WorldWideScience

Sample records for adhesive composite resin

  1. Adhesive system affects repair bond strength of resin composite

    OpenAIRE

    Irmak, Ozgur; Celiksoz, Ozge; Yilmaz, Begum; Yaman, Batu Can

    2017-01-01

    Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed stat...

  2. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  3. Marginal adaptation of composite resins under two adhesive techniques.

    Science.gov (United States)

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  4. Interactions of self-etch adhesives with resin composites.

    Science.gov (United States)

    Kurokawa, Rie; Finger, Werner J; Hoffmann, Marcus; Endo, Tatsuo; Kanehira, Masafumi; Komatsu, Masashi; Manabe, Atsufumi

    2007-12-01

    Aim of this in vitro study was to investigate the correlation of shear bond strength and marginal cavity adaptation, together with polymerization shrinkage and contraction stress, using the combination of four self-etch adhesives and three resin composites. Interactions were studied between one two-step and three one-step adhesives, and the hybrid-type resin composites, Beautifil (BEU, Shofu) and Venus (VEN, Heraeus), and an experimental nano-hybrid resin composite NEUN (NEU, Heraeus). For all 12 combinations shear bond strengths (SBS) were determined on human dentin. Marginal adaptation (MGW) was assessed in cylindrical butt-joint dentin cavities. Further, polymerization contraction and contraction stress of the resin restoratives were measured. Significant determinants of SBSs on dentin were time of testing (10min or 24h) and adhesives (presin composite used was a highly significant determinant of cavity adaptation. Polymerization shrinkage after 5min was 2.58, 2.74, and 1.53% for BEU, VEN, and NEU, respectively. Polymerization contraction stresses were largest for BEU, less for VEN, and smallest for NEU (presin composites were identified as important determinants of marginal cavity adaptation.

  5. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2016-07-01

    The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.

  6. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  7. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p composite resin (p composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  8. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  9. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    Science.gov (United States)

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  10. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  11. Fatigue resistance and failure mode of adhesively restored custom metal-composite resin premolar implant abutments.

    Science.gov (United States)

    Boff, Luís Leonildo; Oderich, Elisa; Cardoso, Antônio Carlos; Magne, Pascal

    2014-01-01

    To evaluate the fatigue resistance and failure mode of composite resin and porcelain onlays and crowns bonded to premolar custom metal-composite resin premolar implant abutments. Sixty composite resin mesostructures were fabricated with computer assistance with two preparation designs (crown vs onlay) and bonded to a metal implant abutment. Following insertion into an implant with a tapered abutment interface (Titamax CM), each metal-composite resin abutment was restored with either composite resin (Paradigm MZ100) or ceramic (Paradigm C) (n = 15) and attached with adhesive resin (Optibond FL) and a preheated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was then simulated, starting with 5,000 cycles at a load of 50 N, followed by stages of 200, 400, 600, 800, 1,000, 1,200, and 1,400 N (25,000 cycles each). Samples were loaded until fracture or to a maximum of 180,000 cycles. The four groups were compared using life table survival analysis (log-rank test). Previously published data using zirconia abutments of the same design were included for comparison. Paradigm C and MZ100 specimens fractured at average loads of 1,133 N and 1,266 N, respectively. Survival rates ranged from 20% to 33.3% (ceramic crowns and onlays) to 60% (composite resin crowns and onlays) and were significantly different (pooled data for restorative material). There were no restoration failures, but there were adhesive failures at the connection between the abutment and the mesostructure. The survival of the metal-composite resin premolar abutments was inferior to that of identical zirconia abutments from a previous study (pooled data for abutment material). Composite resin onlays/crowns bonded to metal-composite resin premolar implant abutments presented higher survival rates than comparable ceramic onlays/crowns. Zirconia abutments outperformed the metal-composite resin premolar abutments.

  12. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    Science.gov (United States)

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  13. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  14. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pcomposite resins can obtain equally good bond strengths as light-polymerizing alternatives. However, not all dual-polymerizing composite resins perform well with all bonding systems; some incompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  16. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (Pcomposite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Pcomposite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Science.gov (United States)

    Chandak, Manoj G.; Pattanaik, Navdheeraj; Das, Ayan

    2012-01-01

    Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC). Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE) was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE). In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE) was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch) showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05) whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0–001). Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A) in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A) as well as without application of the adhesive agent. PMID:23293476

  18. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  19. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  1. Evaluation of bond strength and thickness of adhesive layer according to the techniques of applying adhesives in composite resin restorations.

    Science.gov (United States)

    de Menezes, Fernando Carlos Hueb; da Silva, Stella Borges; Valentino, Thiago Assunção; Oliveira, Maria Angélica Hueb de Menezes; Rastelli, Alessandra Nara de Souza; Conçalves, Luciano de Souza

    2013-01-01

    Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrushtype device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry microbrush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable.

  2. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  3. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  4. Effect of adhesive cements on reduction of microleakage at the amalgam/composite-resin interface

    Directory of Open Access Journals (Sweden)

    Khoroushi M

    2007-05-01

    Full Text Available Background and Aim: Patients always complain about metallic color of amalgam restorations. Covering amalgam by composite can solve this problem. Since polymerization shrinkage is a serious shortcoming in composites, application of the combined amalgam and composite restoration is one of the methods to reduce leakage in the cervical margins of posterior restorations. The aim of this invitro study was to evaluate the microleakage of amalgam/composite interface when Rely-X ARC adhesive resin cement was used in the joint. Materials and Methods: Twenty-four sound extracted premolars were chosen. Mesial and distal class II conventional cavities were prepared and the samples were divided into 4 groups of 12. In all groups, the bases of the cavities were restored with amalgam and then the remaining part was filled by composite resin. Specimens in groups 1 and 2 were restored with composite-resin, immediately after condensing amalgam without or with application of Rely-X ARC (3M, ESPE respectively. In groups 3 and 4, composite resin were applied 24 hours after condensation of amalgam, without or with application of Rely-X ARC respectively. After polishing and thermocycling, all specimens were prepared for dye penetration and the degree of leakage was scored and analyzed using Kruskall Wallis test with p<0.05 as the level of significance. Results: The frequency of dye penetration in different groups was obtained. The most and the least scores were observed in groups 3 and 4 respectively. No statistically significant difference was observed in different methods. Conclusion: None of the methods in this study could seal the amalgam/composite-resin interface.

  5. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    Science.gov (United States)

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  composite resins upto 65% ( p  composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  6. Three-year randomized controlled clinical study of a one step universal adhesive and a 2-step self-etch adhesive in Class II resin composite restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    Purpose: To evaluate in a randomized clinical evaluation the 3-year clinical durability of a one-step universal adhesive bonding system and compare it intraindividually with a 2-step self-etch adhesive in Class II restorations. Materials and Methods: Each of 57 participants (mean age 58.3 yr......) received at least two, as similar as possible, extended Class II restorations. The cavities in each of the 60 individual pairs of cavities were randomly distributed to the 1-step universal adhesive (All Bond Universal: AU) and the control 2-step self-etch adhesive (Optibond XTR: OX). A low shrinkage resin......) success rates (p>0.05). Annual failure rates were 1.8% and 2.6%, respectively.The main reason for failure was resin composite fracture. Conclusion: Class II resin composite restorations placed with a one-step universal adhesive showed good short time effectiveness....

  7. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; Brown, Matthew

    2018-04-01

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite resin used had no effect on bond strength (P=.830). The etching protocol by itself also did not have a significant effect (P=.059), although a trend was present. The bonding agent, however, did have an effect (Pcomposite resins to dentin, no single etching protocol is better than another. Depending on which bonding agent is being used, one etching mode may perform better. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. The role of oxygen inhibition of a self-etch adhesive on self-cure resin composite bonding.

    Science.gov (United States)

    Endo, Tatsuo; Finger, Werner J; Hoffmann, Marcus; Kanehira, Masafumi; Komatsu, Masashi

    2007-06-01

    To evaluate the bond strengths on enamel and dentin with a self-etch adhesive (iBond), with or without oxygen-inhibited surface layer, or covered with intermediate self-curing resin, in combination with chemical-cured composite (Core Paste). Bond strengths on human enamel and dentin (n = 8) were determined according to the following procedures: 1. Adhesive cured under ambient air. 2. Inhibited surface wiped with ethanol. 3. Adhesive cured under nitrogen. 4. Adhesive covered with glycerol during activation. 5. Adhesive coated with glycerol for 1 minute after activation. 6. As 5, but covered for 5 minutes. 7. Cured adhesive coated with intermediate self-curing resin. 8. As 7, but intermediate resin's amine component loaded with anion exchange resin in OH- form. Shear bond strengths (SBS) were measured after 24-hour storage in 37 degrees C water. SBSs on enamel (7.1 to 25.6 MPa) were, by ranking order (Presin group (mean 19.6 MPa), showed bond strengths resin was low, irrespective of the presence of an oxygen-inhibited layer. Deprotonization of the acidic adhesive monomer with an admixed anion exchange compound, added to an intermediate self-cured resin, was effective at overcoming the incompatibility.

  9. Microleakage of porcelain and composite machined crowns cemented with self-adhesive or conventional resin cement.

    Science.gov (United States)

    Ghazy, Mohamed; El-Mowafy, Omar; Roperto, Renato

    2010-10-01

    Resistance of machined crowns to microleakage when cemented with new self-adhesive cements has not been fully investigated. This study evaluated microleakage of machined crowns milled from porcelain and composite blocks and bonded to teeth with self-adhesive and conventional resin cement. Thirty-two freshly extracted premolars of similar shape and size were sterilized and mounted in resin blocks. Teeth received standard crown preparations with 1-mm circumferential shoulder finish line, flat occlusal surface reduced by 2 mm, and ideal angle of convergence. Prepared teeth were divided into two equal groups and assigned to either porcelain (Vita Mark II, Vident) or composite (Paradigm MZ100, 3M ESPE) blocks for crown fabrication. Optical impressions were captured for each tooth with the intraoral camera of a CEREC 3D machine. Crowns were designed and milled from both materials. Each group was then subdivided into two subgroups (n = 8) according to cement used (self-adhesive resin cement, RelyX Unicem, 3M ESPE or resin cement with self-etching adhesive, Panavia F 2.0, Kuraray). Following seating, a 5-kg weight was applied on the occlusal surface of the crown for 5 minutes. Specimens were then stored in water at 37°C for 24 hours. Specimens were thermocycled for 3000 cycles between 5°C and 55°C, then coated with nail varnish and immersed in a 2.0% basic red fuchsine dye solution for 24 hours. Teeth were then rinsed and sectioned mesiodistally and assessed under magnification for microleakage. A five-point scale was used to score degree of microleakage. Data were statistically analyzed with 2-way ANOVA and Kruskal-Wallis nonparametric test. Crown material had no significant effect on microleakage (p= 0.67); however, cement type had a significant effect (p cement, the resin cement with separate primer/bonding agent resulted in significantly lower microleakage scores, irrespective of crown material. © 2010 by The American College of Prosthodontists.

  10. [In vitro study of marginal microleakage of Clearfil S3 BOND adhesive systems and Majesty composite resin].

    Science.gov (United States)

    Wang, Bei; Zhu, Ya-qin

    2009-08-01

    To evaluate the microleakage of standard box-type cavity filled with Clearfil S3 BOND self-etch adhesive systems and Majesty composite resin. 40 permanent molars were randomly divided into experimental and control groups, 20 of each . The box-type cavities, 3mm in length and width and 2mm in depth, were prepared at the cemento-enamel junction on buccal surface of forty permanent extracted teeth. According to grouping, the experimental group was filled with Clearfil S(3) BOND self-adhesive systems and Majesty composite resin, and the control group was filled with 3M Adper Prompt self-adhesive and Filtek Z350 composite resin. After thermal circulation(2000 times, 5 degrees centigrade-55 degrees centigrade) and soaked for 24 hours in 2% methyl blue solution, the samples were cut through the midline of the restoration and the leakage depth was measured with vernier caliper. The microleakage degrees and microleakage depth of 2 groups were analyzed with SPSS 17.0 software package for Mann-Whitney U test and independent-samples t test. Microleakage was observed in both groups. But the microleakage degrees and microleakage depth of 2 groups had no significant difference (P>0.05). The marginal sealibility of Clearfil S(3) BOND self-adhesive systems and Majesty composite resin is as good as Adper Prompt self-adhesive and Filtek Z350 composite resin,it may be an ideal clinical restoration material.

  11. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    International Nuclear Information System (INIS)

    Mandracci, Pietro; Pirri, Candido F; Mussano, Federico; Ceruti, Paola; Carossa, Stefano

    2015-01-01

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO x thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO x coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  12. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  13. Influence of resin composite mechanical properties on adhesive microtensile bond strength to dentin.

    Science.gov (United States)

    Goracci, Cecilia; Margvelashvili, Mariam; Apicella, Davide; Sedda, Maurizio; Magni, Elisa; Ferrari, Marco

    2011-08-01

    To determine the influence of mechanical properties of resin-based composites on the microtensile bond strength to dentin of all-in-one adhesives. Microtensile bond strengths were measured with the non-trimming technique for the experimental groups: 1) Bond Force/Estelite Σ (Tokuyama); 2) G-Bond Plus (GC)/Estelite Σ; 3) Bond Force/Gradia Direct Anterior (GC);4) G-Bond Plus/Gradia Direct Anterior; 5) Bond Force/Gradia Direct LoFlo (GC); 6) G-Bond Plus/Gradia Direct LoFlo. The following mechanical properties of the resin-based composites were assessed: tensile strength, flexural strength, tensile elastic modulus, shear elastic modulus, Poisson's ratio, Vicker's hardness, contraction stress. Three-dimensional models of microtensile beams were created for finite element analysis of the first principal stress values and distribution in the adhesive layer during microtensile testing. Statistical tests were applied to microtensile bond strength values (two-way ANOVA) and to data from mechanical tests (one-way ANOVA). In all the analyses, the level of significance was set at p building up the coronal portion.

  14. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review.

