, the magneto-hydrodynamic simulations of radiative shocks in magnetic field are performed. High plasma compression due to the radiative losses results also in the prominent increase of the strength of the tangential component of magnetic field behind the shock and the decrease of the parallel one. If the strength of the tangential field before the shock is higher than about $3\\mathrm{\\mu G}$ it prevents formation of the very dense thin shell. The higher the strength of the tangential magneti...
Khorshidi, Abdollah; Pazirandeh, Ali; Tenreiro, Claudio; Kadi, Yacine
2014-01-01
In this study, the transmutation adiabatic resonance crossing (TARC) concept was estimated in Mo-99 radioisotope production via radiative capture reaction in two designs. The TARC method was composed of moderating neutrons in lead or a composition of lead and water. Additionally, the target was surrounded by a moderator assembly and a graphite reflector district. Produced neutrons were investigated by (p,xn) interactions with 30 MeV and 300 mu A proton beam on tungsten, beryllium, and tantalum targets. The Mo-99 production yield was related to the moderator property, cross section, and sample positioning inside the distinct region of neutron storage as must be proper to achieve gains. Gathered thermal flux of neutrons can contribute to molybdenum isotope production. Moreover, the sample positioning to gain higher production yield was dependent on a greater flux in the length of thermal neutrons and region materials inside the moderator or reflector. When the sample radial distance from Be was 38 cm inside the...
Developing a 3-shock, low-adiabat drive for high pressure material science experiments on NIF
Wehrenberg, Christopher; Prisbrey, Shon; Graham, Peter; Park, Hye-Sook; Huntington, Channing; Maddox, Brian; Benedetti, Robin; Rudd, Robert; Arsenlis, Tom; Remington, Bruce
2014-10-01
We describe a series of experiments for basic materials science on NIF to develop a planar, 3-shock, low-adiabat drive to reach peak pressures of 5 Mbar, while keeping the physics samples well below their melt temperatures. The primary diagnostic is VISAR, which measures the compression waves as they travel through a Ta witness plate. X-ray ablation from an indirect drive launches a strong (>10 Mbar) shock through a precision fabricated ``reservoir,'' consisting of a CH ablator, followed by layers of Al, CH(18.75%I), 350 mg/cc CRF foam, and a final layer of 10-30 mg/cc foam. This reservoir releases as plasma across a 1.5 mm vacuum gap, then stagnates on the 15 micron thick Ta witness plate, which is backed by a LiF or quartz window. The lowest density reservoir layer sets the strength of the leading shock, which needs to be controlled to keep the physics samples solid, and to control the dislocation density created by this leading shock. We will describe an extensive series of experiments done on NIF to develop this drive. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Khorshidi, A.; Ghafoori-Fard, H.; Sadeghi, M.
2014-05-01
Low-energy protons from the cyclotron in the range of 15-30 MeV and low current have been simulated on beryllium (Be) target with a lead moderator around the target. This research was accomplished to design an epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using the moderated neutron on the average produced from 9Be target via (p, xn) reaction in Adiabatic Resonance Crossing (ARC) concept. Generation of neutron to proton ratio, energy distribution, flux and dose components in head phantom have been simulated by MCNP5 code. The reflector and collimator were designed in prevention and collimation of derivation neutrons from proton bombarding. The scalp-skull-brain phantom consisting of bone and brain equivalent material has been simulated in order to evaluate the dosimetric effect on the brain. Results of this analysis demonstrated while the proton energy decreased, the dose factor altered according to filters thickness. The maximum epithermal flux revealed using fluental, Fe and bismuth (Bi) filters with thicknesses of 9.4, 3 and 2 cm, respectively and also the epithermal to thermal neutron flux ratio was 103.85. The potential of the ARC method to replace or complement the current reactor-based supply sources of BNCT purposes.
Quantum-statistical equation-of-state models of dense plasmas: high-pressure Hugoniot shock adiabats
Pain, Jean-Christophe
2007-01-01
We present a detailed comparison of two self-consistent equation-of-state models which differ from their electronic contribution: the atom in a spherical cell and the atom in a jellium of charges. It is shown that both models are well suited for the calculation of Hugoniot shock adiabats in the high pressure range (1 Mbar-10 Gbar), and that the atom-in-a-jellium model provides a better treatment of pressure ionization. Comparisons with experimental data are also presented. Shell effects on shock adiabats are reviewed in the light of these models. They lead to additional features not only in the variations of pressure versus density, but also in the variations of shock velocity versus particle velocity. Moreover, such effects are found to be responsible for enhancement of the electronic specific heat.
Directory of Open Access Journals (Sweden)
V. See
2013-04-01
Full Text Available Under sufficiently high electric field gradients, electron behaviour within exactly perpendicular shocks is unstable to the so-called trajectory instability. We extend previous work paying special attention to short-scale, high-amplitude structures as observed within the electric field profile. Via test particle simulations, we show that such structures can cause the electron distribution to heat in a manner that violates conservation of the first adiabatic invariant. This is the case even if the overall shock width is larger than the upstream electron gyroradius. The spatial distance over which these structures occur therefore constitutes a new scale length relevant to the shock heating problem. Furthermore, we find that the spatial location of the short-scale structure is important in determining the total effect of non-adiabatic behaviour – a result that has not been previously noted.
Assessment of shock capturing schemes for discontinuous Galerkin method
Institute of Scientific and Technical Information of China (English)
于剑; 阎超; 赵瑞
2014-01-01
This paper carries out systematical investigations on the performance of several typical shock-capturing schemes for the discontinuous Galerkin (DG) method, including the total variation bounded (TVB) limiter and three artificial diffusivity schemes (the basis function-based (BF) scheme, the face residual-based (FR) scheme, and the element residual-based (ER) scheme). Shock-dominated flows (the Sod problem, the Shu-Osher problem, the double Mach reflection problem, and the transonic NACA0012 flow) are considered, addressing the issues of accuracy, non-oscillatory property, dependence on user-specified constants, resolution of discontinuities, and capability for steady solutions. Numerical results indicate that the TVB limiter is more eﬃcient and robust, while the artificial diffusivity schemes are able to preserve small-scale flow structures better. In high order cases, the artificial diffusivity schemes have demonstrated superior performance over the TVB limiter.
Tscherbul, Timur V
2014-01-01
We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH -> LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the atom-molecule Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K [V. Singh et al., Phys. Rev. Lett. 108, 203201 (2012)], suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple partial wave regime of relevance to the experiment. Significant differen...
Energy Technology Data Exchange (ETDEWEB)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; Clark, D. S.; Haan, S. W.; Jones, O. S.; Landen, O. L.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-08-15
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratio of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the
Energy Technology Data Exchange (ETDEWEB)
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-08-15
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Goodrich, C. C.; Scudder, J. D.
1984-01-01
The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.
Multiturn extraction and injection by means of adiabatic capture in stable islands of phase space
Directory of Open Access Journals (Sweden)
R. Cappi
2004-02-01
Full Text Available Recently a novel approach has been proposed for performing multiturn extraction from a circular machine. Such a technique consists of splitting the beam by means of stable islands created in transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles. Provided a slow time variation of the linear tune is applied, adiabatic with respect to the betatron motion, the islands can be moved in phase space and eventually charged particles may be trapped inside the stable structures. This generates a certain number of well-separated beamlets. Originally, this principle was successfully tested using a fourth-order resonance. In this paper the approach is generalized by considering other types of resonances as well as the possibility of performing multiple multiturn extractions. The results of numerical simulations are presented and described in detail. Of course, by time reversal, the proposed approach could be used also for multiturn injection.
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.
Precision Shock Timing Measurements to set the Fuel Adiabat in Ignition Implosions
Celliers, Peter
2011-10-01
An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements both in the target design and in the physics packages in the radiation-hydrodynamic codes used to design and model these targets. We can set an accurately tuned pulse shape within a series of approximately 5 shots. The results and interpretation of these tuning experiments will be described. In collaboration with: T.R. Boehly, H.F. Robey, J.L. Kline, D.R. Farley, S. Le Pape, J.D. Moody, R.E. Olson, D.H. Munro, J.L. Milovich, P.A. Sterne, O.S. Jones, D.A. Callahan, A. Nikroo, J.J. Kroll, J.B. Horner, A.V. Hamza, S.D. Bhandarkar, J.H. Eggert, R.F. Smith, D.G. Hicks, H.-S Park, B.K. Young, W.W. Hsing, G.W. Collins, O.L. Landen and the NIC team. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Evaluating the Capability of the Flux-Limiter Schemes in Capturing Strong Shocks and Discontinuities
Directory of Open Access Journals (Sweden)
Iman Harimi
2013-01-01
Full Text Available A numerical study is conducted to investigate the capability of the flux-limiter TVD schemes in capturing sharp discontinuities like shock waves. For this purpose, four classical test problems are considered such as slowly moving shock, gas Riemann problem with high density and pressure ratios, shock wave interaction with a density disturbance and shock-acoustic interaction. The governing equations consist of one-dimensional and quasi-one-dimensional Euler equations solved using an in-house numerical code. In order to validate the solution, the obtained results are compared with other results found in the literature.
A new shock-capturing numerical scheme for ideal hydrodynamics
Feckova, Zuzana
2015-01-01
We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.
Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods
Atkins, Harold L.; Pampell, Alyssa
2011-01-01
A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.
Evaluate shock capturing capability with the numerical methods in OpenFOAM
Directory of Open Access Journals (Sweden)
Khodadadi Azadboni Reza
2013-01-01
Full Text Available Simulations for both multiphase flows and supersonic single phased flows are well known, however the combination is a less investigated area of research, as the two basic approaches of CFD, the pressure and the density based approach, each describe one of the phases in a better way than the other one. In this paper, we systematically investigate the solver quality of the open source CFD code OpenFOAM in handling transonic flow phenomena that typically occur inside the breaking chamber of high voltage circuit breakers, during contact separation. The solver quality is then compared with that of chosen commercial CFD tools. The main advantage of OpenFOAM is that, contrary to most of the commercial simulation tools, it is license fee free and allows access to the source code. This means that complicated multi physics phenomena inside the arcing chamber can be directly modeled into the code by users, which opens an opportunity to remove limitations of commercial CFD tools. Particularly, the shock capturing capability of OpenFOAM will be evaluated for the transonic internal flow which typically occurs in high voltage circuit breakers. Overall, Open-FOAM shows acceptable shock capturing capabilities in the performed verification and validation studies, with the solver quality comparable to some of the tested commercial CFD tools. There is still room for further solver quality improvements in OpenFOAM by implementing better shock capturing schemes such as a density-based flux-difference-splitting scheme or by writing better physical modeling of the shock/boundary layer interaction into the open architecture of OpenFOAM.
Wei, G W
2001-04-16
We propose a single-sided locally averaged adaptive coupling scheme for the synchronization of spatially extended systems. Coupling and synchronization are analyzed from the viewpoint of image filter construction and numerical dissipation. Single-sided locally averaged coupling is introduced based on the resolution argument of control process. Control sensors are adaptively selected and automatically adjusted according to the magnitude of local oscillations. We demonstrate that the present scheme can effectively suppress and control spatiotemporal oscillations and, thus, provide a powerful approach for shock capturing. Both the Navier-Stokes equation and Burgers' equation are used to illustrate the idea.
Fedkiw, R P
2003-01-01
In this paper we review the algorithm development and applications in high resolution shock capturing methods, level set methods, and PDE based methods in computer vision and image processing. The emphasis is on Stanley Osher's contribution in these areas and the impact of his work. We will start with shock capturing methods and will review the Engquist-Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes, and numerical schemes for Hamilton-Jacobi type equations. Among level set methods we will review level set calculus, numerical techniques, fluids and materials, variational approach, high codimension motion, geometric optics, and the computation of discontinuous solutions to Hamilton-Jacobi equations. Among computer vision and image processing we will review the total variation model for image denoising, images on implicit surfaces, and the level set method in image processing and computer vision.
Adiabat-shaping in indirect drive inertial confinement fusion
Energy Technology Data Exchange (ETDEWEB)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang
2013-01-01
The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations
Directory of Open Access Journals (Sweden)
Saša Raicevich
Full Text Available This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+, as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours.
Shershnev, Anton A.; Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Khotyanovsky, Dmitry V.
2016-10-01
The present paper describes HyCFS code, developed for numerical simulation of compressible high-speed flows on hybrid CPU/GPU (Central Processing Unit / Graphical Processing Unit) computational clusters on the basis of full unsteady Navier-Stokes equations, using modern shock capturing high-order TVD (Total Variation Diminishing) and WENO (Weighted Essentially Non-Oscillatory) schemes on general curvilinear structured grids. We discuss the specific features of hybrid architecture and details of program implementation and present the results of code verification.
Energy Technology Data Exchange (ETDEWEB)
Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-12-15
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.
2015-12-01
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
An Efficient High-Resolution Shock-Capturing Scheme for Multi-Dimensional Flows I.Hydrodynamics
Institute of Scientific and Technical Information of China (English)
Cong Yu
2006-01-01
Many problems at the forefront of theoretical astrophysics require a treatment of dynamical fluid behavior. We present an efficient high-resolution shock-capturing hydrodynamic scheme designed to study such phenomena. We have implemented a weighted, essentially non-oscillatory (WENO) scheme to fifth order accuracy in space. HLLE approximate Riemann solver is used for the flux computation at cell interface, which does not require spectral decomposition into characteristic waves and so is computationally friendly. For time integration we apply a third order total variation diminishing (TVD) Runge-Kutta scheme.Extensive testing and comparison with schemes that require characteristic decomposition are carried out demonstrating the ability of our scheme to address challenging open questions in astrophysics.
Yee, H. C.; Shinn, Judy L.
1987-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.
Pittard, J M; Hartquist, T W; Dyson, J E
2008-01-01
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. However, the formation of fully developed turbulence has often been prevented by the artificial viscosity inherent in hydrodynamical simulations, and a uniform post-shock flow has been assumed in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogenities upstream of the cloud. To address these twin issues we use a sub-grid compressible k-epsilon turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. We find that cloud destruction in invi...
An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows
Pantano, C.; Saurel, R.; Schmitt, T.
2017-04-01
Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. The combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement. A cure to this problem is developed in the present paper for the van der Waals EOS based on previous ideas. A special extra field and its corresponding evolution equation is added to the flow model. This new field separates the evolution of the nonlinear part of the density in the EOS and produce oscillation free solutions. The extra equation being nonconservative the behavior of two established numerical schemes on shocks computation is studied and compared to exact reference solutions that are available in the present context. The analysis shows that shock conditions of the nonconservative equation have important consequence on the results. Last, multidimensional computations of a supercritical gas jet is performed to illustrate the benefits of the present method, compared to conventional flow solvers.
Shock can be caused by any condition that reduces blood flow, including: Heart problems (such as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in blood vessels (as with infection ...
Energy Technology Data Exchange (ETDEWEB)
Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)
2013-01-15
Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.
ON DISPERSION-CONTROLLED PRINCIPLES FOR NON-OSCILLATORY SHOCK-CAPTURING SCHEMES
Institute of Scientific and Technical Information of China (English)
JIANG Zonglin
2004-01-01
The role of dispersions in the numerical solutions of hydrodynamic equation systems has been realized for long time. It is only during the last two decades that extensive studies on the dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation occurring in shock wave simulations. The principle of the dispersion controlled aims at removing nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersioncontrolled principles are reviewed in this paper, including the exploration of the role of dispersions in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the finite element methods, scheme verification and solution validation, and comments on several aspects of the schemes from author's viewpoint.
Isothermal and Adiabatic Measurements.
McNairy, William W.
1996-01-01
Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)
Adiabatic turbocompound diesel engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-02-01
The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.
Quantum adiabatic machine learning
Pudenz, Kristen L
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
Maulik, Romit
2016-01-01
In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...
Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke
2015-01-01
In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...
Adiabatic quantum computation along quasienergies
Tanaka, Atushi
2009-01-01
The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy is recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [Tanaka and Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of...
An Integrated Development Environment for Adiabatic Quantum Programming
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Bennink, Ryan S [ORNL; Billings, Jay Jay [ORNL; D' Azevedo, Eduardo [ORNL; Sullivan, Blair D [ORNL; Klymko, Christine F [ORNL; Seddiqi, Hadayat [ORNL
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence
Nolan, Chris A; Sutherland, Ralph S
2015-01-01
The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic comp...
Longitudinal RF capture simulation and BPM signal estimation
Feng, Yong-Chun; Chen, Yu-Cong; Yin, Yan; Zhang, Xiao-Hu; Ruan, Shuang; Liu, Tong; You, Yao-Yao; Kang, Xin-Cai; Zhao, Tie-Cheng; Xu, Zhi-Guo; Li, Peng; Wang, Yan-Yu; Yuan, You-Jin
2016-01-01
In this paper, the theoretical aspects behind longitudinal RF capture are reviewed and the capture process is simulated via a program based on this theory. Four kinds of cases with different initial distribution and capture curve are considered, i.e. uniform distribution with adiabatic capture, uniform distribution with non-adiabatic capture, Gaussian distribution with adiabatic capture and Gaussian distribution with non-adiabatic capture. The simulation results are compared each other and discussed, and Gaussian distribution with adiabatic capture is demonstrated having a higher capture efficiency and leading to a shorter bunch length. In addition, the BPM induced signal is simulated with high input impendence, i.e. $1M\\Omega$, and low input impendence, i.e. $50\\Omega$, respectively. Finally, the BPM signal of Heavy Ion Medical Machine (HIMM) is estimated and compared with measured one, and a good agreement is achieved.
Semiconductor adiabatic qubits
Energy Technology Data Exchange (ETDEWEB)
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Biamonte, J D; Whitfield, J D; Fitzsimons, J; Aspuru-Guzik, A
2010-01-01
In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be error resistant, easily controllable, and built using existing technology. Moving away from gate-model and projective measurement based implementations of quantum computing may offer a less resource-intensive, and consequently a more feasible solution. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-body interaction terms, using sparse Hamiltonians with at most three-body interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes...
Amendt, Peter; Wilks, Scott
2012-01-01
The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.
Nonresonance adiabatic photon trap
Popov, S S; Burdakov, A V; Ushkova, M Yu
2016-01-01
Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.
Directory of Open Access Journals (Sweden)
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Adiabatic paths and pseudoholomorphic curves
Institute of Scientific and Technical Information of China (English)
Armen; G.; Sergeev
2005-01-01
We consider the (2+1)-dimensional Abelian Higgs model, governed by the Ginzburg-Landau action functional and describe the adiabatic limit construction for this model. Then we switch to the 4-dimensional case and Show that the Taubes correspondence may be considered as a (2+2)-dimensional analogue of the adiabatic limit construction.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Pinski, Sebastian D
2011-01-01
Adiabatic Quantum Computing (AQC) is a relatively new subject in the world of quantum computing, let alone Physics. Inspiration for this project has come from recent controversy around D-Wave Systems in British Columbia, Canada, who claim to have built a working AQC which is now commercially available and hope to be distributing a 1024 qubit chip by the end of 2008. Their 16 qubit chip was demonstrated online for the Supercomputing 2007 conference within which a few small problems were solved; although the explanations that journalists and critics received were minimal and very little was divulged in the question and answer session. This 'unconvincing' demonstration has caused physicists and computer scientists to hit back at D-Wave. The aim of this project is to give an introduction to the historic advances in classical and quantum computing and to explore the methods of AQC. Through numerical simulations an algorithm for the Max Independent Set problem is empirically obtained.
PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION
Energy Technology Data Exchange (ETDEWEB)
Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)
2016-02-20
We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.
Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation
Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.
2016-02-01
We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.
On the Propagation of Blast Wave in EarthÃ¢Â€Â²s Atmosphere: Adiabatic and Isothermal Flow
Directory of Open Access Journals (Sweden)
Atul Sharma
2006-08-01
Full Text Available Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion. Directional study of the shock motion and entropy production show that in both the cases of adiabatic and isothermal flow, shock strength and shock velocity are larger in upward motion of the shock, in comparison to the downward motion of the shock. For adiabatic flow, entropy production is larger in upward motion of the shock; whereas, with negative values, entropy production is smaller in upward motion of the isothermal shock. For the adiabatic case, the profiles of shock strength, shock velocity and entropy production are smooth and have the largest value in vertically upward direction and have the lowest value in vertically downward direction, forming the oval shape. For the isothermal case, the profiles of shock strength and shock velocity show similar trend as that for adiabatic case but the profile of entropy production shows opposite
Adiabatic scaling relations of galaxy clusters
Ascasibar, Y; Yepes, G; Müller, V; Gottlöber, S
2006-01-01
The aim of the present work is to show that, contrary to popular belief, galaxy clusters are **not** expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictio...
Performance analysis of adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Sudhakar, V.
1984-01-01
As the development of the adiabatic diesel engine continues with a goal of 65% reduction in net in-cylinder heat transfer over a cooled engine, several uncooled engines with intermediate levels of reduced heat transfer were studied. Some aspects and results of the adiabatic diesel engine cycle simulation are discussed. Performance test data and simulation results are compared for a conventionally cooled and uncooled Cummins NH-450 turbocompound engines. Exhaust emissions were also measured and compared.
