WorldWideScience

Sample records for adiabatic markovian dynamics

  1. Quantum adiabatic Markovian master equations

    International Nuclear Information System (INIS)

    Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A

    2012-01-01

    We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)

  2. Non-Markovian nuclear dynamics

    International Nuclear Information System (INIS)

    Kolomietz, V.M.

    2011-01-01

    A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.

  3. A Dynamical Theory of Markovian Diffusion

    OpenAIRE

    Davidson, Mark

    2001-01-01

    A dynamical treatment of Markovian diffusion is presented and several applications discussed. The stochastic interpretation of quantum mechanics is considered within this framework. A model for Brownian movement which includes second order quantum effects is derived.

  4. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  5. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  6. Markovian dynamics on complex reaction networks

    International Nuclear Information System (INIS)

    Goutsias, J.; Jenkinson, G.

    2013-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples

  7. Adaptive resummation of Markovian quantum dynamics

    International Nuclear Information System (INIS)

    Lucas, Felix

    2014-01-01

    In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.

  8. Delineating incoherent non-Markovian dynamics using quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  9. Studies in Chaotic adiabatic dynamics

    International Nuclear Information System (INIS)

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)

  10. Investigating non-Markovian dynamics of quantum open systems

    Science.gov (United States)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  11. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  12. Markovian Dynamics of Josephson Parametric Amplification

    Science.gov (United States)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  13. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  14. A classical appraisal of quantum definitions of non-Markovian dynamics

    International Nuclear Information System (INIS)

    Vacchini, Bassano

    2012-01-01

    We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian processes. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behaviour is analysed in detail for quantum dynamics which can be built taking as input a class of classical processes. (paper)

  15. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  16. Dynamics of non-Markovian exclusion processes

    International Nuclear Information System (INIS)

    Khoromskaia, Diana; Grosskinsky, Stefan; Harris, Rosemary J

    2014-01-01

    Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems. (paper)

  17. Dynamics of non-Markovian exclusion processes

    Science.gov (United States)

    Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan

    2014-12-01

    Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.

  18. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    Science.gov (United States)

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  20. Non-Markovian dynamics of charge carriers in quantum dots

    International Nuclear Information System (INIS)

    Vaz, E; Kyriakidis, J

    2008-01-01

    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals

  1. Coarse-grained representation of the quasi adiabatic propagator path integral for the treatment of non-Markovian long-time bath memory

    Science.gov (United States)

    Richter, Martin; Fingerhut, Benjamin P.

    2017-06-01

    The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.

  2. Rate processes with non-Markovian dynamical disorder

    International Nuclear Information System (INIS)

    Goychuk, Igor

    2005-01-01

    Rate processes with dynamical disorder are investigated within a simple framework provided by unidirectional electron transfer (ET) with fluctuating transfer rate. The rate fluctuations are assumed to be described by a non-Markovian stochastic jump process which reflects conformational dynamics of an electron transferring donor-acceptor molecular complex. A tractable analytical expression is obtained for the relaxation of the donor population (in the Laplace-transformed time domain) averaged over the stationary conformational fluctuations. The corresponding mean transfer time is also obtained in an analytical form. The case of two-state fluctuations is studied in detail for a model incorporating substate diffusion within one of the conformations. It is shown that an increase of the conformational diffusion time results in a gradual transition from the regime of fast modulation characterized by the averaged ET rate to the regime of quasistatic disorder. This transition occurs at the conformational mean residence time intervals fixed much less than the inverse of the corresponding ET rates. An explanation of this paradoxical effect is provided. Moreover, its presence is also manifested for the simplest, exactly solvable non-Markovian model with a biexponential distribution of the residence times in one of the conformations. The nontrivial conditions for this phenomenon to occur are found

  3. System–environment correlations and non-Markovian dynamics

    International Nuclear Information System (INIS)

    Pernice, A; Helm, J; Strunz, W T

    2012-01-01

    We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system–environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of ‘non-Markovianity’ will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system–environment correlations. Depending on the initial purity of the qubit state, these system–environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system–environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and ‘non-Markovianity’. (paper)

  4. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  5. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  6. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ubbelohde, N.; Maire, N.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover (Germany); Roszak, K. [Institute of Physics, Wrocław University of Technology, PL-50370 Wrocław (Poland); Hohls, F. [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany); Novotný, T. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, CZ-12116 Prague (Czech Republic)

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  7. Modeling non-adiabatic photoexcited reaction dynamics in condensed phases

    International Nuclear Information System (INIS)

    Coker, D.F.

    2003-01-01

    Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites

  8. Femtosecond Non-Markovian Optical Dynamics in Solution

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos

    1991-01-01

    Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the

  9. Dynamical constraints and adiabatic invariants in chemical reactions.

    Science.gov (United States)

    Lorquet, J C

    2007-08-23

    For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation. Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given. Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole. The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path, as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in more interesting ranges.

  10. Fast-forward of quantum adiabatic dynamics in electro-magnetic field

    OpenAIRE

    Masuda, Shumpei; Nakamura, Katsuhiro

    2010-01-01

    We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...

  11. Dynamics of ionizing shock waves on adiabatic motions of gases

    International Nuclear Information System (INIS)

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  12. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)

  13. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  14. Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels

    International Nuclear Information System (INIS)

    An, J.-H.; Zhang, W.-M.

    2007-01-01

    We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case

  15. Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2015-01-01

    The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)

  16. Uhrig dynamical control of a three-level system via non-Markovian quantum state diffusion

    International Nuclear Information System (INIS)

    Shu, Wenchong; Zhao, Xinyu; Jing, Jun; Yu, Ting; Wu, Lian-Ao

    2013-01-01

    In this paper, we use the quantum state diffusion (QSD) equation to implement the Uhrig dynamical decoupling to a three-level quantum system coupled to a non-Markovian reservoir comprising of infinite numbers of degrees of freedom. For this purpose, we first reformulate the non-Markovian QSD to incorporate the effect of the external control fields. With this stochastic QSD approach, we demonstrate that an unknown state of the three-level quantum system can be universally protected against both coloured phase and amplitude noises when the control-pulse sequences and control operators are properly designed. The advantage of using non-Markovian QSD equations is that the control dynamics of open quantum systems can be treated exactly without using Trotter product formula and be efficiently simulated even when the environment is comprised of infinite numbers of degrees of freedom. We also show how the control efficacy depends on the environment memory time and the designed time points of applied control pulses. (paper)

  17. Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model

    International Nuclear Information System (INIS)

    Ayik, S.

    1996-01-01

    In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations

  18. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)

    2017-04-04

    The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.

  19. Adiabatic invariants in stellar dynamics. 2: Gravitational shocking

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.

  20. Non-Markovian dynamics of entanglement for multipartite systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jiang; Wu Chengjun; Zhu Mingyi; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2009-11-14

    Entanglement dynamics for a couple of two-level atoms interacting with independent structured reservoirs is studied using a non-perturbative approach. It is shown that the revival of atom entanglement is not necessarily accompanied by the sudden death of reservoir entanglement, and vice versa. In fact, atom entanglement can revive before, simultaneously or even after the disentanglement of reservoirs. Using a novel method based on the population analysis for the excited atomic state, we present the quantitative criteria for the revival and death phenomena. To give a more physically intuitive insight, the quasimode Hamiltonian method is applied. Our quantitative analysis is helpful for the practical engineering of entanglement.

  1. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  2. Adiabatic invariants in stellar dynamics. 1: Basic concepts

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.

  3. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    Science.gov (United States)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  4. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  5. Markovianity and non-Markovianity in quantum and classical systems

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.

  6. Dynamic hysteresis of a uniaxial superparamagnet: Semi-adiabatic approximation

    International Nuclear Information System (INIS)

    Poperechny, I.S.; Raikher, Yu.L.; Stepanov, V.I.

    2014-01-01

    The semi-adiabatic theory of magnetic response of a uniaxial single-domain ferromagnetic particle is presented. The approach is developed in the context of the kinetic theory and allows for any orientation of the external field. Within this approximation, the dynamic magnetic hysteresis loops in an ac field are calculated. It is demonstrated that they very closely resemble those obtained by the full kinetic theory. The behavior of the effective coercive force is analyzed in detail, and for it a simple formula is proposed. This relation accounts not only for the temperature behavior of the coercive force, as the previous ones do, but also yields the dependence on the frequency and amplitude of the applied field

  7. Error Distributions on Large Entangled States with Non-Markovian Dynamics

    DEFF Research Database (Denmark)

    McCutcheon, Dara; Lindner, Netanel H.; Rudolph, Terry

    2014-01-01

    We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten...... of errors occurs has a bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model....

  8. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  9. Non-Markovian dynamics in the theory of full counting statistics

    DEFF Research Database (Denmark)

    Flindt, Christian; Braggio, A.; Novotny, Tomas

    2007-01-01

    generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems....

  10. On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, E; Scala, M; Napoli, A [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy); Migliore, R, E-mail: ferraro@fisica.unipa.i, E-mail: matteo.scala@fisica.unipa.i [CNR-INFM, Research Unit CNISM of Palermo, via Archirafi 36, 90123 Palermo (Italy)

    2010-09-01

    In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima-Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.

  11. Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    Directory of Open Access Journals (Sweden)

    Ricardo T. Paéz-Hernández

    2017-11-01

    Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.

  12. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  13. Power-law tails and non-Markovian dynamics in open quantum systems: An exact solution from Keldysh field theory

    Science.gov (United States)

    Chakraborty, Ahana; Sensarma, Rajdeep

    2018-03-01

    The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.

  14. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  15. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    Science.gov (United States)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  16. Basic mechanisms in the laser control of non-Markovian dynamics

    Science.gov (United States)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  17. Non-Markovian dynamics of quantum systems: decay rate, capture and pure states

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: With the exact numerical solution of the equation for the reduced density matrix we found a minor role of the time dependence of the friction and diffusion coefficients in the escape rate from a potential well [1]. Since the used friction and diffusion coefficients were self- consistently under certain approximations derived, they preserve the positivity of the density matrix at any time. The mixed diffusion coefficient leads to a decrease of the escape rate. Since the used value of quantum diffusion coefficient in momentum is larger than the one following from a 'classic' treatment, the obtained escape rate is close to the rate calculated with the 'classic' set of diffusion coefficients. If the regime of motion is close to the under damped case or the temperature is small, the quasi-stationary escape rate can increase with friction. This is explained by the larger role of the increasing diffusion in the decay process. The agreement of the escape rate obtained with the analytical expressions in comparison to numerically calculated data depends on the characteristics of the considered system. The agreement is better in the overdamped regime. However, for any regime the deviations are not larger than in the case of the classical Kramers formula. Therefore, the analytical expressions can be applied in a large range of parameters for the potential and diffusion coefficients. We demonstrated that the uncertainty function is related to the linear entropy. The diffusion coefficients supplying the purity of states were elaborated for the non-Markovian dynamics. The obtained dependences of the capture probability on the friction proves that the quantum nature of this process should be taken into consideration when one calculates the capture cross section in nucleus-nucleus collisions

  18. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  19. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1980-01-01

    Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility

  20. Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi

    2012-01-01

    Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following exc...

  1. Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel

    2016-01-01

    Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016

  2. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  3. Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains

    International Nuclear Information System (INIS)

    Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del

    2016-01-01

    We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)

  4. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  5. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.

    Science.gov (United States)

    Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin

    2015-11-21

    Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.

  6. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-01-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement

  7. Semi adiabatic theory of seasonal Markov processes

    Energy Technology Data Exchange (ETDEWEB)

    Talkner, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.

  8. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  9. Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.

    Science.gov (United States)

    Zamstein, Noa; Tannor, David J

    2012-12-14

    We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.

  10. Dynamical behavior of the wave packets on adiabatic potential surfaces observed by femtosecond luminescence spectroscopy

    International Nuclear Information System (INIS)

    Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi

    2007-01-01

    The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature

  11. Monopole and topological electron dynamics in adiabatic spintronic and graphene systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.

    2010-01-01

    A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.

  12. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  13. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  14. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    Science.gov (United States)

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Properties of quantum Markovian master equations

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.

    1976-11-01

    An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed

  16. Quantum non-Markovianity: characterization, quantification and detection

    International Nuclear Information System (INIS)

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2014-01-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions. (review article)

  17. Quantum non-Markovianity: characterization, quantification and detection

    Science.gov (United States)

    Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  18. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Young, Kevin C

    2013-01-01

    While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)

  19. Markovian equilibria in dynamic spatial legislative bargaining: existence with three players

    Czech Academy of Sciences Publication Activity Database

    Zápal, Jan

    2016-01-01

    Roč. 98, July (2016), s. 235-242 ISSN 0899-8256 Institutional support: RVO:67985998 Keywords : dynamic decision-making * endogenous status-quo * spatial bargaining Subject RIV: AH - Economics Impact factor: 0.904, year: 2016

  20. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.

  1. Kraus map for non-Markovian quantum dynamics driven by a thermal reservoir

    NARCIS (Netherlands)

    van Wonderen, A.J.; Suttorp, L.G.

    2013-01-01

    Starting from unitary dynamics we study the evolution in time of a non-relativistic quantum system that exchanges energy with a thermal reservoir of harmonic oscillators. System and reservoir are assumed to be initially decorrelated. Reservoir correlation functions are factorized by means of a Kraus

  2. Markovian equilibria in dynamic spatial legislative bargaining: existence with three players

    Czech Academy of Sciences Publication Activity Database

    Zápal, Jan

    2016-01-01

    Roč. 98, July (2016), s. 235-242 ISSN 0899-8256 Institutional support: PRVOUK-P23 Keywords : dynamic decision-making * endogenous status-quo * spatial bargaining Subject RIV: AH - Economics Impact factor: 0.904, year: 2016

  3. Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching

    Science.gov (United States)

    Li, Dan; Liu, Shengqiang; Cui, Jing'an

    2017-12-01

    This paper studies the spread dynamics of a stochastic SIRS epidemic model with nonlinear incidence and varying population size, which is formulated as a piecewise deterministic Markov process. A threshold dynamic determined by the basic reproduction number R0 is established: the disease can be eradicated almost surely if R0 disease persists almost surely if R0 > 1. The existing method for analyzing ergodic behavior of population systems has been generalized. The modified method weakens the required conditions and has no limitations for both the number of environmental regimes and the dimension of the considered system. When R0 > 1, the existence of a stationary probability measure is obtained. Furthermore, with the modified method, the global attractivity of the Ω-limit set of the system and the convergence in total variation to the stationary measure are both demonstrated under a mild extra condition.

  4. Non-Markovian effects on the dynamics of bubble growth in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kolomietz, V.M.; Sanzhur, A.I.; Shlomo, S.

    2003-01-01

    We study the conditions for the generation and the dynamical evolution of embryonic overcritical vapor bubbles in an overheated asymmetric nuclear matter. We show that the Fermi-surface distortion and memory effects significantly hinder the growth of the bubbles. Moreover, the growth of the bubble is accompanied by characteristic oscillations of its radius R. The characteristic energy E, the damping parameter Γ, and the instability growth rate parameter ζ, depend on the relaxation time τ. The characteristic oscillations disappear in the short relaxation time limit τ→0. Our approach ignores the fluctuations of the particle numbers in the bubble region and the finite diffuse layer of the bubble. The minimum size of the critical radius R * for which our approach applies is determined by the condition a/R * <<1, where a=0.5-1 fm is the temperature-dependent surface thickness of the bubble

  5. Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines the entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay cha...

  6. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt (Germany); Martinazzo, Rocco [Dipartimento di Chimica, Universita degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  7. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  8. Mixing-induced quantum non-Markovianity and information flow

    Science.gov (United States)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  9. Dynamic mapping of conical intersection seams: A general method for incorporating the geometric phase in adiabatic dynamics in polyatomic systems.