    Science.gov (United States)

    Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando

    2017-11-01

    To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Three-year randomized controlled clinical study of a one step universal adhesive and a two-step self-etch adhesive in Class II resin composite restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    ) success rates (p>0.05). Annual failure rates were 1.8% and 2.6%, respectively.The main reason for failure was resin composite fracture. Conclusion: Class II resin composite restorations placed with a one-step universal adhesive showed good short time effectiveness.......) received at least two, as similar as possible, extended Class II restorations. The cavities in each of the 60 individual pairs of cavities were randomly distributed to the 1-step universal adhesive (All Bond Universal: AU) and the control 2-step self-etch adhesive (Optibond XTR: OX). A low shrinkage resin...... composite (Aelite LS) was used for all restorations which were evaluated using slightly modified USPHS criteria at baseline, 1 and 2 years. Results: 116 Class II restorations were evaluated at two years. Five restorations, 2 AU and 3OX, failed during the follow up, resulting in 96.5% (AU) and 94.8% (OX...

  16. 5-year results comparing mineral trioxide aggregate and adhesive resin composite for root-end sealing in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård

    2014-01-01

    observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS: A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re...

  17. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  18. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  19. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques.

    Science.gov (United States)

    Boruziniat, Alireza; Gharaei, Samineh

    2014-03-01

    To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adhesive systems, the RMGI samples were cured. Composite layers were applied and shear bond strength was measured. Two samples of each group were evaluated by SEM. Failure mode was determined by streomicroscope. Both curing methods and adhesive systems had significant effect on bond strength (P-value adhesives had significantly higher shear bond strength than the total-etch adhesive (P-value technique improved the bond strength in self-etch adhesives, but decreased the bond strength in total-etch adhesive (P-valueadhesive systems and co-curing technique can improve the bond strength between the RMGI and composite.

  1. Effect of filler ratio in adhesive systems on the shear bond strength of resin composite to porcelains.

    Science.gov (United States)

    Güler, Ahmet Umut; Sarikaya, Isil Biçer; Güler, Eda; Yücel, Ali cagin

    2009-01-01

    This in vitro study evaluated the effect of six different adhesive systems on the shear bond strength of resin composite to feldspathic and low-fusing porcelains. Sixty porcelain blocks were prepared for each low-fusing (Matchmaker) and feldspathic (MVK95) porcelain specimen. After surface preparation, the porcelain specimens were divided into six groups (n = 10) for different adhesive systems (Adper Prompt L-Pop, QuadrantUnil Bond, Te-Econom, PQ1, One-StepPlus and Prime&Bond NT). After adhesive application, a universal resin composite (FiltekZ250) was condensed on the specimens. The prepared specimens were then stored in distilled water at 37 degrees C for 24 hours, then all the samples were thermal cycled 1000 times between 5 degrees C and 55 degrees C. Shear testing was performed on a universal test machine using a crosshead speed of 0.5 mm/minute. The statistical analysis of the bond strength data included two-way ANOVA. Then, the means were compared by Tukey HSD test (alpha = 0.05). The lowest bond strength was observed in Adper Prompt L-Pop. No statistically significant difference was observed between One-Step Plus and Prime&Bond NT. The highest bond strength was observed in PQ1. When low-fusing or feldspathic porcelain restorations are repaired with resin composite, self-etching adhesive systems may not be indicated. If maximum bond strength is the goal in porcelain resin bonding, adhesive systems that have a high filler ratio should be used.

  2. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration.

    Science.gov (United States)

    Hashem, Danya F; Foxton, Richard; Manoharan, Andiappan; Watson, Timothy F; Banerjee, Avijit

    2014-03-01

    To compare in-vitro micro-shear bond strengths (μSBS) of resin composite to calcium silicate cement (Biodentine™) vs. glass ionomer cement vs. resin modified glass ionomer cement (RM-GIC) using an adhesive in self-etch (SE)/total etch (TE) mode after aging three substrates and bond and characterizing their failure modes. Resin composite was SE/TE bonded to 920 standardized disks of Biodentine™, GIC & RM-GIC. Dividing samples into two groups, the first underwent early (t=0min, 5min, 20min, 24h) or delayed (t=2wk, 1 month, 3 months, 6 months) substrate aging before bonding and μSBS (t=24h) testing. In the second, adhesive was applied after either early (t=5min) or delayed (t=2wk) substrate aging and then tested after bond aging (t=2wk, 1 month, 3 months, 6 months). The failure modes were identified using stereomicroscope. SEM images of selected samples were analyzed. No significant differences were observed between (SE)/(TE) bonding modes (P=0.42). With substrate aging, a significant reduction in μSBS occurred between early and delayed time intervals for Biodentine™ (P=0.001), but none for the GIC/RM-GIC (P=0.465, P=0.512 respectively). With bond aging, there was no significant difference between time intervals for all groups, except at 6 months for the GIC (PBiodentine™ is a weak restorative material in its early setting phase. Placing the overlying resin composite as part of the laminate/layered definitive restoration is best delayed for >2wk to allow sufficient intrinsic maturation to withstand contraction forces from the resin composite. A total-etch or self-etch adhesive may be used. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques

    OpenAIRE

    Boruziniat, Alireza; Gharaei, Samineh

    2014-01-01

    Aim: To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Materials and Methods: Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adh...

  4. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  5. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  6. Efficacy of Hydrophobic Layer On Sealing Ability of Dentin Adhesive Systems in Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleknejad

    2011-03-01

    Full Text Available Background and aims. Adhesive permeability is hindered by application of an additional layer of hydrophobic resin, which increases its concentration within the hydrophilic layer, reduces its affinity to water, and enhances its physical properties. The aim of the present study was to evaluate the effect of a hydrophobic layer on the microleakage of class V composite restorations using different adhesives. Materials and methods. The adhesives including total-etch Scotchbond MP and Single Bond, and the self-etch Clearfil SE Bond and Clearfil S3 Bond were applied to 80 class V cavities in vitro on the buccal surface in CEJ and then were followed by hydrophobic resin (Margin Bond in half of the cavities in each group (n=10. After restoration with microhybrid composite, Z100 and immersion in fuchsine, the degree of microleakage was assessed. Data were analyzed using the Kruskal-Wallis, Man-Whitney, and Wilcoxon tests. Results. The hydrophobic layer significantly reduced the microleakage of Clearfil SE Bond and Clearfil S3 Bond only in dentin (p0.05. Conclusion. Within the limitation of this study, only Clearfil S3 Bond could demonstrate the identical values of microleakage in enamel and dentinal margins.

  7. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  8. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    OpenAIRE

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC TM (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine TM (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into th...

  9. The influence of long term water immersion on shear bond strength of amalgam repaired by resin composite and mediated by adhesives or resin modified glass ionomers.

    Science.gov (United States)

    Pilo, R; Nissan, J; Shafir, H; Shapira, G; Alter, E; Brosh, T

    2012-07-01

    To assess the shear bond strength between amalgam and resin composite mediated by either multipurpose adhesive systems or RMGI when subjected to long term immersion in saline. Part I: Cylindrical specimens (6 mm × 6 mm) composed of equal parts of sandblasted set amalgam (Oralloy) and composite (Z-100), with a thin layer of either Scotchbond Multipurpose, All Bond 2, Amalgam Bond Plus, High Q Bond Plus or Vitrebond in between were fabricated (n = 100 × 5). Each group was divided into 3 subgroups, immersed in saline at 37 °C for either 48 h, 3 or 6 months, followed by thermocycling (5000; 5/55 °C) and shear bond strength testing (SBS). Part II: Identical specimens were fabricated with intermediary of either Ketac Cem, Fuji Lining LC, Rely X Luting, Fuji Plus or Meron Plus (n = 100 × 5). Immersion periods, followed by thermocycling and SBS testing as in Part I. Two representative specimens from each subgroup were sectioned and inspected under SEM. The two classes of intermediary agents yielded SBS which differed mainly in the 6 months incubation period. While multipurpose adhesives provided SBS values of ~9-10 MPa RMGI provided higher SBS of ~16 MPa. All Bond 2 and Amalgam Bond Plus exhibited deterioration of SBS during the 6 month period as well as Rely X Luting. Gap sizes between 0.5 and 3 μm exist between all intermediaries and the amalgam; on the other hand all intermediaries exhibit gap-free interfaces between the adhesives/RMGI and the composite. Vitrebond in particular and RMGIs in general can serve as an excellent coupler of resin composite to amalgam, providing a durable bond. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Clinical Impact of Dental Adhesives on Postoperative Sensitivity in Class I and Class II Resin-Composite Restorations

    Directory of Open Access Journals (Sweden)

    Manchorova-Veleva Neshka A.

    2015-12-01

    Full Text Available BACKGROUND: Self-etch adhesives are believed to prevent postoperative sensitivity when used under posterior resin-based composite restorations. STUDY OBJECTIVE: A hypothesis that a one-step self-etch adhesive (1-SEA would result in less postoperative sensitivity than a three-step etch-and-rinse adhesive (3-E&RA was tested. PATIENTS AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-composite and were evaluated for sensitivity to cold and masticatory forces at baseline, 7 days, 14 days, 30 days, and 6 months postoperatively. Vitality test scores of the teeth were recorded at the same periods. RESULTS: The evaluation of cold sensitivity intensity (VAS score for all observation periods in both restoration groups did not reveal any statistical significance. The differences in the response time to cold stimulation (0 - 15 sec for the restorations made with a 1-SEA and those made with a separate etch step are statistically insignificant. There are no significant differences in the vitality of the restored teeth at intra- or inter-group comparison. The statistical analysis revealed significant differences in postoperative sensitivity to masticatory forces at postoperative day 14 and day 30 in the 3-E&RA group. CONCLUSIONS: Postoperative sensitivity depends on the type of dentin adhesive used. More intensive complaints of postoperative sensitivity were recorded under masticatory forces at postoperative day 14 and day 30 in 3-E&RA in comparison with 1-SEA.

  11. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    Science.gov (United States)

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  12. CAD/CAM-based chairside restorative technique with composite resin for full-mouth adhesive rehabilitation of excessively worn dentition.

    Science.gov (United States)

    Del Curto, Filippo; Saratti, Carlo Massimo; Krejci, Ivo

    2018-01-01

    Since the first introduction of the Cerec system (Sirona) in the early 1980s, the use of computer-aided design/computer-aided manufacture (CAD/CAM) technology has spread widely in modern adhesive dentistry. Thanks to this innovative technology, it has been possible to carry out chairside restorations fully managed by the clinician, with the advantages of lower costs for the patient, more rapid execution of the restorations, and the exclusion of the provisional phase. With further improvements in chairside technologies and materials, specifically in the field of composite resin blocks, it is now possible to fabricate multiple ultrathin, minimally invasive or even noninvasive restorations in one single appointment. The clinical case presented here was solved using an innovative approach: It was entirely studied and realized chairside by a dentist on a computer, without any plaster cast or classic articulator. Vertical dimension of occlusion (VDO) augmentation was projected with the 'Incisal Tip' tool on the virtual articulator of the Cerec system. Eight composite resin overlays were designed on the non-prepared posterior teeth of a patient suffering from generalized tooth loss principally caused by a history of bulimia nervosa. The maxillary anterior teeth were restored with six palatal veneers modified with direct composites from the vestibular side, in order to improve the esthetic integration of the restorations. The mandibular posterior teeth were built up with direct composites.

  13. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  14. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sawase, Takashi

    2017-10-01

    The present study was conducted to evaluate the effects of an experimental adhesive agent [methyl methacrylate-tributylborane liquid (MT)] and two adhesive agents containing silane on the bonding between a resin composite block of a computer-aided design and manufacturing (CAD/CAM) system and a light-curing resin composite veneering material. The surfaces of CAD/CAM resin composite specimens were ground with silicon-carbide paper, treated with phosphoric acid, and then primed with either one of the two silane agents [Scotchbond Universal Adhesive (SC) and GC Ceramic Primer II (GC)], no adhesive control (Cont), or one of three combinations (MT/SC, MT/GC, and MT/Cont). A light-curing resin composite was veneered on the primed CAD/CAM resin composite surface. The veneered specimens were subjected to thermocycling between 4 and 60 °C for 10,000 cycles, and the shear bond strengths were determined. All data were analyzed using analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). MT/SC (38.7 MPa) exhibited the highest mean bond strengths, followed by MT/GC (30.4 MPa), SC (27.9 MPa), and MT/Cont (25.7 MPa), while Cont (12.9 MPa) and GC (12.3 MPa) resulted in the lowest bond strengths. The use of MT in conjunction with a silane agent significantly improved the bond strength. Surface treatment with appropriate adhesive agents was confirmed as a prerequisite for veneering CAD/CAM resin composite restorations.

  15. Pilot evaluation of resin composite cement adhesion to zirconia using a novel silane system.

    Science.gov (United States)

    Matinlinna, Jukka P; Lassila, Lippo V J; Vallittu, Pekka K

    2007-02-01

    In this study, we evaluated the effect of two silane coupling agents and their blends with a cross-linker silane on the bond strength of a dimethacrylate-based resin composite cement to surface-conditioned zirconia. A total of 40 planar zirconia specimens were used for 8 test groups. After alumina particle abrasion, followed by tribochemical silica-coating, the specimens were randomly assigned to four silanizations: with 1.0 vol% 3-methacryloyloxypropyltrimethoxysilane or 1.0 vol% 3-mercaptopropyltrimethoxysilane or their blends with 1.0 vol% 1,2-bis-(triethoxysilyl)ethane (all in ethanol/water). The resin composite (RelyX ARC, 3M ESPE) stubs (n=10/group) were light-polymerized onto zirconia specimens. Four test groups were tested without water storage and 4 thermo-cycled at 6000 cycles (5+/-1 degrees C to 55+/-1 degrees C), with a dwelling time of 30 s. The shear bond strength of the cement stubs to zirconia was measured using a universal testing machine at a constant cross-head speed of 1 mm/min. Scanning electron microscopy was employed for imaging the zirconia surface after conditioning and testing. Failure mode was evaluated visually. A surface chemical analysis was carried out with the EDXA system. The highest shear bond strength was 21.9+/-8.7 MPa, obtained with a blend of 3-mercaptopropyltrimethoxysilane and 1,2-bis-(triethoxysilyl)ethane (dry storage), and 16.0+/-1.5 MPa, with 3-methacryloyloxypropyltrimethoxysilane (thermo-cycled). Thermo-cycling decreased the bond strengths significantly (ANOVA, pethane.