Non-adiabatic primordial fluctuations
Energy Technology Data Exchange (ETDEWEB)
Noller, Johannes; Magueijo, Joao, E-mail: johannes.noller08@imperial.ac.uk [Theoretical Physics Group, Imperial College, London SW7 2BZ (United Kingdom)
2011-05-21
We consider general mixtures of isocurvature and adiabatic cosmological perturbations. With a minimal assumption set consisting of the linearized Einstein equations and a primordial perfect fluid we derive the second-order action and its curvature variables. We also allow for varying equation of state and speed of sound profiles. The derivation is therefore carried out at the same level of generality that has been achieved for adiabatic modes before. As a result we find a new conserved super-horizon quantity and relate it to the adiabatically conserved curvature perturbation. Finally we demonstrate how the formalism can be applied by considering a Chaplygin gas-like primordial matter model, finding two scale-invariant solutions for structure formation.
Analysis of Adiabatic Batch Reactor
Directory of Open Access Journals (Sweden)
Erald Gjonaj
2016-05-01
Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.
Adiabatic theory for the bipolaron
Energy Technology Data Exchange (ETDEWEB)
Lakhno, V.D. (Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino Moscow Region, 142292 (Russian Federation))
1995-02-01
A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter [eta]=0.31 for which the bipolaron state is stable, where [eta]=[epsilon][sub [infinity
Khabibrakhmanov, I. KH.; Galeev, A. A.; Galinskii, V. L.
1993-01-01
Consideration is given to a collisionless parallel shock based on solitary-type solutions of the modified derivative nonlinear Schroedinger equation (MDNLS) for parallel Alfven waves. The standard derivative nonlinear Schroedinger equation is generalized in order to include the possible anisotropy of the plasma distribution and higher-order Korteweg-de Vies-type dispersion. Stationary solutions of MDNLS are discussed. The anisotropic nature of 'adiabatic' reflections leads to the asymmetric particle distribution in the upstream as well as in the downstream regions of the shock. As a result, nonzero heat flux appears near the front of the shock. It is shown that this causes the stochastic behavior of the nonlinear waves, which can significantly contribute to the shock thermalization.
A Many Particle Adiabatic Invariant
DEFF Research Database (Denmark)
Hjorth, Poul G.
1999-01-01
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon...
Elementary examples of adiabatic invariance
Energy Technology Data Exchange (ETDEWEB)
Crawford, F.S. (Physics Department, University of California, Berkeley, CA (USA) Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (USA))
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product {ital E}{tau} of energy {ital E} and period {tau} for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found---a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form {ital V}={ital ax}{sup {ital n}}, with {ital a}={ital a}({ital t}) slowly varying in time. Then, the horizontal bouncer is considered---a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
Digital Waveguide Adiabatic Passage Part 1: Theory
Vaitkus, Jesse A; Greentree, Andrew D
2016-01-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
Performance of layered DT implosions with adiabat-shaped drives on NIF
Smalyuk, V. A.; Robey, H. F.; Milovich, J.; Bachmann, B.; Baker, K.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; MacGowan, B. J.; Macphee, A. G.
2015-11-01
Layered DT implosions with adiabat-shaped drives were performed to study the physics of performance degradation due to instability growth and convergence. Both 3-shock and 4-shock adiabat-shaped designs were developed and demonstrated significantly reduced ablation-front instability growth. These new drives with DT fuel adiabat ~ 2.1 and ~ 1.6 respectively, were used in layered DT implosions showing significant improvements in performance compared to implosions during the National Ignition Campaign. Comparison of measured and simulated data will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Papaioannou, Kostadis J.
2016-01-01
This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation f
Pen, Ue-Li; Turok, Neil
2016-09-23
We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1 GeVUniverse as early as 10^{-30} sec after the big bang.
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Shock-induced devolatilization of calcite
Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.
1982-01-01
Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-01-11
SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-01-11
SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.
Capturing Thoughts, Capturing Minds?
DEFF Research Database (Denmark)
Nielsen, Janni
2004-01-01
Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...
Adiabatic Wankel type rotary engine
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Theory of Adiabatic Fountain Resonance
Williams, Gary A.
2017-01-01
The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.
Klein Klouwenberg, Peter M C; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L
2012-05-01
To quantify the effects of minor variations in the definition and measurement of systemic inflammatory response syndrome (SIRS) criteria and organ failure on the observed incidences of sepsis, severe sepsis and septic shock. We conducted a prospective, observational study in a tertiary intensive care unit in The Netherlands between January 2009 and October 2010. A total of 1,072 consecutive adults were included. We determined the upper and lower limits of the measured incidence of sepsis by evaluating the influence of the use of an automated versus a manual method of data collection, and variations in the number of SIRS criteria, concurrency of SIRS criteria, and duration of abnormal values required to make a particular diagnosis. The measured incidence of SIRS varied from 49% (most restrictive setting) to 99% (most liberal setting). Subsequently, the incidences of sepsis, severe sepsis and septic shock ranged from 22 to 31%, from 6 to 27% and from 4 to 9% for the most restrictive versus the most liberal measurement settings, respectively. In non-infected patients, 39-98% of patients had SIRS, whereas still 17-6% of patients without SIRS had an infection. The apparent incidence of sepsis heavily depends on minor variations in the definition of SIRS and mode of data recording. As a consequence, the current consensus criteria do not ensure uniform recruitment of patients into sepsis trials.
On the topology of adiabatic passage
Yatsenko, L P; Jauslin, H R
2002-01-01
We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level which will be populated in STIRAP process in Lambda or V systems by the choice of the peak amplitudes or the pulse sequence.
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
The role of electrons at the solar wind termination shock
Energy Technology Data Exchange (ETDEWEB)
Fahr, Hans Joerg; Siewert, Mark [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, 53121 Bonn (Germany)
2013-07-01
Describing the solar wind termination shock as a multi-fluid MHD Rankine-Hugoniot shock structure, it is usually assumed that electrons and protons experience identical jumps in density and pressure at the plasma passage over the shock. When analysing the specific kinetic conditions for electrons and ions at this MHD shock crossing, we find that electrons react very much different from protons at their shock passage undergoing an over-adiabatic heating due to conversion of electrically induced overshoot energies into downstream thermal energies. In case of an electron-proton two-fluid plasma, electrons constitute the dominant contribution to the downstream thermal plasma pressure and thereby determine the resulting compression ratio at the shock. We show that taking this over-adiabatic electron heating into account will then deliver a correct representation of all shock data taken with VOYAGER-2.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Cummins/Tacom advanced adiabatic engine
Energy Technology Data Exchange (ETDEWEB)
Kamo, R.; Bryzik, W.
1984-01-01
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high-performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential. Adiabatic engine materials requirements are defined and the possible ceramic materials which will satisfy these requirements are identified. Examples in design considerations of engine components are illustrated. In addition to these important points, the use of ceramic coatings in the design of engine components. The first generation adiabatic engine with ceramic coatings is described. The advanced adiabatic engine with minimum friction features utilizaing ceramics is also presented. The advanced ceramic turbocharger turbine rotor as well as the oilless ceramic bearing design is described. Finally, the current status of the advanced adiabatic engine program culminating in the AA750 V-8 adiabatic engine is presented.
On a Nonlinear Model in Adiabatic Evolutions
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
PIPER Continuous Adiabatic Demagnetization Refrigerator
Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.
2017-01-01
We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.
Quenching in coupled adiabatic coils
Energy Technology Data Exchange (ETDEWEB)
Williams, J.E.C.
1985-03-01
The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.
Quantum Computation by Adiabatic Evolution
Farhi, E; Gutmann, S; Sipser, M; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael
2000-01-01
We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.
Shock equation of state properties of concrete
Energy Technology Data Exchange (ETDEWEB)
Grady, D.
1996-03-01
Unique shock compression experiments have been developed and pursued which provide material equation of state data for dynamic strength, pore crush, shock Hugoniot and adiabatic decompression. Experimental data have been obtained on an aggregate concrete to Hugoniot pressures of 25 GPa. New analytic methods were developed to extract equation-of-state properties from dynamic test data. Unexpected residual strain results are compared with expected thermal expansion and dilatancy properties of concrete.
High-order shock-fitted detonation propagation in high explosives
Romick, Christopher M.; Aslam, Tariq D.
2017-03-01
A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting
Simulating radiative shocks in nozzle shock tubes
van der Holst, B.; Tóth, G.; Sokolov, I. V.; Daldorff, L. K. S.; Powell, K. G.; Drake, R. P.
2012-06-01
We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1 ns. Later times are calculated with the CRASH code. CRASH solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The synthetic radiographs produced can be used for comparison with future nozzle experiments at high-energy-density laser facilities.
Simulating radiative shocks in nozzle shock tubes
van der Holst, B; Sokolov, I V; Daldorff, L K S; Powell, K G; Drake, R P
2011-01-01
We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties a...
Quasi-adiabatic transport in Mercury's magnetotail
Delcourt, Dominique; Malova, Helmi; Zelenyi, Lev
2017-04-01
MESSENGER observations have revealed that the magnetotail of Mercury is fairly dynamical, possibly subjected to series of magnetic field line dipolarization on time scales of a few seconds. Because of the sharp reversal of the magnetic field, ions may not travel adiabatically in this region of space, and their behavior can be organized according to different categories. Among these categories, quasi-adiabatic (Speiser) ions are such that they experience negligible net change of magnetic moment upon crossing of the field reversal and can thus travel back to low altitudes. We examine the robustness of this quasi-adiabatic behavior during magnetic field line dipolarization where ions are subjected to a large induced electric field. We demonstrate that, although this surging electric field possibly yields substantial nonadiabatic heating, quasi-adiabaticity is robust for ions with velocities larger than the peak ExB drift speed, a behavior that we refer to as "strong" quasi-adiabaticity (as opposed to "weak" quasi-adiabaticity that is violated during dipolarization). We show that the impulsive energization of such quasi-adiabatic ions during dipolarization events can lead to prominent energy-time dispersion structures at low altitudes.
Partial evolution based local adiabatic quantum search
Institute of Scientific and Technical Information of China (English)
Sun Jie; Lu Song-Feng; Liu Fang; Yang Li-Ping
2012-01-01
Recently,Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution,which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one.Later,they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database.In the present paper,following the idea of Roland and Cerf [Roland J and Cerf N J 2002Phys.Rev.A 65 042308],if within the small symmetric evolution interval defined by Zhang et al.,a local adiabatic evolution is performed instead of the original “global” one,this “new” algorithm exhibits slightly better performance,although they are progressively equivalent with M increasing.In addition,the proof of the optimality for this partial evolution based local adiabatic search when M =1 is also presented.Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search,which are found to have the same phenomenon above,are also discussed.
Adiabatic theorems for generators of contracting evolutions
Avron, J E; Graf, G M; Grech, P
2011-01-01
We develop an adiabatic theory for generators of contracting evolution on Banach spaces. This provides a uniform framework for a host of adiabatic theorems ranging from unitary quantum evolutions through quantum evolutions of open systems generated by Lindbladians all the way to classically driven stochastic systems. In all these cases the adiabatic evolution approximates, to lowest order, the natural notion of parallel transport in the manifold of instantaneous stationary states. The dynamics in the manifold of instantaneous stationary states and transversal to it have distinct characteristics: The former is irreversible and the latter is transient in a sense that we explain. Both the gapped and gapless cases are considered. Some applications are discussed.
Digital Waveguide Adiabatic Passage Part 2: Experiment
Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J
2016-01-01
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.
Energy consumption for shortcuts to adiabaticity
Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.
2017-08-01
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.
Thermoelectric Effects under Adiabatic Conditions
Directory of Open Access Journals (Sweden)
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Adiabatic quantum gates and Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Andrecut, M; Ali, M K [Department of Physics, University of Lethbridge, Lethbridge, AB, T1K 3M4 (Canada)
2004-06-25
We discuss the logical implementation of quantum gates and Boolean functions in the framework of quantum adiabatic method, which uses the language of ground states, spectral gaps and Hamiltonians instead of the standard unitary transformation language. (letter to the editor)
Adiabatic Quantum Search in Open Systems
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Faster computation of adiabatic EMRIs using resonances
Grossman, Rebecca; Perez-Giz, Gabe
2011-01-01
Motivated by the prohibitive computational cost of producing adiabatic extreme mass ratio inspirals, we explain how a judicious use of resonant orbits can dramatically expedite both that calculation and the generation of snapshot gravitational waves from geodesic sources. In the course of our argument, we clarify the resolution of a lingering debate on the appropriate adiabatic averaging prescription in favor of torus averaging over time averaging.
Quantum Adiabatic Evolution Algorithms versus Simulated Annealing
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
We explain why quantum adiabatic evolution and simulated annealing perform similarly in certain examples of searching for the minimum of a cost function of n bits. In these examples each bit is treated symmetrically so the cost function depends only on the Hamming weight of the n bits. We also give two examples, closely related to these, where the similarity breaks down in that the quantum adiabatic algorithm succeeds in polynomial time whereas simulated annealing requires exponential time.
Hierarchical theory of quantum adiabatic evolution
Zhang, Qi; Gong, Jiangbin; Wu, Biao
2014-12-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.
Shock - cardiogenic ... electrical system of the heart (heart block) Cardiogenic shock occurs when the heart is unable to pump ... orthostatic hypotension) Weak (thready) pulse To diagnose cardiogenic shock, a catheter (tube) may be placed in the ...
Assessment of total efficiency in adiabatic engines
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
On criterion of modal adiabaticity
Institute of Scientific and Technical Information of China (English)
WANG; Ning(
2001-01-01
［1］Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19－27.［2］Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.［3］Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739－749.［4］Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042－2054.［5］Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409－431.［6］Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259－1263.［7］Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739－749.［8］Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.［9］Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.［10］Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188－195.［11］Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.［12］Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907－4915.
Lafon, Marion; Gauthier, Pascal; Masse, Laurent
2016-10-01
The High Foot (HF) campaign on the National Ignition Facility (NIF) has improved the neutron yield by an order of magnitude as compared to the implosions reported during the National Ignition Campaign (NIC) while dramatically lowering the ablation-front instability growth. However, this yield increase came at the expense of reduced fuel compression due to higher fuel adiabat. Thinner shell adiabat-shaped HF implosions have been designed to combine the ablation front stability benefits of the current HF pulses with the demonstrated high fuel compressibility of the NIC implosions and increased implosion velocity. This is accomplished by using a hybrid adiabat-shaping technique which both lowers the laser power between the first and second pulses to enhance the ablative stabilization at early times and precisely tailors the rise-to-peak drive to prevent undesired shocks from propagating in the fuel and depositing additional entropy. Ablation front growth factor spectra are generated from two-dimensional simulations with the FCI2 radiation hydrodynamics code. Linear analysis of the instability growth demonstrates that adiabat-shaped pulses provide a path to control and reduce ablation front instability growth while placing the fuel on a lower adiabat to achieve the alpha-heating-dominated regime. Adiabat-shaped pulses without picket are also investigated as a potential way to enhance the stability of the holhraum walls at early times.
Pen, Ue-Li
2015-01-01
We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a scale-invariant spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations, of the kind observed in great detail on large scales today, it also leads to the production of shock waves in the radiation fluid of the very early universe. At very early epochs, $1$ GeV$
Adiabatic Floquet model for the optical response in femtosecond filaments
Hofmann, Michael
2016-01-01
The standard model of femtosecond filamentation is based on phenomenological assumptions which suggest that the ionization-induced carriers can be treated as free according to the Drude model, while the nonlinear response of the bound carriers follows the all-optical Kerr effect. Here, we demonstrate that the additional plasma generated at a multiphoton resonance dominates the saturation of the nonlinear refractive index. Since resonances are not captured by the standard model, we propose a modification of the latter in which ionization enhancements can be accounted for by an ionization rate obtained from non-Hermitian Floquet theory. In the adiabatic regime of long pulse envelopes, this augmented standard model is in excellent agreement with direct quantum mechanical simulations. Since our proposal maintains the structure of the standard model, it can be easily incorporated into existing codes of filament simulation.
Fast forward to the classical adiabatic invariant
Jarzynski, Christopher; Patra, Ayoti; Subaşı, Yiğit
2016-01-01
We show how the classical action, an adiabatic invariant, can be preserved under non-adiabatic conditions. Specifically, for a time-dependent Hamiltonian $H = p^2/2m + U(q,t)$ in one degree of freedom, and for an arbitrary choice of action $I_0$, we construct a "fast-forward" potential energy function $V_{\\rm FF}(q,t)$ that, when added to $H$, guides all trajectories with initial action $I_0$ to end with the same value of action. We use this result to construct a local dynamical invariant $J(q,p,t)$ whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.
Rapid adiabatic passage without level crossing
Rangelov, A A; Shore, B W
2009-01-01
We present a method for achieving complete population transfer in a two-state quantum system via adiabatic time evolution in which, contrary to conventional rapid adiabatic passage produced by chirped pulses, there occurs no crossing of diabatic energy curves: there is no sign change of the detuning. Instead, we use structured pulses, in which, in addition to satisfying conditions for adiabatic evolution, there occurs a sign change of the Rabi frequency when the detuning is zero. We present simulations that offer simple geometrical interpretation of the two-dimensional motion of the Bloch vector for this system, illustrating how both complete population inversion and complete population return occur for different choices of structured pulses.
Adiabatic optimization versus diffusion Monte Carlo methods
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Energy efficiency of adiabatic superconductor logic
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-01-01
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.
Endt, P.M.
1956-01-01
Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation proces
Complexity of the Quantum Adiabatic Algorithm
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Markovian quantum master equation beyond adiabatic regime
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Adiabatic Quantum Computation: Coherent Control Back Action
Goswami, Debabrata
2013-01-01
Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments. PMID:23788822
Adiabatic hyperspherical analysis of realistic nuclear potentials
Daily, K M; Greene, Chris H
2015-01-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin $T=3/2$ contribution in our analysis.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Quench propagation analysis in adiabatic superconducting windings
Energy Technology Data Exchange (ETDEWEB)
Ishiyama, A.; Matsumura, H.; Takita, W. (Dept. of Electrical Engineering, Waseda Univ., Tokyo (JP)); Iwasa, Y (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.)
1991-03-01
This paper reports the basic postulate of the author's quench simulation code, developed to analyze normal-zone propagation in adiabatic magnets which is the code's computation may be immensely simplified without sacrifice in accuracy by aggregating all thermal properties of the winding affecting normal-zone propagation into a single parameter of the transverse quench velocity. In order to verify this postulate, a finite element method (FEM) analysis has been applied to solve the temporal and spatial evolution of temperature within a section of an adiabatic magnet winding.
Dissipative advective accretion disc solutions with variable adiabatic index around black holes
Kumar, Rajiv
2014-01-01
We investigated accretion onto black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multi-species fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 0.001-12 \\% of Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high viscosity parameters, high accretion rates, as well as, for wide range of comp...
Cawkwell, Marc; Sanville, Edward; Coe, Joshua; Niklasson, Anders
2012-02-01
Shock-induced reactions in liquid hydrocarbons have been studied using quantum-based, self-consistent tight-binding (SC-TB) molecular dynamics simulations with an accurate and transferable model for interatomic bonding. Our SC-TB code LATTE enables explicit simulations of shock compression using the universal liquid Hugoniot. Furthermore, the effects of adiabatic shock heating are captured precisely using Niklasson's energy conserving extended Lagrangian Born-Oppenheimer Molecular Dynamics formalism. We have been able to perform relatively large-scale SC-TB simulations by either taking advantage of the sparsity of the density matrix to achieve O(N) performance or by using graphics processing units to accelerate O(N^3) algorithms. We have developed the capability for the on-the-fly computation of Raman spectra from the Fourier transform of the polarizability autocorrelation function via the density matrix perturbation theory of Niklasson and Challacombe. These time-resolved Raman spectra enable us compare the results of our simulations with identical diagnostics collected experimentally. We will illustrate these capabilities with a series of simulations of shock-induced reaction paths in a number of simple molecules.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Casey, D. T.; Clark, D. S.; Jones, O. S.; Milovich, J. L.; Peterson, J. L.; Bachmann, B.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Bionta, R.; Bond, E.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Chen, K.-C.; Goyon, C.; Grim, G.; Dixit, S. N.; Eckart, M. J.; Edwards, M. J.; Farrell, M.; Fittinghoff, D. N.; Frenje, J. A.; Gatu-Johnson, M.; Gharibyan, N.; Haan, S. W.; Hamza, A. V.; Hartouni, E.; Hatarik, R.; Havre, M.; Hohenberger, M.; Hoover, D.; Hurricane, O. A.; Izumi, N.; Jancaitis, K. S.; Khan, S. F.; Knauer, J. P.; Kroll, J. J.; Kyrala, G.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; MacPhee, A. G.; Mauldin, M.; Merrill, F. E.; Moore, A. S.; Nagel, S.; Nikroo, A.; Pak, A.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Shaughnessy, D.; Spears, B. K.; Tommasini, R.; Turnbull, D. P.; Velikovich, A. L.; Volegov, P. L.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.