    Science.gov (United States)

    Xie, Changjian; Malbon, Christopher L; Yarkony, David R; Guo, Hua

    2017-07-28

    The incorporation of the geometric phase in single-state adiabatic dynamics near a conical intersection (CI) seam has so far been restricted to molecular systems with high symmetry or simple model Hamiltonians. This is due to the fact that the ab initio determined derivative coupling (DC) in a multi-dimensional space is not curl-free, thus making its line integral path dependent. In a recent work [C. L. Malbon et al., J. Chem. Phys. 145, 234111 (2016)], we proposed a new and general approach based on an ab initio determined diabatic representation consisting of only two electronic states, in which the DC is completely removable, so that its line integral is path independent in the simply connected domains that exclude the CI seam. Then with the CIs included, the line integral of the single-valued DC can be used to construct the complex geometry-dependent phase needed to exactly eliminate the double-valued character of the real-valued adiabatic electronic wavefunction. This geometry-dependent phase gives rise to a vector potential which, when included in the adiabatic representation, rigorously accounts for the geometric phase in a system with an arbitrary locus of the CI seam and an arbitrary number of internal coordinates. In this work, we demonstrate this approach in a three-dimensional treatment of the tunneling facilitated dissociation of the S 1 state of phenol, which is affected by a C s symmetry allowed but otherwise accidental seam of CI. Here, since the space is three-dimensional rather than two-dimensional, the seam is a curve rather than a point. The nodal structure of the ground state vibronic wavefunction is shown to map out the seam of CI.

  10. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure

    Science.gov (United States)

    Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2018-03-01

    A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

  11. Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets

    NARCIS (Netherlands)

    De Raedt, H; Miyashita, S; Michielsen, K; Machida, M

    A microscopic model of the molecular magnet V-15 is used to study mechanisms for the adiabatic change of the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the most plausible source for the energy-level repulsions that lead to adiabatic changes

  12. Noise suppression via generalized-Markovian processes

    Science.gov (United States)

    Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo

    2017-11-01

    It is by now well established that noise itself can be useful for performing quantum information processing tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum channel by counteracting its detrimental effects with another form of noise. In particular, we consider the effect of adding on top of a purely Markovian (Lindblad) dynamics, a more general form of dissipation, which we refer to as generalized-Markovian noise. This noise has an associated memory kernel and the resulting dynamics are described by an integrodifferential equation. The overall dynamics are characterized by decay rates which depend not only on the original dissipative time scales but also on the new integral kernel. We find that one can engineer this kernel such that the overall rate of decay is lowered by the addition of this noise term. We illustrate this technique for the case where the bare noise is described by a dephasing Pauli channel. We analytically solve this model and show that one can effectively double (or even triple) the length of the channel, while achieving the same fidelity, entanglement, and error threshold. We numerically verify this scheme can also be used to protect against thermal Markovian noise (at nonzero temperature), which models spontaneous emission and excitation processes. A physical interpretation of this scheme is discussed, whereby the added generalized-Markovian noise causes the system to become periodically decoupled from the background Markovian noise.

  13. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems; Nicht-Markovsche Dynamik, Dekohaerenz und Verschraenkung in dissipativen Quantensystemen mit Anwendung in der Quanteninformationstheorie von Systemen kontinuierlicher Variablen

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, C.

    2007-11-26

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  14. Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations

    International Nuclear Information System (INIS)

    Puzari, Panchanan; Sarkar, Biplab; Adhikari, Satrajit

    2004-01-01

    We demonstrate the workability of a TDDVR based [J. Chem. Phys. 118, 5302 (2003)], novel quantum-classical approach, for simulating scattering processes on a quasi-Jahn-Teller model [J. Chem. Phys. 105, 9141 (1996)] surface. The formulation introduces a set of DVR grid points defined by the Hermite part of the basis set in each dimension and allows the movement of grid points around the central trajectory. With enough trajectories (grid points), the method converges to the exact quantum formulation whereas with only one grid point, we recover the conventional molecular dynamics approach. The time-dependent Schroedinger equation and classical equations of motion are solved self-consistently and electronic transitions are allowed anywhere in the configuration space among any number of coupled states. Quantum-classical calculations are performed on diabatic surfaces (two and three) to reveal the effects of symmetry on inelastic and reactive state-to-state transition probabilities, along with calculations on an adiabatic surface with ordinary Born-Oppenheimer approximation. Excellent agreement between TDDVR and DVR results is obtained in both the representations

  15. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Science.gov (United States)

    Segal, Dvira

    2014-04-01

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  16. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  17. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    Science.gov (United States)

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  19. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits

    International Nuclear Information System (INIS)

    Sundararajan, Pranesh A.; Hughes, Scott A.; Khanna, Gaurav; Drasco, Steve

    2008-01-01

    This is the second in a series of papers whose aim is to generate adiabatic gravitational waveforms from the inspiral of stellar-mass compact objects into massive black holes. In earlier work, we presented an accurate (2+1)D finite-difference time-domain code to solve the Teukolsky equation, which evolves curvature perturbations near rotating (Kerr) black holes. The key new ingredient there was a simple but accurate model of the singular source term based on a discrete representation of the Dirac-delta function and its derivatives. Our earlier work was intended as a proof of concept, using simple circular, equatorial geodesic orbits as a test bed. Such a source is effectively static, in that the smaller body remains at the same coordinate radius and orbital inclination over an orbit. (It of course moves through axial angle, but we separate that degree of freedom from the problem. Our numerical grid has only radial, polar, and time coordinates.) We now extend the time-domain code so that it can accommodate dynamic sources that move on a variety of physically interesting world lines. We validate the code with extensive comparison to frequency-domain waveforms for cases in which the source moves along generic (inclined and eccentric) bound geodesic orbits. We also demonstrate the ability of the time-domain code to accommodate sources moving on interesting nongeodesic worldlines. We do this by computing the waveform produced by a test mass following a kludged inspiral trajectory, made of bound geodesic segments driven toward merger by an approximate radiation loss formula.

  20. DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)

    Science.gov (United States)

    Humeniuk, Alexander; Mitrić, Roland

    2017-12-01

    A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.

  1. Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits

    Science.gov (United States)

    Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina

    2018-03-01

    The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.

  2. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems

    Science.gov (United States)

    Moix, Jeremy M.; Cao, Jianshu

    2013-10-01

    The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.

  3. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system.......We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  4. Optimal management of non-Markovian biological populations

    Science.gov (United States)

    Williams, B.K.

    2007-01-01

    Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.

  5. High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting process

    Science.gov (United States)

    Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.

    2017-03-01

    In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.

  6. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  7. Assignment of Side-Chain Conformation Using Adiabatic Energy Mapping, Free Energy Perturbation, and Molecular Dynamic Simulations

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl

    1999-01-01

    adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...

  8. Non-Markovianity of Gaussian Channels.

    Science.gov (United States)

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  9. Path integral density matrix dynamics: A method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems

    International Nuclear Information System (INIS)

    Habershon, Scott

    2013-01-01

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency

  10. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.

    Science.gov (United States)

    Habershon, Scott

    2013-09-14

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  11. Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Changjian [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Zhu, Xiaolei; Yarkony, David R., E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Ma, Jianyi, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065 (China); Xie, Daiqian, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-03-07

    Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.

  12. Landau-Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    Science.gov (United States)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau-Zener-Stueckelberg-Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength.

  13. Landau–Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    International Nuclear Information System (INIS)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)

  14. Generalized formalism for information backflow in assessing Markovianity and its equivalence to divisibility

    Science.gov (United States)

    Chakraborty, Sagnik

    2018-03-01

    We present a general framework for the information backflow (IB) approach of Markovianity that not only includes a large number, if not all, of IB prescriptions proposed so far but also is equivalent to completely positive divisibility for invertible evolutions. Following the common approach of IB, where monotonic decay of some physical property or some information quantifier is seen as the definition of Markovianity, we propose in our framework a general description of what should be called a proper "physicality quantifier" to define Markovianity. We elucidate different properties of our framework and use them to argue that an infinite family of non-Markovianity measures can be constructed, which would capture varied strengths of non-Markovianity in the dynamics. Moreover, we show that generalized trace-distance measure in two dimensions serve as a sufficient criteria for IB Markovianity for a number of prescriptions suggested earlier in the literature.

  15. Transitionless driving on adiabatic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  16. Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.

  17. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  18. Connecting two jumplike unravelings for non-Markovian open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto (Finland)

    2011-09-15

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  19. Connecting two jumplike unravelings for non-Markovian open quantum systems

    International Nuclear Information System (INIS)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki

    2011-01-01

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  20. Foundations and measures of quantum non-Markovianity

    International Nuclear Information System (INIS)

    Breuer, Heinz-Peter

    2012-01-01

    The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behaviour. Here, we review recent ideas developing a general mathematical definition for non-Markovianity in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems, which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system–environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system. (topical review)

  1. Adiabatically steered open quantum systems: Master equation and optimal phase

    International Nuclear Information System (INIS)

    Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.

    2010-01-01

    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.

  2. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...

  3. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    Science.gov (United States)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  4. Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state

    Science.gov (United States)

    Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert

    2011-10-01

    Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.

  5. Scattering of a proton with the Li{sub 4} cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)

    2012-05-03

    Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.

  6. Non-Markovianity in the collision model with environmental block

    Science.gov (United States)

    Jin, Jiasen; Yu, Chang-shui

    2018-05-01

    We present an extended collision model to simulate the dynamics of an open quantum system. In our model, the unit to represent the environment is, instead of a single particle, a block which consists of a number of environment particles. The introduced blocks enable us to study the effects of different strategies of system–environment interactions and states of the blocks on the non-Markovianities. We demonstrate our idea in the Gaussian channels of an all-optical system and derive a necessary and sufficient condition of non-Markovianity for such channels. Moreover, we show the equivalence of our criterion to the non-Markovian quantum jump in the simulation of the pure damping process of a single-mode field. We also show that the non-Markovianity of the channel working in the strategy that the system collides with environmental particles in each block in a certain order will be affected by the size of the block and the embedded entanglement and the effects of heating and squeezing the vacuum environmental state will quantitatively enhance the non-Markovianity.

  7. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  8. Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems

    Science.gov (United States)

    Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan

    2017-12-01

    One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.

  9. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations.

    Science.gov (United States)

    Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J

    2018-04-28

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  10. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations

    Science.gov (United States)

    Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.

    2018-04-01

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  11. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  12. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  13. Study on the security of discrete-variable quantum key distribution over non-Markovian channels

    International Nuclear Information System (INIS)

    Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua

    2012-01-01

    The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)

  14. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  15. Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond

    Science.gov (United States)

    Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen

    2018-01-01

    The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.

  16. Exploiting Non-Markovianity for Quantum Control.

    Science.gov (United States)

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  17. Entanglement, non-Markovianity, and causal non-separability

    Science.gov (United States)

    Milz, Simon; Pollock, Felix A.; Le, Thao P.; Chiribella, Giulio; Modi, Kavan

    2018-03-01

    Quantum mechanics, in principle, allows for processes with indefinite causal order. However, most of these causal anomalies have not yet been detected experimentally. We show that every such process can be simulated experimentally by means of non-Markovian dynamics with a measurement on additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a causal processes. Furthermore, we give necessary and sufficient conditions for open system dynamics with measurement to yield processes that respect causality locally, and find that tripartite entanglement and nonlocal unitary transformations are crucial requirements for the simulation of causally indefinite processes. These results show a direct connection between three counter-intuitive concepts: entanglement, non-Markovianity, and causal non-separability.

  18. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  19. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-01

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning

  20. Control and filtering for semi-Markovian jump systems

    CERN Document Server

    Li, Fanbiao; Wu, Ligang

    2017-01-01

    This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.

  1. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    Science.gov (United States)

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  2. Scalable implementation of ancilla-free optimal 1→M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage

    International Nuclear Information System (INIS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2011-01-01

    A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.

  3. Scalable implementation of ancilla-free optimal 1→M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xiao-Qiang, E-mail: xqshao83@yahoo.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zheng, Tai-Yu, E-mail: zhengty@nenu.edu.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2011-09-19

    A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.

  4. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy

    Science.gov (United States)

    Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert

    2018-04-01

    The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.

  5. Energy consumption for shortcuts to adiabaticity

    Science.gov (United States)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  6. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...... the polaritonic quasi-particle nature of the carrier-photon system interacting with the phonon reservoir....

  7. Hierarchical theory of quantum adiabatic evolution

    International Nuclear Information System (INIS)

    Zhang, Qi; Wu, Biao; Gong, Jiangbin

    2014-01-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)

  8. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  9. Adiabatic quantum computing

    OpenAIRE

    Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke

    2015-01-01

    In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...

  10. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  11. Enhancement of Quantum Correlations in Qubit-Qutrit Systems under the non-Markovian Environment

    Institute of Scientific and Technical Information of China (English)

    Abdul Basit; Hamad Ali; Fazal Badshah; Guo-Qin Ge

    2017-01-01

    We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck (OU) noise.Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs.A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters,the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations.In addition,it is observed that the non-Markovian strength (γ/F) has a positive impact on the correlations time.For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property.Moreover,its decay can be significantly delayed.

  12. Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments

    Science.gov (United States)

    Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping

    2018-03-01

    Quantum memory-assisted entropic uncertainty relation (QMA EUR) addresses that the lower bound of Maassen and Uffink's entropic uncertainty relation (without quantum memory) can be broken. In this paper, we investigated the dynamical features of QMA EUR in the Markovian and non-Markovian dissipative environments. It is found that dynamical process of QMA EUR is oscillation in non-Markovian environment, and the strong interaction is favorable for suppressing the amount of entropic uncertainty. Furthermore, we presented two schemes by means of prior weak measurement and posterior weak measurement reversal to control the amount of entropic uncertainty of Pauli observables in dissipative environments. The numerical results show that the prior weak measurement can effectively reduce the wave peak values of the QMA-EUA dynamic process in non-Markovian environment for long periods of time, but it is ineffectual on the wave minima of dynamic process. However, the posterior weak measurement reversal has an opposite effects on the dynamic process. Moreover, the success probability entirely depends on the quantum measurement strength. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.

  13. Numerical Study on Bubble Dynamics and Two-Phase Frictional Pressure Drop of Slug Flow Regime in Adiabatic T-junction Square Microchannel

    Directory of Open Access Journals (Sweden)

    K. Kishor

    2017-10-01

    Full Text Available In this study, bubble dynamics and frictional pressure drop associated with gas liquid two-phase slug flow regime in adiabatic T-junction square microchannel has been investigated using CFD. A comprehensive study on the mechanism of bubble formation via squeezing and shearing regime is performed. The randomness and recirculation profiles observed in the squeezing regime are significantly higher as compared to the shearing regime during formation of the slug. Further, effects of increasing gas velocity on bubble length are obtained at fixed liquid velocities and simulated data displayed good agreement with available correlations in literature. The frictional pressure drop for slug flow regime from simulations are also obtained and evaluated against existing separated flow models. A regression correlation has also been developed by modifying C-parameter using separated flow model, which improves the prediction of two-phase frictional pressure drop data within slug flow region, with mean absolute error of 10 %. The influences of fluid properties such as liquid viscosity and surface tension on the two-phase frictional pressure drop are also investigated and compared with developed correlation. The higher liquid viscosity and lower surface tension value resulted in bubble formation via shearing regime.

  14. A Phase Matching, Adiabatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  15. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    We solve the Nakajima–Zwanzig (NZ) non-Markovian master equation to study the dynamics of different types of three-level atomic systems interacting with bosonic Lorentzian reservoirs at zero temperature. Von Neumann entropy (S) is used to show the evolution of the degree of entanglement of the subsystems.