  16. Clinical Effectiveness of Different Polishing Systems and Self-Etch Adhesives in Class V Composite Resin Restorations: Two-Year Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Jang, J-H; Kim, H-Y; Shin, S-M; Lee, C-O; Kim, D S; Choi, K-K; Kim, S-Y

    The aim of this randomized controlled clinical trial was to compare the clinical effectiveness of different polishing systems and self-etch adhesives in class V composite resin restorations. A total of 164 noncarious cervical lesions (NCCLs) from 35 patients were randomly allocated to one of four experimental groups, each of which used a combination of polishing systems and adhesives. The two polishing systems used were Sof-Lex XT (Sof), a multistep abrasive disc, and Enhance/Pogo (EP), a simplified abrasive-impregnated rubber instrument. The adhesive systems were Clearfil SE bond (CS), a two-step self-etch adhesive, and Xeno V (XE), a one-step self-etch adhesive. All NCCLs were restored with light-cured microhybrid resin composites (Z250). Restorations were evaluated at baseline and at 6, 12, 18, and 24 months by two blinded independent examiners using modified FDI criteria. The Fisher exact test and generalized estimating equation analysis considering repeated measurements were performed to compare the outcomes between the polishing systems and adhesives. Three restorations were dislodged: two in CS/Sof and one in CS/EP. None of the restorations required any repair or retreatment except those showing retention loss. Sof was superior to EP with regard to surface luster, staining, and marginal adaptation (p0.05). Sof is clinically superior to EP for polishing performance in class V composite resin restoration. XE demonstrates clinically equivalent bonding performance to CS.

  17. Clinical results with two different methods of root-end preparation and filling in apical surgery: mineral trioxide aggregate and adhesive resin composite

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hanni, Stefan; Jensen, Simon Storgaard

    2010-01-01

    The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral triox...... trioxide aggregate (MTA) and an adhesive resin composite (Retroplast)....

  18. [The influence of the chemo-mechanical removal of the smear-layer and the use of a dentin adhesive on microleakage of composite resin restorations].

    Science.gov (United States)

    de la Macorra García, J C; Gómez Martínez, A; Gutiérrez Argumosa, B

    1989-02-01

    We present an "in vitro" study of microfiltration in composite resin restorations with a perimetral seal placed totally in cement. We compare the sealing capability of a dentin adhesive (ScotchBond I) used in two ways: habitual, without conditioning dentin and conditioning it by means of the Caridex system. This produced no increasing of sealing capability under the study conditions.

  19. Fracture resistance of composite and amalgam cores retained by pins coated with new adhesive resins.

    Science.gov (United States)

    Tjan, A H; Dunn, J R; Grant, B E

    1992-06-01

    This study determined the effects of coating pins with either Panavia EX or with 4-META (Cover-Up) materials on the fracture resistance of pin-retained amalgam and composite cores. Gold-plated stainless steel (TMS) and titanium (Filpin) self-threading pins were used. Findings of this study corroborated the findings of several other studies that the use of pins reduces the fracture resistance of restorations. However, coating the pins with adhesion promoters such as Panavia EX and 4-META materials has been found to be effective in improving the fracture resistance. Cross-preference was observed between TMS and Filpin pins; that is, Panavia material coating was more effective with TMS pins, while 4-META was more effective with Filpin pins.

  20. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  1. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  2. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    OpenAIRE

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000?). Mesial and distal 1/3 parts of the res...

  3. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study.

    Science.gov (United States)

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive.

  4. Adhesion of resin materials to S2-glass unidirectional and E-glass multidirectional fiber reinforced composites: effect of polymerization sequence protocols.

    Science.gov (United States)

    Polacek, Petr; Pavelka, Vladimir; Ozcan, Mutlu

    2013-12-01

    To evaluate the effect of different polymerization sequences employed during application of bis-GMAbased particulate filler composites (PFC) or a flowable resin (FR) on fiber-reinforced composite (FRC). Unidirectional, pre-impregnated S2-glass fibers (Dentapreg) and multidirectional preimpregnated E-glass fibers (Dentapreg) (length: 40 mm; thickness: 0.5 mm) were obtained (N = 144, n = 12 per group) and embedded in translucent silicone material with the adhesion surface exposed. The resulting specimens were randomly divided into 12 groups for the following application sequences: a) FRC+PFC (photopolymerized in one step), b) FRC+FR (photopolymerized in one step), c) FRC+PFC (photopolymerized individually), d) FRC+FR (photopolymerized individually), e) FRC (photopolymerized)+intermediate adhesive resin and PFC (photopolymerized in one step), f) FRC (photopolymerized)+intermediate adhesive resin and FR (photopolymerized in one step). The sequences of unidirectional (groups a to f) were repeated for multidirectional (groups g to l) FRCs. PFCs were debonded from the FRC surfaces using the shear bond test in a universal testing machine (1 mm/min). On additional specimens from each FRC type, thermogravimetric analysis (TGA) was performed to characterize the fiber weight content (Wf) (N = 6, n = 3 per group). After debonding, all specimens were analyzed using SEM to categorize the failure modes. The data were statistically analyzed using 3-way ANOVA and Tukey's tests (α = 0.05). Significant effects of the FRC type (S2 or E-glass) (p resin type (PFC or FR) (p TGA revealed 55 ± 3 wt% fiber content for multidirectional and 60 ± 3 wt% for unidirectional FRCs tested. Multidirectional pre-impregnated E-glass fibers cannot be recommended in combination with the PFC and FR materials tested in this study. Application of an intermediate adhesive resin layer increases the adhesion of both PFC and FR to unidirectional FRC. FRC and FR can be polymerized in one step, but FRC and PFC

  5. Effect of Colgate Sensitive Pro-Relief paste on the strength of adhesion of composite resin in dental pieces

    International Nuclear Information System (INIS)

    Davila Rodriguez, Amanda; Sas Rosero, Cristina de

    2013-01-01

    The effect of the toothpaste Colgate Sensitive Pro-Relief on the strength of adhesion was analyzed, through in vitro studies, in dental pieces that have been previously treated with a protocol that simulates dental hypersensitivity. Several dental pieces were taken as study samples and divided into groups. The Colgate Sensitive Pro-Relief TM desensitizing paste was applied to the non-crown surfaces of the teeth, with the exception of the negative control group which remained without the application. Positive control protocols, prophylaxis with the use of fluorinated prophylactic paste, 400 grit sandpaper, phosphoric acid and negative control were applied. Subsequently, a Brilliant NG TM dentin photocurable resin crown was constructed for the groups to which the indicated protocols were applied. The greatest strength of adhesion was presented by the group Prophylaxis. It is assumed that a second application of orthophosphoric acid is able to de-blot even more the dental tubules and with this improve the adhesion. An improvement in the adhesion of resin on the tooth surface is provided when performing a dental prophylaxis using prophylactic paste and a rubber cup, before restoring a tooth. Sandpaper 400 prevents an improvement in the adhesion of resins. The results with the negative control group were unexpected and may be due to errors in the treatment process [es

  6. Review: Resin Composite Filling

    Directory of Open Access Journals (Sweden)

    Desmond Ng

    2010-02-01

    Full Text Available The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  7. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  8. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA

  9. Viscoelastic modelling of epoxy-resins for adhesive and composite applications

    Science.gov (United States)

    Hiel, C.; Cardon, A. H.; Brinson, H. F.

    1984-01-01

    Nonlinear viscoelastic and thermoelastic characterization procedures were applied to a rubber toughened adhesive that is commercially available as FM-300. Long time (accelerated testing) predictions on the basis of stress-time-superposition and time-temperature-superposition were compared with actual long term data. Good verification was obtained.

  10. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  11. Shear bond strength of composite resin bonded to preformed metal crowns for primary molars using a universal adhesive and two different surface treatments: an in vitro study.

    Science.gov (United States)

    Patil, S S; Kontham, U R; Kamath, A; Kontham, R

    2016-10-01

    This was to determine the shear bond strength of composite resin bonded to preformed metal crowns with a new adhesive. Buccal surfaces of the crowns were roughened by two different methods to increase retention. Typodont mandibular second primary molars (38) were divided into two groups (19 per group). Preformed metal crowns were cemented to the teeth with glass-ionomer cement. To enhance retention, buccal surfaces of the crowns in group I were roughened with cross-cut carbide burs (SS White #56); crowns in group II were sandblasted (aluminium oxide, 50 µm). Scotchbond Universal Adhesive (3 M-ESPE) was used to bond composite resin to the crowns. A universal testing machine tested the maximum shearing force withstood by the veneered composite surfaces. Sandblasted crowns demonstrated significantly higher resistance (p = 0.001) to shearing force (324.4 N) than did the crowns that were roughened with a bur (234.2 N). Chairside veneering of composite resin to pretreated crowns could be a feasible, aesthetically pleasing, and an economical option in paediatric dentistry.

  12. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer......-based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years...... and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. Clinical relevance: The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations....

  13. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  14. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  15. Interfacial adhesion improvement in carbon fiber/carbon nanotube reinforced hybrid composites by the application of a reactive hybrid resin initiated by gamma irradiation

    Science.gov (United States)

    Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.

    2018-04-01

    Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.

  16. Randomized 3-year Clinical Evaluation of Class I and II Posterior Resin Restorations Placed with a Bulk-fill Resin Composite and a One-step Self-etching Adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2015-01-01

    PURPOSE: To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations. MATERIALS AND METHODS: Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years......). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR...... in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were...

  17. Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro.

    Science.gov (United States)

    Roggendorf, Matthias J; Krämer, Norbert; Dippold, Christoph; Vosen, Vera E; Naumann, Michael; Jablonski-Momeni, Anahita; Frankenberger, Roland

    2012-12-01

    To evaluate marginal quality and resin-resin transition of lab made resin composite inlays in deep proximal cavities with and without 3 mm proximal box elevation (PBE) using resin composites before and after thermo-mechanical loading (TML). MOD cavities with one proximal box beneath the cementoenamel junction were prepared in 40 extracted human third molars. Proximal boxes ending in dentine were elevated 3 mm with different resin composites (G-Cem, Maxcem Elite as self-adhesive resin cements and Clearfil Majesty Posterior as restorative resin composite in one or three layers bonded with AdheSE), or left untreated. Clearfil Majesty Posterior inlays were luted with Syntac and Variolink II (n = 8). Marginal quality as well as the PBE-composite inlay interface was analyzed under an SEM using epoxy resin replicas before and after thermomechanical loading (100,000 × 50 N and 2500 thermocylces between +5 °C and +55 °C). Bonding resin composite inlays directly to dentine showed similar amounts of gap-free margins in dentine compared to PBE applied in three consecutive layers (p > 0.05). The groups with self-adhesive resin cements for PBE exhibited significantly more gaps in dentine (p < 0.05). With layered resin composite, PBE is effective in indirect resin composite bonding to deep proximal boxes. Self-adhesive resin cements are not suitable for this indication. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enhancement of adhesion between resin coating materials and resin cements.

    Science.gov (United States)

    Udo, Tomoaki; Nikaido, Toru; Ikeda, Masaomi; Weerasinghe, Dinesh S; Harada, Naoko; Foxton, Richard M; Tagami, Junji

    2007-07-01

    Resin coating technique is a unique method that improves the dentin bond strength of resin cements in indirect restorations. However, the weak link of a specimen bonded using the resin coating technique was reported to be the bonded interface between the resin coating material and resin cement. The purpose of this study, therefore, was to enhance the bonding performance between a resin coating material and a resin cement. Two light-cured flowable composites, Protect Liner F and Clearfil Flow FX, were used as coating materials, and two dual-cure composite materials, Panavia F 2.0 and Clearfil DC Core Automix, were used as resin cements. The ultimate tensile strength of each material and the microtensile bond strengths of the bonded specimens of resin coating material and resin cement were measured using a crosshead speed of 1.0 mm/min. Three-way ANOVA (p=0.05) revealed that the highest microtensile bond strength was obtained using a combination of Clearfil Flow FX and Clearfil DC Core Automix, and when the surface of the coating material was treated with ED Primer II. It was strongly suggested that materials with a higher ultimate tensile strength, when used in both resin coating and cementation, could enhance the bond strength between the two.

  19. Influence of cavity configuration on the adhesion of two resin-based composites to pulpal floor dentin.

    Science.gov (United States)

    Akagawa, Hirotoshi; Nikaido, Toru; Burrow, Michael F; Tagami, Junji

    2005-08-01

    To evaluate the effect of cavity configuration on microtensile bond strengths of two resin composites for core build-up to pulpal floor dentin. Access cavity preparation and root canal filling with gutta percha were performed on extracted human molars. Following this, the gutta percha in the pulp chamber was completely removed to expose pulpal floor dentin. The cavity walls remained as a control group (Cavity). For another group, the cavity walls were removed to create a flat surface for bonding (Flat). For the Cavity group, Clearfil SE Bond was applied to the cavity according to the manufacturer's instructions, and either a light-cured resin composite (PH, Clearfil Photo Core) or a dual-cured resin composite (DC, Clearfil DC Core), was placed in the bonded cavity. Clearfil Photo Core was placed in three increments while bulk-filling was used for Clearfil DC Core. The application of the bonding system and the composites to the flat dentin surface was the same as that for cavity. Specimens were stored in water for 1 week, then sectioned vertically into 2 or 3 slabs (0.7 mm thick) and trimmed for the microtensile bond strength (MTBS) test. The MTBSs were measured with a universal testing machine at a crosshead speed of 1.0 mm/minute. The results (mean +/- SD, MPa, n=10) of PH/Cavity, PH/Flat and DC/Flat were 21.9 +/- 3.4, 28.9 +/- 4.0, and 27.6 +/- 6.1 respectively. The MTBS could not be determined in DC/Cavity because of debonding occurred during sample preparation.

  20. Does the adhesive strategy influence the post-operative sensitivity in adult patients with posterior resin composite restorations?: A systematic review and meta-analysis.