2016-10-01
Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock "adiabat-shaped" drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] versus the subsequent high-foot implosions [T. Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ˜3 to ˜10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ˜25% to ˜36%, compared to its companion high-foot implosions. The neutron yield increased by ˜20%, lower than the increase of ˜50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ˜14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 1015 ± 0.2 × 1015, with the fuel areal density of 0.90 ± 0.07 g/cm2
Fast Quantum Molecular Dynamics Simulations of Shock-induced Chemistry in Organic Liquids
Cawkwell, Marc
2014-03-01
The responses of liquid formic acid and phenylacetylene to shock compression have been investigated via quantum-based molecular dynamics simulations with the self-consistent tight-binding code LATTE. Microcanonical Born-Oppenheimer trajectories with precise conservation of the total energy were computed without relying on an iterative self-consistent field optimization of the electronic degrees of freedom at each time step via the Fast Quantum Mechanical Molecular Dynamics formalism [A. M. N. Niklasson and M. J. Cawkwell, Phys. Rev. B, 86, 174308 (2012)]. The conservation of the total energy in our trajectories was pivotal for the capture of adiabatic shock heating as well as temperature changes arising from endo- or exothermic chemistry. Our self-consistent tight-binding parameterizations yielded very good predictions for the gas-phase geometries of formic acid and phenylacetylene molecules and the principal Hugoniots of the liquids. In accord with recent flyer-plate impact experiments, our simulations revealed i) that formic acid reacts at relatively low impact pressures but with no change in volume between products and reactants, and ii) a two-step polymerization process for phenylacetylene. Furthermore, the evolution of the HOMO-LUMO gap tracked on-the-fly during our simulations could be correlated with changes transient absorption measured during laser-driven shock compression experiments on these liquids.
Improving the positive feedback adiabatic logic familiy
Directory of Open Access Journals (Sweden)
J. Fischer
2004-01-01
Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.
Semi adiabatic theory of seasonal Markov processes
Energy Technology Data Exchange (ETDEWEB)
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Startup of an industrial adiabatic tubular reactor
Verwijs, J.W.; Berg, van den H.; Westerterp, K.R.
1992-01-01
The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of experimentally-determine
A Diffusion Equation for Quantum Adiabatic Systems
Jain, S R
1998-01-01
For ergodic adiabatic quantum systems, we study the evolution of energy distribution as the system evolves in time. Starting from the von Neumann equation for the density operator, we obtain the quantum analogue of the Smoluchowski equation on coarse-graining over the energy spectrum. This result brings out the precise notion of quantum diffusion.
Quantum Pumping and Adiabatic Transport in Nanostructures
Wakker, G.M.M.
2011-01-01
This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we fin
Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF
Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris
2015-11-01
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Adiabatic limits,vanishing theorems and the noncommutative residue
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we compute the adiabatic limit of the scalar curvature and prove several vanishing theorems by taking adiabatic limits.As an application,we give a Kastler-Kalau-Walze type theorem for foliations.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
Fixed-point adiabatic quantum search
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
... thready Tests that may be done include: Blood chemistry, including kidney function tests and those tests looking ... severe shock. Severe hypovolemic shock may lead to death, even with immediate medical attention. Older adults are ...
Hojman Exact Invariants and Adiabatic Invariants of Hamilton System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The perturbation to Lie symmetry and adiabatic invariants are studied. Based on the concept of higherorder adiabatic invariants of mechanical systems with action of a small perturbation, the perturbation to Lie symmetry is studied, and Hojman adiabatic invariants of Hamilton system are obtained. An example is given to illustrate the application of the results.
Non-adiabatic geometrical quantum gates in semiconductor quantum dots
Solinas, P; Zanghì, N; Rossi, F; Solinas, Paolo; Zanardi, Paolo; Zanghì, Nino; Rossi, Fausto
2003-01-01
In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implemented
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division
2000-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m3 lead volume and neutron capture rates on long-lived fission fragements 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Quantum-Classical Correspondence of Shortcuts to Adiabaticity
Okuyama, Manaka; Takahashi, Kazutaka
2017-04-01
We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adiabatic Quantum Optimization for Associative Memory Recall
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Comment on ``Adiabatic theory for the bipolaron''
Smondyrev, M. A.; Devreese, J. T.
1996-05-01
Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.
Limitations of some simple adiabatic quantum algorithms
Ioannou, L M; Ioannou, Lawrence M.; Mosca, Michele
2007-01-01
Let $H(t)=(1-t/T)H_0 + (t/T)H_1$, $t\\in [0,T]$, be the Hamiltonian governing an adiabatic quantum algorithm, where $H_0$ is diagonal in the Hadamard basis and $H_1$ is diagonal in the computational basis. We prove that $H_0$ and $H_1$ must each have at least two large mutually-orthogonal eigenspaces if the algorithm's running time is to be subexponential in the number of qubits. We also reproduce the optimality proof of Farhi and Gutmann's search algorithm in the context of this adiabatic scheme; because we only consider initial Hamiltonians that are diagonal in the Hadamard basis, our result is slightly stronger than the original.
Finding cliques by quantum adiabatic evolution
Childs, A M; Goldstone, J; Gutmann, S; Childs, Andrew M.; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
Quantum adiabatic evolution provides a general technique for the solution of combinatorial search problems on quantum computers. We present the results of a numerical study of a particular application of quantum adiabatic evolution, the problem of finding the largest clique in a random graph. An n-vertex random graph has each edge included with probability 1/2, and a clique is a completely connected subgraph. There is no known classical algorithm that finds the largest clique in a random graph with high probability and runs in a time polynomial in n. For the small graphs we are able to investigate (n <= 18), the quantum algorithm appears to require only a quadratic run time.
Ehrenfest's adiabatic hypothesis in Bohr's quantum theory
Pérez, Enric
2015-01-01
It is widely known that Paul Ehrenfest formulated and applied his adiabatic hypothesis in the early 1910s. Niels Bohr, in his first attempt to construct a quantum theory in 1916, used it for fundamental purposes in a paper which eventually did not reach the press. He decided not to publish it after having received the new results by Sommerfeld in Munich. Two years later, Bohr published "On the quantum theory of line-spectra." There, the adiabatic hypothesis played an important role, although it appeared with another name: the principle of mechanical transformability. In the subsequent variations of his theory, Bohr never suppressed this principle completely. We discuss the role of Ehrenfest's principle in the works of Bohr, paying special attention to its relation to the correspondence principle. We will also consider how Ehrenfest faced Bohr's uses of his more celebrated contribution to quantum theory, as well as his own participation in the spreading of Bohr's ideas.
Nanowire Plasmon Excitation by Adiabatic Mode Transformation
Verhagen, Ewold; Spasenović, Marko; Polman, Albert; Kuipers, L. (Kobus)
2009-05-01
We show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.
Observation of off-Hugoniot shocked states with ultrafast time resolution
Energy Technology Data Exchange (ETDEWEB)
Armstrong, M; Crowhurst, J; Bastea, S; Zaug, J
2010-02-23
We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.
Nickel Bubble Expansion in Type Ia Supernovae: Adiabatic Solutions
Wang, C Y
2006-01-01
We examine the expansion properties of the Nickel bubble in SNe Ia due to the radioactive heating from the 56Ni->56Co->56Fe decay sequence, under adiabatic, spherically symmetric approximation. We consider an exponentially -declining medium for the ejecta substrate, allowing for the density gradient as expected in a Type Ia supernova. The heating gives rise to an inflated Ni bubble, which induces a forward shock that compresses the outer ambient gas into a shell. As the heating saturates, the flow tends toward a freely-expanding state with the structure frozen into the ejecta. The thickness of the shell takes up ~ 100 in a narrow region limited by numerical resolution. The structure of the shell can be approximately described by a self-similar solution determined by its expansion rate and ambient density gradient. Compared to the case using a uniform-density medium, the density contrast of the inferred ejecta clumps is enhanced, while the interaction of the clumps with the remnant is deferred to a more advanc...
Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment
Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod
2016-11-01
We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.
Houegnifioh, Komlanvi Kafui; Gfeller, Etienne; Garcia, Wenceslao; Ribordy, Vincent
2014-08-13
Cardiogenic shock, especially when it complicates a myocardial infarction, is still associated with high mortality rate. Emergency department or first care physicians are often the first providers to assess the cardiogenic shock patient, and plays thereby a key role in achieving a timely diagnosis and treatment. This review will detail the actual physiopathology understanding of the cardiogenic shock, its diagnosis and management focusing on the care within the emergency department.
Rushmeier, Holly E.
2005-01-01
For computer graphics applications, capturing the appearance parameters of objects (reflectance, transmittance and small scale surface structures), is as important as capturing the overall shape. We briefly review recent approaches developed by the computer graphics community to solve this problem. Excellent results have been obtained by various researchers measuring spatially varying reflectance functions for some classes of objects. We will consider some challenges from two of the remaining problematic classes of objects. First we will describe our experience scanning and modeling the throne of Tutankhamen. The major difficulties in this case were that the base shape was a highly detailed non-convex geometry with complex topology, and the shape was covered by optically uncooperative gold and silver. Then we will discuss some observations from our ongoing project to scan and model historic buildings on the Yale campus. The major difficulties in this second case are quantity of data and the lack of control over acquisition conditions.
Downstream plasma parameters in laminar shocks from ion kinetics
Gedalin, M.
2016-10-01
Ion dynamics in oblique shocks is governed by the macroscopic electric and magnetic fields of the shock front. In laminar shocks, these fields are time-independent and depend only on the coordinate along the shock normal. The shock ramp is narrow and the ion motion across the shock is manifestly non-adiabatic. The ion distribution just behind the ramp is significantly non-gyrotropic. Gyrotropy is achieved well behind the ramp mainly due to the gyrophase mixing. The asymptotic values of the ion density and temperature are determined by the eventual collisionless relaxation of the gyrating ion distribution. Given a distribution at the downstream edge of the ramp, the moments of the distribution after gyrophase mixing are derived using proper spatial averaging. The obtained expressions can be used for independent determination of the downstream plasma state and implementation in Rankine-Hugoniot relations.
Adiabatic Regularization for Gauge Field and the Conformal Anomaly
Chu, Chong-Sun
2016-01-01
We construct and provide the adiabatic regularization method for a $U(1)$ gauge field in a conformally flat spacetime by quantizing in the canonical formalism the gauge fixed $U(1)$ theory with mass terms for the gauge fields and the ghost fields. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using WKB-type solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduces the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for gauge field allows one to study the renormalization of the de-Sitter space maximal superconformal Yang-Mills theory using the adiabatic regularization method.
Bond selective chemistry beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Institute of Scientific and Technical Information of China (English)
Dorine; Houston
1998-01-01
Dear Xiao Lan, You remember the pain of culture and reentry shock; humor me please; let mereview the facts for the sake of the students you are sending here in greater numbers.Culture shock is the emotional pain that people experience when they visit a newcountry and find customs, experiences, smells, and non-verbal communication stylesto be different from their own country.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A.; Mukhanov, V.; Vikman, A.
2010-02-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A; Vikman, A
2009-01-01
In a recent paper arXiv:0910.2230, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in arXiv:0910.2230 are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
Shortcuts to adiabaticity for quantum annealing
Takahashi, Kazutaka
2017-01-01
We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
Adiabatic Wave-Particle Interaction Revisited
Dewar, R L; 10.1585/pfr.4.001
2009-01-01
In this paper we calculate and visualize the dynamics of an ensemble of electrons trapping in an electrostatic wave of slowly increasing amplitude, illustrating that, despite disordering of particles in angle during the trapping transition as they pass close to X-points, there is still an adiabatic invariant for the great majority of particles that allows the long-time distribution function to be predicted. Possible application of this approach to recent work on the nonlinear frequency shift of a driven wave is briefly discussed.
Adiabatic geometric phases and response functions
Jain, S R; Jain, Sudhir R.; Pati, Arun K.
1998-01-01
Treating a many-body Fermi system in terms of a single particle in a deforming mean field. We relate adiabatic geometric phase to susceptibility for the noncyclic case, and to its derivative for the cyclic case. Employing the semiclassical expression of susceptibility, the expression for geometric phase for chaotic quantum system immediately follows. Exploiting the well-known association of the absorptive part of susceptibility with dissipation, our relations may provide a quantum mechanical origin of the damping of collective excitations in Fermi systems.
Adiabatic passage in the presence of noise
Noel, T; Kurz, N; Shu, G; Wright, J; Blinov, B B
2011-01-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the $6S_{1/2}$ ground state to the metastable $5D_{5/2}$ level by applying a laser at 1.76 $\\mu$m. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Quantum Adiabatic Evolution Algorithms with Different Paths
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
In quantum adiabatic evolution algorithms, the quantum computer follows the ground state of a slowly varying Hamiltonian. The ground state of the initial Hamiltonian is easy to construct; the ground state of the final Hamiltonian encodes the solution of the computational problem. These algorithms have generally been studied in the case where the "straight line" path from initial to final Hamiltonian is taken. But there is no reason not to try paths involving terms that are not linear combinations of the initial and final Hamiltonians. We give several proposals for randomly generating new paths. Using one of these proposals, we convert an algorithmic failure into a success.
Adiabatic quantum computation and quantum phase transitions
Latorre, J I; Latorre, Jose Ignacio; Orus, Roman
2003-01-01
We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.
Generalized Ramsey numbers through adiabatic quantum optimization
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Relaxation versus adiabatic quantum steady-state preparation
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
Generating shortcuts to adiabaticity in quantum and classical dynamics
Jarzynski, Christopher
2013-01-01
Transitionless quantum driving achieves adiabatic evolution in a hurry, using a counter-diabatic Hamiltonian to stifle non-adiabatic transitions. Here this strategy is cast in terms of a generator of adiabatic transport, leading to a classical analogue: dissipationless classical driving. For the single-particle piston, this approach yields simple and exact expressions for both the classical and quantal counter-diabatic terms. These results are further generalized to even-power-law potentials in one degree of freedom.
Exact invariants and adiabatic invariants of the singular Lagrange system
Institute of Scientific and Technical Information of China (English)
陈向炜; 李彦敏
2003-01-01
Based on the theory of symmetries and conserved quantities of the singular Lagrange system,the perturbations to the symmetries and adiabatic invariants of the singular Lagrange systems are discussed.Firstly,the concept of higher-order adiabatic invariants of the singular Lagrange system is proposed.Then,the conditions for the existence of the exact invariants and adiabatic invariants are proved,and their forms are given.Finally,an example is presented to illustrate these results.
Correlated mixtures of adiabatic and isocurvature cosmological perturbations
Langlois, D; Langlois, David; Riazuelo, Alain
2000-01-01
We examine the consequences of the existence of correlated mixtures of adiabatic and isocurvature perturbations on the CMB and large scale structure. In particular, we consider the four types of ``elementary'' totally correlated hybrid initial conditions, where only one of the four matter species (photons, baryons, neutrinos, CDM) deviates from adiabaticity. We then study the height and position of the acoustic peaks with respect to the large angular scale plateau as a function of the isocurvature to adiabatic ratio.
A quantum search algorithm based on partial adiabatic evolution
Institute of Scientific and Technical Information of China (English)
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
Quantum Adiabatic Algorithms and Large Spin Tunnelling
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
The genesis of adiabatic shear bands
Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.
2016-11-01
Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them.
Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder
Hinman, W. Schuyler; Johansen, C. T.
2016-11-01
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (8× 10^3 free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous-inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous-inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.
Directory of Open Access Journals (Sweden)
Raicharan Denra
2016-12-01
Full Text Available In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.
Denra, Raicharan; Paul, Samit; Sarkar, Susmita
2016-12-01
In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin
1999-01-01
Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3 x 3.3 x 3 m3 lead volume and neutron capture rates on long-lived fission fragments 99 Tc and 129 I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Arnould, H; Del Moral, R; Lacoste, V; Vlachoudis, V; Aleixandre, J; Bueno, J; Cerro, E; González, O; Tamarit, J; Andriamonje, Samuel A; Brozzi, Delecurgo; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Dumps, Ludwig; Gelès, C; Goulas, I; Fernández, R; Kadi, Y; Klapisch, Robert; Oropesa, J; Placci, Alfredo; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Saldaña, F; Embid, M; Gálvez, J; López, C; Pérez-Enciso, E; Poza, M; Sirvent, C; Vieira, S L; Abánades, A; García, J; Martínez-Val, J M; Perlado, M; González, E; Hussonnois, M; Le Naour, C; Trubert, D; Belle, E; Giorni, A; Heuer, R D; Loiseaux, J M; Méplan, O; Nifenecker, H; Schussler, F; Viano, J B; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Karaiskos, P; Sakelliou, L; Kokkas, P; Pavlopoulos, P; Eleftheriadis, C; Kitis, G; Papadopoulos, I M; Savvidis, E; Tzima, A; Zioutas, Konstantin; Díez, S; Pérez-Navarro, A
1999-01-01
Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (17 refs).
Results from Recent NIF Shock Timing Experiments
Robey, H. F.; Celliers, P. M.; Boehly, T. R.; Kline, J. L.; Bowers, M. W.; Le Pape, S.; Farley, D. R.; MacKinnon, A. J.; Moody, J. D.; Eggert, J. H.; Munro, D. H.; Jones, O. S.; Milovich, J. L.; Clark, D.; Nikroo, A.; Moreno, K. A.; Kroll, J. J.; Hamza, A. V.; Barker, D. A.; Landen, O. L.; Edwards, M. J.; Meyerhofer, D. D.
2011-10-01
Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). The tuned pulse shape resulting from these experiments has been tested in ignition capsule implosions and demonstrates a considerable improvement in fuel adiabat. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
Capture into resonance and phase space dynamics in optical centrifuge
Armon, Tsafrir
2016-01-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1,P2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2010-01-01
The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
Sufficient Condition for Validity of Quantum Adiabatic Theorem
Institute of Scientific and Technical Information of China (English)
TAO Yong
2012-01-01
In this paper, we attempt to give a sufficient condition of guaranteeing the validity of the proof of the quantum adiabatic theorem. The new sufficient condition can clearly remove the inconsistency and the counterexample of the quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 （2004） 160408].
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
Teleportation of an Unknown Atomic State via Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Are gauge shocks really shocks?
Alcubierre, M
2005-01-01
The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.
Simulations of Turbulent Flows with Strong Shocks and Density Variations
Energy Technology Data Exchange (ETDEWEB)
Zhong, Xiaolin
2012-12-13
In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.
Shortcuts to adiabaticity in cutting a spin chain
Ren, Feng-Hua; Wang, Zhao-Ming; Gu, Yong-Jian
2017-01-01
"Shortcuts to adiabaticity" represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a "shortcut" can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain.
Thermodynamic Study of Energy Dissipation in Adiabatic Superconductor Logic
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-09-01
Because of its extremely high energy efficiency, adiabatic superconductor logic is one of the most promising candidates for the realization of a practical reversible computer. In a previous study, we proposed a logically and physically reversible logic gate using adiabatic superconductor logic, and numerically demonstrated reversible computing. In the numerical calculation, we assumed that the average energy dissipation at finite temperature corresponds to that at zero temperature. However, how the phase difference of a Josephson junction in adiabatic superconductor logic behaves at finite temperature is not yet well understood, and whether thermal noise can induce a nonadiabatic state change remains unclear. In the present study, we investigate energy dissipation in adiabatic superconductor logic at finite temperature through numerical analyses using the Monte Carlo method. We investigate the average and standard deviation of the energy dissipation through both numerical calculation and analytical estimation. Finally, we discuss the minimum energy dissipation required for adiabatic switching operations.
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Investigating the Performance of an Adiabatic Quantum Optimization Processor
Rose, Geordie; Dickson, Neil G; Hamze, Firas; Amin, M H S; Drew-Brook, Marshall; Chudak, Fabian A; Bunyk, Paul I; Macready, William G
2010-01-01
We calculate median adiabatic times (in seconds) of a specific superconducting adiabatic quantum processor for an NP-hard Ising spin glass instance class with up to N=128 binary variables. To do so, we ran high performance Quantum Monte Carlo simulations on a large-scale Internet-based computing platform. We compare the median adiabatic times with the median running times of two classical solvers and find that, for problems with up to 128 variables, the adiabatic times for the simulated processor architecture are about 4 and 6 orders of magnitude shorter than the two classical solvers' times. This performance difference shows that, even in the potential absence of a scaling advantage, adiabatic quantum optimization may outperform classical solvers.
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
Conformal Symmetries of Adiabatic Modes in Cosmology
Hinterbichler, Kurt; Khoury, Justin
2012-01-01
We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. We argue that the scalar sector is also invariant under special conformal transformations, which shift the curvature perturbation by a term linear in the spatial coordinates. We discuss whether these conformal symmetries can be extended to include tensor perturbations. Tensor modes introduce their own set of non-linearly realized symmetries. We identify an infinite set of large gauge transformations which maintain the transverse, traceless gauge condition, while shifting the tensor mode non-trivially.