  16. Adiabatic Quantum Transistors

    Directory of Open Access Journals (Sweden)

    Dave Bacon

    2013-06-01

    Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.

  17. Wireless adiabatic power transfer

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-01-01

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  18. Accuracy versus run time in an adiabatic quantum search

    International Nuclear Information System (INIS)

    Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.

    2010-01-01

    Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.

  19. Adiabatic capture and debunching

    International Nuclear Information System (INIS)

    Ng, K.Y.

    2012-01-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  20. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  1. Quantum adiabatic approximation and the geometric phase

    International Nuclear Information System (INIS)

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  2. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  3. Piecewise adiabatic following in non-Hermitian cycling

    Science.gov (United States)

    Gong, Jiangbin; Wang, Qing-hai

    2018-05-01

    The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.

  4. Non-Markovian quantum processes: Complete framework and efficient characterization

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  5. Adiabatic and isothermal resistivities

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1989-01-01

    The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester

  6. Fluctuation relation for heat exchange in Markovian open quantum systems

    Science.gov (United States)

    Ramezani, M.; Golshani, M.; Rezakhani, A. T.

    2018-04-01

    A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.

  7. The simulation of the non-Markovian behaviour of a two-level system

    Science.gov (United States)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  8. Non-Markovian decoherent quantum walks

    International Nuclear Information System (INIS)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect

  9. Mean first-passage times in confined media: from Markovian to non-Markovian processes

    International Nuclear Information System (INIS)

    Bénichou, O; Voituriez, R; Guérin, T

    2015-01-01

    We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source–target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this non- Markovian problem. (topical review)

  10. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.

    Science.gov (United States)

    Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S

    2016-01-01

    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.

  11. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.

    Directory of Open Access Journals (Sweden)

    John P Marken

    Full Text Available Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.

  12. Implied Stopping Rules for American Basket Options from Markovian Projection

    KAUST Repository

    Bayer, Christian; Hä ppö lä , Juho; Tempone, Raul

    2017-01-01

    This work addresses the problem of pricing American basket options in a multivariate setting, which includes among others, the Bachelier and the Black-Scholes models. In high dimensions, nonlinear partial differential equation methods for solving the problem become prohibitively costly due to the curse of dimensionality. Instead, this work proposes to use a stopping rule that depends on the dynamics of a low-dimensional Markovian projection of the given basket of assets. It is shown that the ability to approximate the original value function by a lower-dimensional approximation is a feature of the dynamics of the system and is unaffected by the path-dependent nature of the American basket option. Assuming that we know the density of the forward process and using the Laplace approximation, we first efficiently evaluate the diffusion coefficient corresponding to the low-dimensional Markovian projection of the basket. Then, we approximate the optimal early-exercise boundary of the option by solving a Hamilton-Jacobi-Bellman partial differential equation in the projected, low-dimensional space. The resulting near-optimal early-exercise boundary is used to produce an exercise strategy for the high-dimensional option, thereby providing a lower bound for the price of the American basket option. A corresponding upper bound is also provided. These bounds allow to assess the accuracy of the proposed pricing method. Indeed, our approximate early-exercise strategy provides a straightforward lower bound for the American basket option price. Following a duality argument due to Rogers, we derive a corresponding upper bound solving only the low-dimensional optimal control problem. Numerically, we show the feasibility of the method using baskets with dimensions up to fifty. In these examples, the resulting option price relative errors are only of the order of few percent.

  13. Implied Stopping Rules for American Basket Options from Markovian Projection

    KAUST Repository

    Bayer, Christian

    2017-05-01

    This work addresses the problem of pricing American basket options in a multivariate setting, which includes among others, the Bachelier and the Black-Scholes models. In high dimensions, nonlinear partial differential equation methods for solving the problem become prohibitively costly due to the curse of dimensionality. Instead, this work proposes to use a stopping rule that depends on the dynamics of a low-dimensional Markovian projection of the given basket of assets. It is shown that the ability to approximate the original value function by a lower-dimensional approximation is a feature of the dynamics of the system and is unaffected by the path-dependent nature of the American basket option. Assuming that we know the density of the forward process and using the Laplace approximation, we first efficiently evaluate the diffusion coefficient corresponding to the low-dimensional Markovian projection of the basket. Then, we approximate the optimal early-exercise boundary of the option by solving a Hamilton-Jacobi-Bellman partial differential equation in the projected, low-dimensional space. The resulting near-optimal early-exercise boundary is used to produce an exercise strategy for the high-dimensional option, thereby providing a lower bound for the price of the American basket option. A corresponding upper bound is also provided. These bounds allow to assess the accuracy of the proposed pricing method. Indeed, our approximate early-exercise strategy provides a straightforward lower bound for the American basket option price. Following a duality argument due to Rogers, we derive a corresponding upper bound solving only the low-dimensional optimal control problem. Numerically, we show the feasibility of the method using baskets with dimensions up to fifty. In these examples, the resulting option price relative errors are only of the order of few percent.

  14. Bulk-mediated surface diffusion: non-Markovian desorption and biased behaviour in an infinite system

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Wio, Horacio S

    2005-01-01

    We analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework. We consider that the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption and its motion in the bulk are governed by Markovian dynamics, and include the effect of an external field in the form of a bias in the normal motion to the surface. We study this system for the diffusion of particles in a semi-infinite lattice, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The agreement between numerical and analytical asymptotic results is discussed

  15. Adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2018-01-01

    Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.

  16. Adiabatic quantum simulators

    Directory of Open Access Journals (Sweden)

    J. D. Biamonte

    2011-06-01

    Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.

  17. Adiabatic Quantum Optimization for Associative Memory Recall

    Directory of Open Access Journals (Sweden)

    Hadayat eSeddiqi

    2014-12-01

    Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  18. Adiabatic Quantum Optimization for Associative Memory Recall

    Science.gov (United States)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  19. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X{sup ~}/A{sup ~}) products in the B-band photodissociation of H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Linsen [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Xie, Daiqian, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-03-28

    A detailed quantum mechanical characterization of the photodissociation dynamics of H{sub 2}O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X{sup ~}/A{sup ~}) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X{sup ~}, v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B{sup ~}→X{sup ~} conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B{sup ~}→A{sup ~} Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X{sup ~}) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B{sup ~}→X{sup ~} non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A{sup ~}) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  20. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X~/A~) products in the B-band photodissociation of H2O

    International Nuclear Information System (INIS)

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-01-01

    A detailed quantum mechanical characterization of the photodissociation dynamics of H 2 O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X ~ /A ~ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X ~ , v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B ~ →X ~ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ~ →A ~ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X ~ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ~ →X ~ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A ~ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces

  1. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH( X ˜ / A ˜ ) products in the B-band photodissociation of H2O

    Science.gov (United States)

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-01

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH( X ˜ / A ˜ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH( X ˜ , v = 0) exhibit very different characteristics. The A' states, produced mostly via the B ˜ → X ˜ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ˜ → A ˜ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH( X ˜ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ˜ → X ˜ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH( A ˜ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  2. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X̃/Ã) products in the B-band photodissociation of H2O.

    Science.gov (United States)

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-28

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X̃/Ã) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X̃, v = 0) exhibit very different characteristics. The A' states, produced mostly via the B̃→X̃ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B̃→Ã Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X̃) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B̃→X̃ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(Ã) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  3. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  4. Adiabatic Quantum Computing

    Science.gov (United States)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  5. Geometry of the Adiabatic Theorem

    Science.gov (United States)

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  6. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  7. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  8. Topology hidden behind the breakdown of adiabaticity

    International Nuclear Information System (INIS)

    Fu, L.-B.; Chen, S.-G.

    2005-01-01

    For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamiltonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of applications

  9. Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators

    International Nuclear Information System (INIS)

    Wilkie, Joshua; Wong Yinmei

    2009-01-01

    We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects

  10. Non-Markovian effect on the geometric phase of a dissipative qubit

    International Nuclear Information System (INIS)

    Chen Juanjuan; Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-01-01

    We studied the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit, the lowest order correction to the geometric phase is derived analytically and the general case is calculated numerically. It was found that the correction to the geometric phase is significantly large if the spectral width is small, and in this case the non-Markovian dynamics has a significant impact on the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  11. Adiabatic invariance with first integrals of motion

    Science.gov (United States)

    Adib, Artur B.

    2002-10-01

    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.

  12. Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Blasone, Massimo; Bernardini, Alex E.

    2018-03-01

    The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation—which includes pseudovectorlike and tensorlike field interactions—the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.

  13. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  14. Non-markovian boltzmann equation

    International Nuclear Information System (INIS)

    Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.

    1997-01-01

    A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov endash Born endash Green endash Kirkwood endash Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. copyright 1997 Academic Press, Inc

  15. Decoherence in adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  16. Amplification of weak signals via the non-adiabatic regime of stochastic resonance in a bistable dynamical system with time delay

    International Nuclear Information System (INIS)

    Du Luchun; Mei Dongcheng

    2011-01-01

    The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.

  17. Semiclassical evolution of dissipative Markovian systems

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A M; Rios, P de M; Brodier, O

    2009-01-01

    A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions

  18. Pseudothermalization in driven-dissipative non-Markovian open quantum systems

    Science.gov (United States)

    Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo

    2018-03-01

    We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.

  19. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    International Nuclear Information System (INIS)

    Koch, Werner

    2010-01-01

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until

  20. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Werner

    2010-09-09

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time

  1. Markovian description of unbiased polymer translocation

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2012-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  2. Markovian description of unbiased polymer translocation

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, UnED Angra dos Reis, Angra dos Reis, 23953-030, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil)

    2012-10-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  3. Markovian Processes for Quantitative Information Leakage

    DEFF Research Database (Denmark)

    Biondi, Fabrizio

    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount...... and randomized processes with Markovian models and to compute their information leakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some...... of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output. Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially...

  4. TIPPtool: Compositional Specification and Analysis of Markovian Performance Models

    NARCIS (Netherlands)

    Hermanns, H.; Halbwachs, N.; Peled, D.; Mertsiotakis, V.; Siegle, M.

    1999-01-01

    In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end.

  5. a markovian study of manpow an study of manpower planning

    African Journals Online (AJOL)

    eobe

    The Markovian method of manpower planning foretell the future. ... ive years from a soft drink manufacturing company based in Lagos, Nigeria company based ... ces management approach. ... handbook have also used Markov processes for.

  6. Markovian approach: From Ising model to stochastic radiative transfer

    International Nuclear Information System (INIS)

    Kassianov, E.; Veron, D.

    2009-01-01

    The origin of the Markovian approach can be traced back to 1906; however, it gained explicit recognition in the last few decades. This overview outlines some important applications of the Markovian approach, which illustrate its immense prestige, respect, and success. These applications include examples in the statistical physics, astronomy, mathematics, computational science and the stochastic transport problem. In particular, the overview highlights important contributions made by Pomraning and Titov to the neutron and radiation transport theory in a stochastic medium with homogeneous statistics. Using simple probabilistic assumptions (Markovian approximation), they have introduced a simplified, but quite realistic, representation of the neutron/radiation transfer through a two-component discrete stochastic mixture. New concepts and methodologies introduced by these two distinguished scientists allow us to generalize the Markovian treatment to the stochastic medium with inhomogeneous statistics and demonstrate its improved predictive performance for the down-welling shortwave fluxes. (authors)

  7. Non-Markovian features of deeply inelastic collisions

    International Nuclear Information System (INIS)

    Pal, D.; Chattopadhyay, S.; Kar, K.

    1988-01-01

    To study the effect of memory in the diffusion processes (of charge, mass etc) observed in deeply inelastic heavy-ion reactions, we derive non-Markovian transport equations for the exponential and Gaussian memory kernels. The centroid and the variance of the distribution are expressed in terms of the memory time, drift and diffusion coefficients. The predictions based on this theory show better agreement with the experimental data than the Markovian results. (author)

  8. Sensitivity Analysis Based on Markovian Integration by Parts Formula

    Directory of Open Access Journals (Sweden)

    Yongsheng Hang

    2017-10-01

    Full Text Available Sensitivity analysis is widely applied in financial risk management and engineering; it describes the variations brought by the changes of parameters. Since the integration by parts technique for Markov chains is well developed in recent years, in this paper we apply it for computation of sensitivity and show the closed-form expressions for two commonly-used time-continuous Markovian models. By comparison, we conclude that our approach outperforms the existing technique of computing sensitivity on Markovian models.

  9. Fitting Markovian binary trees using global and individual demographic data

    OpenAIRE

    Hautphenne, Sophie; Massaro, Melanie; Turner, Katharine

    2017-01-01

    We consider a class of branching processes called Markovian binary trees, in which the individuals lifetime and reproduction epochs are modeled using a transient Markovian arrival process (TMAP). We estimate the parameters of the TMAP based on population data containing information on age-specific fertility and mortality rates. Depending on the degree of detail of the available data, a weighted non-linear regression method or a maximum likelihood method is applied. We discuss the optimal choi...

  10. A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and selenophene

    Czech Academy of Sciences Publication Activity Database

    Pederzoli, Marek; Pittner, Jiří

    2017-01-01

    Roč. 146, č. 11 (2017), č. článku 114101. ISSN 0021-9606 R&D Projects: GA ČR(CZ) GAP208/12/0559 Institutional support: RVO:61388955 Keywords : configuration-interaction method * potential-energy surfaces * excited-state dynamics * photodissociation dynamics * electronic states * quantum dynamics Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.965, year: 2016

  11. Markovian robots: Minimal navigation strategies for active particles

    Science.gov (United States)

    Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando

    2018-04-01

    We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.

  12. Interplay between electric and magnetic effect in adiabatic polaritonic systems

    KAUST Repository

    Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco De; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2013-01-01

    We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.

  13. Adiabatic, chaotic and quasi-adiabatic charged particle motion in two-dimensional magnetic field reversals

    International Nuclear Information System (INIS)

    Buechner, J.M.

    1989-01-01

    For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab

  14. Adiabatic temperature change from non-adiabatic measurements

    Czech Academy of Sciences Publication Activity Database

    Carvalho, A.M.G.; Mejía, C.S.; Ponte, C.A.; Silva, L.E.L.; Kaštil, Jiří; Kamarád, Jiří; Gomes, A.M.

    2016-01-01

    Roč. 122, č. 3 (2016), s. 1-5, č. článku 246. ISSN 0947-8396 Institutional support: RVO:68378271 Keywords : magnetocaloric effect * adiabatic temperature change * calorimetric device * gadolinium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  15. Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.

    1988-01-01

    in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...

  16. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    ference between Markovian and non-Markovian systems lies in the memory ... In recent years, research on quantum entanglement has attracted a lot of attention, which .... Hamiltonians for three types of atoms in the interaction picture are.

  17. Markovian Interpretations of Dual Retrieval Processes

    Science.gov (United States)

    Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.

    2013-01-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840

  18. Markovian Interpretations of Dual Retrieval Processes.

    Science.gov (United States)

    Gomes, C F A; Brainerd, C J; Nakamura, K; Reyna, V F

    2014-04-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes' work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes.

  19. THE HALO MASS FUNCTION FROM EXCURSION SET THEORY. I. GAUSSIAN FLUCTUATIONS WITH NON-MARKOVIAN DEPENDENCE ON THE SMOOTHING SCALE

    International Nuclear Information System (INIS)

    Maggiore, Michele; Riotto, Antonio

    2010-01-01

    A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the

  20. Shortcuts to adiabaticity in cutting a spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Feng-Hua [Department of Physics, Ocean University of China, Qingdao 266100 (China); School of Computer Engineering, Qingdao Technological University, Qingdao 266033 (China); Wang, Zhao-Ming, E-mail: mingmoon78@126.com [Department of Physics, Ocean University of China, Qingdao 266100 (China); Gu, Yong-Jian, E-mail: yjgu@ouc.edu.cn [Department of Physics, Ocean University of China, Qingdao 266100 (China)

    2017-01-15

    “Shortcuts to adiabaticity” represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a “shortcut” can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain. - Highlights: • “Shortcuts to adiabaticity” is proposed by applying external pulses. • The adiabaticity can be accelerated by increasing pulse strength or duration time. • Control effects are determined by the integral of the control function with respect to time.