    Science.gov (United States)

    Reis, Alessandra; Dourado Loguercio, Alessandro; Schroeder, Marcos; Luque-Martinez, Issis; Masterson, Danielle; Cople Maia, Lucianne

    2015-09-01

    A systematic review and meta-analysis were performed on the risk and intensity of postoperative sensitivity (POS) in posterior resin composite restorations bonded with self-etch (SE) and etch-and-rinse (ER) adhesives. A comprehensive search was performed in the MEDLINE via PubMeb, Scopus, Web of Science, LILACS, BBO and Cochrane Library and SIGLE without restrictions. The abstracts of the annual conference of the IADR (1990-2014), unpublished and ongoing trials registry were also searched. Dissertations and theses were searched using the ProQuest Dissertations and Periodicos Capes Theses databases. We included randomized clinical trials that compared the clinical effectiveness of SE and ER used for direct resin composite restorations in permanent dentition of adult patients. The risk/intensity of POS was the primary outcome. The risk of bias tool of the Cochrane Collaboration was used. The meta-analysis was performed on the studies considered 'low' risk of bias. After duplicates removal, 2600 articles were identified but only 29 remained in the qualitative synthesis. Five were considered to be 'high' risk of bias and eleven were considered to be 'unclear' in the key domains, yielding 13 studies for meta-analysis. The overall relative risk of the spontaneous POS was 0.63 (95% CI 0.35 to 1.15), while the stimuli-induced POS was 0.99 (95% CI 0.63 to 1.56). The overall standardized mean difference was 0.08 (95%CI -0.19 to 0.35). No overall effect was revealed in the meta-analyses, meaning that no influence of the ER or SE strategy on POS. The type of adhesive strategy (ER or SE) for posterior resin composite restorations does not influence the risk and intensity of POS. CRD42014006617. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Adhesive retention of experimental fiber-reinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses.

    Science.gov (United States)

    Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval

    2015-07-01

    A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The

  2. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    -based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years....... Results: One hundred and fifty-eight restorations were evaluated after 8 years. Three participants with five restorations (three Xeno III, two Excite) were registered as dropouts. Twenty-one failed restorations (13.3 %) were observed during the follow-up. Twelve in the one-step self-etch adhesive group...... and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. Clinical relevance: The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations....

  3. Adhesive compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Sendijarevic, Vahid; O' Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  4. Microleakage of Composite Resin Restorations Using a Type of Fifth and Two Types of Seventh Generations of Adhesive Systems: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mitra Tabari

    2015-12-01

    Full Text Available Introduction: In recent dentin adhesive systems etching of enamel/dentin are achieved simultaneously. The objective was to evaluate the microleakage of composite restorations using Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. Methods: Class V cavities were prepared on  45 extracted intact premolars with gingival margins at the cementoenamel junction and they were randomly divided into 3 groups (n=15 based on the type of adhesives: Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. After applying the adhesives, the cavities were filled with Z250 composite resin. The occlusal and gingival microleakage was evaluated using 2% basic fuchsin staining technique. Data were analyzed using Kruskal-Wallis and Bonferroni corrected Mann-Whitney U tests. Results: The mean rank of occlusal microleakage exhibited significant differences by comparison of G Bond, Clearfil S3 Bond and Single Bond2 (21.07, 30.67 and 17.27, respectively (P=0.005. There was a significant difference in gingival microleakage of different bonding agents (34.40, 17.83 and 16.77 for G Bond, Clearfil S3 Bond and Single Bond2, respectively (P

  5. Influence of light-activated and auto- and dual-polymerizing adhesive systems on bond strength of indirect composite resin to dentin.

    Science.gov (United States)

    de Menezes, Maria Jose Lorena; Arrais, Cesar Augusto Galvao; Giannini, Marcelo

    2006-08-01

    Clinicians must be aware of the bonding effectiveness of auto- and dual- polymerizing adhesive systems before choosing the material and technique of cementing inlay/onlays to dentin. An inadequate choice may compromise the success of indirect restorations. This study compared the microtensile bond strength (MTBS) of indirect composite resin bonded to dentin by light-activated, autopolymerizing, and dual-polymerizing adhesive systems. Occlusal dentin surfaces of 36 human third molars were exposed and flattened. Teeth were assigned to 1 of the following 6 groups (n=6) of adhesive luting systems: 2 dual-polymerizing systems (Scotchbond Multipurpose Plus/Rely X [SBMP] and Prime & Bond NT Dual Cure/Enforce [PBDC]); 1 autopolymerizing system (ED Primer/Panavia F [EDP]); and 3 light-activated systems (control groups) (Adper Single Bond/Rely X [SB], Prime & Bond NT/Enforce [PB], and Clearfil SE Bond/Panavia F [CF]). The restorative materials were applied according to manufacturer's directions. A 2-mm-thick prepolymerized composite resin (Clearfil APX) disc was cemented with the resin cements on the bonded dentin. Teeth were stored in water at 37 degrees C for 24 hours. Afterwards, teeth were sectioned both mesial-distally and buccal-lingually to obtain multiple bonded beam specimens with 0.8 mm(2) of cross-sectional area. Each specimen was tested in tension at a crosshead speed of 0.5 mm/min until failure. Data (MPa) were analyzed by 1-way analysis of variance and the Tukey post hoc test (alpha=.05). Failure patterns of tested specimens were analyzed using scanning electron microscopy. Mean MTBS values (MPa) for experimental groups were as follows: SBMP, 32.89 +/- 3.26(a); SB, 26.74 +/- 7.45(ab); PB, 26.11 +/- 4.48(ab); CF, 25.30 +/- 6.42(ab); EDP, 16.82 +/- 5.53(bc); PBDC, 11.20 +/- 5.89(c) (P<.001). Groups with similar lowercase letters were not significantly different. Failure pattern of fractured specimens varied according to the polymerization mode. The

  6. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  7. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    Purpose/aim: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Materials and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age...... 52.4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments...... up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...

  8. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive.

    Science.gov (United States)

    van Dijken, Jan W V; Pallesen, Ulla

    2015-07-01

    The aim of this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Seventy-eight participants received at random at least two Class II restorations of the ormocer-based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years. One hundred and fifty-eight restorations were evaluated after 8 years. Three participants with five restorations (three Xeno III, two Excite) were registered as dropouts. Twenty-one failed restorations (13.3%) were observed during the follow-up. Twelve in the one-step self-etch adhesive group (13.5%) and nine in the two-step etch-and-rinse group (13.0%). This resulted in nonsignificant different annual failure rates of 1.69 and 1.63%, respectively. Fracture of restoration was the main reason for failure. Good clinical performance was shown during the 8-year evaluation and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations.

  9. Four-year clinical evaluation of Class II nano-hybrid resin composite restorations bonded with a one-step self-etch and a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical trial was to evaluate the 4-year clinical performance of an ormocer-based nano-hybrid resin composite (Ceram X; Dentsply/DeTrey) in Class II restorations placed with a one-step self-etch (Xeno III; Dentsply/DeTrey) and two-step etch-and-rinse adhesive...

  10. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  11. Adhesion strength improvement of epoxy resin reinforced with nanoelastomeric copolymer

    International Nuclear Information System (INIS)

    Khoee, Sepideh; Hassani, Narges

    2010-01-01

    Research highlights: → Elastomeric nanoparticle (ENP) was prepared via miniemulsion polymerization. → ENP was added to epoxy resin (ER) with different amounts. → The lap shear strength (LSS) of different ENP/ER was measured. → The fractured surfaces were examined by scanning electron microscopy (SEM). - Abstract: Nano-sized copoly(styrene-butylacrylate-ethylenglycoldimethacrylate) (St-BA-EGDMA) particles were added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin (ER) using piperidine as a curing agent. Transmission electron microscopy (TEM) proved that nanoelastomer was finely dispersed in the epoxy adhesive. To compare the adhesion strength of different adherents utilizing both modified and unmodified epoxy adhesive, the lap shear strength (LSS) test was measured as a function of elastomeric nanoparticles (ENP) amount. Scanning electron microscopy (SEM) and FTIR were used to investigate the interface morphology and chemical composition of adherent and epoxy adhesive. The result indicated that the adhesion strength was increased dramatically by addition of nanoparticles compared with that of pure epoxy adhesive. The highest adhesion strength was obtained with 20 wt% elastomeric nanoparticles. It was found that reinforcement with nanoparticles improved the fracture toughness.

  12. Eighteen-month clinical performance of composite resin restorations with two different adhesive systems for molars affected by molar incisor hypomineralization.

    Science.gov (United States)

    de Souza, Juliana Feltrin; Fragelli, Camila Bullio; Jeremias, Fabiano; Paschoal, Marco Aurélio Benini; Santos-Pinto, Lourdes; de Cássia Loiola Cordeiro, Rita

    2017-06-01

    The restorative management of molars with molar incisor hypomineralization (MIH) represents a challenge in the clinical practice with high failure rate. The aim of this study is to evaluate the clinical survival of direct composite resin restorations in first permanent molars (FPMs) that are affected by MIH, comparing two adhesive systems. We selected 41 FPMs with MIH from children aged 6-8 years. FPM fully erupted and with restorative treatment needed were the inclusion criteria. We excluded FPMs with destroyed crowns. The FPMs were randomly assigned to two groups: self-etching adhesive (SEA) and total-etch adhesive (TEA). Clinical evaluation was performed by a blinded examiner during 18 months according to the modified US Public Health Service (USPHS) criteria. The actuarial method was used to evaluate survival of the restorations, and Chi-square and Fisher's exact tests were used to compare differences between the groups (α = 5 %). The cumulative survival rates were 100 % at 1 month, 89 % at 6 months, 73 % at 12 months, and 68 % at 18 months in SEA, and 95 % at 1 month, 72 % at 6 months, 59 % at 12 months, and 54 % at 18 months in TEA; there was no significant difference between groups. There was no difference in clinical survival of restorations in FPMs affected by MIH using TEA or SEA adhesives in the end of 18 months. It was suggested that SEAs as well as TEAs can be applied to restore molars affected by MIH, when it is performed a conservative cavity preparation. Once, cavosurface margins (cavity design) in hypomineralized enamel have less bonding capability.

  13. Effect of different blood contaminated adherent surface treatments on shear bond strength of compomer and composite resin to dentin, using a self etching adhesive

    Directory of Open Access Journals (Sweden)

    Mortazavi V.

    2005-06-01

    Full Text Available Statement of Problem: Blood contamination is a common problem in dentistry that can decrease bond strength dramatically which may be affected by methods of decontamination as well. Purpose: The aim of this study was to evaluate and compare the influence of blood contamination on shear bond strength of composite and compomer to dentin using Prompt L-Pop as an adhesive system. Also, to assess the effectiveness of different surface treatments on the bond strength. Materials and Methods: In this experimental study, 120 molar teeth were sectioned to provide flat occlusal dentinal surfaces. Specimens were embedded in acrylic resin with the flat surface exposed. The dentinal expose surfaces were polished to 600 grit. The teeth were randomly divided into five groups of twelve specimens (F1–F5 for compomer material and five other groups (Z1- Z5 for composite resin. After application of Promt L-Pop to dentinal surfaces of specimens, the surfaces in all groups, except for F1 and Z1, (as controls were contaminated with human blood and then one of the following surface treatments was applied. Groups F2 and Z2 without any treatment, groups F3 and Z3 rinsing with water, groups F4 and Z4 rinsing with water and reapplication of adhesive, groups F5 and Z5 rinsing with NaOCl and using Prompt L-Pop again. Restorative materials were applied to treated surfaces using plastic molds. After thermocycling, shear bond strengths, mode of failures and morphology of dentin-material interfaces were evaluated. The data were statistically analyzed using Factorial analysis of Variance, One-Way ANOVA, Duncan, T-student and Chi-Square tests with P<0.05 as the limit of significance. Results: Compomer showed statistically significant higher bond strength in comparison to composite (P<0.001. Duncan test showed significant differences between all compomer groups, except between groups F4 and F5, and between all composite groups except for groups Z1 and Z4 and for groups Z2 and Z3

  14. Leakage testing for different adhesive systems and composites to ...

    African Journals Online (AJOL)

    The teeth were randomly assigned to six groups of 14 teeth each as follows: The first group – etch‑rinse adhesive applied and cavities filled with flowable composite, the second group – etch‑rinse adhesive applied and cavities filled with bulk‑fill resin composite, the third group – one‑stage self‑etch (SE) adhesive applied ...

  15. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  16. The effect of storage and type of adhesive resin on microleakage of ...

    African Journals Online (AJOL)

    The effect of storage and type of adhesive resin on microleakage of enamel margins in class V composite restorations. SS Oskoee, AA Ajami, S Kimyai, M Bahari, S Rahimi, PA Oskoee, EJ Navimipour, SS Kahnamouii ...

  17. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2018-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth......-structure and with minimal risk of pulpal complication. In addition, it offers an aesthetic solution to the patient immediately after an injury, which may bring a little comfort in a sad situation. The resin composite build-up is often changed or repaired a couple of times, before the tooth is restored with a porcelain...... present an aesthetic problem due to exposure of un-aesthetic crown-margins. The invasive permanent crown restorations are therefore often not suc-cessful on a long-term scale. On the other hand, a conservative direct restoration of an extensively fractured incisor crown with resin composite may...

  18. Effect of Adhesion Between Submicron Filler Particles and a Polymeric Matrix on the Structure and Mechanical Properties of Epoxy-Resin-Based Compositions

    Science.gov (United States)

    Bogomolova, O. Yu.; Biktagirova, I. R.; Danilaev, M. P.; Klabukov, M. A.; Polsky, Yu. E.; Pillai, Saju; Tsentsevitsky, A. A.

    2017-03-01

    The structure and mechanical properties of composites based on an ED-20 epoxy resin, modified with ZnO and ZnO particles untreated or encapsulated in polystyrene, were studied. It is shown that the introduction of polystyrene-encapsulated ZnO submicroparticles into the epoxy resin changed its supramolecular structure in comparison with that of the resin filled with untreated ones. It was established that the presence of shell on the filler particles affected the mechanical properties of the polymer composites — their hardness increased by 22.5% and elastic modulus by 13%.

  19. Bond strength of self-adhesive resin cement to base metal alloys having different surface treatments

    Directory of Open Access Journals (Sweden)

    Farhad Shafiei

    2018-01-01

    Conclusion: Based on the results, sandblasting improves the shear bond strength of self-etch and self-adhesive resin cement to base metal alloys. The best results can be achieved with a combination of sandblasting and metal primers. The performance of resin cement depends on to their chemical composition, not to the type of system.

  20. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin.