Adiabatic/diabatic polarization beam splitter
Energy Technology Data Exchange (ETDEWEB)
DeRose, Christopher; Cai, Hong
2017-09-12
The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
Multiplicity features of adiabatic autothermal reactors
Energy Technology Data Exchange (ETDEWEB)
Lovo, M.; Balakotaiah, V. (Houston Univ., TX (United States). Dept. of Chemical Engineering)
1992-01-01
In this paper singularity theory, large activation energy asymptotic, and numerical methods are used to present a comprehensive study of the steady-state multiplicity features of three classical adiabatic autothermal reactor models: tubular reactor with internal heat exchange, tubular reactor with external heat exchange, and the CSTR with external heat exchange. Specifically, the authors derive the exact uniqueness-multiplicity boundary, determine typical cross-sections of the bifurcation set, and classify the different types of bifurcation diagrams of conversion vs. residence time. Asymptotic (limiting) models are used to determine analytical expressions for the uniqueness boundary and the ignition and extinction points. The analytical results are used to present simple, explicit and accurate expressions defining the boundary of the region of autothermal operation in the physical parameter space.
Reversible logic gate using adiabatic superconducting devices
Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.
2014-09-01
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage.
Adiabatic theory for anisotropic cold molecule collisions
Energy Technology Data Exchange (ETDEWEB)
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Sliding seal materials for adiabatic engines
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Entropy in adiabatic regions of convection simulations
Tanner, Joel D; Demarque, Pierre
2016-01-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this paper we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of og g and log T_{eff} which holds potential for calibrating stellar models in a simple and more general manner.
Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature
Directory of Open Access Journals (Sweden)
P. J. Conroy
2002-01-01
Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.
Adiabatic perturbations in coupled scalar field cosmologies
Beyer, Joschka
2014-01-01
We present a comprehensive and gauge invariant treatment of perturbations around cosmological scaling solutions for two canonical scalar fields coupled through a common potential in the early universe, in the presence of neutrinos, photons and baryons, but excluding cold dark matter. This setup is relevant for analyzing cosmic perturbations in scalar field models of dark matter with a coupling to a quintessence field. We put strong restrictions on the shape of the common potential and adopt a matrix-eigensystem approach to determine the dominant perturbations modes in such models. Similar to recent results in scenarios where standard cold dark matter couples to quintessence, we show that the stability of the adiabatic perturbation mode can be an issue for this class of scalar field dark matter models, but only for specific choices of the common potential. For an exponential coupling potential, a rather common shape arising naturally in many instances, this problem can be avoided. We explicitly calculate the d...
Adiabatic density-functional perturbation theory
Gonze, Xavier
1995-08-01
The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.
An adiabatic demagnetization refrigerator for SIRTF
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-02-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Natividad, Eva [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain); Castro, Miguel [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Sede Campus Rio Ebro, Maria de Luna, 3, 50018 Zaragoza (Spain)], E-mail: mcastro@unizar.es; Mediano, Arturo [Grupo de Electronica de Potencia y Microelectronica (GEPM), Instituto de Investigacion en Ingenieria de Aragon (Universidad de Zaragoza), Maria de Luna, 3, 50018 Zaragoza (Spain)
2009-05-15
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/m{sub MNP})C({delta}T/{delta}t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR{approx}C{beta}/m{sub MNP}, where {beta} is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.
Hollenberg, Sebastian
2011-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and non-adiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g. matter) potentials. Neglecting effects of ensemble decoherence for now we study the evolution of a neutrino ensemble governed by the associated Quantum Kinetic Equations, which apply to systems with finite temperature. The Quantum Kinetic Equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g. the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g. an effective oscillation length). It is understood that this method also provides a promising starting point for...
Adiabatic Rearrangement of Hollow PV Towers
Directory of Open Access Journals (Sweden)
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
On the General Class of Models of Adiabatic Evolution
Sun, Jie; Lu, Songfeng; Liu, Fang
2016-10-01
The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.
Energy Technology Data Exchange (ETDEWEB)
Abanades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C.A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J.I.; Cerro, E.; Moral, R.D.R.Del; Diez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernandez, R.; Galvez, J.; Garcia, J.; Geles, C.; Giorni, A.; Gonzalez, E.; Gonzalez, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; Lopez, C.; Loiseaux, J.M.; Martinez-Val, J.M.; Meplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Perez-Enciso, E.; Perez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P. E-mail: Jean-Pierre.Revol@cern.ch; Rubbia, C.; Rubio, J.A.; Sakelliou, L.; Saldana, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J.B.; Vieira, S.; Vlachoudis, V.; Zioutas, K
2001-05-11
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m{sup 3} lead volume and neutron capture rates on long-lived fission fragments {sup 99}Tc and {sup 129}I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifnecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin
2001-01-01
The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (9 refs).
Meister, Rafael; Pasquier, Mathieu; Clerc, David; Carron, Pierre-Nicolas
2014-08-13
The neurogenic shock is a common complication of spinal cord injury, especially when localized at the cervical level. Characterized by a vasoplegia (hypotension) and bradycardia, the neurogenic shock is secondary to the damage of the sympathetic nervous system. The clinical presentation often includes tetraplegia, with or without respiratory failure. Early treatment aims to minimize the occurrence of secondary spinal cord lesions resulting from systemic ischemic injuries. Medical management consists in a standardized ABCDE approach, in order to stabilize vital functions and immobilize the spine. The hospital care includes performing imaging, further measures of neuro-resuscitation, and coordinated surgical assessment and treatment of any other injury.
EXACT AND ADIABATIC INVARIANTS OF FIRST-ORDER LAGRANGE SYSTEMS
Institute of Scientific and Technical Information of China (English)
陈向炜; 尚玫; 梅凤翔
2001-01-01
A system of first-order differential equations is expressed in the form of first-order Lagrange equations. Based on the theory of symmetries and conserved quantities of first-order Lagrange systems, the perturbation to the symmetries and adiabatic invariants of first-order Lagrange systems are discussed. Firstly, the concept of higher-order adiabatic invariants of the first-order Lagrange system is proposed. Then, conditions for the existence of the exact and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate these results.
Adiabatic control of atomic dressed states for transport and sensing
Cooper, N. R.; Rey, A. M.
2015-08-01
We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.
Achromatic multiple beam splitting by adiabatic passage in optical waveguides
Rangelov, Andon A
2012-01-01
A novel variable achromatic optical beam splitter with one input and $N$ output waveguide channels is introduced. The physical mechanism of this multiple beam splitter is adiabatic passage of light between neighboring optical waveguides in a fashion reminiscent of the technique of stimulated Raman adiabatic passage in quantum physics. The input and output waveguides are coupled via a mediator waveguide and the ratios of the light intensities in the output channels are controlled by the couplings of the respective waveguides to the mediator waveguide. Due to its adiabatic nature the beam splitting efficiency is robust to variations in the experimental parameters.
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Performance of Indirectly-Driven Capsule Implosions on NIF Using Adiabat-Shaping
Robey, Harry
2015-11-01
Indirectly-driven capsule implosions are being conducted on the National Ignition Facility (NIF). Early experiments conducted during the National Ignition Campaign (NIC) were driven by a laser pulse with a relatively low-power initial foot (``low-foot''), which was designed to keep the deuterium-tritium (DT) fuel on a low adiabat to achieve a high fuel areal density (ρR). These implosions were successful in achieving high ρR, but fell significantly short of the predicted neutron yield. A leading candidate to explain this degraded performance was ablation front instability growth, which can lead to the mixing of ablator material with the DT fuel layer and in extreme cases into the central DT hot spot. A subsequent campaign employing a modified laser pulse with increased power in the foot (``high-foot'') was designed to reduce the adverse effects of ablation front instability growth. These implosions have been very successful, increasing neutron yields by more than an order of magnitude, but at the expense of reduced fuel compression. To bridge these two regimes, a series of implosions have been designed to simultaneously achieve both high stability and high ρR. These implosions employ adiabat-shaping, where the driving laser pulse is high in the initial picket similar to the high-foot to retain the favorable stability properties at the ablation front. The remainder of the foot is similar to that of the low-foot, driving a lower velocity shock into the DT fuel to keep the adiabat low and compression high. This talk will present results and analysis of these implosions and will discuss implications for improved implosion performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Capture Probability in the 3:1 Mean Motion Resonance with Jupiter
Folonier, H; Beaugé, C
2014-01-01
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100%, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow to predict the capture probabilities in both the adiabat...
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Design of the PIXIE Adiabatic Demagnetization Refrigerators
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
Topological States and Adiabatic Pumping in Quasicrystals
Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded
2012-02-01
We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
Shock jump relations for a dusty gas atmosphere
Anand, R. K.
2014-01-01
This paper presents simplified forms of jump relations for one dimensional shock waves propagating in a dusty gas. The dusty gas is assumed to be a mixture of a perfect gas and spherically small solid particles, in which solid particles are continuously distributed. The simplified jump relations for the pressure, the temperature, the density, the velocity of the mixture and the speed of sound have been derived in terms of the upstream Mach number. The expressions for the adiabatic compressibility of the mixture and the change-in-entropy across the shock front have also been derived in terms of the upstream Mach number. Further, the handy forms of shock jump relations have been obtained in terms of the initial volume fraction of small solid particles and the ratio of specific heats of the mixture, simultaneously for the two cases viz., (i) when the shock is weak and, (ii) when it is strong. The simplified shock jump relations reduce to the Rankine-Hugoniot conditions for shock waves in an ideal gas when the mass fraction (concentration) of solid particles in the mixture becomes zero. Finally, the effects due to the mass fraction of solid particles in the mixture, and the ratio of the density of solid particles to the initial density of the gas are studied on the pressure, the temperature, the density, the velocity of the mixture, the speed of sound, the adiabatic compressibility of the mixture and the change-in-entropy across the shock front. The results provided a clear picture of whether and how the presence of dust particles affects the flow field behind the shock front. The aim of this paper is to contribute to the understanding of how the shock waves behave in the gas-solid particle two-phase flows.
Cosmological Simulations with Scale-Free Initial Conditions; 1, Adiabatic Hydrodynamics
Owen, J M; Evrard, A E; Hernquist, L E; Katz, N; Weinberg, David H.; Evrard, August E.; Hernquist, Lars; Katz, Neal
1997-01-01
We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein-de Sitter universe, including a baryonic component. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed with two different SPH codes (TreeSPH and P3MSPH) at two resolutions. Each simulation is based upon identical initial conditions, which consist of Gaussian distributed initial density fluctuations that have an n=-1 power spectrum. The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass and emission weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of num...
Low-power adiabatic 9T static random access memory
Directory of Open Access Journals (Sweden)
Yasuhiro Takahashi
2014-06-01
Full Text Available In this paper, the authors propose a novel static random access memory (SRAM that employs the adiabatic logic principle. To reduce energy dissipation, the proposed adiabatic SRAM is driven by two trapezoidal-wave pulses. The cell structure of the proposed SRAM has two high-value resistors based on a p-type metal-oxide semiconductor transistor, a cross-coupled n-type metal-oxide semiconductor (NMOS pair and an NMOS switch to reduce the short-circuit current. The inclusion of a transmission-gate controlled by a write word line signal allows the proposed circuit to operate as an adiabatic SRAM during data writing. Simulation results show that the energy dissipation of the proposed SRAM is lower than that of a conventional adiabatic SRAM.
Adiabaticity and diabaticity in strong-field ionization
Karamatskou, Antonia; Santra, Robin
2013-01-01
If the photon energy is much less than the electron binding energy, ionization of an atom by a strong optical field is often described in terms of electron tunneling through the potential barrier resulting from the superposition of the atomic potential and the potential associated with the instantaneous electric component of the optical field. In the strict tunneling regime, the electron response to the optical field is said to be adiabatic, and nonadiabatic effects are assumed to be negligible. Here, we investigate to what degree this terminology is consistent with a language based on the so-called adiabatic representation. This representation is commonly used in various fields of physics. For electronically bound states, the adiabatic representation yields discrete potential energy curves that are connected by nonadiabatic transitions. When applying the adiabatic representation to optical strong-field ionization, a conceptual challenge is that the eigenstates of the instantaneous Hamiltonian form a continuu...
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
General dynamical description of quasi-adiabatically encircling exceptional points
Milburn, Thomas J; Holmes, Catherine A; Portolan, Stefano; Rotter, Stefan; Rabl, Peter
2014-01-01
The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze this process for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasi-stationarity interrupted by abrupt non-adiabatic transitions. Our findings explain the breakdown of the adiabatic theorem as well as the chiral behavior noticed previously in this context, and we provide a unified framework to describe quasi-adiabatic dynamical effects in non-Hermitian systems in a qualitative and quantitative way.
Adiabatic rotation, quantum search, and preparation of superposition states
Siu, M. Stewart
2007-06-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.
Adiabatic shear bands localization in materials undergoing deformations
Ryabov, P. N.; Kudryashov, N. A.; Muratov, R. V.
2017-01-01
We consider the adiabatic shear banding phenomenon in composite materials undergoing the high speed shear deformations. The mathematical model of adiabatic shear banding in thermo-visco-plastic material is given. New two step numerical algorithm which is based on the Courant-Isaacson-Rees scheme that allows one to simulate fully localized plastic flow from initial stage of localization is proposed. To test this numerical algorithm we use three benchmark problems. The testing results show the accuracy and efficiency of proposed algorithm. The features of adiabatic shear bands formation in composites are studied. The existence of characteristic depth of localization in composites is shown. Influence of initial temperature distribution on the processes of adiabatic shear bands formation in composites is considered.
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Effect of viscosity and wall heat conduction on shock attenuation in narrow channels
Deshpande, A.; Puranik, B.
2016-07-01
In the present work, the effects due to viscosity and wall heat conduction on shock propagation and attenuation in narrow channels are numerically investigated. A two-dimensional viscous shock tube configuration is simulated, and heat conduction in the channel walls is explicitly included. The simulation results indicate that the shock attenuation is significantly less in the case of an adiabatic wall, and the use of an isothermal wall model is adequate to take into account the wall heat conduction. A parametric study is performed to characterize the effects of viscous forces and wall heat conduction on shock attenuation, and the behaviour is explained on the basis of boundary layer formation in the post-shock region. A dimensionless parameter that describes the shock attenuation is correlated with the diaphragm pressure ratio and a dimensionless parameter which is expressed using the characteristic Reynolds number and the dimensionless shock travel.
Dependence of adiabatic population transfer on pulse profile
Indian Academy of Sciences (India)
S Dasgupta; T kushwaha; D Goswami
2006-06-01
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.
ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS
Energy Technology Data Exchange (ETDEWEB)
Ibáñez S, Miguel H., E-mail: mhibanez@yahoo.com [Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Autónoma del Caribe, Barranquilla (Colombia)
2016-02-20
The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.
Adiabatic invariants of the extended KdV equation
Karczewska, Anna; Infeld, Eryk; Rowlands, George
2015-01-01
When the Euler equations for shallow water are taken to the next order, beyond KdV, $\\eta^2$ is no longer an invariant. (It would seem that $\\eta$ is the only one.) However, two adiabatic invariants akin to $\\eta^2$ can be found. Here we present and test them. When the KdV expansion parameters are zero, $\\eta^2$ is recovered from both adiabatic invariants.
A Solved Model to Show Insufficiency of Quantitative Adiabatic Condition
Institute of Scientific and Technical Information of China (English)
LIU Long-Jiang; LIU Yu-Zhen; TONG Dian-Min
2009-01-01
The adiabatic theorem is a useful tool in processing quantum systems slowly evolving,but its practical application depends on the quantitative condition expressed by Hamiltonian's eigenvalues and eigenstates,which is usually taken as a sufficient condition.Recently,the sumciency of the condition was questioned,and several counterex amples have been reported.Here we present a new solved model to show the insufficiency of the traditional quantitative adiabatic condition.
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.
2002-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.
Preparation of Entangled States of Three Particles by Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
郭建友
2002-01-01
We propose a novel technique for the creation of entangled states of three particles, based upon an adiabatic passage induced by a suitably crafted time-dependent external field. We derive the corresponding adiabatic and bare conditions for the preparation of entangled states. We obtain the time evolutions of the energy of the system and the populations involving the initial state and target entangled state.
Theoretical and experimental investigation of shock wave stressing of metal powders by an explosion
Directory of Open Access Journals (Sweden)
Lukyanov Ya.L.
2011-01-01
Full Text Available Joint theoretical and experimental investigations have allowed to realize an approach with use of mathematical and physical modeling of processes of a shock wave loading of powder materials. Hugoniot adiabats of the investigated powder have been measured with a noncontact electromagnetic method. The mathematical model of elastic-plastic deformation of the powder media used in the investigation has been validated. Numerical simulation of shock wave propagation and experimental assembly deformation has been performed.
A connection between mix and adiabat in ICF capsules
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven
2016-10-01
We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; a Beccara, Silvio; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; Alfè, Dario
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.
Institute of Scientific and Technical Information of China (English)
LUO Shao-Kai
2007-01-01
For a Lagrangian system with the action of small disturbance, the Lie symmetrical perturbation and a new type of non-Noether adiabatic invariant are presented in general infinitesimal transformation groups. On the basis of the invariance of disturbed Lagrangian systems under general infinitesimal transformations, the determining equations of Lie symmetries of the system are constructed. Based on the definition of higher-order adiabatic invariants of a mechanical system, a new type of adiabatic invariant, i.e. generalized Lutzky adiabatic invariants, of a disturbed Lagrangian system are obtained by investigating the perturbation of Lie symmetries for a Lagrangian system with the action of small disturbance. Finally, an example is given to illustrate the application of the method and results.
Ciolek, G E; Mouschovias, T C
2004-01-01
This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock s...
Shock timing on the National Ignition Facility: The first precision tuning series
Directory of Open Access Journals (Sweden)
Robey H.F.
2013-11-01
Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.
Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Spitkovsky, Anatoly
2014-01-01
We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...
Spiral shocks and accretion in discs
Energy Technology Data Exchange (ETDEWEB)
Spruit, H.C.; Matsuda, T.; Inoue, M.; Sawada, K.
1987-12-01
Recent numerical and analytical results on disc-like accretion with shock waves as the only dissipation mechanism are compared. The global properties of the process are similar to those of the viscous (..cap alpha..) disc model, but precise values of the effective ..cap alpha.. value as a function of the accretion rate can be calculated. At low values of the ratio of specific heats (..gamma.. < 1.45) accretion is possible without radiative losses. Such adiabatic accretion can occur in practice at high accretion rates on to low mass objects and may be important in the formation of planets. Following previous authors, it is pointed out that non-axisymmetric perturbations in the outer parts of a disc increase in amplitude as they propagate in and cause spiral shocks more easily in a disc than perturbations originating in the inner parts.
Institute of Scientific and Technical Information of China (English)
宋文玲
2004-01-01
Specialists say that it is not easy to get used to life in a new culture.“Culture shock”is the term these specialists use when talking about the feelings that people have in a new environment.There are three stages of culture shock,say the specialists.In the first stage,the newcomers like their new environment,Then when the fresh experience
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai; PANG Ting; LIN Peng
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained.
Energy Technology Data Exchange (ETDEWEB)
Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)
2017-03-15
We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.
Numerical simulations of Mach stem formation via intersecting bow shocks
Hansen, E. C.; Frank, A.; Hartigan, P.; Yirak, K.
2015-12-01
Hubble Space Telescope observations show bright knots of Hα emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter Hα emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index γ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and observational consequences of bow shock intersections including the formation of Mach stems.
Adams, H A; Baumann, G; Gänsslen, A; Janssens, U; Knoefel, W; Koch, T; Marx, G; Müller-Werdan, U; Pape, H C; Prange, W; Roesner, D; Standl, T; Teske, W; Werner, G; Zander, R
2001-11-01
Definitions of shock types. Hypovolaemic shock is a state of insufficient perfusion of vital organs with consecutive imbalance of oxygen supply and demand due to an intravascular volume deficiency with critically impaired cardiac preload. Subtypes are haemorrhagic shock, hypovolaemic shock in the narrow sense, traumatic-haemorrhagic shock and traumatic-hypovolaemic shock. Cardiac shock is caused by a primary critical cardiac pump failure with consecutive inadequate oxygen supply of the organism. Anaphylactic shock is an acute failure of blood volume distribution (distributive shock) and caused by IgE-dependent, type-I-allergic, classical hypersensibility, or a physically, chemically, or osmotically induced IgE-independent anaphylactoid hypersensibility. The septic shock is a sepsis-induced distribution failure of the circulating blood volume in the sense of a distributive shock. The neurogenic shock is a distributive shock induced by generalized and extensive vasodilatation with consecutive hypovolaemia due to an imbalance of sympathetic and parasympathetic regulation of vascular smooth muscles.