  1. Atomistic absorption spectra and non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    Science.gov (United States)

    Glowacki, David

    Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter

  2. Ion Motion in the Adiabatic Focuser

    International Nuclear Information System (INIS)

    Henestroza, E.; Sessler, A.M.; Yu, S.S.

    2006-01-01

    In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned

  3. Adiabatic plasma buncher

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Katsouleas, T.C. [Los Angeles Univ. of Southern California, Los Angeles, CA (United States); Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ben Zvi, I. [Brookhaven National Laboratory, Upton, NY (United States)

    2000-07-01

    In this paper is presented a new scheme of injection into a plasma accelerator, aimed at producing a high quality beam while relaxing the demands on the bunch length of the injected beam. The beam dynamics in the injector, consisting of a high voltage pulsed photo-diode, is analyzed and optimized to produce a {lambda}{sub p}/20 long electron bunch at 2.5 MeV. This bunch is injected into a plasma wave in which it compresses down to {lambda}{sub p}/100 while simultaneously accelerating up to 250 MeV. This simultaneous bunching and acceleration of a high quality beam requires a proper combination of injection energy and injection phase. Preliminary results from simulations are shown to assess the potentials of the scheme.

  4. An Adiabatic Phase-Matching Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  5. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    Science.gov (United States)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  6. Monte Carlo simulation of fully Markovian stochastic geometries

    International Nuclear Information System (INIS)

    Lepage, Thibaut; Delaby, Lucie; Malvagi, Fausto; Mazzolo, Alain

    2010-01-01

    The interest in resolving the equation of transport in stochastic media has continued to increase these last years. For binary stochastic media it is often assumed that the geometry is Markovian, which is never the case in usual environments. In the present paper, based on rigorous mathematical theorems, we construct fully two-dimensional Markovian stochastic geometries and we study their main properties. In particular, we determine a percolation threshold p c , equal to 0.586 ± 0.0015 for such geometries. Finally, Monte Carlo simulations are performed through these geometries and the results compared to homogeneous geometries. (author)

  7. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  8. Exponential Synchronization for Stochastic Neural Networks with Mixed Time Delays and Markovian Jump Parameters via Sampled Data

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available The exponential synchronization issue for stochastic neural networks (SNNs with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.

  9. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  10. Quantum Adiabatic Optimization and Combinatorial Landscapes

    Science.gov (United States)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  11. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  12. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...

  13. Markovian Building Blocks for Individual-Based Modelling

    DEFF Research Database (Denmark)

    Nilsson, Lars Anders Fredrik

    2007-01-01

    previous exposure to Markov chains in continuous time (see e.g. Grimmett and Stirzaker, 2001)). Markovian arrival processes are very general point processes that are relatively easy to analyse. They have, so far, been largely unknown to the ecological modelling community. The article C deals...

  14. Solutions for a non-Markovian diffusion equation

    International Nuclear Information System (INIS)

    Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Oliveira, E.C. de

    2010-01-01

    Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.

  15. Application of Markovian model to school enrolment projection ...

    African Journals Online (AJOL)

    Application of Markovian model to school enrolment projection process. VU Ekhosuehi, AA Osagiede. Abstract. No Abstract. Global Journal of Mathematical Sciences Vol. 5(1) 2006: 9-16. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. A note on Markovian manpower models | Osagiede | Journal of the ...

    African Journals Online (AJOL)

    In modelling manpower systems, most authors rely on Markov-based theoretic methodology as an analytic tool to unify the states of the system with the axiomatic foundation that there is a one-stage dependence of events. In this study, Markovian manpower models are surveyed. Specific areas are highlighted as future ...

  17. Transport benchmarks for one-dimensional binary Markovian mixtures revisited

    International Nuclear Information System (INIS)

    Malvagi, F.

    2013-01-01

    The classic benchmarks for transport through a binary Markovian mixture are revisited to look at the probability distribution function of the chosen 'results': reflection, transmission and scalar flux. We argue that the knowledge of the ensemble averaged results is not sufficient for reliable predictions: a measure of the dispersion must also be obtained. An algorithm to estimate this dispersion is tested. (author)

  18. Adiabatic Wankel type rotary engine

    Science.gov (United States)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  19. An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty

    Science.gov (United States)

    Xi, Xiaopeng; Chen, Maoyin; Zhang, Hanwen; Zhou, Donghua

    2018-05-01

    It is widely noted in the literature that the degradation should be simplified into a memoryless Markovian process for the purpose of predicting the remaining useful life (RUL). However, there actually exists the long-term dependency in the degradation processes of some industrial systems, including electromechanical equipments, oil tankers, and large blast furnaces. This implies the new degradation state depends not only on the current state, but also on the historical states. Such dynamic systems cannot be accurately described by traditional Markovian models. Here we present an improved non-Markovian degradation model with both the long-term dependency and the item-to-item uncertainty. As a typical non-stationary process with dependent increments, fractional Brownian motion (FBM) is utilized to simulate the fractal diffusion of practical degradations. The uncertainty among multiple items can be represented by a random variable of the drift. Based on this model, the unknown parameters are estimated through the maximum likelihood (ML) algorithm, while a closed-form solution to the RUL distribution is further derived using a weak convergence theorem. The practicability of the proposed model is fully verified by two real-world examples. The results demonstrate that the proposed method can effectively reduce the prediction error.

  20. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    Science.gov (United States)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  1. Computing Rates of Small Molecule Diffusion Through Protein Channels Using Markovian Milestoning

    Science.gov (United States)

    Abrams, Cameron

    2014-03-01

    Measuring diffusion rates of ligands plays a key role in understanding the kinetic processes inside proteins. For example, although many molecular simulation studies have reported free energy barriers to infer rates for CO diffusion in myoglobin (Mb), they typically do not include direct calculation of diffusion rates because of the long simulation times needed to infer these rates with statistical accuracy. We show in this talk how to apply Markovian milestoning along minimum free-energy pathways to calculate diffusion rates of CO inside Mb. In Markovian milestoning, one partitions a suitable reaction coordinate space into regions and performs restrained molecular dynamics in each region to accumulate kinetic statistics that, when assembled across regions, provides an estimate of the mean first-passage time between states. The mean escape time for CO directly from the so-called distal pocket (DP) through the histidine gate (HG) is estimated at about 24 ns, confirming the importance of this portal for CO. But Mb is known to contain several internal cavities, and cavity-to-cavity diffusion rates are also computed and used to build a complete kinetic network as a Markov state model. Within this framework, the effective mean time of escape to the solvent through HG increases to 30 ns. Our results suggest that carrier protein structure may have evolved under pressure to modulate dissolved gas release rates using a network of ligand-accessible cavities. Support: NIH R01GM100472.

  2. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    Science.gov (United States)

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  3. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  4. Non-Markovian quantum Brownian motion in one dimension in electric fields

    Science.gov (United States)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  5. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  6. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    International Nuclear Information System (INIS)

    Phuc Do Van; Barros, Anne; Berenguer, Christophe

    2008-01-01

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies

  7. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomás; Braggio, Alessandro

    2010-01-01

    Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...

  8. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    Science.gov (United States)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  9. Data-based Non-Markovian Model Inference

    Science.gov (United States)

    Ghil, Michael

    2015-04-01

    This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close

  10. PIPER Continuous Adiabatic Demagnetization Refrigerator

    Science.gov (United States)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  11. Non-Markovian Investigation of an Autonomous Quantum Heat Engine

    Science.gov (United States)

    Goyal, Ketan

    A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.

  12. Non-Markovianity and memory of the initial state

    Science.gov (United States)

    Hinarejos, Margarida; Bañuls, Mari-Carmen; Pérez, Armando; de Vega, Inés

    2017-08-01

    We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the Breuer-Laine-Piilo measure proposed in Breuer et al (2009 Phys. Rev. Lett. 103 210401). We illustrate our findings with explicit calculations for the case of a structured environment.

  13. Markovian Limit of a Spatio-Temporal Correlated Open Systems

    Science.gov (United States)

    Monnai, T.

    Large fluctuation of Brownian particles is affected by the finiteness of the correlation length of the background noise field. Indeed a Fokker—Planck equation is derived in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic quantities are renormalized due to the spatio-temporal memory. We also investigate the case of open system by connecting a thermostat to the system.

  14. From BBGKY hierarchy to non-Markovian evolution equations

    International Nuclear Information System (INIS)

    Gerasimenko, V.I.; Shtyk, V.O.; Zagorodny, A.G.

    2009-01-01

    The problem of description of the evolution of the microscopic phase density and its generalizations is discussed. With this purpose, the sequence of marginal microscopic phase densities is introduced, and the appropriate BBGKY hierarchy for these microscopic distributions and their average values is formulated. The microscopic derivation of the generalized evolution equation for the average value of the microscopic phase density is given, and the non-Markovian generalization of the Fokker-Planck collision integral is proposed

  15. Optimizing Maintenance Planning in the Production Industry Using the Markovian Approach

    Directory of Open Access Journals (Sweden)

    B Kareem

    2012-12-01

    Full Text Available Maintenance is an essential activity in every manufacturing establishment, as manufacturing effectiveness counts on the functionality of production equipment and machinery in terms of their productivity and operational life. Maintenance cost minimization can be achieved by adopting an appropriate maintenance planning policy. This paper applies the Markovian approach to maintenance planning decision, thereby generating optimal maintenance policy from the identified alternatives over a specified period of time. Markov chains, transition matrices, decision processes, and dynamic programming models were formulated for the decision problem related to maintenance operations of a cable production company. Preventive and corrective maintenance data based on workloads and costs, were collected from the company and utilized in this study. The result showed variability in the choice of optimal maintenance policy that was adopted in the case study. Post optimality analysis of the process buttressed the claim. The proposed approach is promising for solving the maintenance scheduling decision problems of the company.

  16. Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

    Science.gov (United States)

    Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario

    2017-05-01

    Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.

  17. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  18. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    Science.gov (United States)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  19. Stochastic representation of a class of non-Markovian completely positive evolutions

    International Nuclear Information System (INIS)

    Budini, Adrian A.

    2004-01-01

    By modeling the interaction of an open quantum system with its environment through a natural generalization of the classical concept of continuous time random walk, we derive and characterize a class of non-Markovian master equations whose solution is a completely positive map. The structure of these master equations is associated with a random renewal process where each event consist in the application of a superoperator over a density matrix. Strong nonexponential decay arise by choosing different statistics of the renewal process. As examples we analyze the stochastic and averaged dynamics of simple systems that admit an analytical solution. The problem of positivity in quantum master equations induced by memory effects [S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808 (2001)] is clarified in this context

  20. Neural Network-Based Passive Filtering for Delayed Neutral-Type Semi-Markovian Jump Systems.

    Science.gov (United States)

    Shi, Peng; Li, Fanbiao; Wu, Ligang; Lim, Cheng-Chew

    2017-09-01

    This paper investigates the problem of exponential passive filtering for a class of stochastic neutral-type neural networks with both semi-Markovian jump parameters and mixed time delays. Our aim is to estimate the states by designing a Luenberger-type observer, such that the filter error dynamics are mean-square exponentially stable with an expected decay rate and an attenuation level. Sufficient conditions for the existence of passive filters are obtained, and a convex optimization algorithm for the filter design is given. In addition, a cone complementarity linearization procedure is employed to cast the nonconvex feasibility problem into a sequential minimization problem, which can be readily solved by the existing optimization techniques. Numerical examples are given to demonstrate the effectiveness of the proposed techniques.

  1. Exact master equations for the non-Markovian decay of a qubit

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Breuer, Heinz-Peter

    2010-01-01

    Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.

  2. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    Science.gov (United States)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  3. Pricing Exotic Options under a High-Order Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2007-10-01

    Full Text Available We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM. We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.

  4. Recursive approach for non-Markovian time-convolutionless master equations

    Science.gov (United States)

    Gasbarri, G.; Ferialdi, L.

    2018-02-01

    We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.

  5. Role of complementary correlations in the evolution of classical and quantum correlations under Markovian decoherence

    International Nuclear Information System (INIS)

    Deb, Prasenjit; Banik, Manik

    2015-01-01

    Quantum correlation lies at the very heart of almost all of the non-classical phenomena exhibited by quantum systems composed of two or more subsystems. In recent times it has been pointed out that there is a kind of quantum correlation, namely discord, which is more general than entanglement. Some authors have investigated the phenomenon that for certain initial states the quantum correlations as well as the classical correlations exhibit sudden change under simple Markovian noise. We show that this dynamical behavior of the correlations of both types can be explained using the idea of complementary correlations. We also show that though a certain class of mixed entangled states can resist the monotonic decay of quantum correlations, this is not true for all mixed states. Moreover, pure entangled states of two qubits will never exhibit such sudden change. (paper)

  6. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    Science.gov (United States)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  7. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  8. Adiabatic theorem for the time-dependent wave operator

    International Nuclear Information System (INIS)

    Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne

    2005-01-01

    The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system

  9. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1982-01-01

    The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. In Sec. II a one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium code; in Sec. III an even simpler analytic calculation is presented.

  10. Permanence and asymptotic behaviors of stochastic predator-prey system with Markovian switching and Lévy noise

    Science.gov (United States)

    Wang, Sheng; Wang, Linshan; Wei, Tengda

    2018-04-01

    This paper concerns the dynamics of a stochastic predator-prey system with Markovian switching and Lévy noise. First, the existence and uniqueness of global positive solution to the system is proved. Then, by combining stochastic analytical techniques with M-matrix analysis, sufficient conditions of stochastic permanence and extinction are obtained. Furthermore, for the stochastic permanence case, by means of four constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems, both the superior limit and the inferior limit of the average in time of the sample path of the solution are estimated. Finally, our conclusions are illustrated through an example.

  11. Quantum entangling power of adiabatically connected Hamiltonians

    International Nuclear Information System (INIS)

    Hamma, Alioscia; Zanardi, Paolo

    2004-01-01

    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied

  12. A Bayesian perspective on Markovian dynamics and the fluctuation theorem

    Science.gov (United States)

    Virgo, Nathaniel

    2013-08-01

    One of E. T. Jaynes' most important achievements was to derive statistical mechanics from the maximum entropy (MaxEnt) method. I re-examine a relatively new result in statistical mechanics, the Evans-Searles fluctuation theorem, from a MaxEnt perspective. This is done in the belief that interpreting such results in Bayesian terms will lead to new advances in statistical physics. The version of the fluctuation theorem that I will discuss applies to discrete, stochastic systems that begin in a non-equilibrium state and relax toward equilibrium. I will show that for such systems the fluctuation theorem can be seen as a consequence of the fact that the equilibrium distribution must obey the property of detailed balance. Although the principle of detailed balance applies only to equilibrium ensembles, it puts constraints on the form of non-equilibrium trajectories. This will be made clear by taking a novel kind of Bayesian perspective, in which the equilibrium distribution is seen as a prior over the system's set of possible trajectories. Non-equilibrium ensembles are calculated from this prior using Bayes' theorem, with the initial conditions playing the role of the data. I will also comment on the implications of this perspective for the question of how to derive the second law.