    Science.gov (United States)

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-05-01

    Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008-2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan's logistic regression test. In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly

  1. Effect of LED light-curing time for the adhesive resin on the modulus of elasticity.

    Science.gov (United States)

    Senawongse, Pisol; Harnirattisai, Choltacha; Otsuki, Masayuki; Tagami, Junji

    2007-06-01

    To evaluate the elastic modulus of successive layers where an adhesive resin was cured by different light-curing times. Eighty dentin discs which were 2 mm thick were prepared from 40 sound third molars. The dentin discs were further divided into four groups and bonded with 3M Single Bond 2 and cured with an LED for 5, 10, 15 and 20s. Bonded specimens were restored with a microhybrid resin composite. Specimens were cut perpendicular to the resin dentin interface, embedded in epoxy resin, and polished. Polished specimens were evaluated for the elastic modulus at the layer of dentin, hybrid layer, adhesive resin, and resin composite at 24 hours after preparation. Light-curing times influenced the elastic modulus of hybrid layer and adhesive resin. The significant differences of elastic modulus among successive layers were found. The results suggested that extension of light-curing times of adhesive resin from 5 to 20 seconds increased the mechanical properties of the resin dentin interface.

  2. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  4. Effect of ultraviolet light irradiation on bonding of experimental composite resin artificial teeth.

    Science.gov (United States)

    Loyaga-Rendon, Paola G; Takahashi, Hidekazu; Iwasaki, Naohiko; Reza, Fazal

    2007-11-01

    The purpose of the present study was to evaluate how ultraviolet light (UV) irradiation using an ordinary UV sterilizer would affect the bonding of experimental composite resins to an autopolymerizing acrylic resin. To this end, three composite resins and one unfilled resin--of which the compositions were similar to commercial composite resin artificial teeth--were prepared as repair composites. Their shear bond strengths after UV irradiation for one to 60 minutes were significantly greater than those before UV irradiation regardless of composite resin type. Failure mode after UV irradiation for one to 60 minutes was mainly cohesive failure of the composite resins, but that before UV irradiation and after 24 hours' irradiation was mainly adhesive failure. These results thus suggested that a short period of UV irradiation on composite resin teeth would improve the bonding efficacy of composite resin artificial teeth to autopolymerizing resin.

  5. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-05-01

    Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.

  6. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  7. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties.

    Science.gov (United States)

    Sattabanasuk, Vanthana; Charnchairerk, Paleenee; Punsukumtana, Lada; Burrow, Michael F

    2017-08-01

    Intraoral repair of fractured ceramic restorations using resin composite is practical for dental treatment. In the present study, we investigated whether differences in surface treatments for glass ceramic would affect resin adhesion. Leucite-reinforced glass ceramic plates (IPS Empress Esthetic) were ground with 320-grit silicon carbide paper, cleaned using phosphoric acid, and then etched with hydrofluoric acid (IPS Ceramic Etching Gel) or left unetched, and silanized using silane coupling agent (RelyX Ceramic Primer) or kept unsilanized. Either conventional (Adper Scotchbond Multi-Purpose) or universal (Scotchbond Universal) adhesive was used to bond the resin composite to ceramic surfaces. Specimens were subjected to microshear test after 37°C water storage for 24 h, and fractured surfaces were examined. Ceramic surface hydrophobicity after treatments was verified with contact angle measurements. Data were analyzed using anova and Tukey's tests. Regardless of the adhesive tested, hydrofluoric acid-etched ceramics showed higher bond strengths. Ceramic primer application improved resin bonding, even in non-etched groups, and also influenced fractography (P ceramics treated with ceramic primer were higher than those treated with silane-containing universal adhesive (P resin adhesion to glass ceramic. Universal adhesive seems to not function in the same manner as a silane coupling agent. © 2016 John Wiley & Sons Australia, Ltd.

  8. Assessment of resin-dentin interfacial morphology of two ethanol-based universal adhesives: A scanning electron microscopy study

    OpenAIRE

    Awad, Mohamed Moustafa

    2017-01-01

    Objective: The objective of this study was to assess the resin-dentin interfacial morphology created by two universal adhesives using scanning electron microscopy (SEM). Materials and Methods: The occlusal surfaces of ten (n = 5) molars were reduced to expose a flat surface of dentin. Two universal adhesives, Scotchbond Universal Adhesive and Tetric N-Bond Universal, were independently applied to air-dried dentin. Light-cured resin-based composite restorative materials were used to incrementa...

  9. Resin composites: strength of the bond to dentin versus mechanical properties.

    Science.gov (United States)

    Thomsen, Kasper Boel; Peutzfeldt, Anne

    2007-03-01

    This study (1) investigated whether the combination of an adhesive system from one manufacturer with a resin composite from the same manufacturer provides superior bonding of the resin composite to dentin compared with the combination of an adhesive system from one manufacturer with a resin composite from another manufacturer, and (2) tested for a possible influence on bond strength of mechanical properties of the resin composite. After application of an adhesive system, a resin composite was bonded to flattened human dentin and tested in shear after 1 week. Five adhesive systems (AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, Optibond Solo Plus, and Xeno III) were tested with each of five resin composites (Tetric Ceram, Filtek Supreme, Clearfil AP-X, Premise, and EsthetX). The mechanical properties flexural strength and flexural modulus were determined by three-point loading. Bond strengths were influenced by the brand of adhesive system (P resin composite (P resin composite from the same manufacturer did not provide bond strengths that were superior to those obtained when an adhesive system from one manufacturer was combined with a resin composite from another manufacturer. Independent of the brand of resin composite, the adhesive system Clearfil SE Bond mediated the highest bond strength to dentin. For each adhesive system, the resin composite Clearfil AP-X resulted in the highest bond strength to dentin. Significant positive correlations were found between bond strength and flexural strength (P < 0.0026, r = 0.21) and between bond strength and flexural modulus (P < 0.0017, r = 0.22).

  10. Micromorphological characterization of the adhesive interface of self-adhesive resin cements

    OpenAIRE

    Bittner, Aleksandra

    2013-01-01

    Resin luting agents are used to lute indirect restorations to hard tooth tissues. The luting procedure consists mostly of several tooth pretreatment steps as etching, priming and application of adhesive and only at the very end applying of a resin luting agent. Such a multi-step luting procedure with separate adhesive system is quite time-consuming and technique sensitive. Therefore, constant inquiry from the practitioners for the resin luting agents with simplified application procedure, hav...

  11. Microtensile bond strength of lithium disilicate ceramics to resin adhesives.

    Science.gov (United States)

    Aboushelib, Moustafa N; Sleem, Donia

    2014-12-01

    To evaluate the influence of the internal structure of lithium disilicate glass ceramics (LDC) on the microtensile bond strength to a resin adhesive using two surface treatments. Milling blocks of three types of LDC were sectioned (4 mm thick) using a precision cutting machine: IPS Empress 2 (conventional LDC), IPSe.max CAD (a refined crystal high strength LDC), and Celtra (zirconia reinforced LDC). Cut specimens received crystallization heat treatment as suggested by the manufacturers. Two surface treatments were performed on each group: hydrofluoric acid etching (HF) and airborne particle abrasion using 50-μm glass beads, while the as-cut surface served as control. Treated surfaces were examined using scanning electron microscopy (SEM). The disks were coated with a silane primer and bonded to pre-aged resin composite disks (Tetric EvoCeram) using a resin adhesive (Variolink II) and then stored in water for 3 months. Bonded specimens were sectioned into micro-bars (1x1x6 mm) and microtensile bond strength test (MTBS) was performed. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α=0.05). Statistical analysis revealed significant differences in microtensile bond strength values between different LDCs (F=67, pceramic (30.4±4.6 MPa) was significantly higher than both IPS Empress 2 (21.5±5.9 MPa) and IPSe.max ceramics (25.8±4.8 MPa), which had almost comparable MTBS values. SEM images demonstrated homogenous glassy matrix and reinforcing zirconia fillers characteristic of Celtra ceramic. Heat treatment resulted in growth and maturation of lithium disilicate crystals. Particle abrasion resulted in abrasion of the glass matrix and exposure of lithium disilicate crystals, while HF etching produced a microrough surface, which resulted in higher MTBS values and reduction in the percentage of adhesive failure for all groups. Within the limitations of this study, bond strength to lithium disilicate ceramics depends on proper surface treatment and on

  12. Avaliação da interação entre resina composta e diferentes adesivos dentinários Evaluation of the interaction between composite resin and different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Luciana Lourenço RIBEIRO

    1999-01-01

    Full Text Available O objetivo deste estudo foi avaliar a resistência à tração de quatro diferentes sistemas adesivos. Scotchbond Multi Purpose Plus, 3M (Grupo 1, Prime & Bond 2.0, Dentsply (Grupo 2 ProBOND, Dentsply (Grupo 3, PAAMA 2, (Grupo 4 foram usados com a resina composta Glacier (SDI. Um grupo sem a utilização de qualquer sistema adesivo serviu como controle (Grupo 5. Cinqüenta espécimes foram divididos em cinco grupos com dez espécimes cada. Uma matriz de aço inoxidável com 6,0 mm de diâmetro e 1,0 mm de profundidade foi usada para se obterem dois discos de resina composta. A resina composta foi inserida em uma metade da matriz em pequenas porções e fotopolimerizada por 40 segundos. Os adesivos foram então aplicados na superfície dos discos de resina, seguindo a instrução dos fabricantes. A segunda parte da matriz foi colocada em posição e preenchida com a resina composta. Após uma hora, a matriz foi adaptada em um dispositivo especial na máquina de ensaios Kratos para determinar a resistência de união, a uma velocidade de 0,05 mm/min. Os resultados, expressos em kgf, foram: Grupo 1 (3,99 ± 1,47, Grupo 2 (4,24 ± 2,00, Grupo 3 (3,84 ± 0,88, Grupo 4 (4,33 ± 1,23 e Grupo 5 (4,21 ± 1,38. Os resultados foram analisados pelo teste estatístico ANOVA a um critério. Não houve diferença estatisticamente significante (p The purpose of this study was to evaluate the tensile bond strength of four different adhesive systems. Scotchbond Multi-Purpose Plus, 3M (Group 1, Prime & Bond 2.0, Dentsply (Group 2, ProBOND, Dentsply (Group 3, PAAMA 2, SDI (Group 4 were used with GLACIER (SDI composite resin. One group without any adhesive was used as control (Group 5. Fifty specimens were divided into 5 groups of 10 each. A stainless steel split matrix with 6.00 mm diameter and 1.00 mm depth was used to obtain two discs of composite resin. The composite resin was applied into one half of the matrix in small portions and light cured for 40 seconds

  13. Finite element analysis of strength and adhesion of cast posts compared to glass fiber-reinforced composite resin posts in anterior teeth.

    Science.gov (United States)

    Dejak, Beata; Młotkowski, Andrzej

    2011-02-01

    Previous studies on the strength of teeth restored with posts have not resolved the controversy as to which post systems provide the greatest strength and longevity. The purpose of this study was to compare the strength of teeth restored using cast posts with those restored using glass fiber-reinforced composite resin posts and to evaluate the bond strength of the posts to dentin. The investigation was conducted by using finite element analysis, combined with the application of contact elements. Three-dimensional (3-D) models of the maxillary central incisors were generated: IT, an intact tooth; CC, a tooth with a ceramic crown; FP, a tooth restored with an FRC (glass fiber-reinforced composite resin) post; CPAu, a tooth restored with a gold alloy cast post; and CPNi, a tooth restored with an NiCr (nickel chromium alloy) cast post. Each model was subjected to vertical and oblique loads with a force of 100 N. To evaluate the strength of the restored tooth, ceramics, and composite resin, the modified von Mises failure criterion was used, the Tsai-Wu criterion for FRC, and the von Mises criterion for gold and NiCr alloy. The equivalent stresses found in the tested models were compared with the tensile strength of the respective materials. Contact stresses in the luting cement-dentin interface were calculated. The maximum mvM (modified von Mises failure criterion) stresses in the dentin of the teeth restored with FRC posts were reduced by 21%, and in those restored with cast NiCr posts, stresses were reduced by 25% when compared to the stresses in the intact tooth. The equivalent stresses in metal posts were several times higher than in FRC posts, but did not exceed the tensile strength of the materials. The highest mvM stress in the luting resin cement around the FRC post was 55% higher than in the luting resin cement around the metal post, under an oblique load. In the ceramic crown, which covered the composite resin post and core, the highest mvM stress was 30.7 MPa

  14. Nanoleakage of Class V Resin Restorations Using Two Nanofilled Adhesive Systems

    OpenAIRE

    Al-Agha, Ebaa I; Alagha, Mustafa I

    2015-01-01

    Background: This study was carried out to evaluate the nanoleakage of two types of nanofilled adhesive systems in Class V composite resin restorations. Materials and Methods: Totally 60 human premolars were randomly assigned to two groups (n = 30). Standardized round Class V cavities (enamel and dentin margins) were prepared. A total-etch (N-Bond total etch) (Ivoclar Vivadent) and self-etching (N-Bond self-etch) (Ivoclar Vivadent) adhesive system were evaluated. The cavities were restored inc...

  15. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  16. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  17. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    NARCIS (Netherlands)

    Samimi, P.; Hasankhani, A.; Matinlinna, J.P.; Mirmohammadi, H.

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided

  18. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  19. The measurement of polymerization shrinkage of composite resins with ESPI

    Science.gov (United States)

    Zhang, Zhang; Yang, Guo Biao

    2008-09-01

    In the current study, we used the method of electronic speckle pattern interferometry (ESPI) to measure polymerization shrinkage of composite resins. Standardized cavities were prepared and placed into the ESPI apparatus before the cavities were filled with composites (n=2) .The ESPI apparatus was constructed to measure the out-of-plane displacement of the resins surface during the polymerization. Experiments demonstrated that the ESPI technique was a viable method to measure the deformation of composite resins. It was responsive and sensitive to dimensional changes. We found that cavity shape, size and C- factor influenced the date of resins shrinkage. And the tooth deformation in response to polymerization of resins was measured by the ESPI too. We concluded that ESPI was a feasible method for assessing resins deformation induced by its polymerization shrinkage when it was bonded in tooth cavities. And the results were greatly influenced by the dimensions of cavities , or interface adhesive and so on. It could also measure the tooth deformation induced by shrinkage of bonded composite resins. We found that resins polymerization shrinkage date may overestimate shrinkage-induced tooth deformation.

  20. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces.