Institute of Scientific and Technical Information of China (English)
WANG Xue-bin
2008-01-01
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.
Cosmological Structure Formation Shocks and Cosmic Rays in Hydrodynamical Simulations
Pfrommer, C.; Springel, V.; Enβlin, T. A.; Jubelgas, M.
Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences for our understanding of the spatial distribution of CRs in the large-scale structure. In high resolution simulations of galaxy clusters, we find a low contribution of the averaged CR pressure, due to the small acceleration efficiency of lower Mach numbers of flow shocks inside halos and the softer adiabatic index of CRs. These effects disfavour CRs when a composite of thermal gas and CRs is adiabatically compressed. However, within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading, to a lower effective adiabatic index and thus to an enhanced compressibility of the central intracluster medium. This effect increases the central density and pressure of the cluster, and thus the resulting X-ray emission and the central Sunyaev-Zel'dovich flux decrement. The integrated Sunyaev-Zel'dovich effect, however, is only slightly changed.
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
Physics on the adiabatically changed Finslerian manifold and cosmology
Lipovka, Anton A
2016-01-01
In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details tw...
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views
Anacleto, Joaquim; Pereira, Mário G.
2009-05-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.
Roberts, Daniel A; Susskind, Leonard
2014-01-01
We study products of precursors of spatially local operators, $W_{x_{n}}(t_{n}) ... W_{x_1}(t_1)$, where $W_x(t) = e^{-iHt} W_x e^{iHt}$. Using chaotic spin-chain numerics and gauge/gravity duality, we show that a single precursor fills a spatial region that grows linearly in $t$. In a lattice system, products of such operators can be represented using tensor networks. In gauge/gravity duality, they are related to Einstein-Rosen bridges supported by localized shock waves. We find a geometrical correspondence between these two descriptions, generalizing earlier work in the spatially homogeneous case.
Wehrenberg, Christopher; Prisbrey, Shon T.; Park, Hye-Sook; Benedetti, L. Robin; Huntington, Channing; McNaney, James; Smith, Ray; Panas, Cynthia; Cook, Angela; Remington, Bruce; Arsenlis, Tom; Graham, Peter
2015-11-01
A series of experiments were performed on NIF to develop a planar, 3-shock, low-adiabat drive for material science experiments. Physics samples (Ta, Pb, etc.) are loaded to 3-4 Mbar while staying well below the melt temperature. X-ray ablation from an indirect drive launches a strong (~ 50 Mbar), decaying shock through a precision fabricated ``reservoir,'' consisting of a CH ablator, followed by layers of Al, CH(18.75%I), ~ 375 mg/cc carbonized resorcinol formaldehyde foam, and a final layer of low density (10-35) mg/cc foam. As the releasing reservoir stagnates on a Ta drive plate, VISAR is used to measures the resulting compression waves. The lowest density reservoir layer is responsible for the leading shock and induces the most entropy during the drive. LLNL has developed a new, low-density foam called JX6 (C20H30) for the purpose of controlling the leading shock. We will describe a series of experiments done on NIF to test the combined release and recompression properties of JX6 and to develop a new, lower-adiabat drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division
2000-01-01
The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...
Shock-initiation chemistry of nitroarenes
Energy Technology Data Exchange (ETDEWEB)
Davis, L.L. [Los Alamos National Lab., NM (United States); Brower, K.R. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Chemistry
1997-11-01
The authors present evidence that the shock-initiation chemistry of nitroarenes is dominated by the intermolecular hydrogen transfer mechanism discussed previously. The acceleration by pressure, kinetic isotope effect, and product distribution are consistent with the bimolecular transition state kinetic isotope effect, and product distribution are consistent with the bimolecular transition state rather than rate-determining C-N homolysis.GC-MS analysis of samples which were subjected to a shock wave generated by detonation of nitromethane shows that nitrobenzene produces aniline and biphenyl, and o-nitrotoluene forms aniline, toluene, o-toluidine and o-cresol, but not anthranil, benzoxazinone, or cyanocyclopentandiene. In isotopic labeling experiments o-nitrotoluene and TNT show extensive H-D exchange on their methyl groups, and C-N bond rupture is not consistent with the formation of aniline from nitrobenzene or nitrotoluene, nor the formation of o-toluidine from o-nitrotoluene. Recent work incorporating fast TOF mass spectroscopy of samples shocked and quenched by adiabatic expansion shows that the initial chemical reactions in shocked solid nitroaromatic explosives proceed along this path.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation
Aharonov, D; Kempe, J; Landau, Z; Lloyd, S; Regev, O; Aharonov, Dorit; Dam, Wim van; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded
2004-01-01
Adiabatic quantum computation has recently attracted attention in the physics and computer science communities, but its computational power has been unknown. We settle this question and describe an efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic computation model and the conventional quantum circuit model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models provides a new vantage point from which to tackle the central issues in quantum computation, namely designing new quantum algorithms and constructing fault tolerant quantum computers. In particular, by translating the main open questions in quantum algorithms to the language of spectral gaps of sparse matrices, the result makes quantum algorithmic questions accessible to a wider scientific audience, acquainted with mathematical physics, expander theory a...
Dynamics of charged particles in an adiabatic thermal beam equilibrium
Directory of Open Access Journals (Sweden)
Haofei Wei
2011-02-01
Full Text Available Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers
Institute of Scientific and Technical Information of China (English)
YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng
2009-01-01
A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.
Applications of chirped Raman adiabatic rapid passage to atom interferometry
Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.
2012-02-01
We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.
Semiclassical approximations for adiabatic slow-fast systems
Teufel, Stefan
2012-01-01
In this letter we give a systematic derivation and justification of the semiclassical model for the slow degrees of freedom in adiabatic slow-fast systems first found by Littlejohn and Flynn [5]. The classical Hamiltonian obtains a correction due to the variation of the adiabatic subspaces and the symplectic form is modified by the curvature of the Berry connection. We show that this classical system can be used to approximate quantum mechanical expectations and the time-evolution of operators also in sub-leading order in the combined adiabatic and semiclassical limit. In solid state physics the corresponding semiclassical description of Bloch electrons has led to substantial progress during the recent years, see [1]. Here, as an illustration, we show how to compute the Piezo-current arising from a slow deformation of a crystal in the presence of a constant magnetic field.
Global adiabaticity and non-Gaussianity consistency condition
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-10-01
Full Text Available In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad≡δP−cw2δρ where cw2=P˙/ρ˙, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad=0 on all scales, which we call global adiabaticity (GA, which is guaranteed if cw2=cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR inflation in which cw2=cs2=1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2=cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-10-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2 , where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
On the adiabatic theorem when eigenvalues dive into the continuum
DEFF Research Database (Denmark)
Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad
For a Wigner-Weisskopf model of an atom consisting of a quantum dot coupled to an energy reservoir described by a three-dimensional Laplacian we study the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial state corresponds to a discre...... eigenvalue which dives into the continuous spectrum and re-emerges from it as the dot energy is varied in time and finally returns to its initial value. Our main result is that for a large class of couplings, the survival probability of this bound state vanishes in the adiabatic limit....
Microstructure evolution mechanism in adiabatic shear band in TA2
Institute of Scientific and Technical Information of China (English)
杨扬; 熊俊; 杨续跃
2004-01-01
The micro structure evolution mechanism in adiabatic shear band in commercial pure titanium (TA2) at high strain rates(γ≈105 - 106/s) were studied. The nanosized recrystallized grains (about 50 nm in diameter) within the center of adiabatic shear band (ASB) were observed by means of transmission electronic microscope (TEM). A Rotational Dynamic Recrystallization (RDR) mechanism can explain the microstructure evolution (i. e. nanosized grains were formed within 5 - 10μs) in ASB. Kinetics calculations indicate that the recrystallized small grains are formed during the deformation and don't undergo significant growth by grain boundary migration after deformation.
Nanoscale resolution for fluorescence microscopy via adiabatic passage
Rubio, Juan Luis; Ahufinger, Verònica; Mompart, Jordi
2015-01-01
We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a {\\Lambda}-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the {\\Lambda} system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.
Adiabatic hyperspherical approach to large-scale nuclear dynamics
Suzuki, Yasuyuki
2015-01-01
We formulate a fully microscopic approach to large-scale nuclear dynamics using a hyperradius as a collective coordinate. An adiabatic potential is defined by taking account of all possible configurations at a fixed hyperradius, and its hyperradius dependence plays a key role in governing the global nuclear motion. In order to go to larger systems beyond few-body systems, we suggest basis functions of a microscopic multicluster model, propose a method for calculating matrix elements of an adiabatic Hamiltonian with use of Fourier transforms, and test its effectiveness.
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H; Yamaguchi, Masahide
2008-01-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
How to Make the Quantum Adiabatic Algorithm Fail
Farhi, E; Gutmann, S; Nagaj, D; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Nagaj, Daniel
2005-01-01
The quantum adiabatic algorithm is a Hamiltonian based quantum algorithm designed to find the minimum of a classical cost function whose domain has size N. We show that poor choices for the Hamiltonian can guarantee that the algorithm will not find the minimum if the run time grows more slowly than square root of N. These poor choices are nonlocal and wash out any structure in the cost function to be minimized and the best that can be hoped for is Grover speedup. These failures tell us what not to do when designing quantum adiabatic algorithms.
Construction techniques for adiabatic demagnetization refrigerators using ferric ammonium alum
Wilson, Grant W.; Timbie, Peter T.
1999-07-01
We describe techniques used to fabricate the cold stage of an adiabatic demagnetization refrigerator that uses the paramagnetic salt ferric ammonium alum. We discuss the design of a leak-tight housing for the salt as well as a technique for growing ferric ammonium alum crystals that results in a housing filled with >98% refrigerant. These techniques have proven to be reliable in creating robust single-stage refrigerators. Similar techniques can be used for the second stage of a dual-stage adiabatic demagnetization refrigerator.
New design of an adiabatic demagnetization cryostat for space application
Yamamoto, Junya; Sato, Akio; Sahashi, Masashi
A new adiabatic demagnetization cryostat for cooling (in the region of 0.1 K) spaceborne far-infrared detectors is described. The cryostat contains a superconducting magnetic coil indirectly cooled by liquid helium, with the liquid nitrogen and helium vessels being connected by gas-filled thermal switches; the adiabatic demagnetization cell of the cryostat is set in vacuum at the center of the coil. The magnetic field of 3 T was obtained by a current of 11.5 A. The magnetic salt (single crystals of manganese ammonium alum) was prepared by the falling temperature technique.
Solar-flare-induced Forbush decreases - Dependence on shock wave geometry
Thomas, B. T.; Gall, R.
1984-01-01
It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.
Shi, Xun
2016-01-01
Accretion shocks around galaxy clusters mark the position where the infalling diffuse gas is significantly slowed down, heated up, and becomes a part of the intracluster medium (ICM). They play an important role in setting the ICM properties. Hydrodynamical simulations have found an intriguing result that the radial position of this accretion shock tracks closely the position of the `splashback radius' of the dark matter, despite the very different physical processes that gas and dark matter experience. Using the self-similar spherical collapse model for dark matter and gas, we find that an alignment between the two radii happens only for a gas with an adiabatic index of $\\gamma \\approx 5/3$ and for clusters with moderate mass accretion rates. In addition, we find that some observed ICM properties, such as the entropy slope and the effective polytropic index lying around $\\sim 1.1-1.2$, are captured by the self-similar spherical collapse model, and are insensitive to the mass accretion history.
Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6
Berry, Scott A.; Nowak, Robert J.
1996-01-01
The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.
Shah, M. G.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.
2016-02-01
A theoretical investigation on heavy ion-acoustic (HIA) solitary and shock structures has been accomplished in an unmagnetized multispecies plasma consisting of inertialess kappa-distributed superthermal electrons, Boltzmann light ions, and adiabatic positively charged inertial heavy ions. Using the reductive perturbation technique, the nonplanar (cylindrical and spherical) Kortewg-de Vries (KdV) and Burgers equations have been derived. The solitary and shock wave solutions of the KdV and Burgers equations, respectively, have been numerically analyzed. The effects of superthermality of electrons, adiabaticity of heavy ions, and nonplanar geometry, which noticeably modify the basic features (viz. polarity, amplitude, phase speed, etc.) of small but finite amplitude HIA solitary and shock structures, have been carefully investigated. The HIA solitary and shock structures in nonplanar geometry have been found to distinctly differ from those in planar geometry. Novel features of our present attempt may contribute to the physics of nonlinear electrostatic perturbation in astrophysical and laboratory plasmas.
Shock compression response of Ti+B reactive powder mixtures
Gonzales, M.; Gurumurthy, A.; Kennedy, G. B.; Gokhale, A. M.; Thadhani, N. N.
2014-05-01
The shock compression response of Ti+2B (1:2 Ti:B stoichiometric ratio) reactive powder mixtures at ~50% theoretical material density (TMD) is investigated for shock pressures up to 5 GPa to investigate the possible shock-induced chemical reactivity of this highly exothermic mixture. The shock adiabat is produced from instrumented parallel-plate gas-gun impact experiments on encapsulated powders using poly-vinylidene fluoride (PVDF) stress gauges to measure the input and propagated stresses and wave speed in the powder. The shock compression regime is probed from crush-up to full density and onward to assess the potential onset of a shock-induced chemical reaction event in the powder mixture. A series of two-dimensional continuum meso-scale simulations on validated simulated microstructures are performed to predict the shock compression response and identify the meso-scale mechanics that are essential for reaction. The suitability of the synthetic microstructural representations is evaluated by comparing the experimental and predicted pressure traces.
Numerical Simulations of Mach Stem Formation via Intersecting Bow Shocks
Hansen, Edward C; Hartigan, Patrick
2014-01-01
Hubble Space Telescope observations show bright knots of H$\\alpha$ emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter H$\\alpha$ emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index $\\gamma$ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and obse...
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Adiabatic, Shock, and Plastic Work Heating of Solids and the Cylinder Test
2000-05-01
1989 (unpublished). [12] J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, Physical Review 108, 196 (1957). [13] W. E. Boyce and R. C... DiPrima , Elementary Differential Equations, 3rd ed. (John Wiley & Sons, New York, NY, 1997), p. 16. [14] Y. B. Zel’dovich and Y. P. Raizer, Physics of
Dunbar, Laura
2014-01-01
This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.
Experimental Investigation of Shock Wave Surfing
Parziale, N J; Hornung, H G; Shepherd, J E
2010-01-01
Shock wave surfing is investigated experimentally in GALCIT's Mach 4.0 Ludwieg Tube. Shock wave surfing occurs when a secondary free-body follows the bow shock formed by a primary free-body; an example of shock wave surfing occurs during meteorite breakup. The free-bodies in the current investigation are nylon spheres. During each run in the Ludwieg tube a high speed camera is used to capture a series of schlieren images; edge tracking software is used to measure the position of each sphere. Velocity and acceleration are had from processing the position data. The radius ratio and initial orientation of the two spheres are varied in the test matrix. The variation of sphere radius ratio and initial angle between the centers of gravity are shown to have a significant effect on the dynamics of the system.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
Institute of Scientific and Technical Information of China (English)
SUN Jie; LU Song-Feng; Samuel L.Braunstein
2013-01-01
In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model — an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu; GU Zhi-Yu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the generaltime-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-06
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
Dark energy and dark matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-10-01
The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Perturbation to Noether Symmetries and Adiabatic Invariants for Birkhoffian Systems
Directory of Open Access Journals (Sweden)
Yi Zhang
2015-01-01
Full Text Available Based on El-Nabulsi dynamical model for a non-conservative system, the problem of perturbation to Noether symmetries and adiabatic invariants of a Birkhoffian system under the action of a small disturbance is proposed and studied. Firstly, the El-Nabulsi-Pfaff variational problem from extended exponentially fractional integral is presented and the El-Nabulsi-Birkhoff equations are established. Secondly, the definitions and the criterions criteria of the Noether symmetric transformations and quasisymmetric transformations of the Birkhoffian system are given, and the Noether theorems of the system are established, which reveal the inner relationship between the Noether symmetries and the conserved quantities. Thirdly, the perturbation of Noether symmetries under a small disturbance is studied, and corresponding adiabatic invariants are obtained. As special cases, the deductions in nonconservative Hamiltonian system and nonconservative Lagrangian system and standard Birkhoffian system are given. At the end of the paper, the case known as Hojman-Urrutia problem is discussed to investigate the Noether symmetries and the adiabatic invariants, the perturbation to Noether symmetries and the adiabatic invariants under El-Nabulsi dynamical model.
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Energy Technology Data Exchange (ETDEWEB)
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Appearance of gauge fields and forces beyond the adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Gosselin, Pierre [Institut Fourier, UMR 5582 CNRS-UJF, UFR de Mathematiques, Universite Grenoble I, BP74, 38402 Saint Martin d' Heres, Cedex (France); Mohrbach, Herve, E-mail: mohrbach@univ-metz.f [Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Universite Paul Verlaine-Metz, 57078 Metz Cedex 3 (France)
2010-09-03
We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic regime. In particular, we extend the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described by matrix-valued quantum Hamiltonians. The results are illustrated by several physical relevant examples.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
Adiabatic frequency conversion with a sign flip in the coupling
Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.
2016-09-01
Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Flat FRW Cosmologies with Adiabatic Matter Creation Kinematic tests
Lima, J A S
1999-01-01
Some observational consequences of a cosmological scenario driven by adiabatic matter creation are investigated. Exact expressions for the lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts redshift relations are derived and their meaning discussed in detail. The expressions of the conventional FRW models are significantly modified and provide a powerful method to limit the parameters of the models.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
High beta lasing in micropillar cavities with adiabatic layer design
DEFF Research Database (Denmark)
Lermer, M.; Gregersen, Niels; Lorke, M.;
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...
Adiabatic CMB perturbations in pre-big bang string cosmology
DEFF Research Database (Denmark)
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...
Collisionless electrostatic shocks
DEFF Research Database (Denmark)
Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla
1970-01-01
An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to Noether-Mei symmetry and adiabatic invariants for nonholonomic mechanical systems in phase space are studied. The definition of the perturbation to Noether-Mei symmetry for the system is presented, and the criterion of the perturbation to Noether-Mei symmetry is given. Meanwhile, the Noether adiabatic invariants and the Mei adiabatic invariants for the perturbed system are obtained.
Perturbation and Adiabatic Invariants of Mei Symmetry for Nonholonomic Mechanical Systems
Institute of Scientific and Technical Information of China (English)
DING Ning; FANG Jian-Hui; WANG Peng
2007-01-01
Based on the concept of adiabatic invariant,the perturbation and adiabatic invariants of the Mei symmetry for nonholonomic mechanical systems are studied.The exact invariants of the Mei symmetry for the system without perturbation are given,The perturbation to the Mei symmetry is discussed and the adiabatic invariants of the Mei symmetry for the perturbed system are obtained.
Perturbation to Lie Symmetry and Lutzky Adiabatic Invariants for Lagrange Systems
Institute of Scientific and Technical Information of China (English)
REN Ji-Rong; DING Ning; LI Ran; FANG Jian-Hui; DUAN Yi-Shi; WANG Peng; ZHANG Xiao-Ni
2008-01-01
Based on the concept of adiabatic invariant, perturbation to Lie symmetry and Lutzky adiabatic invariants for Lagrange systems are studied by using different methods from those of previous works. Exact invariants induced from Lie symmetry of the system without perturbation are given. Perturbation to Lie symmetry is discussed and Lutzky adiabatic invariants of the system subject to perturbation are obtained.
Dynamics on the positron capture and accelerating sections of CLIC
Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro
2011-01-01
The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.
2016-12-12
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
Cosmological shock waves: clues to the formation history of haloes
Planelles, Susana
2012-01-01
Shock waves developed during the formation and evolution of cosmic structures encode crucial information on the hierarchical formation of the Universe. We analyze an Eulerian AMR hydro + N-body simulation in a $\\Lambda$CDM cosmology focused on the study of cosmological shock waves. The combination of a shock-capturing algorithm together with the use of a halo finder allows us to study the morphological structures of the shock patterns, the statistical properties of shocked cells, and the correlations between the cosmological shock waves appearing at different scales and the properties of the haloes harbouring them. The shocks in the simulation can be split into two broad classes: internal weak shocks related with evolutionary events within haloes, and external strong shocks associated with large-scale events. The shock distribution function contains information on the abundances and strength of the different shocks, and it can be fitted by a double power law with a break in the slope around a Mach number of 2...
The impact of kinetic effects on the properties of relativistic electron-positron shocks
Stockem, A; Fonseca, R A; Silva, L O
2012-01-01
We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first principle particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease of the upstream bulk speed yields deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time.
Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas
Nath, G.
2016-09-01
One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.
Radiative Shock Waves In Emerging Shocks
Drake, R. Paul; Doss, F.; Visco, A.
2011-05-01
In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.
Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.
2017-01-01
Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.
Neutron Capture Nucleosynthesis
Kiss, Miklos
2016-01-01
Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.