  13. Multilevel Approximations of Markovian Jump Processes with Applications in Communication Networks

    KAUST Repository

    Vilanova, Pedro

    2015-05-04

    This thesis focuses on the development and analysis of efficient simulation and inference techniques for Markovian pure jump processes with a view towards applications in dense communication networks. These techniques are especially relevant for modeling networks of smart devices —tiny, abundant microprocessors with integrated sensors and wireless communication abilities— that form highly complex and diverse communication networks. During 2010, the number of devices connected to the Internet exceeded the number of people on Earth: over 12.5 billion devices. By 2015, Cisco’s Internet Business Solutions Group predicts that this number will exceed 25 billion. The first part of this work proposes novel numerical methods to estimate, in an efficient and accurate way, observables from realizations of Markovian jump processes. In particular, hybrid Monte Carlo type methods are developed that combine the exact and approximate simulation algorithms to exploit their respective advantages. These methods are tailored to keep a global computational error below a prescribed global error tolerance and within a given statistical confidence level. Indeed, the computational work of these methods is similar to the one of an exact method, but with a smaller constant. Finally, the methods are extended to systems with a disparity of time scales. The second part develops novel inference methods to estimate the parameters of Markovian pure jump process. First, an indirect inference approach is presented, which is based on upscaled representations and does not require sampling. This method is simpler than dealing directly with the likelihood of the process, which, in general, cannot be expressed in closed form and whose maximization requires computationally intensive sampling techniques. Second, a forward-reverse Monte Carlo Expectation-Maximization algorithm is provided to approximate a local maximum or saddle point of the likelihood function of the parameters given a set of

  14. Thermoelectric Effects under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  15. Simple non-Markovian microscopic models for the depolarizing channel of a single qubit

    International Nuclear Information System (INIS)

    Fonseca Romero, K M; Lo Franco, R

    2012-01-01

    The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.

  16. Magnus approximation in the adiabatic picture

    International Nuclear Information System (INIS)

    Klarsfeld, S.; Oteo, J.A.

    1991-01-01

    A simple approximate nonperturbative method is described for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian. A few exactly soluble examples are considered in order to assess the domain of validity of the approximation. (author) 32 refs., 4 figs

  17. Rule of Thumb and Dynamic Programming

    NARCIS (Netherlands)

    Lettau, M.; Uhlig, H.F.H.V.S.

    1995-01-01

    This paper studies the relationships between learning about rules of thumb (represented by classifier systems) and dynamic programming. Building on a result about Markovian stochastic approximation algorithms, we characterize all decision functions that can be asymptotically obtained through

  18. Symmetry of the Adiabatic Condition in the Piston Problem

    Science.gov (United States)

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  19. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  20. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  1. Closed hierarchy of correlations in Markovian open quantum systems

    International Nuclear Information System (INIS)

    Žunkovič, Bojan

    2014-01-01

    We study the Lindblad master equation in the space of operators and provide simple criteria for closeness of the hierarchy of equations for correlations. We separately consider the time evolution of closed and open systems and show that open systems satisfying the closeness conditions are not necessarily of Gaussian type. In addition, we show that dissipation can induce the closeness of the hierarchy of correlations in interacting quantum systems. As an example we study an interacting optomechanical model, the Fermi–Hubbard model, and the Rabi model, all coupled to a fine-tuned Markovian environment and obtain exact analytic expressions for the time evolution of two-point correlations. (paper)

  2. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  3. Non-Markovian effects on quantum-communication protocols

    International Nuclear Information System (INIS)

    Yeo, Ye; Oh, C. H.; An, Jun-Hong

    2010-01-01

    We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.

  4. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  5. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  6. Stochastic wave-function simulation of irreversible emission processes for open quantum systems in a non-Markovian environment

    Science.gov (United States)

    Polyakov, Evgeny A.; Rubtsov, Alexey N.

    2018-02-01

    When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.

  7. Assessment of total efficiency in adiabatic engines

    Science.gov (United States)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  8. Non-Markovian decay of a three-level cascade atom in a structured reservoir

    International Nuclear Information System (INIS)

    Dalton, B.J.; Garraway, B.M.

    2003-01-01

    The dynamics of a three-level atom in a cascade (or ladder) configuration with both transitions coupled to a single structured reservoir of quantized electromagnetic field modes is treated using Laplace transform methods applied to the coupled amplitude equations. In this system two-photon excitation of the reservoir occurs, and both sequences for emitting the two photons are allowed and included in the theory. An integral equation is found to govern the complex amplitudes of interest. It is shown that the dynamics of the atomic system is completely determined in terms of reservoir structure functions, which are products of the mode density with the coupling constant squared. This dependence on reservoir structure functions rather than on the mode density or coupling constants alone, shows that it may be possible to extend pseudomode theory to treat multiphoton excitation of a structured reservoir--pseudomodes being introduced in one-one correspondence with the poles of reservoir structure functions in the complex frequency plane. A general numerical method for solving the integral equations based on discretizing frequency space, and applicable to different structured reservoirs such as high-Q cavities and photonic band-gap systems, is presented. An application to a high-Q-cavity case with identical Lorentzian reservoir structure functions is made, and the non-Markovian decay of the excited state shown. A formal solution to the integral equations in terms of right and left eigenfunctions of a non-Hermitian kernel is also given. The dynamics of the cascade atom, with the two transitions coupled to two separate structured reservoirs of quantized electromagnetic field modes, is treated similarly to the single structured reservoir situation. Again the dynamics only depends on reservoir structure functions. As only one sequence of emitting the two photons now occurs, the integral equation for the amplitudes can be solved analytically. The non-Markovian decay of the

  9. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  10. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2003-01-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit

  11. Adiabatic quantum search algorithm for structured problems

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size

  12. Quantum operation for a one-qubit system under a non-Markovian environment

    International Nuclear Information System (INIS)

    Xue Shibei; Zhang Jing; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong

    2011-01-01

    This paper introduces a simple alternating-current (AC) control strategy to perform quantum state manipulations under non-Markovian noise. A genetic algorithm is adopted to optimize the parameters of the AC control, which can be further used to fulfil one-qubit quantum operations at a given final time. Theoretical analysis and simulations show that our method works almost equally well for 1/f noise, ohmic, sub-ohmic and super-ohmic noise, which demonstrates the robustness of our strategy for noise with various spectra. In comparison with the Markovian cases, our method is more suitable to be used to suppress non-Markovian noise.

  13. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  14. Superconducting system for adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)

    2006-06-01

    We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.

  15. Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays

    International Nuclear Information System (INIS)

    Li Hongjie; Yue Dong

    2010-01-01

    The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

  16. Survival probability of a local excitation in a non-Markovian environment: Survival collapse, Zeno and anti-Zeno effects

    International Nuclear Information System (INIS)

    Rufeil-Fiori, E.; Pastawski, H.M.

    2009-01-01

    The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time t S , (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes, leading to an inverse power law decay. At this last cross-over time t R a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-over times t S and t R allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and anti-Zeno effect.

  17. Zero-crossing statistics for non-Markovian time series.

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  18. Zero-crossing statistics for non-Markovian time series

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  19. Inhomogeneous electrochemiluminescence. II Markovian encounter theory of the phenomenon

    International Nuclear Information System (INIS)

    Gladkikh, V.; Burshtein, A.I.

    2005-01-01

    The free energy dependence of the electro-chemiluminescence quantum yield is specified, with the Markovian encounter theory accounting for the reversibility of triplet production competing with the irreversible recombination to the ground state. It is shown that diffusional ion recombination is highly inhomogeneous in space. It proceeds at either large positive ionization free energy (mainly to the triplet product) or at large negative free energy when recombination to the ground state dominates. On the contrary at medium free energies, the quasi-resonant generation of triplets is under kinetic control and therefore much more homogeneous. In this case, both recombination products are generated in comparable amounts. The multiple reversible ionization is shown to act as an independent quenching mechanism previously unknown. The role of the triplet quenching at the electrode is also specified. These effects reduce noticeably the luminescence quantum yield but only at larger triplet life times and in different free energy regions

  20. Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment

    Science.gov (United States)

    Zhang, Jun; Liu, Liang; Han, Yan

    2018-05-01

    In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.

  1. Sample efficient multiagent learning in the presence of Markovian agents

    CERN Document Server

    Chakraborty, Doran

    2014-01-01

    The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties.

  2. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  3. Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation

    International Nuclear Information System (INIS)

    Dorda, A; Sorantin, M; Linden, W von der; Arrigoni, E

    2017-01-01

    We present a general scheme to address correlated nonequilibrium quantum impurity problems based on a mapping onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number N B of noninteracting auxiliary bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by numerical methods such as Lanczos or matrix-product states. The mapping becomes exponentially exact with increasing N B , and is already quite accurate for small N B . Due to the presence of the intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian. While in previous work we put the focus on the manybody solution of the associated Lindblad problem, here we discuss the mapping scheme itself, which is an essential part of the overall approach. On the one hand, we provide technical details together with an in-depth discussion of the employed algorithms, and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the above-mentioned exponential convergence of the procedure with increasing N B . Furthermore, the influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge of the particular convergence behavior is of great value to assess the applicability of the scheme to certain physical situations. Moreover, we study different geometries for the auxiliary system. On the one hand, this is of importance for advanced manybody solution techniques such as matrix product states which work well for short-ranged couplings, and on the other hand, it allows us to gain more insights into the underlying mechanisms when mapping non-Markovian reservoirs onto Lindblad-type impurity problems. Finally, we present results for the spectral function of the Anderson impurity model in and out of equilibrium and discuss the accuracy obtained with the different geometries of the auxiliary system

  4. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  5. Calculation of non-adiabatic coupling vectors in a local-orbital basis set

    Czech Academy of Sciences Publication Activity Database

    Abad, E.; Lewis, J.P.; Zobač, Vladimír; Hapala, Prokop; Jelínek, Pavel; Ortega, J.

    2013-01-01

    Roč. 138, č. 15 (2013), "154106-1"-"154106-8" ISSN 0021-9606 R&D Projects: GA ČR GAP204/10/0952; GA MŠk ME09048 Institutional support: RVO:68378271 Keywords : non adiabatic couplings * molecular dynamics * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.122, year: 2013

  6. Pulsed adiabatic structure and complete population transfer

    International Nuclear Information System (INIS)

    Shore, B.W.

    1992-10-01

    Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses

  7. Post-adiabatic analysis of atomic collisions

    International Nuclear Information System (INIS)

    Klar, H.; Fano, U.

    1976-01-01

    The coupling between adiabatic channels can be partially transformed away. The transformation need not induce any transition between channnels; but it correlates the radial wave functions and their gradients with the channel functions and it depresses the lower effective potentials, as the energy increases, in accordance with empirical evidence

  8. Connection between adiabaticity and the mirror mode

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  9. Improving the positive feedback adiabatic logic familiy

    Directory of Open Access Journals (Sweden)

    J. Fischer

    2004-01-01

    Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.

  10. Non-Markovian Effects on the Brownian Motion of a Free Particle

    OpenAIRE

    Bolivar, A. O.

    2010-01-01

    Non-Markovian effects upon the Brownian movement of a free particle in the presence as well as in the absence of inertial force are investigated within the framework of Fokker-Planck equations (Rayleigh and Smoluchowski equations). More specifically, it is predicted that non-Markovian features can enhance the values of the mean square displacement and momentum, thereby assuring the mathematical property of differentiability of the these physically observable quantities.

  11. Some performance measures for vacation models with a batch Markovian arrival process

    Directory of Open Access Journals (Sweden)

    Sadrac K. Matendo

    1994-01-01

    Full Text Available We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP. Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP, many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP.

  12. A framework for the direct evaluation of large deviations in non-Markovian processes

    International Nuclear Information System (INIS)

    Cavallaro, Massimo; Harris, Rosemary J

    2016-01-01

    We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means. (letter)

  13. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  14. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  15. Quantum gas in the fast forward scheme of adiabatically expanding cavities: Force and equation of state

    Science.gov (United States)

    Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro

    2018-04-01

    With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.

  16. FRW-type cosmologies with adiabatic matter creation

    International Nuclear Information System (INIS)

    Lima, J.A.; Germano, A.S.; Abramo, L.R.

    1996-01-01

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society

  17. Continued-fraction representation of the Kraus map for non-Markovian reservoir damping

    Science.gov (United States)

    van Wonderen, A. J.; Suttorp, L. G.

    2018-04-01

    Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.

  18. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  19. Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays

    International Nuclear Information System (INIS)

    Yan Zhe-Ping; Liu Yi-Bo; Zhou Jia-Jia; Zhang Wei; Wang Lu

    2017-01-01

    A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles (multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated. This is accomplished by first dividing the communication topology into two different switching parts, i.e., velocity and position, to reduce the data capacity per data package sent between the multi-AUVs in the ocean. Then, the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model. Consequently, coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies. Considering these factors, sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov–Krasovskii theorem. Finally, simulation results that validate the theoretical results are presented. (paper)

  20. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  1. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  2. ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS

    International Nuclear Information System (INIS)

    Robertson, Brant; Goldreich, Peter

    2012-01-01

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  3. Adiabatic Theorem for Quantum Spin Systems

    Science.gov (United States)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  4. Ramsey numbers and adiabatic quantum computing.

    Science.gov (United States)

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  5. Trapped Ion Quantum Computation by Adiabatic Passage

    International Nuclear Information System (INIS)

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-01-01

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  6. Change of adiabatic invariant near the separatrix

    International Nuclear Information System (INIS)

    Bulanov, S.V.

    1995-10-01

    The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs

  7. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  8. Adiabatic graph-state quantum computation

    International Nuclear Information System (INIS)

    Antonio, B; Anders, J; Markham, D

    2014-01-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)

  9. Random matrix model of adiabatic quantum computing

    International Nuclear Information System (INIS)

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-01-01

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size

  10. A many-particle adiabatic invariant of strongly magnetized pure electron plasmas

    International Nuclear Information System (INIS)

    Hjorth, P.G.

    1988-01-01

    A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation

  11. Non-Markovian modification of the golden rule rate expression

    International Nuclear Information System (INIS)

    Basilevsky, M. V.; Davidovich, G. V.; Titov, S. V.; Voronin, A. I.

    2006-01-01

    The reformulation of the standard golden rule approach considered in this paper for treating reactive tunneling reduces the computation of the reaction rate to a derivation of band shapes for energy levels of reactant and product states. This treatment is based on the assumption that the medium environment is actively involved as a partner in the energy exchange with the reactive subsystem but its reorganization effect is negligible. Starting from the quantum relaxation equation for the density matrix, the required band shapes are represented in terms of the spectral density function, exhibiting the continuum spectrum inherent to the interaction between the reactants and the medium in the total reactive system. The simplest Lorentzian spectral bands, obtained under Redfield approximation, proved to be unsatisfactory because they produced a divergent rate expression at low temperature. The problem is resolved by invoking a refined spectral band shape, which behaves as Lorentzian one at the band center but decays exponentially at its tails. The corresponding closed non-Markovian rate expression is derived and investigated taking as an example the photochemical H-transfer reaction between fluorene and acridine proceeding in the fluorene molecular crystal. The kinetics in this reactive system was thoroughly studied experimentally in a wide temperature range [B. Prass et al., Ber. Bunsenges. Phys. Chem. 102, 498 (1998)

  12. Approximate zero-variance Monte Carlo estimation of Markovian unreliability

    International Nuclear Information System (INIS)

    Delcoux, J.L.; Labeau, P.E.; Devooght, J.