    Science.gov (United States)

    Liu, Tianshuang; Xu, Changqi; Hong, Liang; Garcia-Godoy, Franklin; Hottel, Timothy; Babu, Jegdish; Yu, Qingsong

    2017-12-01

    Candida-associated denture stomatitis is the most common oral mucosal lesion among denture wearers. Trimethylsilane (TMS) plasma coating may inhibit the growth of Candida albicans on denture surfaces. The purpose of this in vitro study was to investigate whether TMS plasma coatings can effectively reduce C albicans adhesion on denture base acrylic resin surfaces. Sixty denture base acrylic resin disks with smooth and rough surfaces were prepared and were either left untreated (control group) or coated with TMS monomer (experimental group) by using plasma. Contact angles were measured immediately after TMS plasma coating. The morphology of C albicans adhesion was observed with scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) was used to characterize the elemental composition of the specimen surface. An adhesion test was performed by incubating the resin disk specimens in C albicans suspensions (1×10 7 cells/mL) at 37°C for 24 hours and further measuring the optical density of the C albicans by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay test. One-way ANOVA and 2-way ANOVA were followed by a post hoc test analysis (α=.05). The group with TMS coating exhibited a more hydrophobic surface than the control group. EDS analysis revealed successful TMS plasma coating. The difference in the mean contact angles between the uncoated group and the TMS-coated group was statistically significant (Pcoating than on the surfaces of the experimental group. In the adhesion test, the amount of C albicans adhering to the surface of denture base resin with the TMS coating was significantly less than that on the surfaces without TMS coating (Pcoating significantly reduced the adhesion of C albicans to the denture base resin and may reduce denture stomatitis. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  2. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    Science.gov (United States)

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  3. Ultramorphological assessment of dentin-resin interface after use of simplified adhesives.

    Science.gov (United States)

    Marghalani, H Y; Bakhsh, T; Sadr, A; Tagami, J

    2015-01-01

    This study assessed dentin-resin interface integration in Class I cavities restored with simplified adhesives by using a focused ion-beam milling (FIB) and transmission electron microscope (TEM). Class I cavities (1.5-mm depth with dentin thickness of ∼0.5 mm, 4-mm length, and 2-mm width) were prepared on freshly extracted, sound human molars. Two all-in-one adhesive systems (Scotchbond/Single Bond Universal [SUD] and Xeno-V(+) [X5D]) were used and compared with a two-step etch-and-rinse system (Prime&Bond NT [NTD]). The adhesives were applied according to the manufacturers' guidelines. A universal resin composite (Filtek Z350 XT Universal) was used to restore the cavities in one bulk filling and was irradiated at 550 mW/cm(2) for 40 seconds by a quartz-tungsten-halogen light (Optilux 501). After exposure to liquid nitrogen coolant, the specimens were milled to nanoscale thickness by FIB to view and then assess the area of dentin-resin interface by TEM. Unlike the unfilled X5D, a noticeably smooth transition zone at the dentin-resin interface was shown for the SUD and NTD adhesives. The SUD demonstrated an uneven hybrid layer with clearly demineralized collagen bundles. Ultramorphologically, dispersed needlelike apatite crystals were detected within the partially demineralized dentin or the hybrid layer of both compositionally different all-in-one simplified adhesives. Conversely, these crystals were entirely absent from the hybrid layer of the etch-and-rinse NTD adhesive. In the X5D group, a bright band was noted beneath the hybrid layer. The methacryloxydecyl dihydrogen phosphate monomer containing ultramild self-etch adhesive (SUD) was still validated in terms of its capability in dentin adhesion.

  4. Effect of surface modification of fiber post using dopamine polymerization on interfacial adhesion with core resin

    Science.gov (United States)

    Li, Yan; Chen, Qian; Yi, Mi; Zhou, Xuegang; Wang, Xinzhi; Cai, Qing; Yang, Xiaoping

    2013-06-01

    The purpose of this study is to evaluate the effects of surface modification of fiber posts using dopamine polymerization on their interfacial adhesion with core resins. The fiber posts were surface-coated with polydopamine via the oxidization polymerization of dopamine in aqueous solution. Two commercial composite resins (3M ESPE and paracore) were used to build up the cores around the post heads (modified and unmodified). Pull-out tests were conducted, and the maximum failure load (N) and the failure modes were recorded to compare the interfacial adhesion between fiber post and resin core. The results demonstrated that the tensile forces needed to damage the retention of fiber post increased from 228.6 ± 10.9 N to 276.3 ± 14.7 N in the 3M ESPE group, from 216.5 ± 17.4 N to 277.2 ± 14.3 N in the paracore group, when polydopamine-coated fiber posts were applied. No significant difference had been found between the different resin groups. The observation of the surface morphology of both fiber posts and cores after adhesive failure clearly confirmed that the presence of polydopamine interlayer had acted as a binder to bond fiber post and resin together. This study would be valuable for endodontically treatments to reduce the chances of detachment of resin core from the fiber post or dislodgement of fiber posts from the canal.

  5. Resistência de união à dentina de resinas compostas associadas a sistemas adesivos com e sem carga Bond strength of resin composites to dentin associated to filled and unfilled adhesive systems

    Directory of Open Access Journals (Sweden)

    Jandyra A. YOUSSEF

    2001-06-01

    Full Text Available Este trabalho analisou in vitro duas marcas de adesivos de quarta geração do sistema simplificado (Optisolo - Kerr, com carga, e Single Bond - 3M, sem carga e duas marcas de resinas compostas (Prodigy - Kerr e Z100 - 3M, com o objetivo de verificação da adesividade na dentina. Oitenta corpos-de-prova, confeccionados a partir de molares humanos extraídos, foram incluídos em resina acrílica e desgastados até exposição de dentina no sentido longitudinal, e divididos em 4 grupos. Cones de resina composta foram aderidos a estes corpos-de-prova precedidos dos sistemas adesivos, seguindo a orientação dos fabricantes. Os corpos-de-prova foram submetidos a teste de tração numa máquina de ensaios Universal Mini-Instron 4442, a uma velocidade de 0,5 mm/min. Os resultados obtidos foram transformados em MPa de acordo com a área de adesão e submetidos a análise estatística pela ANOVA. Pelos resultados obtidos, concluiu-se que houve diferença estatisticamente significante (p 0,05.This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo - Kerr, filled; and Single Bond - 3M, unfilled and two composite resins (Prodigy - Kerr and Z100 - 3M, aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p 0.05 between the composites (F = 0.43.

  6. Dentin Bonding Durability of Two-step Self-etch Adhesives with Improved of Degree of Conversion of Adhesive Resins.

    Science.gov (United States)

    Sato, Kento; Hosaka, Keiichi; Takahashi, Masahiro; Ikeda, Masaomi; Tian, Fucong; Komada, Wataru; Nakajima, Masatoshi; Foxton, Richard; Nishitani, Yoshihiro; Pashley, David H; Tagami, Junji

    To evaluate (1) the initial and long-term microtensile bond strengths of two-step self-etch adhesives with different degrees of conversion (DC); (2) the elastic modulus of the respective adhesive resins; (3) the water sorption of the respective adhesive resins. Two two-step self-etch adhesives, Clearfil SE Bond (CSE) and Clearfil SE Bond 2 (CSE2) were used in this study. The DC was determined using ATR/FT-IR with a time-based spectrum analysis. Midcoronal flat dentin surfaces of 24 human molars were prepared with 600-grit SiC paper for microtensile bond strength (µTBS) testing. CSE and CSE2 were applied to the dentin surfaces according to the manufacturer's instructions, followed by composite buildups. The µTBS was measured after water storage for 24 h, 6 months, and 1 year. The elastic modulus (before and after 1 month of water immersion) was determined by the three-point flexural bending test and water sorption values by the water sorption test. CSE2 showed significantly higher DC than CSE. The µTBS of CSE2 was significantly higher than that of CSE in all water storage periods. One-year water storage decreased the µTBS of CSE; however, it did not decrease that of CSE2. Regarding the polymerized adhesive resins, the elastic modulus of CSE2 was significantly higher than that of CSE before and after water immersion (p self-etch adhesives resists water aging and improves the initial bond strengths and durability of the resin-dentin bond.

  7. Effectiveness of coating acrylic resin dentures on preventing Candida adhesion.

    Science.gov (United States)

    Ali, Aiman A; Alharbi, Fahad A; Suresh, C S

    2013-08-01

    The aim of this study was to prevent the adhesion of C. albicans on acrylic resin dentures by modifying their surfaces. Ninety acrylic resin plates were divided into three groups. Group I: conventionally processed acrylic resin plates. Group II: plates painted with 2-Octyl Cyanoacrylate adhesive. Group III: plates painted with Adper Single Bond Adhesive. All specimens were immersed separately in containers filled with artificial saliva that contained C. albicans and then incubated for 11 days at 37°C. Three methods of evaluation were used to count the adhered Candida: direct culture, slide count, and serial dilutions. C. albicans in 1/10, 1/10², and 1/10³ dilutions showed overgrowth in group I, while overgrowth was noted only with 1/10 dilution in group III. For group III, mean colony numbers of 123, 22, 3.4, and 0 were found for the 1/10², 1/10³, 1/10⁴, and 1/10⁵ dilutions, respectively. Regarding the slide counts, group I showed a mean fungal count of 166 compared to 40 for group III with 1/10 dilution, 21 compared to 9 with 1/10³ dilution, 8.6 compared to 0.7 with 1/10³ dilution, and 1.2 compared to 0 with 1/10⁴ dilution. No plates in group II showed any candidal colonies regardless of the method of evaluation (0%). These differences were statistically significant (p acrylic resin dentures with Adper Single Bond Adhesive was effective in reducing C. albicans adhesion to dentures, while coating with 2-Octyl Cyanoacrylate adhesive completely inhibited such adhesion. © 2013 by the American College of Prosthodontists.

  8. Nanoleakage of Class V Resin Restorations Using Two Nanofilled Adhesive Systems

    Science.gov (United States)

    Al-Agha, Ebaa I; Alagha, Mustafa I

    2015-01-01

    Background: This study was carried out to evaluate the nanoleakage of two types of nanofilled adhesive systems in Class V composite resin restorations. Materials and Methods: Totally 60 human premolars were randomly assigned to two groups (n = 30). Standardized round Class V cavities (enamel and dentin margins) were prepared. A total-etch (N-Bond total etch) (Ivoclar Vivadent) and self-etching (N-Bond self-etch) (Ivoclar Vivadent) adhesive system were evaluated. The cavities were restored incrementally with nanohybird composite resin (Tetric N-Ceram). The teeth were sectioned into a series of 1 mm thick beams then they were immersed in the prepared ammoniacal silver nitrate tracer solution for 24 h in a black photo-film container to ensure total darkness. The beams were then rinsed with distilled water, and immersed in photo-developing solution for eight hours then they were subjected to the nanoleakage evaluation. The specimens were analyzed in the environmental scanning electron operated with backscattered electron mode at ×1000 magnification. Results: Self-etch adhesive recorded higher nanoleakage % mean value than the total-etch adhesive. The difference in nanoleakage % mean values between total and self-etch adhesive was statistically significant. Conclusion: The self-etch adhesive had statistically significant higher nanoleakage mean values than the total-etch adhesive. PMID:26229363

  9. Evaluation of resin adhesion to zirconia ceramic using some organosilanes

    NARCIS (Netherlands)

    Matinlinna, Jukka P.; Heikkinen, Mo; Ozcan, Mutlu; Lassila, Lippo V. J.; Vallittu, Pekka K.

    Objectives. This study evaluated and compared the effect of three trialkoxysilane coupling agents on the bond strength of a Bis-GMA-based unfilled resin and a dimethacrylate-based resin composite luting cement to a zirconia ceramics (Procera(R) AllZircon, Nobel Biocare, Goteborg, Sweden). Methods.

  10. Resina fluida autoadhesiva utilizada como sellante de fosas y fisuras: Estudio de microinfiltración Self-adhesive flowable composite-resin as a fissure sealant: A microleakage study

    Directory of Open Access Journals (Sweden)

    D De Nordenflycht

    2013-04-01

    Full Text Available Objetivo: Evaluar la capacidad de sellado de una resina fluida autoadhesiva (Fusio Liquid Dentin, Pentron Clinical utilizada como sellante de fosas y fisuras con distintos acondicionamientos de la superficie de esmalte. Materiales y Métodos: Se seleccionaron 140 terceros molares recientemente extraídos, los que fueron distribuidos aleatoriamente en cuatro grupos (n=35 y recibieron una técnica de acondicionamiento del esmalte y aplicación de un sellante. Se establecieron los siguientes grupos: Grupo 1, grabado ácido y aplicación de sellante (Clinpro, 3M ESPE; Grupo 2, grabado ácido y aplicación de resina autoadhesiva (Fusio Liquid Dentin, Pentron Clinical; Grupo 3, aplicación de resina autoadhesiva; Grupo 4, microarenado del esmalte y aplicación de resina autoadhesiva. Los dientes sellados fueron termociclados (500 ciclos, 5-55°C, y posteriormente sumergidos en solución de nitrato de plata amoniacal por 24 h (pH=14 y luego en revelador radiográfico (GBX, Kodak por 8h. Posteriormente, los dientes fueron cortados para obtener 2 láminas por diente que fueron observadas bajo magnificación (4x y analizadas digitalmente para evaluar la microinfiltración y la penetración en la fisura. Los resultados fueron analizados estadísticamente (ANOVA, Dunnett, pAim: To evaluate the sealing ability of a self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical with different conditioning treatments of the enamel surface used as a fissure sealant. Materials and Method: 140 recently extracted human third molars were selected and randomly divided into four groups (n=35. Each group received an enamel conditioning treatment and a sealant application. The following groups were established: Group 1, acid etching and sealant application (Clinpro, 3M ESPE; Group 2, acid etching and self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical; Group 3, self-adhesive flowable composite-resin; Group 4, sandblasting and

  11. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  12. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  13. The effect of fiber placement or flowable resin lining on microleakage in Class II adhesive restorations.