Adiabatic tapered optical fiber fabrication in two step etching
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Linear response of galactic halos to adiabatic gravitational perturbations
Murali, C; Murali, Chigurupati; Tremaine, Scott
1997-01-01
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics, the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics, the response can be regarded as an infinite series of wavetrains in $\\log r$, implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal fields from external sources are not strongly amplified by an intervening isothermal stellar system, except at radii can even screen the external tidal field in a manner analogous to Debye screening. As Weinberg has pointed out, individual resonances in a stellar system can strongly amplify external tidal fields over a limited radial range, but we cannot address this possibility because we examine only adiabatic perturbations. We also discuss the application of our method to the halo response caused by the slow growth of an em...
Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd
2010-12-16
True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.
Particle creation and non-adiabatic transitions in quantum cosmology
Massar, S
1998-01-01
The aim of this paper is to compute transitions amplitudes in quantum cosmology, and in particular pair creation amplitudes and radiative transitions. To this end, we apply a double adiabatic development to the solutions of the Wheeler-DeWitt equation restricted to mini-superspace wherein gravity is described by the scale factor $a$. The first development consists in working with instantaneous eigenstates, in $a$, of the matter Hamiltonian. The second development is applied to the gravitational part of the wave function and generalizes the usual WKB approximation. We then obtain an exact equation which replaces the Wheeler-DeWitt equation and determines the evolution, i.e. the dependence in $a$, of the coefficients of this double expansion. When working in the gravitational adiabatic approximation, the simplified equation delivers the unitary evolution of transition amplitudes occurring among instantaneous eigenstates. Upon abandoning this approximation, one finds that there is an additional coupling among ma...
Excitation energies along a range-separated adiabatic connection
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2014-01-01
We present a study of the variation of total energies and excitationenergies along a range-separated adiabatic connection. This connectionlinks the non-interacting Kohn-Sham electronic system to the physicalinteracting system by progressively switching on theelectron-electron interactions whilst simultaneously adjusting aone-electron effective potential so as to keep the ground-statedensity constant. The interactions are introduced in arange-dependent manner, first introducing predominantly long-range,and then all-range, interactions as the physical system is approached,as opposed to the conventional adiabatic connection where theinteractions are introduced by globally scaling the standard Coulomb interaction.Reference data are reported for the He and Be atoms and the H2molecule, obtained by calculating the short-range effective potentialat the full configuration-interaction level using Lieb'sLegendre-transform approach. As the strength of the electron-electroninteractions increases, the excitation energies, ...
Stimulated Raman adiabatic control of a nuclear spin in diamond
Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.
2017-08-01
Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.
Stellar oscillations. II The non-adiabatic case
Samadi, R; Sonoi, T
2015-01-01
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-...
Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments
Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.
2016-10-01
Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
On some issues of gravitationally induced adiabatic particle productions
Pan, Supriya; Pramanik, Souvik
2016-01-01
In this work, we investigate the current accelerating universe driven by the gravitationally induced adiabatic matter creation process. To elaborate the underlying cognitive content, here we consider three models of adiabatic particle creation and constrain the model parameters by fitting the models with the Union 2.1 data set using $\\chi^2$ minimization technique. The models are analyzed by two geometrical and model independent tests, viz., cosmography and $Om$-diagnostic, which are widely used to distinguish the cosmological models from $\\Lambda$CDM. We also compared present values of those model independent parameters with that of the flat $\\Lambda$CDM model. Finally, the validity of the generalized second law of thermodynamics and the condition of thermodynamic equilibrium for the particle production models have been tested.
Crack propagation of Ti alloy via adiabatic shear bands
Energy Technology Data Exchange (ETDEWEB)
Mendoza, I., E-mail: ivanmendozabravo@gmail.com [Instituto Tecnológico de Veracruz (Mexico); Villalobos, D. [Instituto Tecnológico de Veracruz (Mexico); Alexandrov, B.T. [The Ohio State University (United States)
2015-10-01
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids.
Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube
Directory of Open Access Journals (Sweden)
Shodiya Sulaimon
2012-07-01
Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Some characteristics of the atmosphere during an adiabatic process
Institute of Scientific and Technical Information of China (English)
GAO Li; LI Jianping; REN Hongli
2006-01-01
Some important characteristics of the atmosphere during an adiabatic process are investigated, which include the invariability of atmospheric entropy range and local surface potential temperature, the conservation of the atmospheric mass intervened between any isentropic surface and the ground, and the isentropic surface intersecting with the ground. The analysis shows that the atmospheric reference state (ARS) for investigation on available potential energy (APE) should be defined objectively as the state which could be approached from the existing atmosphere by adiabatic adjustment, and be related to initial atmospheric state before adjustment. For the initial atmosphere state at any time, its corresponding ARS is different from the one at another time. Based on the above-mentioned conclusions,the reference state proposed by Lorenz cannot be obtained physically, so a new conception, the conditional minimum total potential energy, is put forward in order to objectively investigate atmospheric APE.
DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT
Institute of Scientific and Technical Information of China (English)
Yang Qiankun; Wang Pengjun; Zheng Xuesong
2013-01-01
By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63％ less than the conventional Domino counterpart.
Adiabatic Evolution in XXX Spin Chain is Fast
Korepin, V
2004-01-01
Adiabatic theorem of quantum mechanics was used by E. Farhi, J. Goldstone, S. Gutmann and M. Sipser to design quantum algorithms of a new kind. A quantum computer evolves slowly enough, so that it remains in its instantaneous ground state, which tells the solution. We consider XXX Heisenberg spin chain. We rotate magnetic field and change its magnitude. The ground state evolves from a ferromagnetic one into a nontrivial ground state of XXX anti-ferromagnet. This adiabatic evolution goes very gently. Because of SU(2) symmetry and integrability only one mode get exited. We prove that the time of the evolution scales as a square root of number of qubits. This is faster then other known examples.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-01
We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.
Confinement loss in adiabatic photonic crystal fiber tapers
Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.
2006-09-01
We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
High-Fidelity Entangled Bell States via Shortcuts to Adiabaticity
Paul, Koushik
2016-01-01
We present a couple of protocols based on shortcut to adiabaticity techniques for rapid generation of robust entangled Bell states in a system of two two-state systems. Our protocols rely on the so-called transitionless quantum driving (TQD) algorithm and Lewis-Riesenfeld invariant (LRI) method. Both TQD and LRI methods result in high fidelity in population transfer.Our study shows that it is possible to prepare an entangled state in infinitely short time without losing robustness and efficiency.
Excitation energies along a range-separated adiabatic connection
Energy Technology Data Exchange (ETDEWEB)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Teale, Andrew M. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Helgaker, Trygve [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway)
2014-07-28
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.
A field theory characterization of interacting adiabatic particles in cosmology
Arteaga, Daniel
2008-01-01
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time-evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
A field theory characterization of interacting adiabatic particles in cosmology
Energy Technology Data Exchange (ETDEWEB)
Arteaga, Daniel [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: darteaga@ub.edu
2008-08-07
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Mapping the region of instability for adiabatic continuation method
GUTIÉRREZHERNANDEZ, JUAN PABLO; Fontalvo Alzate, Javier; Gómez García, Miguel Ángel
2011-01-01
The pioneer schematic ideas of Kimura and Levenspiel (Ind. Eng. Chem. Proc. Des. Dev., 16 (1977) 145 – 148) have been developed to find numerically the region of instability for adiabatic packed bed reactors. Three different cases of special industrial interest and complexity are presented. The highly exothermic gas-phase reactions: ammonia synthesis, methanol production from syn-gas, and SO₂ oxidation. Equations were parameterized and solved according to a continuation homotopy numerical met...
Hypercomputability of quantum adiabatic processes: Fact versus Prejudices
Kieu, T D
2005-01-01
We give an overview of a quantum adiabatic algorithm for Hilbert's tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementation.
Adiabaticity of the ramping process of an ac dipole
Directory of Open Access Journals (Sweden)
R. Tomás
2005-02-01
Full Text Available ac dipoles in accelerators are used to excite coherent betatron oscillations at a drive frequency close to the tune. If the excitation amplitude is slowly increased to the desired value and slowly decreased back to zero there is no significant emittance growth. The aim of this article is to study the adiabaticity of the ramping process of an ac dipole as a function of the different parameters involved.
Quantum state preparation in semiconductor dots by adiabatic rapid passage
Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.
2010-01-01
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Adiabatic Compression Sensitivity of AF-M315E
2015-07-01
is pressurized to specific driving pressures into an accumulator tank above a rapid-opening valve. This valve is placed directly above the burst disc...this mission. Of particular interest is the sensitivity of the propellant at elevated temperatures and the resulting system peak pressures and...dynamic response characteristics. For this study, an adiabatic compression U-tube apparatus was used to determine the driving pressure threshold levels
Characterization of Adiabatic Noise in Charge-Based Coherent Nanodevices
D'Arrigo, A.; Falci, G.; Mastellone, A.; Paladino, E.
2008-10-01
Low-frequency noise, often with 1/f spectrum, has been recognized as the main mechanism of decoherence in present-day solid state coherent nanodevices. The responsible degrees of freedom are almost static during the coherent time evolution of the device leading to effects analogous to inhomogeneous broadening in NMR. Here we present a characterization of the effects of adiabatic noise exploiting the tunability of nanodevices.
Stimulated Raman adiabatic passage in physics, chemistry and beyond
Nikolay V. Vitanov; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2016-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 (Gaubatz \\emph{et al.}, J. Chem. Phys. \\textbf{92}, 5363, 1990). Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry and beyond. This article reviews the many applications of STIRAP emphasizing the ...
Adiabatic embedment of nanomechanical resonators in photonic microring cavities
Xiong, Chi; Li, Mo; Rooks, Michael; Tang, Hong X
2014-01-01
We report a circuit cavity optomechanical system in which a nanomechanical resonator is adiabatically embedded inside an optical ring resonator with ultralow transition loss. The nanomechanical device forms part of the top layer of a horizontal silicon slot ring resonator, which enables dispersive coupling to the dielectric substrate via a tapered nanogap. Our measurements show nearly uncompromised optical quality factors (Q) after the release of the mechanical beam.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Thermal reservoir sizing for adiabatic compressed air energy storage
Energy Technology Data Exchange (ETDEWEB)
Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)
2012-07-01
Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.
Adiabatic Shear Mechanisms for the Hard Cutting Process
Institute of Scientific and Technical Information of China (English)
YUE Caixu; WANG Bo; LIU Xianli; FENG Huize; CAI Chunbin
2015-01-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remalns some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high straln domaln caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
Joyee Ghosh; R Ghosh; Deepak Kumar
2011-10-01
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.
Numerical study of polaron problem in the adiabatic limit
Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin
2010-03-01
We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)
Adiabatic invariants for the regular region of the Dicke model
Bastarrachea-Magnani, M. A.; Relaño, A.; Lerma-Hernández, S.; López-del-Carpio, B.; Chávez-Carlos, J.; Hirsch, J. G.
2017-04-01
Adiabatic invariants for the non-integrable Dicke model are introduced. They are shown to provide approximate second integrals of motion in the energy region where the system exhibits a regular dynamics. This low-energy region, present for any set of values of the Hamiltonian parameters is described both with a semiclassical and a full quantum analysis in a broad region of the parameter space. Peres lattices in this region exhibit that many observables vary smoothly with energy, along distinct lines which beg for a formal description. It is demonstrated how the adiabatic invariants provide a rationale to their presence in many cases. They are built employing the Born–Oppenheimer approximation, valid when a fast system is coupled to a much slower one. As the Dicke model has one bosonic and one fermionic degree of freedom, two versions of the approximation are used, depending on which one is the faster. In both cases a noticeably accord with exact numerical results is obtained. The employment of the adiabatic invariants provides a simple and clear theoretical framework to study the physical phenomenology associated to these regimes, far beyond the energies where a quadratic approximation around the minimal energy configuration can be used.
Non-adiabatic oscillations of compact stars in general relativity
Gualtieri, L; Miniutti, G
2004-01-01
We have developed a formalism to study non-adiabatic, non-radial oscillations of compact stars in the frequency domain including the effects of thermal diffusion in a general relativistic framework. When a general equation of state depending on temperature is used, the perturbations of the fluid result in heat flux which is coupled with the spacetime geometry through the Einstein field equations. Our results show that the frequency of the first pressure (p) and gravity (g) oscillation modes is significantly affected by thermal diffusion, while that of the fundamental (f) mode is basically unaltered due to the global nature of that oscillation. The damping time of the oscillations is generally much smaller than in the adiabatic case (more than two orders of magnitude for the p- and g-modes) reflecting the effect of thermal dissipation. Both the isothermal and adiabatic limits are recovered in our treatment and we study in more detail the intermediate regime. Our formalism finds its natural astrophysical applic...
Steam bottoming cycle for an adiabatic diesel engine
Energy Technology Data Exchange (ETDEWEB)
Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.
1984-03-01
A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.
Quantum Adiabatic Algorithms, Small Gaps, and Different Paths
Farhi, Edward; Gosset, David; Gutmann, Sam; Meyer, Harvey B; Shor, Peter
2011-01-01
We construct a set of instances of 3SAT which are not solved efficiently using the simplest quantum adiabatic algorithm. These instances are obtained by picking random clauses all consistent with two disparate planted solutions and then penalizing one of them with a single additional clause. We argue that by randomly modifying the beginning Hamiltonian, one obtains (with substantial probability) an adiabatic path that removes this difficulty. This suggests that the quantum adiabatic algorithm should in general be run on each instance with many different random paths leading to the problem Hamiltonian. We do not know whether this trick will help for a random instance of 3SAT (as opposed to an instance from the particular set we consider), especially if the instance has an exponential number of disparate assignments that violate few clauses. We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way to numerically investigate the ground state as well as the first excited state of our system...
Energy Technology Data Exchange (ETDEWEB)
Minchener, A.
2007-07-15
There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.
Energy Technology Data Exchange (ETDEWEB)
Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV
2008-01-01
Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.
Two Cases of Radial Adiabatic Motions of a Polytrope with Gamma=4/3
Ivanov, Mikhail I
2013-01-01
A self-gravitating sphere of polytropic gas (polytrope) is considered. The system of equations describing radial motions of this sphere in Lagrangian variables reduces to the only nonlinear PDE of the second order in both variables (Lagrangian coordinate and time). The linearization of this PDE leads to the well-known Eddington's equation of the standard model. The case of no energy exchange between the polytrope and the outer medium is considered, that is, polytrope's motions are adiabatic. If gamma (a ratio of the specific heats of the gas) is 4/3 than PDE obtained allows the separation of variables. There exist two types of solutions of the problem both describing limitless expansion without shock wave formation. The first one is an expansion with positive total energy, and the second one is an expansion with zero total energy. The second solution is of an astrophysical interest. It describes the permanently retarding expansion that, perhaps, is akin to a born of a red giant. The stellar density in this ca...
CAPTURED India Country Evaluation
O'Donoghue, R.; Brouwers, J.H.A.M.
2012-01-01
This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health fol
Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.
2012-01-01
Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2
Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.
2012-01-01
Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2
CAPTURED India Country Evaluation
O'Donoghue, R.; Brouwers, J.H.A.M.
2012-01-01
This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health
DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)
2013-02-10
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.
Streptococcal toxic shock syndrome
Gvozdenović Ljiljana; Pasternak Janko; Milovanović Stanislav; Ivanov Dejan; Milić Saša
2010-01-01
Introduction. Streptococcal toxic shock syndrome is now recognized as a toxin-mediated, multisystem illness. It is characterized by an early onset of shock with multiorgan failure and continues to be associated with high morbidity and mortality, caused by group A Streptococcus pyogenes. The symptoms for staphylococcal and streptococcal toxic shock syndrome are similar. Streptococcal toxic shock syndrome was not well described until 1993, when children who had suffered from varicella pre...
Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.
2014-07-01
Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.
Energy Technology Data Exchange (ETDEWEB)
Abanades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C.A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J.I.; Cerro, E.; Moral, R. Del; Diez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernandez, R.; Galvez, J.; Garcia, J.; Geles, C.; Giorni, A.; Gonzalez, E.; Gonzalez, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Naour, C. Le; Lopez, C.; Loiseaux, J.M.; Martinez-Val, J.M.; Meplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Perez-Enciso, E.; Perez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P. E-mail: jean-pierre.revol@cern.ch; Rubbia, C.; Rubio, J.A.; Sakelliou, L.; Saldana, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J.B.; Vieira, S.; Vlachoudis, V.; Zioutas, K
2002-02-11
We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy (E{sub n}{>=}1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/c protons) slowing down in a 3.3 mx3.3 mx3 m lead volume and of neutron capture rates on LLFFs {sup 99}Tc, {sup 129}I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of {sup 99}Tc or {sup 129}I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.
Tokar, R. L.; Borovsky, J. E.; Birn, J.; Schindler, K.
2001-12-01
In the ISEE-3/ISEE-2 data set, four instances have been found in which an interplanetary shock passes the magnetosphere while ISEE-2 is in the magnetotail plasma sheet. Each time, an increase of the plasma density and plasma temperature is seen during the shock passage, along with a plasma flow toward the center of the magnetotail. A few minutes after the shock passes, a strong earthward flow of plasma commences in the magnetotail. This earthward flow lasts for about 6-7 minutes. The magnetosphere, which was in MHD equilibrium with the solar wind before the shock, is suddenly put out of dynamical equilibrium by the increased pressure behind the shock; for a plasma-sheet adiabatic index that is less than 2, Birn and Schindler [J. Geophys. Res., 88, 6969, 1983] have predicted that this global magnetotail flow should be directed earthward as the magnetotail seeks its new equilibrium. These four ISEE-3/ISEE-2 interplanetary shock intervals are very useful for magnetospheric physics because (a) the adiabatic index of the magnetospheric plasma can be measured by ISEE-2 during the shock compression of the magnetosphere and (b) the spatial structure of turbulence in the magnetotail can be viewed as the global earthward flows sweep the plasma and magnetic fields past the ISEE-2 satellite.
Hartigan, P; Frank, A; Hansen, E; Yirak, K; Liao, A S; Graham, P; Wilde, B; Blue, B; Martinez, D; Rosen, P; Farley, D; Paguio, R
2016-01-01
Supersonic outflows from objects as varied as stellar jets, massive stars and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures and therefore a higher-excitation spectrum than an oblique one does. In this paper we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and ...
Energy Technology Data Exchange (ETDEWEB)
Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)
2016-03-20
We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.
National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...
National Research Council Canada - National Science Library
Daniel P. Schrag
2007-01-01
.... Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon...
Experimental investigation of shock wave - bubble interaction
Energy Technology Data Exchange (ETDEWEB)
Alizadeh, Mohsen
2010-04-09
In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An
Experimental investigation of shock wave - bubble interaction
Energy Technology Data Exchange (ETDEWEB)
Alizadeh, Mohsen
2010-04-09
In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An
Advances in CFD Prediction of Shock Wave Turbulent Boundary Layer Interactions
2006-01-01
8◦. The wall is adiabatic. Experimental data of Deleuze [103] and Laurent [104] is available. The flow conditions are summarized in Table 10. The...Eddy Simulation of Shock Boundary Layer Interaction. In Third AFOSR International Conference on DNS and LES, Arlington, TX, August 2001. [103] Deleuze J...Conditions Reference Data M∞ Reδ × 10−4 Garnier et al[101, 102] LES 2.3 6.0 Deleuze [103], Laurent[104] E 2.3 6.0 Advances in CFD Prediction of Shock
Nonplanar ion-acoustic shocks in electron–positron–ion plasmas: Effect of superthermal electrons
Indian Academy of Sciences (India)
Deb Kumar Ghosh; Prasantha Chatterjee; Pankaj Kumar Mandal; Biswajit Sahu
2013-09-01
Ion-acoustic shock waves (IASWs) in a homogeneous unmagnetized plasma, comprising superthermal electrons, positrons, and singly charged adiabatically hot positive ions are investigated via two-dimensional nonplanar Kadomstev–Petviashvili–Burgers (KPB) equation. It is found that the profiles of the nonlinear shock structures depend on the superthermality of electrons. The influence of other plasma parameters such as, ion kinematic viscosity and ion temperature, is discussed in the presence of superthermal electrons in nonplanar geometry. It is also seen that the IASWs propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on.
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher R. [Univ. of Wisconsin, Madison, WI (United States); Cook, Andrew W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bonazza, Riccardo [Univ. of Wisconsin, Madison, WI (United States)
2013-05-14
Here we derive a growth-rate model for the Richtmyer–Meshkov mixing layer, given arbitrary but known initial conditions. The initial growth rate is determined by the net mass flux through the centre plane of the perturbed interface immediately after shock passage. The net mass flux is determined by the correlation between the post-shock density and streamwise velocity. The post-shock density field is computed from the known initial perturbations and the shock jump conditions. The streamwise velocity is computed via Biot–Savart integration of the vorticity field. The vorticity deposited by the shock is obtained from the baroclinic torque with an impulsive acceleration. Using the initial growth rate and characteristic perturbation wavelength as scaling factors, the model collapses the growth-rate curves and, in most cases, predicts the peak growth rate over a range of Mach numbers (1.1 ≤M_{i}≤1.9), Atwood numbers (₋0.73 ≤ A ≤ ₋0.35 and 0.22 ≤ A ≤ 0.73), adiabatic indices (1.40/1.67≤γ_{1}/γ_{2}≤1.67/1.09) and narrow-band perturbation spectra. Lastly, the mixing layer at late times exhibits a power-law growth with an average exponent of θ=0.24.