    1997-01-01

    Monte Carlo simulation has become an important tool for the estimation of reliability characteristics, since conventional numerical methods are no more efficient when the size of the system to solve increases. However, evaluating by a simulation the probability of occurrence of very rare events means playing a very large number of histories of the system, which leads to unacceptable computation times. Acceleration and variance reduction techniques have to be worked out. We show in this paper how to write the equations of Markovian reliability as a transport problem, and how the well known zero-variance scheme can be adapted to this application. But such a method is always specific to the estimation of one quality, while a Monte Carlo simulation allows to perform simultaneously estimations of diverse quantities. Therefore, the estimation of one of them could be made more accurate while degrading at the same time the variance of other estimations. We propound here a method to reduce simultaneously the variance for several quantities, by using probability laws that would lead to zero-variance in the estimation of a mean of these quantities. Just like the zero-variance one, the method we propound is impossible to perform exactly. However, we show that simple approximations of it may be very efficient. (author)

  13. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    Science.gov (United States)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  14. Two parallel finite queues with simultaneous services and Markovian arrivals

    Directory of Open Access Journals (Sweden)

    S. R. Chakravarthy

    1997-01-01

    Full Text Available In this paper, we consider a finite capacity single server queueing model with two buffers, A and B, of sizes K and N respectively. Messages arrive one at a time according to a Markovian arrival process. Messages that arrive at buffer A are of a different type from the messages that arrive at buffer B. Messages are processed according to the following rules: 1. When buffer A(B has a message and buffer B(A is empty, then one message from A(B is processed by the server. 2. When both buffers, A and B, have messages, then two messages, one from A and one from B, are processed simultaneously by the server. The service times are assumed to be exponentially distributed with parameters that may depend on the type of service. This queueing model is studied as a Markov process with a large state space and efficient algorithmic procedures for computing various system performance measures are given. Some numerical examples are discussed.

  15. Adiabatic effective action for vortices in neutral and charged superfluids

    International Nuclear Information System (INIS)

    Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.

    1996-01-01

    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed

  16. Bifurcation dynamics of the tempered fractional Langevin equation

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Caibin, E-mail: macbzeng@scut.edu.cn; Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Mathematics, South China University of Technology, Guangzhou 510640 (China); Chen, YangQuan, E-mail: ychen53@ucmerced.edu [MESA LAB, School of Engineering, University of California, Merced, 5200 N. Lake Road, Merced, California 95343 (United States)

    2016-08-15

    Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.

  17. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    Science.gov (United States)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  18. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving.

    Science.gov (United States)

    Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin

    2015-10-28

    Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection.

  19. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  20. Photoionization by a bichromatic field: Adiabatic theory

    International Nuclear Information System (INIS)

    Pazdzersky, V.A.; Yurovsky, V.A.

    1995-01-01

    Atom photoionization by the superposition of a fundamental field and its second harmonic is considered. The finite analytical expressions for the photoionization probability are obtained using the adiabatic approximation. They demonstrate that the photoelectron angular distribution has a polar symmetry when the electrical field strength has a maximal polar asymmetry and the distribution is asymmetrical when the field is symmetrical. A strict proof of the polar symmetry of the photoionization probability in the case of the electrical field with maximal asymmetry is deduced using the Keldysh-Faisal-Reiss theories. The obtained results are in agreement with the experimental data available

  1. Decoherence in a scalable adiabatic quantum computer

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-01-01

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks

  2. Neutron generator based on adiabatic trap

    International Nuclear Information System (INIS)

    Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.

    1988-01-01

    A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2

  3. Phase avalanches in near-adiabatic evolutions

    International Nuclear Information System (INIS)

    Vertesi, T.; Englman, R.

    2006-01-01

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes

  4. On adiabatic perturbations in the ekpyrotic scenario

    International Nuclear Information System (INIS)

    Linde, A.; Mukhanov, V.; Vikman, A.

    2010-01-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario

  5. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  6. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  7. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    International Nuclear Information System (INIS)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-01-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results

  8. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Science.gov (United States)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  9. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...... operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2 /H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed...

  10. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  11. Joint probability distributions for a class of non-Markovian processes.

    Science.gov (United States)

    Baule, A; Friedrich, R

    2005-02-01

    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H. C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single-time probability distributions to the case of N -time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.

  12. Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters

    International Nuclear Information System (INIS)

    Lou Xuyang; Cui Baotong

    2009-01-01

    In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.

  13. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  14. The Dynamical Invariant of Open Quantum System

    OpenAIRE

    Wu, S. L.; Zhang, X. Y.; Yi, X. X.

    2015-01-01

    The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...

  15. Levitation of Bose-Einstein condensates induced by macroscopic non-adiabatic quantum tunneling

    OpenAIRE

    Nakamura, Katsuhiro; Kohi, Akihisa; Yamasaki, Hisatsugu; Perez-Garcia, Victor M.

    2006-01-01

    We study the dynamics of two-component Bose-Einstein condensates trapped in different vertical positions in the presence of an oscillating magnetic field. It is shown here how tuning appropriately the oscillation frequency of the magnetic field leads to the levitation of the system against gravity. This phenomenon is a manifestation of a macroscopic non-adiabatic tunneling in a system with internal degrees of freedom.

  16. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  17. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jun; Liu Lihong; Fang Weihai [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie Zhizhong [Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang Yong [Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030 (United States)

    2013-04-07

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH{sub 3}OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S{sub 1} relaxation of the photo-induced E{yields}Z process is only mildly affected by the solvent effect, the relatively slower S{sub 1} relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub E}) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S{sub 1} state, while the S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub Z}) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  18. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...

  19. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  20. Teleportation of an Unknown Atomic State via Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.

  1. Adiabatic Compression Sensitivity of AF-M315E

    Science.gov (United States)

    2015-07-01

    Brand for their technical expertise and guidance. He also wishes to thank Mr. Stephen McKim from NASA Goddard Space Flight Center for his assistance...Wilson, D. B., and Stoltzfus, J. M. "Adiabatic Compression of Oxygen: Real Fluid Temperatures," 2000. 10Ismail, I. M. K., and Hawkins , T. W. "Adiabatic

  2. Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...

  3. Adiabatic/diabatic polarization beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  4. Quantum tunneling in the adiabatic Dicke model

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Liang Jiuqing

    2007-01-01

    The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed

  5. Adiabatic quantum pumping and charge quantization

    International Nuclear Information System (INIS)

    Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.

    2004-01-01

    Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments

  6. The adiabatic approximation in multichannel scattering

    International Nuclear Information System (INIS)

    Schulte, A.M.

    1978-01-01

    Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)

  7. Adiabatic equilibrium models for direct containment heating

    International Nuclear Information System (INIS)

    Pilch, M.; Allen, M.D.

    1991-01-01

    Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load

  8. Stability of the Markov operator and synchronization of Markovian random products

    Science.gov (United States)

    Díaz, Lorenzo J.; Matias, Edgar

    2018-05-01

    We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.

  9. Fault-tolerant quantum computation for local non-Markovian noise

    International Nuclear Information System (INIS)

    Terhal, Barbara M.; Burkard, Guido

    2005-01-01

    We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis

  10. Large deviation estimates for a Non-Markovian Lévy generator of big order

    International Nuclear Information System (INIS)

    Léandre, Rémi

    2015-01-01

    We give large deviation estimates for a non-markovian convolution semi-group with a non-local generator of Lévy type of big order and with the standard normalisation of semi-classical analysis. No stochastic process is associated to this semi-group. (paper)

  11. Optical signatures of non-Markovian behavior in open quantum systems

    DEFF Research Database (Denmark)

    McCutcheon, Dara

    2016-01-01

    for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature...

  12. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 5. Evolution of entropy in different types of non-Markovian three-level systems: Single reservoir vs. two independent reservoirs. JAGHOURI HAKIMEH SARBISHAEI MOHSEN JAVIDAN KUROSH. Regular Volume 86 Issue 5 May 2016 pp 997-1008 ...

  13. Quantum measurements in spin-boson model under non-Markovian environment

    Science.gov (United States)

    Berrada, K.; Aldaghri, O.

    2017-07-01

    We propose a control approach of the parameter estimation for a two-level quantum system interacting with a bosonic reservoir considering non-Markovian open, dissipative quantum system. We show that the precision of the estimation significantly affected and behaves differently within the framework of the markovian and non-Markovian regimes. The influence of memory effects for an Ohmic reservoir with Lorentz-Drude regularization on the estimation-parameter precision are numerically demonstrated under the following three conditions: ω0 ≪ωc , ω0 ≈ωc or ω0 ≫ωc , where ω0 is the characteristic frequency of the two-level system, and ωc is the cut-off frequency of Ohmic reservoir. We investigate the precision rate in high temperature, intermediate temperature, and low temperature reservoirs for various values of the ratio r =ωc /ω0 considering manifold external fields. We reveal that the enhancement and preservation of the measurement precision, highly depend on the combination of the external control field, reservoir parameters, and non-Markovian effects.

  14. Design of ternary clocked adiabatic static random access memory

    International Nuclear Information System (INIS)

    Wang Pengjun; Mei Fengna

    2011-01-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)

  15. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    Science.gov (United States)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  16. Adiabatic logic future trend and system level perspective

    CERN Document Server

    Teichmann, Philip

    2012-01-01

    Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...

  17. Design of ternary clocked adiabatic static random access memory

    Science.gov (United States)

    Pengjun, Wang; Fengna, Mei

    2011-10-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.

  18. Quantum theory of NMR adiabatic pulses and their applications

    International Nuclear Information System (INIS)

    Ke, Y.

    1993-01-01

    Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B 1 -field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90 degrees excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences

  19. Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential.

    Science.gov (United States)

    Scribano, Yohann; Faure, Alexandre; Lauvergnat, David

    2012-03-07

    Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile. © 2012 American Institute of Physics

  20. Design and demonstration of adiabatic quantum-flux-parametron logic circuits with superconductor magnetic shields

    International Nuclear Information System (INIS)

    Inoue, Kenta; Narama, Tatsuya; Yamanashi, Yuki; Yoshikawa, Nobuyuki; Takeuchi, Naoki

    2015-01-01

    Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power and very small dynamic power due to adiabatic switching operations. In order to build large-scale digital circuits, we built AQFP logic cells using superconductor magnetic shields, which are necessary in order to avoid unwanted magnetic couplings between the cells and excitation currents. In preliminary experimental tests, we confirmed that the unwanted coupling became negligibly small thanks to the superconductor shields. As a demonstration, we designed a four-to-one multiplexor and a 16-junction full adder using the shielded logic cells. In both circuits, we confirmed correct logic operations with wide operation margins of excitation currents. These results indicate that large-scale AQFP digital circuits can be realized using the shielded logic cells. (paper)

  1. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    International Nuclear Information System (INIS)

    Brittnacher, M.J.; Whipple, E.C.

    1991-01-01

    In attempting to develop a fluidlike model of plasma dynamics in a current sheet, kinetic effects due to chaotic non-adiabatic particle motion must be included in any realistic description. Using drift variables, derived by the Kruskal averaging procedure, to construct distribution functions may provide an approach in which to develop the fluid description. However, the drift motion is influenced by abrupt changes in the value of the generalized first adiabatic invariant J. In this letter, the authors indicate how the changes in J derived from separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. In particular, the authors propose a method to determine distribution functions for an ensemble of particles following interactions with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant

  2. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  3. A cell-to-cell Markovian model for the reliability of a digital control system of a steam generator

    International Nuclear Information System (INIS)

    Gomes, Ian B.; Melo, Paulo F.F. Frutuoso e; Saldanha, Pedro L.C.

    2013-01-01

    With the shift of technology from analog to digital systems, due to the obsolescence of the older analog systems and the functional advantages of the digital ones, existing nuclear power plants have begun to replace their systems, while newer plants use digital systems from the beginning of their construction. However, the process of risk-informed analysis for digital systems has not been satisfactorily developed yet. Traditional methods, such as fault trees, have limitations, while dynamic methods are still in the tests stage and may be difficult to be applied to a real size probabilistic safety assessment (PSA) model. The objective of this paper is to study and obtain a better comprehension of the Markov/CCMT method, a method that combines the traditional Markovian methodology with the cell-to-cell mapping technique for representing the possible failure events that can be originated in the dynamic interactions between the instrumentation and control system and the controlled process, and among the various components of the digital system. The study consists of the simulation of a digital water level control system of the steam generator of a PWR plant. From this simulation, a Failure Modes and Effects Analysis (FMEA) was made and the information obtained was used to calculate the system reliability, using the Markov/CCMT methodology. The results show that the method is capable of identifying the most probable causes for a possible failure of the digital system. (author)

  4. Are the reactions of quinones on graphite adiabatic?

    International Nuclear Information System (INIS)

    Luque, N.B.; Schmickler, W.

    2013-01-01

    Outer sphere electron transfer reactions on pure metal electrodes are often adiabatic and hence independent of the electrode material. Since it is not clear, whether adiabatic electron transfer can also occur on a semi-metal like graphite, we have re-investigated experimental data presented in a recent communication by Nissim et al. [Chemical Communications 48 (2012) 3294] on the reactions of quinones on graphite. We have supplemented their work by DFT calculations and conclude, that these reactions are indeed adiabatic. This contradicts the assertion of Nissim et al. that the rates are proportional to the density of states at the Fermi level

  5. Approximability of optimization problems through adiabatic quantum computation

    CERN Document Server

    Cruz-Santos, William

    2014-01-01

    The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l

  6. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  7. Intermittent strong transport of the quasi-adiabatic plasma state.

    Science.gov (United States)

    Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon

    2018-06-05

    The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.

  8. Adiabatic quantum algorithm for search engine ranking.

    Science.gov (United States)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  9. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging the system. The compression leads to a significant increase in temperature, and the heat generated is dumped into the ambient. This energy loss results in a low efficiency of the system, and when expanding the air, the expansion leads to a temperature drop reducing the mechanical output of the expansion turbines. To overcome this, fuel is burned to heat up the air prior to expansion. The fuel consumption causes a significant cost for the storage. Several suggestions have been made to store compression heat for later use during expansion and thereby avoid the use of fuel (so called Adiabatic CAES units), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through a turbine when discharging. In this case, the liquid works effectively as a piston compressing the gas in the vessel, hence the name ''Adiabatic

  10. Spatial non-adiabatic passage using geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)

    2017-12-15

    Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)

  11. On the adiabatic theorem in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.

    1982-01-01

    We show that with suitable assumptions the equilibrium states are exactly the states invariant under adiabatic local perturbations. The relevance of this fact to the problem of ergodicity is discussed. (Author)

  12. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  13. Adiabatic rotation, quantum search, and preparation of superposition states

    International Nuclear Information System (INIS)

    Siu, M. Stewart

    2007-01-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied 'straight line' adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev's toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm

  14. Convergence of hyperspherical adiabatic expansion for helium-like systems

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Pojda, V.Yu.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1988-01-01

    The convergence of hyperspherical adiabatic expansion has been studied numerically. The spectral problems arising after separation of variables are solved by the finite-difference and finite element methods. The energies of the ground and some doubly excited staes of a hydrogen ion are calculated in the six-channel approximation within the 10 -4 a.u. accuracy. Obtained results demonstrate a rapid convergence of the hyperspherical adiabatic expansion. 14 refs.; 5 tabs

  15. On Adiabatic Processes at the Elementary Particle Level

    OpenAIRE

    A, Michaud

    2016-01-01

    Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.

  16. Adiabatic analysis of collisions. III. Remarks on the spin model

    International Nuclear Information System (INIS)

    Fano, U.

    1979-01-01

    Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems

  17. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  18. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  19. RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements

    International Nuclear Information System (INIS)

    Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2004-01-01

    In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments

  20. Non-adiabatic generator-coordinate calculation of H2+

    International Nuclear Information System (INIS)

    Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de

    1982-10-01

    A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt

  1. A note on the geometric phase in adiabatic approximation

    International Nuclear Information System (INIS)

    Tong, D.M.; Singh, K.; Kwek, L.C.; Fan, X.J.; Oh, C.H.