    Science.gov (United States)

    Belli, Sema; Orucoglu, Hasan; Yildirim, Cihan; Eskitascioglu, Gürcan

    2007-04-01

    The aim of this in vitro study was to evaluate the effect of two fibers (polyethylene or glass) and a flowable resin liner on microleakage in Class II adhesive restorations. Class II adhesive cavities were prepared on mesial and distal surfaces of 40 extracted sound human molars. The cavity margins were below or above the CEJ. The teeth were randomly divided into four groups according to the restoration technique: group 1: restored with a resin composite (AP-X, Kuraray) in bulk after SE Bond (Kuraray) treatment; group 2: flowable resin liner (Protect Liner F, Kuraray) was used before composite restoration; in group 3, a polyethylene fiber (Ribbond) and in group 4, a glass fiber (everStick NET, StickTech) was placed into the bed of flowable resin before composite restoration. Samples were finished, stored in distilled water for 7 days at room temperature, and then thermocycled for 300 cycles between 5 degrees C and 55 degrees C. After sealing the apices, the teeth were varnished within 1 mm of the margins and placed in 0.5% basic fuchsin dye for 24 h at 37 degrees C. After rinsing, the teeth were sectioned longitudinally through the restorations and microleakage was evaluated with a stereomicroscope. Marginal penetration was scored on a 0 to 4 scale, and the data were statistically analyzed using Kruskal-Wallis and the Mann-Whitney U-test. Flowable resin, everStick NET, and Ribbond THM used in combination with flowable resin significantly reduced leakage at occlusal margins in cavities with enamel margins (p 0.05). Use of flowable composite alone or in combination with polyethylene or glass fibers reduces occlusal leakage in Class II adhesive cavities with enamel margins.

  14. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment

    International Nuclear Information System (INIS)

    Carvalho, Wendell Lima de

    2003-01-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm 2 , Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm 2 ) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than others

  15. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    Science.gov (United States)

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment.

  16. Aspects of adhesion tests on resin-glass ceramic bonding.

    Science.gov (United States)

    Wong, Andrew Chi Ho; Tian, Tian; Tsoi, James Kit Hon; Burrow, Michael Francis; Matinlinna, Jukka Pekka

    2017-09-01

    This study aimed to compare and contrast two resin-ceramic bond strength tests, the tensile bond strength and the four-point bending tests. The effects of hydrofluoric acid (HF) etching time and storage condition on bond strength were also studied. Ceramic beams (N=480) with the dimensions of 2.00×2.00×12.45mm 3 were sectioned from lithium disilicate ceramic ingots (IPS e.max CAD), then polished and fired for final crystallization. The joint surfaces were etched with HF gel (IPS Ceramic etching gel) for 20s, 40s, or 60s of each group (n=160). Then, a silane coupling agent (Vitasil ® ) was applied in a single application on the HF etched surfaces, left for 60s before air-drying. Two beams were bonded together with resin composite cement (Variolink II ® ) in a tailored-mold (2.00×2.00×25.00mm 3 ) to control cement thickness to 0.10mm and then light cured on both sides. The bonded specimens were further divided into two groups (n=40): (1) tested one day after luting (dry); and (2) tested after storage in 37°C distilled water for 4 weeks. Two mechanical tests were used (n=20): the tensile bond strength and four-point bending tests. Bond strength results were subjected to two-way AoV, and Weibull statistics with α=0.05. Fracture surfaces were examined visually and verified using light microscopy. The four-point bending test showed a higher consistency than the tensile bond strength test using Weibull statistics (p0.05) and the influence of the storage time was marginally significant (p<0.05). More than 75% of specimens failed adhesively in the four-point bend test while a mixture of adhesive, cohesive and mixed failures was observed in the tensile bond test. The four-point bending test might be a better approach to evaluate bond strengths. Increased HF etching time and a longer storage period resulted in a decrease in the flexural bond strength. However, both HF etching time and storage time had no significant effect on the tensile bond strengths. Copyright

  17. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  18. Class II composite resin restorations: faster, easier, predictable.

    Science.gov (United States)

    Jackson, R D

    2016-11-18

    Composite resin continues to displace amalgam as the preferred direct restorative material in developed countries. Even though composite materials have evolved to include nanoparticles with high physical properties and low shrinkage stress, dentists have been challenged to efficiently create quality, long lasting, predictable restorations. Unlike amalgam, composite resin cannot be condensed making the establishment of a predictable, proper contact more difficult. In addition, composite requires an understanding of adhesives and an appreciation for their exacting application. These facts combined with the precise adaptation and light-curing of multiple layers makes placement of quality Class II composite restorations tedious and time-consuming. For private practicing dentists, it can also have an effect on economic productivity. Clinicians have always wanted an easier, efficient placement technique for posterior composite restorations that rivals that for amalgam. It appears that advances in instrumentation, materials and technology have finally delivered it.

  19. Bonding of glass ceramic and indirect composite to non-aged and aged resin composite.

    Science.gov (United States)

    Gresnigt, Marco; Özcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-02-01

    Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged resin composite to an indirect resin composite and pressed glass ceramic using two resin cements. Disk-shaped specimens (diameter: 3.5, thickness: 3 mm) (N = 160) produced from a microhybrid resin composite (Quadrant Anterior Shine) were randomly divided into eight groups. While half of the specimens were kept dry at 37°C for 24 h, the other half was aged by means of thermocycling (6000 times, 5°C to 55°C). The non-aged and aged resin composites were bonded to a highly filled indirect composite (Estenia) and a pressed glass ceramic (IPS Empress II) using either a photopolymerizing (Variolink Veneer) or a dual-polymerizing (Panavia F2.0) resin cement. While cementation surfaces of both the direct and indirect composite materials were silica coated (30 µm SiO2, CoJet-Sand) and silanized (ESPE-Sil), ceramic surfaces were conditioned with hydrofluoric acid (20 s), neutralized, and silanized prior to cementation. All specimens were cemented under a load of 750 g. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). Failure types of the specimens were identified after debonding. Significant effects of aging (p ceramic in combination with both cements showed no significant difference (p > 0.05). Both indirect composite (24.3 ± 5.1 MPa) and glass ceramic in combination with Variolink (22 ± 9 MPa) showed the highest results on non-aged composites, but were not significantly different from one another (p > 0.05). On the aged composites, indirect composite and glass ceramic showed no significant difference in bond strength within each material group (p > 0.05), with both Panavia (17.2 ± 6 and 15 ± 5.5 MPa, respectively) and Variolink (19 ± 8

  20. Does Adhesive Resin Application Contribute to Resin Bond Durability on Etched and Silanized Feldspathic Ceramic?

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Valandro, Luiz Felipe; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco Antonio; Kimpara, Estevao Tomomitsu

    2008-01-01

    Purpose: To assess the effect of adhesive application and aging on the bond durability of resin cement to etched and silanized feldspathic ceramic. Materials and Methods: Twenty blocks (6.4 x 6.4 x 4.8 mm) of feldspathic ceramic (Vita VM7) were produced. The ceramic surfaces were conditioned with

  1. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    This study determined whether the strength with which resin composite bonds to dentin is influenced by variations in the curing rate of resin composites. Resin composites were bonded to the dentin of extracted human molars. Adhesive (AdheSE, Ivoclar Vivadent) was applied and cured (10 seconds...... @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode...... of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent...

  2. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  3. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  4. Microshear bond strength between restorative composites and resin cements

    OpenAIRE

    Rubens Nazareno GARCIA; Mário Fernando de GÓES; Marcelo GIANNINI

    2008-01-01

    Introduction and objective: The techniques of adhesive cementationhave been widely used in dental restoration. The purpose of this studywas to evaluate the microshear bond strength between restorativecomposites and resin cements. Material and methods: Twenty composites blocks were prepared in order to obtain a flat surface, using 600-grid sandpaper. The samples were randomly divided in four groups(n=15) according to the experimental groups: [1] Z250 block + Single Bond + cylinder of RelyX ARC...

  5. Tensile bond srength between composite resin using different adhesive systems Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2002-11-01

    Full Text Available The aim of this study was evaluate the tensile bond strength (TBS among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1, Etch & Prime 3.0 /Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/ Copalite-Cooley & Cooley (G7, Prime & Bond NT/Dentsply (G8, Scotchbond Multi Purpose Plus/3M (G9. The control group (G10 was made only with the composite resin (Z100/3M. One hundred specimens were made, 10 for each group. There were significant differences on TBS among groups. G3 showed the hightest TBS in comparison to other tested groups. G10 presented higher TBS than all groups. O objetivo desta pesquisa foi investigar in vitro a resistência de união entre uma resina composta e nove sistemas adesivos dentinários. Os adesivos estudados foram assim agrupados: Single Bond/3M (G1, Etch & Prime 3.0/ Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/Copalite (G7, Prime & Bond NT/Dentsply (G 8, Scotchbond Multi Purpose Plus/3M (G9. O Grupo controle (G10. foi confeccionado somente com a resina composta (Z100/3M. Foram confeccionados 100 espécimes, 10 para cada grupo. Houve diferenças estatísticas significantes entre os grupos. O grupo 3 foi o que mostrou a mais alta resistência em comparação aos nove testados. O grupo controle (G10 apresentou a mais alta resistência entre todos os Grupos.  

  6. Fracture of composite-adhesive-composite systems

    Science.gov (United States)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  7. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  8. Resin selection criteria for tough composite structures

    Science.gov (United States)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  9. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  10. A comparison of fatigue crack growth in resin composite, dentin and the interface.

    Science.gov (United States)

    Soappman, Matthew J; Nazari, Ahmad; Porter, Judith A; Arola, D

    2007-05-01

    The objective of this in vitro study was to evaluate the fatigue crack growth properties of the dentin/resin adhesive interface. Compact tension (CT) specimens were prepared from coronal dentin, resin composite, and dentin bonded to resin composite using Optibond Solo Plus adhesive. All specimens were then subjected to cyclic Mode I loading while fully hydrated at a stress ratio of R=0.1 and frequency of 5 Hz. Steady state fatigue crack growth was modeled using the Paris Law in terms of the exponent (m) and coefficient (C). The average fatigue crack growth rates in the resin composite ranged from 1.6E-06 to 3.8E-05 mm/cycle with growth occurring over a stress intensity range from 0.40 to 0.77 MPa m(1/2); the average growth exponent was 6.9+/-3.1. Average fatigue crack growth rates for the dentin/resin interface specimens ranged from 5.5E-07 to 6.4E-03 mm/cycle with growth occurring over a stress intensity range from 0.37 to 0.64 MPa m(1/2). The Paris Law exponent for these specimens ranged from 16resin and at the adhesive-dentin interface. In addition, many of the dentin/resin specimens underwent unstable fracture at a comparatively low stress intensity range without undergoing cyclic crack growth. The dentin/resin adhesive interface proved to be significantly more sensitive to fatigue crack growth than either dentin or resin composite. Variation in the cyclic crack growth responses of the dentin/resin interface specimens suggests that the interface, and particularly the adhesive resin, exhibits lower resistance to crack initiation and growth in comparison to dentin.

  11. Three-year prospective clinical performance of a one-step self-etch adhesive and a nanofiller hybrid resin composite in Class V lesions.

    Science.gov (United States)

    Preussker, Susann; Pöschmann, Maria; Kensche, Anna; Natusch, Isolde; Koch, Rainer; Klimm, Wolfgang; Hannig, Christian

    2014-04-01

    This 3-year prospective clinical study evaluated the clinical performance of a one-step self-etching adhesive (Futurabond NR) in combination with a nanohybrid composite (Grandio) for the treatment of different Class V cavities. 122 restorations were placed in 42 patients (mean age of 54 +/- 13.2 years) evaluated according to modified Ryge-criteria at baseline, 6 months, 1, 2 and 3 years. The lesions comprised 91 Class V non-caries cervical lesions (NCCL) and 31 Class V cavities due to caries or restoration replacement. While carious lesions as well as restoration replacement required preparation of dentin, it was not roughened in case of NCCL. Macro-mechanical retention with undercuts was not used. The statistical analysis was carried out based on Bonferroni adjusted McNemar test (global alpha = 0.05) including the criteria marginal adaptation, color match, surface texture, anatomical form, retention and clinical acceptance and pain. The occurrence of secondary caries, preoperative and postoperative sensitivity was also examined. After 3 years of clinical service the restorations showed a significant deterioration of all studied parameters. After 3 years, 65% of the restorations were rated as excellent or acceptable in terms of clinical acceptance, 9% appeared tolerable and 26% were rated as not acceptable which mainly resulted from restoration losses. Within the observed timeframe the retention rate decreased to 75%, which means that 30 out of the 122 restorations were partially or completely lost. There was a difference in the 3-year retention rate of NCCL (71%) and the caries/restoration replacement group (87%) but it was not statistically significant.

  12. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Coulon, J.F.; Tournerie, N.; Maillard, H.

    2013-01-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m 2 to 70 mJ/m 2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  13. UV-cured adhesives for carbon fiber composite applications

    Science.gov (United States)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  14. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  15. [Research on bond durability among different core materials and zirconia ceramic cemented by self-adhesive resin cements].

    Science.gov (United States)

    Xinyu, Luo; Xiangfeng, Meng

    2017-02-01

    This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P0.05); observed shear bond strength was significantly higher than those of other substrates (Presin core material, and packable composite resin than that of RelyX U100 (P0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. 
.

  16. Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro.

    Science.gov (United States)

    Frankenberger, Roland; Hehn, Julia; Hajtó, Jan; Krämer, Norbert; Naumann, Michael; Koch, Andreas; Roggendorf, Matthias J

    2013-01-01

    The objective of this study was to evaluate the marginal quality and resin-resin transition of milled CAD/CAM glass-ceramic inlays in deep proximal cavities with and without 3-mm proximal box elevation (PBE) using resin composites before and after thermomechanical loading. MOD cavities with one proximal box beneath the cementoenamel junction were prepared in 48 extracted human third molars. Proximal boxes ending in dentin were elevated for 3 mm with different resin composites (RelyX Unicem, G-Cem, and Maxcem Elite as self-adhesive resin cements and Clearfil Majesty Posterior as restorative resin composite in one or three layers bonded with AdheSE) or left untreated. IPS Empress CAD inlays were luted with Syntac and Variolink II (n = 8). Marginal quality as well as the PBE-ceramic interface were analyzed under an SEM using epoxy resin replicas before and after thermomechanical loading (100,000 × 50 N and 2,500 thermocycles between +5°C and +55°C). Bonding glass-ceramic directly to dentin showed the highest amounts of gap-free margins in dentin (92%, p resin composite applied in three layers achieved 84% gap-free margins in dentin; PBE with self-adhesive resin cements exhibited significantly more gaps in dentin (p resin composite, PBE may be an alternative to ceramic bonding to dentin. Self-adhesive resin cements seem not suitable for this indication. For deep proximal boxes ending in dentin, a PBE may be an alternative to conventional techniques.