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
An, Shuoming; Lv, Dingshun; Del Campo, Adolfo; Kim, Kihwan
2016-09-01
The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a `fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies.
Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport
An, Shuoming; del Campo, Adolfo; Kim, Kihwan
2016-01-01
Adiabatic dynamics plays an essential role in quantum technologies. By driving a quantum system slowly, the quantum evolution can be engineered with suppressed excitation. Yet, environmentally-induced decoherence limits the implementation of adiabatic protocols. Shortcuts to adiabaticity (STA) have the potential to revolutionize quantum technologies by speeding up the time evolution while mimicking adiabatic dynamics. These nonadiabatic protocols can be engineered by means an auxiliary control field is used to tailor excitations. Here we present the first experimental realization of counterdiabatic driving in a continuous variable system, implementing a shortcut to the adiabatic transport of a trapped ion, in which nonadiabatic transitions are suppressed during all stages of the process. The resulting dynamics is equivalent to a "fast-motion video" of the adiabatic trajectory. We experimentally demonstrate the enhanced robustness of the protocol with respect to alternative approaches based on classical local ...
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields
Bondar, Denys
2010-01-01
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low fr...
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Plasma heating via adiabatic magnetic compression-expansion cycle
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Stimulated Raman adiabatic passage analogues in classical physics
Energy Technology Data Exchange (ETDEWEB)
Rangelov, A A [University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Vitanov, N V [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Shore, B W [618 Escondido Cir., Livermore, CA (United States)
2009-03-14
Stimulated Raman adiabatic passage (STIRAP) is a well-established technique for producing coherent population transfer in a three-state quantum system. We here exploit the resemblance between the Schroedinger equation for such a quantum system and the Newton equation of motion for a classical system undergoing torque to discuss several classical analogues of STIRAP, notably the motion of a moving charged particle subject to the Lorentz force of a quasistatic magnetic field, the orientation of a magnetic moment in a slowly varying magnetic field and the Coriolis effect. Like STIRAP, these phenomena occur for counterintuitive motion of the torque and are robustly insensitive to small changes in the interaction properties.
Analysis of interference in attosecond transient absorption in adiabatic condition
Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu
2015-01-01
We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions
Hougen, Jon T.
2013-06-01
The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.
Power comparison of CMOS and adiabatic full adder circuit
Reddy, Sunil Gavaskar; 10.5121/vlsic.2011.2306
2011-01-01
Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. Apart from the basic addition adders also used in performing useful operations such as subtraction, multiplication, division, address calculation, etc. In most of these systems the adder lies in the critical path that determines the overall performance of the system. In this paper conventional complementary metal oxide semiconductor (CMOS) and adiabatic adder circuits are analyzed in terms of power and transistor count using 0.18UM technology.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Adiabatic regularization of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L.
2016-10-01
We investigate the effect of adiabatic regularization on both the tensor- and scalar-perturbation power spectra in nonminimally coupled chaotic inflation. Similar to that of the minimally coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of e -folds. By following the subtraction term long enough beyond horizon crossing, the regularized power spectrum tends to the ``bare'' power spectrum. This study justifies the use of the unregularized (``bare'') power spectrum in standard calculations.
Adiabaticity and Reversibility Studies for Beam Splitting using Stable Resonances
Franchi, A; Giovannozzi, M
2008-01-01
At the CERN Proton Synchrotron, a series of beam experiments proved beam splitting by crossing the one-fourth resonance. Depending on the speed at which the horizontal resonance is crossed, the splitting process is more or less adiabatic, and a different fraction of the initial beam is trapped in the islands. Experiments prove that when the trapping process is reversed and the islands merged together, the final distribution features thick tails. The beam population in such tails is correlated to the speed of the resonance crossing and to the fraction of the beam trapped in the stable islands. Experiments and possible theoretical explanations are discussed.
Metallization of Nanofilms in Strong Adiabatic Electric Fields
Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.
2010-08-01
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1V/Å and pulse durations ranging from ˜1fs to ˜10ns for a film thickness of 3-10 nm.
Adiabatic regularisation of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L
2016-01-01
We investigate the effect of adiabatic regularisation on both the tensor- and scalar-perturbation power spectra in \\textit{nonminimally} coupled chaotic inflation. Similar to that of the \\textit{minimally} coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of $ e $-folds. By following the subtraction term long enough beyond horizon crossing, the regularised power spectrum tends to the "bare" power spectrum. This study justifies the use of the unregularised ("bare") power spectrum in standard calculations.
Nonlinear effects generation in non-adiabatically tapered fibres
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
ADELE adiabatic compressed air energy storage. Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Freund, Sebastian [General Electric Deutschland Holding GmbH, Garching (Germany). GE Global Research Renewable Energy Systems Lab.; Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Research and Development Innovative Power Plant Technology
2013-06-01
This paper gives an overview about compressed air energy storage (CAES) technology and a summary of the ADELE programme, a multi-year R and D programme undertaken by a consortium led by RWE Power to develop adiabatic (A) CAES technology and commercialise the first plant. The ACAES technology is to utilise waste heat developing upon compression in order to increase the entire efficiency. The ADELE-ING project is to provide the basis for making the decision on the construction of a 85 MW prototype. (orig.)
Adiabatic Passage of Collective Excitations in Atomic Ensembles
Institute of Scientific and Technical Information of China (English)
LIYong; MIAOYuan-Xiu; SUNChang-Pu
2004-01-01
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Rmann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.
Adiabatic Passage of Collective Excitations in Atomic Ensembles
Institute of Scientific and Technical Information of China (English)
LI Yong; MIAO Yuan-Xiu; SUN Chang-Pu
2004-01-01
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.
Fast CNOT gate via shortcuts to adiabatic passage
Wang, Zhe; Xia, Yan; Chen, Ye-Hong; Song, Jie
2016-10-01
Based on the shortcuts to adiabatic passage, we propose a scheme for directly implementing a controlled-not (CNOT) gate in a cavity quantum electrodynamics system. Moreover, we generalize the scheme to realize a CNOT gate in two separate cavities connected by an optical fiber. The strictly numerical simulation shows that the schemes are fast and insensitive to the decoherence caused by atomic spontaneous emission and photon leakage. In addition, the schemes can provide a theoretical basis for the manipulation of the multiqubit quantum gates in distant nodes of a quantum network.
Non-adiabatic study of the Kepler subgiant KIC 6442183
Directory of Open Access Journals (Sweden)
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
Savage, M. L.; Kittel, P.; Roellig, T.
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes
Zou, Dongyang; Xu, Chunguang; Dong, Haibo; Liu, Jun
2017-09-01
In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine-Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian-Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.
Results from Direct-Drive Shock-Timing Experiments at the National Ignition Facility
Radha, P. B.; Rosenberg, M. J.; Hohenberger, M.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Marozas, J. A.; Myatt, J. F.; Regan, S. P.; Sangster, T. C.; Dixit, S.
2016-10-01
The timing of multiple shocks is critical to set an inertial confinement capsule on a desired adiabat. Several factors including laser-energy deposition, heat conduction, and equation of state determine the adiabat of the compressing shell. Dual-axis cone-in-shell experiments, performed with plastic, (CH) shells and solid spheres, are used to diagnose the first shock velocity and the catch up of subsequent shocks at the National Ignition Facility. The shocks are launched with multiple pickets, expected to be used in ignition-relevant designs, at two different intensities. In separate experiments, continuous pulse shapes are also diagnosed. The measurements are compared to two-dimensional DRACO simulations that include the effects of nonlocal heat transport, cross-beam energy transfer, and the first-principles equation of state of CH. Designs that could potentially diagnose late-time energy coupling through shocks are also presented. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Numerical study of shock waves in non-ideal magnetogasdynamics (MHD
Directory of Open Access Journals (Sweden)
Addepalli Ramu
2016-01-01
Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.
Exact solution of planar and nonplanar weak shock wave problem in gasdynamics
Energy Technology Data Exchange (ETDEWEB)
Singh, L.P. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Ram, S.D., E-mail: sram.rs.apm@itbhu.ac.in [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India); Singh, D.B. [Department of Applied Mathematics, Institute of Technology, Bananas Hindu University, Varanasi 221 005 (India)
2011-11-15
Highlights: > An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. > The density ahead of the shock is taken as a power of the position from the origin of the shock wave. > For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. > The solution obtained for the planer, and cylindrically symmetric flow is new one. > The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.
Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan)
2013-06-15
The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.
Non-ideal compressible-fluid effects in oblique shock waves
Gori, G.; Vimercati, D.; Guardone, A.
2017-03-01
The non-monotone dependence of the speed of sound along adiabatic transformations is demonstrated to result in the admissibility of non-ideal increase of the flow Mach number across oblique shock waves, for pre-shock states in close proximity of the liquid-vapour saturation curve. This non-ideal behaviour is primarily associated with a less-than-unity value of the fundamental derivative of gasdynamics and, therefore, non-ideal shock waves are expected to be observed in flows of fluids with moderate molecular complexity. The simple yet qualitatively sound van der Waals model is used to confirm the present findings and to provide exemplary non-ideal shock waves.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Institute of Scientific and Technical Information of China (English)
CHEN Xiang-Wei; WANG Ming-Quan; WANG Xin-Min
2005-01-01
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Institute of Scientific and Technical Information of China (English)
WANG Yu-Sheng; ZHANG Xiao-Ni; YUAN Bao-He; FANG Jian-Hui; YANG Guo-Hong; LIN Peng; PANG Ting
2008-01-01
Based on the concept of higher-order adiabatic invariants of mechanical system with action of a small perturbation, the perturbation to Lie symmetry and generalized Hojman adiabatic invariants for the relativistic Hamilton system are studied. Perturbation to Lie symmetry is discussed under general infinitesimal transformation of groups in which time is variable. The form and the criterion of generalized Hojman adiabatic invariants for this system are obtained. Finally, an example is given to illustrate the results.
Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincaré equation
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Wei; Liu Cui-Mei; Li Yan-Min
2006-01-01
Based on the invariance of differential equations under infinitesimal transformations,Lie symmetry,laws of conservations,perturbation to the symmetries and adiabatic invariants of Poincaré equations are presented.The concepts of Lie symmetry and higher order adiabatic invariants of Poincaré equations are proposed.The conditions for existence of the exact invariants and adiabatic invariants are proved,and their forms are also given.In addition,an example is presented to illustrate these results.
Perturbation to Lie Symmetry and Adiabatic Invariants for General Holonomic Mechanical Systems
Institute of Scientific and Technical Information of China (English)
DING Ning; FANG Jian-Hui; WANG Peng; ZHANG Xiao-Ni
2007-01-01
Based on the concept of adiabatic invariant, the perturbation to the Lie symmetry and adiabatic invariants for general holonomic mechanical systems are studied. The exact invariants induced directly from the Lie symmetry of the system without perturbation are given. The perturbation to the Lie symmetry is discussed and the adiabatic invariants that have the different form from that in [Act. Phys. Sin. 55 (2006) 3236 (in Chinese)] of the perturbed system, are obtained.
Exact invariants and adiabatic invariants of dynamical system of relative motion
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Wei; Wang Xin-Min; Wang Ming-Quan
2004-01-01
Based on the theory of symmetries and conserved quantities, the exact inwriants and adiabatic inwriants of a dynamical system of relative motion are studied. The perturbation to symmetries for the dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier energies
Indian Academy of Sciences (India)
S V S Sastry; S Kailas; A K Mohanty; A Saxena
2005-01-01
The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from the modified Wilzynska–Wilzynski prescription. The fusion barrier systematics has been obtained for a wide range of heavy-ion systems.
Numerical study of the laminar shock boundary layer interaction
Katzer, E.
1985-02-01
The interaction of an oblique shock wave with a laminar boundary layer on an adiabatic flat plate was analyzed numerically with solutions of the two dimensional Navier-Stokes equations using McCormack's explicit finite volume method. The agreement between numerical calculations and experimental results is good. Local and global properties of the interaction region are discussed regarding shock strength, separation bubble length using a similarity law, and separation environment. The asymetrical structure inside the separation bubble produces an asymetrical shape of the wall shear stress distribution. The calculation speed was increased by algorithm vectorization on a CRAY 1S supercomputer. Further investigations for determination of a similarity law in interaction with turbulent boundary layer, of the physical mechanisms of the laminar interaction, and for study of the wall temperature transfer are recommended.
Bipolar supernova remnants and the obliquity dependence of shock acceleration
Fulbright, Michael S.; Reynolds, Stephen P.
1990-01-01
The diffusive shock acceleration mechanism proposed to explain the bipolarity observed in the synchrotron radio emission of young adiabatically expanding shell SNRs is investigated by means of numerical simulations. The theoretical basis of the SNR models and the numerical computation methods are explained, and the results are presented in graphs and synthetic radio maps and discussed in detail. It is found that the efficiency of the acceleration process depends on the obliquity angle theta(Bn) between the shock normal and the uniform magnetic field: models with theta(Bn) of about 90 deg can reproduce the observed azimuthal intensity ratios in most cases, but models with theta(Bn) near 0 deg cannot.
Bipolar supernova remnants and the obliquity dependence of shock acceleration
Energy Technology Data Exchange (ETDEWEB)
Fulbright, M.S.; Reynolds, S.P. (North Carolina State Univ., Raleigh (USA))
1990-07-01
The diffusive shock acceleration mechanism proposed to explain the bipolarity observed in the synchrotron radio emission of young adiabatically expanding shell SNRs is investigated by means of numerical simulations. The theoretical basis of the SNR models and the numerical computation methods are explained, and the results are presented in graphs and synthetic radio maps and discussed in detail. It is found that the efficiency of the acceleration process depends on the obliquity angle theta(Bn) between the shock normal and the uniform magnetic field: models with theta(Bn) of about 90 deg can reproduce the observed azimuthal intensity ratios in most cases, but models with theta(Bn) near 0 deg cannot. 32 refs.
Numerical investigation of shock induced bubble collapse in water
Apazidis, N.
2016-04-01
A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.
Experiments in hand-operated, hypersonic shock tunnel facility
Sudhiesh Kumar, Chintoo; Reddy, K. P. J.
2016-11-01
Experiments were conducted using the newly developed table-top, hand-operated hypersonic shock tunnel, otherwise known as the Reddy hypersonic shock tunnel. This novel instrument uses only manual force to generate the shock wave in the shock tube, and is designed to generate a freestream flow of Mach 6.5 in the test section. The flow was characterized using stagnation point pressure measurements made using fast-acting piezoelectric transducers. Schlieren visualization was also carried out to capture the bow shock in front of a hemispherical body placed in the flow. Freestream Mach numbers estimated at various points in the test section showed that for a minimum diameter of 46 mm within the test section, the value did not vary by more than 3 % along any cross-sectional plane. The results of the experiments presented here indicate that the device may be successfully employed for basic hypersonic research activities at the university level.
Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation
Mann, Christopher R; Morris, Melissa M
2016-01-01
We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...
Adiabatic invariants of generalized Lutzky type for disturbed holonomic nonconservative systems
Institute of Scientific and Technical Information of China (English)
Luo Shao-Kai; Cai Jian-Le; Jia Li-Qun
2008-01-01
Based on the definition of higher-order adiabatic invariants of a mechanical system,a new type of adiabatic invariants,i.e.generalized Lutzky adiabatic invariants,of a disturbed holonomic nonconservative mechanical system are obtained by investigating the perturbation of Lie symmetries for a holonomic nonconservative mechanical system with the action of small disturbance.The adiabatic invaxiants and the exact invariants of the Lutzky type of some special cases,for example,the Lie point symmetrical transformations,the special Lie symmetrical transformations,and the Lagrange system,are given.And an example is given to illustrate the application of the method and results.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics
Institute of Scientific and Technical Information of China (English)
Zhang Yi
2006-01-01
The perturbations to symmetries and adiabatic invariants for nonconservative systems of generalized classical mechanics are studied. The exact invariant in the form of Hojman from a particular Lie symmetry for an undisturbed system of generalized mechanics is given. Based on the concept of high-order adiabatic invariant in generalized mechanics, the perturbation to Lie symmetry for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the nonconservative system of generalized classical mechanics is obtained, which can be called the Hojman adiabatic invariant. An example is also given to illustrate the application of the results.
Energy Technology Data Exchange (ETDEWEB)
Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)
2016-04-01
High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.
Energy Technology Data Exchange (ETDEWEB)
Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2014-11-15
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.
Adiabatic Compression of Compact Tori for Current Drive and Heating
Woodruff, Simon; McNab, Angus; Miller, Kenneth; Ziemba, Tim
2008-11-01
Several critical issues stand in the development path for compact tori. An important one is the production of strong magnetic fields, (or large flux amplifications) by use of a low current source. The Pulsed Build-up Experiment is a Phase II SBIR project in which we aim to show a new means for generating strong magnetic fields from a low current source, namely, the repetitive injection of helicity-bearing plasma that also undergoes an acceleration and compression. In the Phase I SBIR, advanced computations were benchmarked against analytic theory and run to determine the best means for the acceleration and compression of a compact torus plasma. The study included detailed simulations of magnetic reconnection. In Phase II, an experiment has been designed and is being built to produce strong magnetic fields in a spheromak by the repetitive injection of magnetic helicity from a low current coaxial plasma source. The plasma will be accelerated and compressed in a similar manner to a traveling wave adiabatic compression scheme that was previously applied to a mirror plasma [1]. [1] P. M. Bellan Scalings for a Traveling Mirror Adiabatic Magnetic Compressor Rev. Sci. Instrum. 53(8) 1214 (1982) Work supported by DOE Grant No. DE-FG02-06ER84449.
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco
2007-03-01
The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.
General background conditions for K-bounce and adiabaticity
Romano, Antonio Enea
2016-01-01
We study the background conditions for a bounce in a single scalar field model with a generalized kinetic term $K(X)$. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter $H$ changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for $K(X)$ and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic $K$, and the other on a $K$ which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces. In models where the bounce occurs when the potential is not constant, large non adiabatic perturbations are produced, which can in turn source the growth of anisotropies. In the region where these models have a constant potential they became adiabatic on any scale and because of thi...
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
Adiabatic Berry Phase and Hannay Angle for Open Paths
Pati, A K
1998-01-01
We obtain the adiabatic Berry phase by defining a generalised gauge potential whose line integral gives the phase holonomy for arbitrary evolutions of parameters. Keeping in mind that for classical integrable systems it is hardly clear how to obtain open-path Hannay angle, we establish a connection between the open-path Berry phase and Hannay angle by using the parametrised coherent state approach. Using the semiclassical wavefunction we analyse the open-path Berry phase and obtain the open-path Hannay angle. Further, by expressing the adiabatic Berry phase in terms of the commutator of instantaneous projectors with its differential and using Wigner representation of operators we obtain the Poisson bracket between distribution function and its differential. This enables us to talk about the classical limit of the phase holonomy which yields the angle holonomy for open-paths. An operational definition of Hannay angle is provided based on the idea of classical limit of quantum mechanical inner product. A probab...
The 0.1K bolometers cooled by adiabatic demagnetization
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
The 0.1K bolometers cooled by adiabatic demagnetization
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
Winter, Peter
2010-01-01
Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calcu...
On the electron temperature downstream of the solar wind termination shock
Energy Technology Data Exchange (ETDEWEB)
Chashei, I.V. [Lebedev Physical Institute, Moscow (Russian Federation); Fahr, H.J. [Bonn Univ. (Germany). Argelander Inst. fuer Astronomie
2013-09-01
In this paper we study the temperatures of electrons convected with the solar wind to large solar distances and finally transported over the solar wind termination shock. Nearly nothing, unless at high energies in the cosmic ray regime, is known about the thermodynamical behaviour of these distant electrons from in situ plasma observations. Hence it is tacitly assumed these electrons, due to their adiabatic behaviour and vanishing heat conduction or energization processes, have rapidly cooled off to very low temperatures once they eventually arrive at the solar wind termination shock (at about 100 AU). In this paper we show that such electrons, however, at their passage over the termination shock due to the shock-electric field action undergo an overadiabatic heating and therefore appear on the downstream side as a substantially heated plasma species. Looking quantitatively into this heating process we find that solar wind electrons achieve temperatures of the order of 2-4 x 10{sup 6} K downstream of the termination shock, depending on the upstream solar wind bulk velocity and the shock compression ratio. Hence these electrons therewith play an important dynamical role in structuring this shock and determining the downstream plasma flow properties. Furthermore, they present an additional ionization source for incoming neutral interstellar hydrogen and excite X-ray emission. They also behave similar to cosmic ray electrons and extend to some limited region upstream of the shock of the order of 0.1 AU by spatial diffusion and thereby also modify the upstream solar wind properties. (orig.)