    2005-01-01

    The adiabatic theorem shows that the instantaneous eigenstate is a good approximation of the exact solution for a quantum system in adiabatic evolution. One may therefore expect that the geometric phase calculated by using the eigenstate should be also a good approximation of exact geometric phase. However, we find that the former phase may differ appreciably from the latter if the evolution time is large enough

  2. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity

    Directory of Open Access Journals (Sweden)

    Mathieu Beau

    2016-04-01

    Full Text Available The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.

  3. Pre-History Of The Concepts Underlying Stimulated Raman Adiabatic Passage (STIRAP)

    International Nuclear Information System (INIS)

    Shore, B.W.

    2013-01-01

    This tutorial review discusses some of the work that preceded development, twenty-five years ago, of the stimulated Raman adiabatic passage (STIRAP) technique, now widely used in the controlled coherent dynamics of three-state systems, noting how the use of time-dependent adiabatically-evolving population-trapping dark states made possible the robust and highly-efficient population transfer between quantum states that first popularized STIRAP. Preceding the history discussion is a tutorial definition of STIRAP and its necessary and sufficient ingredients — understanding that has led to applications well beyond those of the original quantum systems. This review also discusses the relationship between STIRAP and two related procedures: chirped Raman adiabatic passage (RCAP or CHIRAP) and electromagnetically induced transparency (EIT) with slow and captured light. It concludes with a brief discussion of ways in which contemporary STIRAP has extended the original concept and enlarged the definition, beyond that of simple quantum systems to classical macroscopic devices. Appendices offer further details. The presentation emphasizes theory but with illustrations of experimental results. (author)

  4. Statistical mechanics of Roskilde liquids: configurational adiabats, specific heat contours, and density dependence of the scaling exponent.

    Science.gov (United States)

    Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.

  5. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  6. Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise

    International Nuclear Information System (INIS)

    Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym

    2008-01-01

    This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method

  7. Beyond Ehrenfest: correlated non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    Horsfield, Andrew P; Bowler, D R; Fisher, A J; Todorov, Tchavdar N; Sanchez, Cristian G

    2004-01-01

    A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment

  8. Adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1978-01-01

    We show how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and we start from the time-dependent Hartree-Fock equation. To this we add the adiabatic approximation, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The crucial step is the decomposition of the single-particle density matrix p in the form exp(i/sub chi/) rho/sub omicron/exp(-i/sub chi/), where rho/sub omicron/ represents a time-even Slater determinant and plays the role of coordinate. Then chi plays the role of momentum, and the adiabatic assumption is that chi is small. The energy is expanded in powers of chi, the zeroth-order being the collective potential energy. The analogy with classical mechanics is stressed and studied. The same adiabatic equations of motion are derived in three different ways (directly, from the Lagrangian, from the Hamiltonian), thus proving the consistency of the theory. The dynamical equation is not necessary for writing the energy or for the subsequent quantization which leads to a Schroedinger equation, but it must be used to check the validity of various approximation schemes, particularly to reduce the problem to a few degrees of freedom. The role of the adiabatic hypothesis, its definition, and range of validity, are analyzed in great detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given, and the moment of inertia under rotation is that of Thouless and Valatin. For a quadrupole two-body force, the Baranger-Kumar formalism is recovered. The self-consistency brings additional terms to the Inglis cranking formula. Comparison is also made with generator coordinate methods

  9. Joint Probability Distributions for a Class of Non-Markovian Processes

    OpenAIRE

    Baule, A.; Friedrich, R.

    2004-01-01

    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fr...

  10. Analytic Approximation of the Solutions of Stochastic Differential Delay Equations with Poisson Jump and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2012-01-01

    Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.

  11. Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure

    International Nuclear Information System (INIS)

    Lim, S.C.

    1983-05-01

    It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)

  12. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  13. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  14. TCP Congestion Control for the Networks with Markovian Jump Parameters

    Directory of Open Access Journals (Sweden)

    MOMENI, H. R.

    2011-05-01

    Full Text Available This paper is concerned with the problem of TCP congestion control for the class of communication networks with random parameters. The linear dynamic model of TCP New Reno in congestion avoidance mode is considered which contains round trip delays in both state and input. The randomness of link capacity, round trip time delay and the number of TCP sessions is modeled with a continuous-time finite state Markov process. An Active Queue Management (AQM technique is then used to adjust the queue level of the congested link to a predefined value. For this purpose, a dynamic output feedback controller with mode dependent parameters is synthesized to stochastically stabilize the TCP/AQM dynamics. The procedure of the control synthesis is implemented by solving a linear matrix inequality (LMI. The results are tested within a simulation example and the effectiveness of the proposed design method is verified.

  15. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  16. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  17. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  18. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  19. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  20. Adiabatic condition and the quantum hitting time of Markov chains

    International Nuclear Information System (INIS)

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-01-01

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  1. Broken space-time symmetries and mechanisms of rectification of ac fields by nonlinear (non)adiabatic response

    DEFF Research Database (Denmark)

    Denisov, S.; Flach, S.; Ovchinnikov, A. A.

    2002-01-01

    We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...

  2. Dynamics of Quantum Entanglement in Reservoir with Memory Effects

    International Nuclear Information System (INIS)

    Hao Xiang; Sha Jinqiao; Sun Jian; Zhu Shiqun

    2012-01-01

    The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants. (general)

  3. Calculation of a hydrogen molecule in the adiabatic approximation

    International Nuclear Information System (INIS)

    Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.

    1979-01-01

    The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed

  4. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    Science.gov (United States)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  5. Adiabatic passage and ensemble control of quantum systems

    International Nuclear Information System (INIS)

    Leghtas, Z; Sarlette, A; Rouchon, P

    2011-01-01

    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.

  6. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  7. A design study of non-adiabatic electron guns

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1994-01-01

    The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab

  8. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  9. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    Science.gov (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  10. Application of the adiabatic self-consistent collective coordinate method to a solvable model of prolate-oblate shape coexistence

    International Nuclear Information System (INIS)

    Kobayasi, Masato; Matsuyanagi, Kenichi; Nakatsukasa, Takashi; Matsuo, Masayuki

    2003-01-01

    The adiabatic self-consistent collective coordinate method is applied to an exactly solvable multi-O(4) model that is designed to describe nuclear shape coexistence phenomena. The collective mass and dynamics of large amplitude collective motion in this model system are analyzed, and it is shown that the method yields a faithful description of tunneling motion through a barrier between the prolate and oblate local minima in the collective potential. The emergence of the doublet pattern is clearly described. (author)

  11. High beta lasing in micropillar cavities with adiabatic layer design

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Lorke, M.

    2013-01-01

    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....

  12. Adiabatic theory of ionization of atoms by intense laser pulses

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I; Morishita, Toru; Watanabe, Shinichi

    2009-01-01

    As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.

  13. On the adiabatic theorem when eigenvalues dive into the continuum

    DEFF Research Database (Denmark)

    Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad

    2018-01-01

    We consider a reduced two-channel model of an atom consisting of a quantum dot coupled to an open scattering channel described by a three-dimensional Laplacian. We are interested in the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial...... in the adiabatic limit. At the end of the paper, we present a short outlook on how our method may be extended to cover other classes of Hamiltonians; details will be given elsewhere....

  14. Kinetics of the Dynamical Information Shannon Entropy for Complex Systems

    International Nuclear Information System (INIS)

    Yulmetyev, R.M.; Yulmetyeva, D.G.

    1999-01-01

    Kinetic behaviour of dynamical information Shannon entropy is discussed for complex systems: physical systems with non-Markovian property and memory in correlation approximation, and biological and physiological systems with sequences of the Markovian and non-Markovian random noises. For the stochastic processes, a description of the information entropy in terms of normalized time correlation functions is given. The influence and important role of two mutually dependent channels of the entropy change, correlation (creation or generation of correlations) and anti-correlation (decay or annihilation of correlation) is discussed. The method developed here is also used in analysis of the density fluctuations in liquid cesium obtained from slow neutron scattering data, fractal kinetics of the long-range fluctuation in the short-time human memory and chaotic dynamics of R-R intervals of human ECG. (author)

  15. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  16. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks

    Science.gov (United States)

    Liu, Qiang; Van Mieghem, Piet

    2018-02-01

    Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1 /ln(λ1+1 ) , where λ1 is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1 /ln(λ1+1 ) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.

  17. Robust adiabatic approach to optical spin entangling in coupled quantum dots

    International Nuclear Information System (INIS)

    Gauger, Erik M; Benjamin, Simon C; Lovett, Brendon W; Nazir, Ahsan; Stace, Thomas M

    2008-01-01

    Excitonic transitions offer a possible route to ultrafast optical spin manipulation in coupled nanostructures. We perform here a detailed study of the three principal exciton-mediated decoherence channels for optically controlled electron spin qubits in coupled quantum dots: radiative decay of the excitonic state, exciton-phonon interactions, and Landau-Zener transitions between laser-dressed states. We consider a scheme for producing an entangling controlled-phase gate on a pair of coupled spins which, in its simplest dynamic form, renders the system subject to fast decoherence rates associated with exciton creation during the gating operation. In contrast, we show that an adiabatic approach employing off-resonant laser excitation allows us to suppress all sources of decoherence simultaneously, significantly increasing the fidelity of operations at only a relatively small gating time cost. We find that controlled-phase gates accurate to one part in 10 2 can realistically be achieved with the adiabatic approach, whereas the conventional dynamic approach does not appear to support a fidelity suitable for scalable quantum computation. Our predictions could be demonstrated experimentally in the near future

  18. Spherical particle Brownian motion in viscous medium as non-Markovian random process

    International Nuclear Information System (INIS)

    Morozov, Andrey N.; Skripkin, Alexey V.

    2011-01-01

    The Brownian motion of a spherical particle in an infinite medium is described by the conventional methods and integral transforms considering the entrainment of surrounding particles of the medium by the Brownian particle. It is demonstrated that fluctuations of the Brownian particle velocity represent a non-Markovian random process. The features of Brownian motion in short time intervals and in small displacements are considered. -- Highlights: → Description of Brownian motion considering the entrainment of medium is developed. → We find the equations for statistical characteristics of impulse fluctuations. → Brownian motion at small time intervals is considered. → Theoretical results and experimental data are compared.

  19. Synchronization of stochastic delayed neural networks with markovian switching and its application.

    Science.gov (United States)

    Tang, Yang; Fang, Jian-An; Miao, Qing-Ying

    2009-02-01

    In this paper, the problem of adaptive synchronization for a class of stochastic neural networks (SNNs) which involve both mixed delays and Markovian jumping parameters is investigated. The mixed delays comprise the time-varying delays and distributed delays, both of which are mode-dependent. The stochastic perturbations are described in terms of Browian motion. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization of SNNs in mean square. Moreover, the proposed adaptive feedback scheme is applied to the secure communication. Finally, the corresponding simulation results are given to demonstrate the usefulness of the main results obtained.

  20. Replacement policy in a system under shocks following a Markovian arrival process

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Perez-Ocon, Rafael; Carmen Segovia, Maria del

    2009-01-01

    We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime

  1. Replacement policy in a system under shocks following a Markovian arrival process

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Department of Statistics and Operational Research, University of Jaen (Spain); Perez-Ocon, Rafael [Department of Statistics and Operational Research, University of Granada, Granada (Spain)], E-mail: rperezo@ugr.es; Carmen Segovia, Maria del [Departamento de Estadistica e I.O., University of Granada, Granada (Spain)

    2009-02-15

    We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime.

  2. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  3. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  4. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)

    2017-02-15

    A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  5. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  6. Non - Adiabaticity and Novel Isotope Effect in the Doped Cuprates

    International Nuclear Information System (INIS)

    Kresin, V.; WOLF, S. A.

    1995-01-01

    This paper reports a novel isotope effect which is due to a strong non-adiabaticity that manifests itself in the dependence of the carrier concentration on the isotopic mass. The critical temperature in turn depends on the carrier concentration giving rise to a unique and non-phononic isotope shift. (author)

  7. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    International Nuclear Information System (INIS)

    Anglin, J.R.; Schmiedmayer, J.

    2004-01-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation

  8. Non-adiabatic rotational excitation of dipolar molecule under the ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1213–1221. c Indian Academy of Sciences. ... The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse. (HCP) is .... pared to the intensities required for the ionization of ..... out and with delayed ultrashort HCP at different initial pulse dura-.

  9. Adiabatic and diabatic aerosol transport to the Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.

  10. Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions

    Directory of Open Access Journals (Sweden)

    Philipp eHauke

    2015-04-01

    Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.

  11. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  12. Analysis of adiabatic transfer in cavity quantum electrodynamics

    Indian Academy of Sciences (India)

    adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.

  13. Adiabatic invariants of the extended KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)

    2017-01-30

    When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.

  14. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  15. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  16. Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition

    International Nuclear Information System (INIS)

    Qian Shangwu; Gu Zhiyu

    2005-01-01

    There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.

  17. Symplectic evolution of Wigner functions in Markovian open systems.

    Science.gov (United States)

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  18. A comparison between Markovian models and Bayesian networks for treating some dependent events in reliability evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Juliana P.; Leite, Victor C.; Melo, P.F. Frutuoso e, E-mail: julianapduarte@poli.ufrj.br, E-mail: victor.coppo.leite@poli.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Bayesian networks have become a very handy tool for solving problems in various application areas. This paper discusses the use of Bayesian networks to treat dependent events in reliability engineering typically modeled by Markovian models. Dependent events play an important role as, for example, when treating load-sharing systems, bridge systems, common-cause failures, and switching systems (those for which a standby component is activated after the main one fails by means of a switching mechanism). Repair plays an important role in all these cases (as, for example, the number of repairmen). All Bayesian network calculations are performed by means of the Netica™ software, of Norsys Software Corporation, and Fortran 90 to evaluate them over time. The discussion considers the development of time-dependent reliability figures of merit, which are easily obtained, through Markovian models, but not through Bayesian networks, because these latter need probability figures as input and not failure and repair rates. Bayesian networks produced results in very good agreement with those of Markov models and pivotal decomposition. Static and discrete time (DTBN) Bayesian networks were used in order to check their capabilities of modeling specific situations, like switching failures in cold-standby systems. The DTBN was more flexible to modeling systems where the time of occurrence of an event is important, for example, standby failure and repair. However, the static network model showed as good results as DTBN by a much more simplified approach. (author)

  19. Markovian agents models for wireless sensor networks deployed in environmental protection

    International Nuclear Information System (INIS)

    Cerotti, Davide; Gribaudo, Marco; Bobbio, Andrea

    2014-01-01

    Wireless sensor networks (WSNs) are gaining popularity as distributed monitoring systems in safety critical applications, when the location to be controlled may be dangerous for a human operator or difficult to access. Fire is one of the major thread in urban as well as in open environments, and WSNs are receiving increasing attention as a mean to build effective and timely fire protection systems. The present paper presents a novel analytical technique for the study of the propagation of a fire in a wide open area and the interaction with a WSN deployed to monitor the outbreak of the fire and to send a warning signal to a base station. For the complex scenario under study, an analytical modeling and analysis technique based on Markovian agents (MAs) is discussed. It is shown that, even if the overall state space of the models is huge, nevertheless an analytical solution is feasible, by exploiting the locality of the interactions among MAs, based on a message passing mechanism combined with a perception function. - Highlights: • We present a revised theory of Markovian agent models, detailing the analysis techniques and its complexity • We a target a complex application of a wireless sensor network (WSN) that monitors forest fire. • The model captures the propagation of fire, heat, and the detection by the WSN. • We compute key performance indices such us the fire propagation front, and message travel time. • We perform an extensive set of experiments to study the effectiveness of the WSN in detecting forest fire

  20. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

    Science.gov (United States)

    Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.