Ion-acoustic shocks with self-regulated ion reflection and acceleration
Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.; Liseykina, T. V.; Diamond, P. H.; Papadopoulos, K.; Liu, C.-S.; Su, J. J.
2016-04-01
An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M ≈1.6 (no ion reflection) to M ≈1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M ≈3.1 to M ≈4.5 . The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically.
Shock veins in the central uplift of the Manicouagan impact structure: Context and genesis
Biren, Marc B.; Spray, John G.
2011-03-01
We describe the development of shock veins that penetrate the anorthositic central uplift of the Manicouagan impact structure. They occur as thin (shatter cones, planar fractures and planar deformation features in various minerals. The shock veins at Manicouagan share many similarities with vein systems developed in meteorites. They also provide an in situ context with which to better understand meteoroid source and lofting conditions. In addition to containing high pressure phases, the shock veins exhibit evidence for high temperature partial melting of host silicate clasts, with the generation of flow-textured fragments and glasses. The formation of microcrystallites and dendrites from some melts indicates rapid cooling. We propose a two-stage generation mechanism comprising an initial high-pressure shock excursion (estimated to last < 0.5 s based on projectile size considerations) followed by a longer high-temperature pulse of a few seconds duration. We suggest that the shock excursion is initiated by target heterogeneities that cause distortions in the hemispherically propagating shock front. This results in radially oriented tearing and vein formation with shock amplification occurring via intra-vein shock reverberation. High-speed displacement along the veins is driven by stress release on rarefaction, which results in frictional melting via adiabatic heating.
Toxic Shock Syndrome (For Parents)
... Feeding Your 1- to 2-Year-Old Toxic Shock Syndrome KidsHealth > For Parents > Toxic Shock Syndrome Print ... en español Síndrome de shock tóxico About Toxic Shock Syndrome Toxic shock syndrome (TSS) is a serious ...
Ricci, P.; Truhlík, E.; Mosconi, B.; Smejkal, J.
2010-06-01
Model dependence of the capture rates of the negative muon capture in deuterium is studied starting from potential models and the weak two-body meson exchange currents constructed in the tree approximation and also from an effective field theory. The tree one-boson exchange currents are derived from the hard pion chiral Lagrangians of the NΔπρωa system. If constructed in conjunction with the one-boson exchange potentials, the capture rates can be calculated consistently. On the other hand, the effective field theory currents, constructed within the heavy baryon chiral perturbation theory, contain a low energy constant d that cannot be extracted from data at the one-particle level nor determined from the first principles. Comparative analysis of the results for the doublet transition rate allows us to extract the constant d.
Streptococcal toxic shock syndrome
Directory of Open Access Journals (Sweden)
Gvozdenović Ljiljana
2010-01-01
Full Text Available Introduction. Streptococcal toxic shock syndrome is now recognized as a toxin-mediated, multisystem illness. It is characterized by an early onset of shock with multiorgan failure and continues to be associated with high morbidity and mortality, caused by group A Streptococcus pyogenes. The symptoms for staphylococcal and streptococcal toxic shock syndrome are similar. Streptococcal toxic shock syndrome was not well described until 1993, when children who had suffered from varicella presented roughly 2-4 weeks later with a clinical syndrome highly suggestive of toxic shock syndrome. Characteristics, complications and therapy. It is characterized by a sudden onset of fever, chills, vomiting, diarrhea, muscle aches and rash. It can rapidly progress to severe and intractable hypotension and multisystem dysfunction. Almost every organ system can be involved. Complications of streptococcal toxic shock syndrome may include kidney failure, liver failure and even death. Crystalloids and inotropic agents are used to treat the hypovolemic shock aggressively, with close monitoring of the patient’s mean arterial pressure and central venous pressure. An immediate and aggressive management of hypovolemic shock is essential in streptococcal toxic shock syndrome. Targeted antibiotics are indicated; penicillin or a betalactam antibiotic is used for treating group A streptococci, and clindamycin has emerged as a key portion of the standard treatment.
Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.
1996-01-01
Ames Research Center developed a prototype pressure suit for hemophiliac children, based on research of astronauts' physiological responses in microgravity. Zoex Corporation picked up the design and patents and developed an anti-shock garment for paramedic use. Marketed by Dyna Med, the suit reverses the effect of shock on the body's blood distribution by applying counterpressure to the legs and abdomen, returning blood to vital organs and stabilizing body pressure until the patient reaches a hospital. The DMAST (Dyna Med Anti-Shock Trousers) employ lower pressure than other shock garments, and are non-inflatable.
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
US Spacesuit Knowledge Capture
Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen
2011-01-01
The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes
Directory of Open Access Journals (Sweden)
Rajinder Pal
2016-03-01
Full Text Available Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a unstable oil-in-water (O/W emulsions without surfactant; (b surfactant-stabilized O/W emulsions; (c unstable water-in-oil (W/O emulsions without surfactant; and (d surfactant-stabilized W/O emulsions. The entropy generation rate per unit pipe length is affected by the type of the emulsion as well as its stability. Unstable emulsions without any surfactant present at the interface generate less entropy in the turbulent regime as compared with the surfactant-stabilized emulsions of the same viscosity and density. The effect of surfactant is particularly severe in the case of W/O emulsions. In the turbulent regime, the rate of entropy generation in unstable W/O emulsions is much lower in comparison with that observed in the stable W/O emulsions. A significant delay in the transition from laminar to turbulent regime is also observed in the case of unstable W/O emulsion. Finally, the analysis and simulation results are presented on non-adiabatic pipeline flow of emulsions.
Diffusive Shock Acceleration at Cosmological Shock Waves
Kang, Hyesung
2012-01-01
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Z.P.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab. Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)
1991-09-01
A normal zone propagation model has been developed for superconducting composites under adiabatic conditions. It is based on the Whetstone-Roos model, originally developed for normal zone propagation in adiabatic wires of unclad superconductor. The model takes into account the temperature and magnetic field dependent material properties, for both superconductor and matrix metal. Analytical results agree well with experimental data. (author).
Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets
De Raedt, H; Miyashita, S; Michielsen, K; Machida, M
A microscopic model of the molecular magnet V-15 is used to study mechanisms for the adiabatic change of the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the most plausible source for the energy-level repulsions that lead to adiabatic changes
Ramaswami, Rama
2009-01-01
Digital lecture capture and broadcast solutions have been around for only about 10 years, but are poised for healthy growth. Frost & Sullivan research analysts estimate that the market (which amounts to $25 million currently) will quadruple by 2013. It's still dominated by a few key players, however: Sonic Foundry holds a hefty 40 percent-plus…
Energy Technology Data Exchange (ETDEWEB)
Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)
1999-01-01
In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.
Energy Technology Data Exchange (ETDEWEB)
Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.
1999-11-02
In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.
Toxic Shock Syndrome (For Teens)
... Surgery? A Week of Healthy Breakfasts Shyness Toxic Shock Syndrome KidsHealth > For Teens > Toxic Shock Syndrome Print ... it, then take some precautions. What Is Toxic Shock Syndrome? If you're a girl who's had ...
The interaction of a magnetohydrodynamical shock with a filament
Goldsmith, K J A
2016-01-01
We present 3D magnetohydrodynamic numerical simulations of the adiabatic interaction of a shock with a dense, filamentary cloud. We investigate the effects of various filament lengths and orientations on the interaction using different orientations of the magnetic field, and vary the Mach number of the shock, the density contrast of the filament, and the plasma beta, in order to determine their effect on the evolution and lifetime of the filament. We find that in a parallel magnetic field filaments have longer lifetimes if they are orientated more 'broadside' to the shock front, and that an increase in the density contrast hastens the destruction of the cloud, in terms of the modified cloud-crushing time-scale, tcs. The combination of a mild shock and a perpendicular or oblique field provides the best condition for extending the life of the filament, with some filaments able to survive almost indefinitely since they are cocooned by the magnetic field. A high value for the density contrast does not initiate la...
CAPTURED End Evaluation Synthesis Report
Brouwers, J.H.A.M.
2012-01-01
This report provides the findings of the Synthesis Study of the CAPTURED Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the three CAPTURED partners have achieved commendable results. Ten lessons learned are formulated th
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Duality in adiabatic level crossing Quantum coherence and complete reflection
Fujikawa, K; Fujikawa, Kazuo; Suzuki, Hiroshi
1997-01-01
A field dependent su(2) gauge transformation connects between the adiabatic and diabatic pictures in the (Landau-Zener-Stueckelberg) level crossing problem. It is pointed out that weak and strong level crossing interactions are interchanged under this transformation, and thus realizing a naive strong and weak duality. A reliable perturbation theory is thus formulated in the both limits of weak and strong interactions. Main characteristics of the level crossing phenomena such as the Landau-Zener formula including its numerical coefficient are well-described by simple perturbation theory without referring to Stokes phenomena. We also show that quantum coherence in a double well potential is generally suppressed by the effect of level crossing, which is analogous to the effect of Ohmic dissipation on quantum coherence.
Diabatic and Adiabatic Collective Motion in a Model Pairing System
Nakatsukasa, T; Nakatsukasa, Takashi; Walet, Niels R.
1998-01-01
Large amplitude collective motion is investigated for a model pairing Hamiltonian containing an avoided level crossing. A classical theory of collective motion for the adiabatic limit is applied utilising either a time-dependent mean-field theory or a direct parametrisation of the time-dependent Schrödinger equation. A modified local harmonic equation is formulated to take account of the Nambu-Goldstone mode. It turns out that in some cases the system selects a diabatic path. Requantizing the collective Hamiltonian, a reasonable agreement with an exact calculation for the low-lying levels are obtained for both weak and strong pairing force. This improves on results of the conventional Born-Oppenheimer approximation.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-04-01
We then consider an example in which cw=cs, where δPnad=δPc,nad=0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense is not always enough to ensure the conservation of Rc or ζ.
Reversibility and Adiabatic Computation Trading Time and Space for Energy
Li, Maozhen; Li, Ming; Vitanyi, Paul
1996-01-01
Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility tra...
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Adiabatic pumping of Chern-Simons axion coupling.
Taherinejad, Maryam; Vanderbilt, David
2015-03-06
We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric loop characterized by a nonzero second Chern number C^{(2)} from the viewpoint of the hybrid Wannier representation, in which the Wannier charge centers are visualized as sheets defined over a projected 2D Brillouin zone. We derive a new formula for the CSA coupling, expressing it as an integral involving Berry curvatures and potentials defined on the Wannier charge center sheets. We show that a loop characterized by a nonzero C^{(2)} requires a series of sheet-touching events at which 2π quanta of Berry curvature are passed from sheet to sheet, in such a way that e^{2}/h units of CSA coupling are pumped by a lattice vector by the end of the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding Hamiltonian and discuss their implications.
Diffusion of the adiabatic invariant for modulated symplectic maps
Energy Technology Data Exchange (ETDEWEB)
Bazzani, A.; Brini, F.; Turchetti, G. [University of Bologna, INFN sezione di Bologna via Irnerio n.46, I-40126 Bologna (Italy)
1997-02-01
We consider the diffusion of the orbits due to a slow modulation of a parameter in an almost integrable symplectic map. This phenomenon (modulational diffusion) is relevant for the stability of the betatronic motion when the ripples are present in the feeding currents of the magnets. In the limit of a slow periodic modulation when the theory of Neishtadt applies, the diffusion takes place in the region swept by a nonlinear resonance and a random walk is defined in the space of the adiabatic invariant. The effect of the boundaries is reproduced by introducing an absorbing boundary condition (dynamical aperture) or a reflecting boundary condition. The analytical result for the action distribution function reproduces very well the numerical distribution function both when the diffusion takes place in a bounded region and when the orbits reach the dynamical aperture. {copyright} {ital 1997 American Institute of Physics.}
Yang-Mills moduli space in the adiabatic limit
Lechtenfeld, Olaf
2015-01-01
We consider the Yang-Mills equations for a matrix gauge group $G$ inside the future light cone of 4-dimensional Minkowski space, which can be viewed as a Lorentzian cone $C(H^3)$ over the 3-dimensional hyperbolic space $H^3$. Using the conformal equivalence of $C(H^3)$ and the cylinder $R\\times H^3$, we show that, in the adiabatic limit when the metric on $H^3$ is scaled down, classical Yang-Mills dynamics is described by geodesic motion in the infinite-dimensional group manifold $C^\\infty (S^2_\\infty,G)$ of smooth maps from the boundary 2-sphere $S^2_\\infty=\\partial H^3$ into the gauge group $G$.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Influence of coherent adiabatic excitation on femtosecond transient signals
Conde, A Peralta; Longarte, A
2016-01-01
The transient signals derived from femtosecond pump-probe experiments are analyzed in terms of the coherent evolution of the energy levels perturbed by the excitation pulse. The model system is treated as the sum of independent two-level subsystems that evolve adiabatically or are permanently excited, depending on the detuning from the central wavelength of the excitation laser. This approach will allow us to explain numerically and analytically the convergence between the coherent and incoherent (rate equations) treatments for complex multi-level systems. It will be also shown that the parameter that determines the validity of the incoherent treatment is the distribution of states outside and inside the laser bandwidth, rather than the density of states as it is commonly accepted.
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
Institute of Scientific and Technical Information of China (English)
张林
2015-01-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.
Adiabatic Dynamics of Edge Waves in Photonic Graphene
Ablowitz, M J; Ma, Y -P
2014-01-01
The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a `time'-dependent one-dimensional nonlinear Schr\\"odinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the `time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states.
Cosmological consequences of an adiabatic matter creation process
Nunes, Rafael C
2016-01-01
In this paper we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analyzed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, $Om$, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from $\\Lambda$CDM by providing a null test for the cosmological constant, meaning that, for any two redshifts $z_1$, $z_2$, $Om (z)$ is same, i.e. $Om (z_1)- Om (z_2)= 0$. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/ phantom behavior without knowing the accurate value of the matter density, and the presen...
A Random Matrix Model of Adiabatic Quantum Computing
Mitchell, D R; Lue, W; Williams, C P; Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2004-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances, i.e., those having a critical ratio of clauses to variables, the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathemat...
Adiabatic approximation for the Rabi model with broken inversion symmetry
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.
Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M
2009-03-15
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified.
On the adiabatic ionization energy of the propargyl radical
Jacovella, U.; Gans, B.; Merkt, F.
2013-08-01
The photoionization and pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the propargyl radical have been recorded in the vicinity of the origin of the tilde{X}^+ ^1A_1 leftarrow tilde{X} ^2B_1 photoionizing transition. An internally cold sample of propargyl with a rotational temperature of ˜45 K was produced in a supersonic expansion of 1,3-butadiene in helium. Propargyl was generated by excimer laser (ArF, 193 nm) photolysis of 1,3-butadiene in a quartz capillary mounted at the exit of a pulsed valve. The rotational structure of the origin band of the photoelectron spectrum was partially resolved and an improved value of the adiabatic ionization energy of propargyl (EI/hc = 70174.5(20) cm-1) was determined.
Effect of Poisson noise on adiabatic quantum control
Kiely, A.; Muga, J. G.; Ruschhaupt, A.
2017-01-01
We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.
Adiabatic Cooling for Rovibrational Spectroscopy of Molecular Ions
DEFF Research Database (Denmark)
Fisher, Karin
2017-01-01
The field of cold molecular ions is a fast growing one, with applications in high resolution spectroscopy and metrology, the search for time variations of fundamental constants, cold chemistry and collisions, and quantum information processing, to name a few. The study of single molecular ions...... is attractive as it enables one to push the limits of spectroscopic accuracy. Non-destructive spectroscopic detection of molecular ions can be achieved by co-trapping with an easier to detect atomic ion. The ion chain has coupled motion, and transitions which change both the internal and motional states...... to the measured heating rates, almost perfectly fitting existing heating rate theory. Further, the same model successfully predicted the heating rates of the in-phase mode of a two-ion crystal, indicating that we can use it to predict the heating rates in experiments on molecule-atom chains. Adiabatic cooling...
Filtering of matter wave vibrational states via spatial adiabatic passage
Loiko, Yu; Corbalán, R; Birkl, G; Mompart, J; 10.1103/PhysRevA.83.033629
2011-01-01
We discuss the filtering of the vibrational states of a cold atom in an optical trap, by chaining this trap with two empty ones and controlling adiabatically the tunneling. Matter wave filtering is performed by selectively transferring the population of the highest populated vibrational state to the most distant trap while the population of the rest of the states remains in the initial trap. Analytical conditions for two-state filtering are derived and then applied to an arbitrary number of populated bound states. Realistic numerical simulations close to state-of-the-art experimental arrangements are performed by modeling the triple well with time dependent P\\"oschl-Teller potentials. In addition to filtering of vibrational states, we discuss applications for quantum tomography of the initial population distribution and engineering of atomic Fock states that, eventually, could be used for tunneling assisted evaporative cooling.
Differential geometric treewidth estimation in adiabatic quantum computation
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Adiabatic pumping solutions in global AdS
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
Dosne Pasqualini, C
1998-01-01
The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.
Haupt, G
1997-05-01
Extracorporeal shock waves have revolutionized urological stone treatment. Nowadays shock waves are widely used in orthopedics, too. This article reviews the applications of extracorporeal shock waves on bone and adjacent soft tissue. The osteoneogenetic effect of extracorporeal shock waves has been proven and can be used to treat pseudarthrosis with a success rate of around 75%. Shock waves have a positive effect in tennis and golfer's elbow, calcaneal spur, and the complex called "periarthritis humero-scapularis." The mechanism for this is not yet known, and results from large prospective and randomized studies are still lacking. However, the treatment has been performed many thousands of times. In patients in whom conservative treatment has failed surgery used to be the only choice, but its success rate barely exceeds that of shock wave therapy and surgery can still be done if shock wave therapy fails. Extracorporeal shock waves will have an impact on orthopedics comparable to its effect in urology. Scientific evaluations, professional certifications, quality assurance and reimbursement issues present great challenges.
DEFF Research Database (Denmark)
van Hooren, Franca; Kaasch, Alexandra; Starke, Peter
2014-01-01
in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...
DEFF Research Database (Denmark)
Willerslev, Rane; Suhr, Christian
2014-01-01
shocks? In this text we exchange personal experiences of cinematic shocks and ponder over these questions as related to wider theories on human trauma, emancipation, and enlightenment. In conclusion we argue for a revision of anthropological notions of validity in terms of the efficacy of the cinematic...
Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments
Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.
2010-12-01
Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the
Capture of Planets Into Mean Motion Resonances and the Origins of Extrasolar Orbital Architectures
Batygin, Konstantin
2015-01-01
The early stages of dynamical evolution of planetary systems are often shaped by dissipative processes that drive orbital migration. In multi-planet systems, convergent amassing of orbits inevitably leads to encounters with rational period ratios, which may result in establishment of mean motion resonances. The success or failure of resonant capture yields exceedingly different subsequent evolutions, and thus plays a central role in determining the ensuing orbital architecture of planetary systems. In this work, we employ an integrable Hamiltonian formalism for first order planetary resonances that allows both secondary bodies to have finite masses and eccentricities, and construct a comprehensive theory for resonant capture. Particularly, we derive conditions under which orbital evolution lies within the adiabatic regime, and provide a generalized criterion for guaranteed resonant locking as well as a procedure for calculating capture probabilities when capture is not certain. Subsequently, we utilize the de...
Wigner phase space distribution via classical adiabatic switching
Energy Technology Data Exchange (ETDEWEB)
Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
On the electron temperature downstream of the solar wind termination shock
Directory of Open Access Journals (Sweden)
I. V. Chashei
2013-07-01
Full Text Available In this paper we study the temperatures of electrons convected with the solar wind to large solar distances and finally transported over the solar wind termination shock. Nearly nothing, unless at high energies in the cosmic ray regime, is known about the thermodynamical behaviour of these distant electrons from in~situ plasma observations. Hence it is tacitly assumed these electrons, due to their adiabatic behaviour and vanishing heat conduction or energization processes, have rapidly cooled off to very low temperatures once they eventually arrive at the solar wind termination shock (at about 100 AU. In this paper we show that such electrons, however, at their passage over the termination shock due to the shock–electric field action undergo an over-adiabatic heating and therefore appear on the downstream side as a substantially heated plasma species. Looking quantitatively into this heating process we find that solar wind electrons achieve temperatures of the order of 2–4 × 106 K downstream of the termination shock, depending on the upstream solar wind bulk velocity and the shock compression ratio. Hence these electrons therewith play an important dynamical role in structuring this shock and determining the downstream plasma flow properties. Furthermore, they present an additional ionization source for incoming neutral interstellar hydrogen and excite X-ray emission. They also behave similar to cosmic ray electrons and extend to some limited region upstream of the shock of the order of 0.1 AU by spatial diffusion and thereby also modify the upstream solar wind properties.