    2012-09-01

    Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

  1. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  2. A comparison between Markovian models and Bayesian networks for treating some dependent events in reliability evaluations

    International Nuclear Information System (INIS)

    Duarte, Juliana P.; Leite, Victor C.; Melo, P.F. Frutuoso e

    2013-01-01

    Bayesian networks have become a very handy tool for solving problems in various application areas. This paper discusses the use of Bayesian networks to treat dependent events in reliability engineering typically modeled by Markovian models. Dependent events play an important role as, for example, when treating load-sharing systems, bridge systems, common-cause failures, and switching systems (those for which a standby component is activated after the main one fails by means of a switching mechanism). Repair plays an important role in all these cases (as, for example, the number of repairmen). All Bayesian network calculations are performed by means of the Netica™ software, of Norsys Software Corporation, and Fortran 90 to evaluate them over time. The discussion considers the development of time-dependent reliability figures of merit, which are easily obtained, through Markovian models, but not through Bayesian networks, because these latter need probability figures as input and not failure and repair rates. Bayesian networks produced results in very good agreement with those of Markov models and pivotal decomposition. Static and discrete time (DTBN) Bayesian networks were used in order to check their capabilities of modeling specific situations, like switching failures in cold-standby systems. The DTBN was more flexible to modeling systems where the time of occurrence of an event is important, for example, standby failure and repair. However, the static network model showed as good results as DTBN by a much more simplified approach. (author)

  3. On the Moments and the Distribution of Aggregate Discounted Claims in a Markovian Environment

    Directory of Open Access Journals (Sweden)

    Shuanming Li

    2018-05-01

    Full Text Available This paper studies the moments and the distribution of the aggregate discounted claims (ADCs in a Markovian environment, where the claim arrivals, claim amounts, and forces of interest (for discounting are influenced by an underlying Markov process. Specifically, we assume that claims occur according to a Markovian arrival process (MAP. The paper shows that the vector of joint Laplace transforms of the ADC occurring in each state of the environment process by any specific time satisfies a matrix-form first-order partial differential equation, through which a recursive formula is derived for the moments of the ADC occurring in certain states (a subset. We also study two types of covariances of the ADC occurring in any two subsets of the state space and with two different time lengths. The distribution of the ADC occurring in certain states by any specific time is also investigated. Numerical results are also presented for a two-state Markov-modulated model case.

  4. Data-driven non-Markovian closure models

    Science.gov (United States)

    Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael

    2015-03-01

    This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter

  5. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  6. Markovianity in space and time : [dedicated to Professor Mike Keane on the occasion of his 65th birthday

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2005-01-01

    textabstractMarkov chains in time, such as simple random walks, are at the heart of probability. In space, due to the absence of an obvious definition of past and future, a range of definitions of Markovianity have been proposed. In this paper, after a brief review, we introduce a new concept of

  7. Non-Markovian stochastic Schroedinger equations: Generalization to real-valued noise using quantum-measurement theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction

  8. An application of superpositions of two-state Markovian sources to the modelling of self-similar behaviour

    DEFF Research Database (Denmark)

    Andersen, Allan T.; Nielsen, Bo Friis

    1997-01-01

    We present a modelling framework and a fitting method for modelling second order self-similar behaviour with the Markovian arrival process (MAP). The fitting method is based on fitting to the autocorrelation function of counts a second order self-similar process. It is shown that with this fittin...

  9. Two-dimensional spectroscopy for harmonic vibrational modes with nonlinear system-bath interactions. II. Gaussian-Markovian case

    NARCIS (Netherlands)

    Tanimura, Y; Steffen, T

    2000-01-01

    The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus

  10. On the application of semi-Markovian processes to the unavailability analysis of majority voting protective systems

    International Nuclear Information System (INIS)

    Frutuoso e Melo, Paulo Fernando Ferreira

    1992-01-01

    In this work the application of semi-Markovian processes to the unavailability analysis of majority voting protective systems is discussed aiming at: modeling two problems that, possess practical relevance: explicit consideration of test intervals and possibility of including nonexponential repair times. Initially, protective systems up to 5 channels are modeled considering intervals between tests by means of a Markovian model in or.der to take into account the possibility of high demand rates. This model is a new extension of previous ones already published in the literature. The above mentioned Markovian model allows for considering either that the failure of a single channel is re by a real system demand or, alternatively, the failure is revealed only when k channels are found failed. Practical implications of this policies are important as they allow for different system actuation policies to be discussed and evaluated. A computer co de named RAMPSMM has been written in order to perform the aforementioned analysis. Results for different system configurations are shown and compared to published results concerning one and two channels. Those results agree adequately and the effect of higher demand rates on the systems is acknowledged. Next, a new semi-Markovian model for the the intervals between tests is discussed. The reason for employing it is that it describes a time interval that is constant, so that its describing process is not Markovian anymore. The model takes into account the influence of different parameters and repair policies as, for example, demand rate (considering the possibility of test overrides), staggered and sequential test policies and so on. l' Another consideration is made concerning the possibility of nonexponential ,- repair times. These kind of repair times are modeled by means of negative binomial distributions which correspond to discretized gamma densities assumed for the repair times. A second computer code named RAMPSSM has been

  11. Dissipation in adiabatic quantum computers: lessons from an exactly solvable model

    Science.gov (United States)

    Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide

    2017-11-01

    We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.

  12. Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain

    International Nuclear Information System (INIS)

    Apollaro, Tony J. G.; Di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro

    2011-01-01

    Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.

  13. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  14. Adiabatic theory of nonlinear electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Kotel'nikov, I.A.; Stupakov, G.V.

    1989-01-01

    Plasma heating at electron frequency by an ordinary wave propagating at right angle to unidirectional magnetic field is treated. Injected microwave power is assumed to be so large that relativistic change of electron gyrofrequency during one flight thorugh the wave beam is much greater than inverse time of flight. The electron motion in the wave field is described using Hamiltonian formalism in adiabatic approximation. It is shown that energy coupling from the wave to electrons is due to a bifurcation of electron trajectory which results in a jumpm of the adiabatic invariant. The probability of bifurcational transition from one trajectory to another is calculated analytically and is used for the estimation of the beam power absorbed in plasma. 6 refs.; 2 figs

  15. An adiabatic matching device for the Orsay linear positron accelerator

    International Nuclear Information System (INIS)

    Chehab, R.; Le Meur, G.; Mouton, B.; Renard, M.

    1983-03-01

    An adiabatically tapered solenoidal magnetic field is used to match positron beam source emittance to accelerating section acceptance. Such a matching system improves the accepted energy band which has been accurately computed and compared with analytical determination. The tapered field is provided by stacked pancakes and solenoids of various radii; total lens length is about 0.75m. The adiabatic matching system took place of a quarter wave transformer system and has been in operation for two years. Positron conversion ratio is 3.3% for a 1 GeV incident beam and presents a factor of nearly two of improvement for the positron yield. Energy bandwidth of positron beam has also been increased by a factor of nearly 2.5; the output positron beam energy is of 1.2 GeV

  16. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  17. Perturbative treatment of possible failures in the adiabatic theorem

    International Nuclear Information System (INIS)

    Vertesi, T.; Englman, R.

    2005-01-01

    Complete text of publication follows. The adiabatic theorem (AT) is one of the oldest and basic results in quantum physics, and has been in widespread use ever since. The theorem concerns the evolution of systems subject to slowly varying Hamiltonians. Roughly, its content is that a system prepared in an instantaneous eigenstate of a time-dependent Hamiltonian H(t) will remain close to an instantaneous eigenstate at later times, provided the Hamiltonian changes sufficiently slowly. The role of the AT in the study of slowly varying quantum mechanical systems spans a vast array of fields and applications. In a recent application the adiabatic geometric phases have been proposed to perform various quantum computational tasks on a naturally fault-tolerant way. Additional interest has arisen in adiabatic processes in connection with the concept of adiabatic quantum computing, where the solution to a problem is encoded in the (unknown) ground state of a (known) Hamiltonian. The evolution of the quantum state is governed by a time-dependent Hamiltonian H(t), starting with an initial Hamiltonian H i with a known ground state and slowly (adiabatically) evolving to the final Hamiltonian H f with the unknown ground state, e.g., H(t) = (1 - t/T )H i + (t/T )H f , (1) where 0 ≤ t/T ≤ 1 and T controls the rate at which H(t) varies. Since the ground state of the system is very robust against external perturbations and decoherence, this scheme offers many advantages compared to the conventional quantum circuit model of quantum computation. The achievable speed-up of adiabatic quantum algorithms (compared to classical methods) depends on the value of the run-time T. The standard AT yields a general criterion to estimate the necessary run-time T, however recently Marzlin and Sanders have claimed that an inconsistency does exist for a particular class of Hamiltonians, so that the condition for the estimate of T may do not hold. Marzlin and Sanders start with a time

  18. Adiabatic translation factors in slow ion-atom collisions

    International Nuclear Information System (INIS)

    Vaaben, J.; Taulbjerg, K.

    1981-01-01

    The general properties of translation factors in slow atomic collisions are discussed. It is emphasised that an acceptable form of translation factors must be conceptually consistent with the basic underlying assumption of the molecular model; i.e. translation factors must relax adiabatically at intermediate and small internuclear separations. A simple physical argument is applied to derive a general parameter-free expression for the translation factor pertinent to an electron in a two-centre Coulomb field. Within the present approach the adiabatic translation factor is considered to be a property of the two-centre field independently of the molecular state under consideration. The generalisation to many-electron systems is therefore readily made. (author)

  19. Adiabatic tapered optical fiber fabrication in two step etching

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  20. Dynamics of non-Markovianity in the presence of a driving field

    Indian Academy of Sciences (India)

    In some conditions, it is shown that in the presence of a driving field, the $N_{\\rm BLP} increases in the resonance and non-resonance limits. We have also found the exact solution of the master equation in order to investigate the effect of temperature- and environment excited states. We have shown that the behaviour of ...

  1. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    Science.gov (United States)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  2. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    International Nuclear Information System (INIS)

    Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.; MacArthur, L. A.

    2013-01-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg 2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ∼20% more mock LSB galaxies and ∼40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is

  3. Adiabatic pipelining: a key to ternary computing with quantum dots

    Science.gov (United States)

    Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.

    2008-12-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  4. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    Science.gov (United States)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  5. Adiabatic pipelining: a key to ternary computing with quantum dots

    International Nuclear Information System (INIS)

    Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A

    2008-01-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  6. Adiabatic pipelining: a key to ternary computing with quantum dots.

    Science.gov (United States)

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  7. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  8. Thermal reservoir sizing for adiabatic compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)

    2012-07-01

    Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.

  9. Adiabatic theory of Wannier threshold laws and ionization cross sections

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Y.

    1994-01-01

    Adiabatic energy eigenvalues of H 2 + are computed for complex values of the internuclear distance R. The infinite number of bound-state eigenenergies are represented by a function ε(R) that is single valued on a multisheeted Riemann surface. A region is found where ε(R) and the corresponding eigenfunctions exhibit harmonic-oscillator structure characteristic of electron motion on a potential saddle. The Schroedinger equation is solved in the adiabatic approximation along a path in the complex R plane to compute ionization cross sections. The cross section thus obtained joins the Wannier threshold region with the keV energy region, but the exponent near the ionization threshold disagrees with well-accepted values. Accepted values are obtained when a lowest-order diabatic correction is employed, indicating that adiabatic approximations do not give the correct zero velocity limit for ionization cross sections. Semiclassical eigenvalues for general top-of-barrier motion are given and the theory is applied to the ionization of atomic hydrogen by electron impact. The theory with a first diabatic correction gives the Wannier threshold law even for this case

  10. Narrow-line laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  11. Quantum trajectories for time-dependent adiabatic master equations

    Science.gov (United States)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  12. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  13. H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2015-01-01

    Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.

  14. Synchronization of Markovian jumping inertial neural networks and its applications in image encryption.

    Science.gov (United States)

    Prakash, M; Balasubramaniam, P; Lakshmanan, S

    2016-11-01

    This study is mainly concerned with the problem on synchronization criteria for Markovian jumping time delayed bidirectional associative memory neural networks and their applications in secure image communications. Based on the variable transformation method, the addressed second order differential equations are transformed into first order differential equations. Then, by constructing a suitable Lyapunov-Krasovskii functional and based on integral inequalities, the criteria which ensure the synchronization between the uncontrolled system and controlled system are established through designed feedback controllers and linear matrix inequalities. Further, the proposed results proved that the error system is globally asymptotically stable in the mean square. Moreover, numerical illustrations are provided to validate the effectiveness of the derived analytical results. Finally, the application of addressed system is explored via image encryption/decryption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Entanglement backflow under the composite effect of two non-Markovian reservoirs

    International Nuclear Information System (INIS)

    Li, Jun-Gang; Zou, Jian; Shao, Bin

    2012-01-01

    The entanglement backflow of two qubits coupled to two independent reservoirs is investigated. It is found that under the collective effects of the two independent reservoirs, the entanglement backflow of the qubits does not always increase with the increase of the non-Markovianity of one of the reservoirs but demonstrates an intricate behavior. Interestingly, the action of one reservoir can affect the other reservoir's contribution to the entanglement backflow even when the two reservoirs are independent. -- Highlights: ► We study entanglement backflow of two qubits coupled to two independent reservoirs. ► We find that the entanglement backflow demonstrates an intricate behavior. ► The action of one reservoir can affect the contribution of the other reservoir.

  16. Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market

    Directory of Open Access Journals (Sweden)

    Huiling Wu

    2016-01-01

    Full Text Available This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.

  17. A finite capacity queue with Markovian arrivals and two servers with group services

    Directory of Open Access Journals (Sweden)

    S. Chakravarthy

    1994-01-01

    Full Text Available In this paper we consider a finite capacity queuing system in which arrivals are governed by a Markovian arrival process. The system is attended by two exponential servers, who offer services in groups of varying sizes. The service rates may depend on the number of customers in service. Using Markov theory, we study this finite capacity queuing model in detail by obtaining numerically stable expressions for (a the steady-state queue length densities at arrivals and at arbitrary time points; (b the Laplace-Stieltjes transform of the stationary waiting time distribution of an admitted customer at points of arrivals. The stationary waiting time distribution is shown to be of phase type when the interarrival times are of phase type. Efficient algorithmic procedures for computing the steady-state queue length densities and other system performance measures are discussed. A conjecture on the nature of the mean waiting time is proposed. Some illustrative numerical examples are presented.

  18. A discrete single server queue with Markovian arrivals and phase type group services

    Directory of Open Access Journals (Sweden)

    Attahiru Sule Alfa

    1995-01-01

    Full Text Available We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.

  19. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    International Nuclear Information System (INIS)

    Chia, A.; Wiseman, H. M.

    2011-01-01

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.

  20. Asymptotic results for the semi-Markovian random walk with delay

    International Nuclear Information System (INIS)

    Khaniyev, T.A.; Aliyev, R.T.

    2006-12-01

    In this study, the semi-Markovian random walk with a discrete interference of chance (X(t) ) is considered and under some weak assumptions the ergodicity of this process is discussed. Characteristic function of the ergodic distribution of X(t) is expressed by means of the probability characteristics of the boundary functionals (N,S N ). Some exact formulas for first and second moments of ergodic distribution of the process X(t) are obtained when the random variable ζ 1 - s, which is describing a discrete interference of chance, has Gamma distribution on the interval [0, ∞) with parameter (α,λ) . Based on these results, the asymptotic expansions with three terms for the first two moments of the ergodic distribution of the process X(t) are obtained, as λ → 0. (author)