  17. Microshear bond strength of a flowable resin to enamel according to the different adhesive systems

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2011-01-01

    Full Text Available Objectives The purpose of this study was to compare the microshear bond strength (uSBS of two total-etch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10 by adhesives used; OS group (One-Step Plus, SB group (Single Bond, CE group (Clearfil SE Bond, TY group (Tyrian SPE/One-Step Plus, AP group (Adper Prompt L-Pop and GB group (G-Bond. After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350 was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05. 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05. 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions Although adhesives using the same step were applied the enamel sur

  18. Microtensile bond strength of indirect resin composite to resin-coated dentin: interaction between diamond bur roughness and coating material.

    Science.gov (United States)

    Kameyama, Atsushi; Oishi, Takumi; Sugawara, Toyotarou; Hirai, Yoshito

    2009-02-01

    This aim of this study was to determine the effect of type of bur and resin-coating material on microtensile bond strength (microTBS) of indirect composite to dentin. Dentin surfaces were first ground with two types of diamond bur and resin-coated using UniFil Bond (UB) or Adper Single Bond (SB), and then bonded to a resin composite disc for indirect restoration with adhesive resin cement. After storage for 24 hr in distilled water at 37 degrees C, microTBS was measured (crosshead speed 1 mm/min). When UB was applied to dentin prepared using the regular-grit diamond bur, microTBS was significantly lower than that in dentin prepared using the superfine-grit bur. In contrast, no significant difference was found between regular-grit and superfine-grit bur with SB. However, more than half of the superfine-grit specimens failed before microTBS testing. These results indicate that selection of bur type is important in improving the bond strength of adhesive resin cement between indirect resin composite and resin-coated dentin.

  19. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  20. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    Science.gov (United States)

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  1. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin... composed of an adhesive compound, such as polymethylmethacrylate, intended to cement an orthodontic bracket...

  2. Temperature rise during polymerization of different cavity liners and composite resins.

    Science.gov (United States)

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers' instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing.

  3. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  4. Effects of some chemical surface modifications on resin zirconia adhesion.

    Science.gov (United States)

    Liu, Dan; Tsoi, James Kit-Hon; Matinlinna, Jukka Pekka; Wong, Hai Ming

    2015-06-01

    To evaluate the effects of various chemical surface modifications on adhesion between zirconia and resin adhesive. Pre-sintered zirconia discs were sectioned from commercial cylindrical blocks and polished with abrasive papers under running tap water. All the discs were randomly divided into five study groups according to the methods of surface treatment, including: the control group (fully sintered, without any modification), group S (fully sintered and sandblasted with silica coated alumina particles), group HN (fully sintered and etched with a blend of mineral acid solution at 100 °C for 25 min), group HF (fully sintered and etched with 48% hydrofluoric acid solution at 100 °C for 25 min), and group Si (coated with silica particles and then fully sintered). The mean value of surface roughness was evaluated before further treatment. Resin stubs (3.6mm in diameter and 3mm in height) were adhered and light cured on each zirconia disc after the application of a silane coupling agent. In each group, all the samples were further divided into three subgroups with each n=12, one for the measurement of initial adhesion strength (shear bond) value and the other two were tested after thermal cycling for 10,000 and 20,000 cycles, respectively. The results were analyzed with two-way ANOVA and Turkey HSD (pzirconia surface crystallinity. The morphological appearance of zirconia surface after surface treatment was observed with SEM. The control group showed the lowest initial shear bond strength (SBS) value (16.8 ± 2.4 MPa) and did not survive the aging treatments. All the investigated surface treatments improved resin zirconia bond strength significantly, the group S displaying the highest initial value of 25.1 ± 2.7 MPa. However, the highest resistance to the aging effects of thermal cycling was found in group Si. It was further shown in the XRD examination that only the grit-blasting caused the crystalline transformation from tetragonal phase to monoclinic phase (T

  5. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (p<0.05). Higher CR was observed in adhesives with higher concentration of CHX (p<0.05). After 1Y, significant reductions of μTBS and increases of NL were observed in the control groups (p<0.05). Reductions of μTBS and increase of NL over time were not observed (AM) for CHX-containing adhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  6. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P resin cements exhibited better shear bond strength than the self-adhesive resin cements, except for Panavia cement in the IPS e.max Press group. However, shear bond strengths of the self-adhesive resin cements were dependent on the nature of the ceramic core materials.

  7. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  8. In vitro wear gap formation of self-adhesive resin cements: a CLSM evaluation.

    Science.gov (United States)

    Belli, Renan; Pelka, Matthias; Petschelt, Anselm; Lohbauer, Ulrich

    2009-12-01

    To evaluate the depth of wear gaps of new self-adhesive cements after toothbrush abrasion and ACTA wear test. Luting spaces (325+/-25 microm width, 2mm depth) were produced in Empress 2 ceramic blocks with a diamond saw to obtain flat substrate segments for toothbrush abrasion (n=24) and ACTA wear (n=27). After etching and silanization, the slits were filled with 8 self-adhesive cements, 2 conventional resin cements and 1 flowable composite, stored for 2 weeks in distilled water at 37 degrees C and planished to the cement level. Toothbrush abrasion was carried out in a toothbrush simulator (Willytec, Germany) for 20,000 cycles (load 1N) using an abrasive slurry based on a commercial toothpaste (Elmex, Gaba, Germany, RDA=77). The ACTA wear experiment was performed following the ACTA protocol in millet seed slurry for 400,000 cycles (Willytec). The gap replicas were measured for vertical wear loss under a confocal laser scanning microscope (CLSM). The data were analyzed using one-way ANOVA and a mod-LSD test at pGrandio Flow. Grandio Flow and AllCem showed to be the most resistant to the ACTA wear test, while SpeedCem the least resistant. No correlation was found between the two wear test experiments. Self-adhesive cements have good wear resistance to toothbrush abrasion but most of them wear more rapidly under higher loads in the ACTA test than conventional resin cements and flowable composites.

  9. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Directory of Open Access Journals (Sweden)

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  10. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    Science.gov (United States)

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  11. In vitro evaluation of the bond strength of composite resin foundation materials to dentin.

    Science.gov (United States)

    Al-Ansari, Asim; Al-Harbi, Fahad; Baba, Nadim Z

    2015-10-01

    Achieving adequate bonding of composite resin foundation materials to dentin can be a challenge. Bonding can be affected by the type of bonding material and method used. The purpose of this in vitro study was to test the bond strengths of selected dual-polymerizing composite resin foundation materials to dentin using light, chemical, or dual-polymerized adhesive systems. Eighty freshly extracted human third molars were sectioned vertically into mesial and distal halves and embedded in acrylic resin using a copper cylinder. Specimens were divided into 16 groups. Each group received a resin foundation that was bonded to dentin according to each manufacturer's instructions. All tested foundations were dual polymerized except Tetric Ceram, which was light polymerized. BisCore, Build-it, CompCore, CoreRestore, and FluoroCore resin foundation materials were bonded to dentin with the use of the corresponding adhesives in 3 different bonding methods: adhesive was light polymerized; adhesive was chemically polymerized; and adhesive was dual polymerized. Each specimen was seated in a custom shear test device, and a load was applied with the descending rod of the jig from a mechanical testing machine with a perpendicular force to the dentin-adhesive interface. Statistical analysis was performed using 2-way ANOVA and post hoc pairwise comparison with Tukey test when statistically significant differences were found (α=.05). Resin foundation materials bonded to dentin with light-polymerized adhesives produced significantly higher bond strengths than when bonded with chemically or dual-polymerized adhesives. No significant difference was found between the single-component and multiple-components adhesives used with Tetric Ceram and BisCore foundations (P=.083). However, BisCore used with All-Bond 2 adhesive (multiple components) produced significantly lower bond strengths than when used with One-Step (P=.024). Adhesive failure was the most common failure location. Cohesive

  12. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  13. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  14. Enhancement of dispersion and adhesion of B4C particles in epoxy resin using direct ultrasonic excitation

    International Nuclear Information System (INIS)

    Jun, Jiheon; Kim, Jaewoo; Bae, Yeonjoo; Seo, Young Soo

    2011-01-01

    Highlights: → Enhanced adhesion and dispersion of B 4 C particles in epoxy resin was achieved. → FTIR spectrum was used for examination of B 4 C adhesion with epoxy resin. → Direct ultrasonic excitation causes enhanced surface treatment of B 4 C. → We developed an epoxy based neutron shield with higher mechanical properties. - Abstract: Enhancement of the mechanical properties of the B 4 C/epoxy composites, which is used as a neutron shield for spent nuclear fuel cask, was achieved by direct ultrasonic dispersion of the B 4 C particles in the hardener using an immersed horn, while those prepared without direct ultrasonic dispersion showed insufficient adhesion as well as some agglomerates in the epoxy resin. Degrees of agglomeration and adhesion were analyzed by means of the SEM images and the FTIR peaks belong to C-C stretching mode of the hardener ring, which was lowered and flattened by van der Waals interaction between the B 4 C particles and the hardener ring substituent. The tensile strength of the B 4 C/epoxy composites prepared by direct ultrasonic dispersion was maintained (or increased) compared to that for the neat epoxy matrix, while those prepared without ultrasonic dispersion were degraded significantly. Consequently, direct ultrasonic dispersion process developed in this investigation could achieve uniform dispersion as well as strong adhesion of the B 4 C particles in/with the epoxy matrix enhancing the material properties without any chemical treatment resulting unwanted impurities.

  15. In vitro shear bond strength of two self-adhesive resin cements to zirconia.

    Science.gov (United States)

    Qeblawi, Dana M; Campillo-Funollet, Marc; Muñoz, Carlos A

    2015-02-01

    Although the use of anatomic-contour zirconia restorations has expanded in the recent past, disagreement still exists as to reliable cementation techniques and materials. The purpose of this in vitro study was to compare the immediate and artificially aged shear bond strength of 2 commercially available self-adhesive resin cements to zirconia: one with silica coating and silanation as a zirconia surface treatment and the other contained a phosphate monomer, which eliminated the need for a separate primer. Sixty composite resin rods (2.5 mm in diameter and 3 mm in length) were fabricated from a nano-optimized composite resin by using a polypropylene mold, then light polymerized with a light-emitting diode. zirconia plates (10×10×4mm) were sectioned from an yttrium-stabilized zirconia puck, sintered, and then mounted in autopolymerizing acrylic resin custom tray material. Composite resin rods were cemented to the zirconia plates with 2 different cements. The surface treatment of zirconia followed the manufacturers' instructions for each cement. The specimens were tested for shear bond strength at 3 aging conditions: immediate, after 24 hours of moist storage, and after 30 days of moist storage with 10000 thermocycles. Specimens were loaded to failure in a universal testing machine, and the data were analyzed with 2-way ANOVA (α=.05). Weibull parameters (modulus and characteristic strength) also were calculated for each group. Two-way ANOVA revealed that only the aging condition significantly affected the bond strength to zirconia. The cement and the interaction of the cement and aging did not significantly affect the shear bond strength to zirconia. The highest bond strength for both cements was achieved at 24 hours, whereas the lowest bond strength values were recorded in the immediate groups. No significant differences in bond strength to zirconia were observed between a cement with a silane priming step and an methacryloxydecyl dihydrogen phosphate

  16. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  17. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  18. µCT-3D visualization analysis of resin composite polymerization and dye penetration test of composite adaptation.

    Science.gov (United States)

    Yoshikawa, Takako; Sadr, Alireza; Tagami, Junji

    2018-01-30

    This study evaluated the effects of the light curing methods and resin composite composition on composite polymerization contraction behavior and resin composite adaptation to the cavity wall using μCT-3D visualization analysis and dye penetration test. Cylindrical cavities were restored using Clearfil tri-S Bond ND Quick adhesive and filled with Clearfil AP-X or Clearfil Photo Bright composite. The composites were cured using the conventional or the slow-start curing method. The light-cured resin composite, which had increased contrast ratio during polymerization, improved adaptation to the cavity wall using the slow-start curing method. In the μCT-3D visualization method, the slow-start curing method reduced polymerization shrinkage volume of resin composite restoration to half of that produced by the conventional curing method in the cavity with adhesive for both composites. μCT-3D visualization method can be used to detect and analyze resin composite polymerization contraction behavior and shrinkage volume as 3D image in the cavity.

  19. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  20. Extended Resin Composite Restorations: Techniques and Procedures

    NARCIS (Netherlands)

    Loomans, B.A.C.; Hilton, T.

    2016-01-01

    This article gives an overview of the state of the art of different restorative treatment procedures and techniques needed for placing extended posterior resin composite restorations. Clinical aspects related to the procedure are discussed and reviewed based on the current literature, such as the

  1. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  2. New bismaleimide matrix resins for graphite fiber composites

    Science.gov (United States)

    Hsu, M.-T. S.; Chen, T. S.; Parker, J. A.; Heimbuch, A. H.

    1985-01-01

    Two new bismaleimide resins based on the N,N'-m-phenylene-bis(m-amino-benzamide) structure have been synthesized and characterized. The mixtures of the two resins gave better handling, processing, mechanical, and thermal properties in graphite composites than did the individual resins. The mechanical strength of the cured graphite composites prepared from the 1:1 copolymer of the two bismaleimide resins was excellent at both ambient and elevated temperatures. The physical and mechanical properties of the composites from the new bismaleimide matrix resin systems are compared with conventional composites based on epoxy and other bismaleimide systems. The copolymer system provides another method for improving bismaleimide resins.

  3. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...... with vinylester resin. It is found that the treatment increased the density of oxygen-containing polar functional groups at the composite surfaces, the polar component of the surface energy, and adhesive strength with a vinylester resin. The treatment effect highly depended on the temperatures of the electrodes...

  4. Color change of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α composite resins with the same shades was analyzed. All composite resins showed unacceptable color changes after AAA (ΔE > 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P composite resins (P composite resin group, before aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  5. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  6. Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Kim, Jae-Hoon; Han, Geum-Jun; Kim, Chang-Keun; Oh, Kyu-Hwan; Chung, Sung-No; Chun, Bae-Hyeock; Cho, Byeong-Hoon

    2016-02-01

    Non-thermal atmospheric pressure plasmas (NT-APPs) have been shown to improve the bond strength of resin composites to demineralized dentin surfaces. Based on a wet-bonding philosophy, it is believed that a rewetting procedure is necessary after treatment with NT-APP because of its air-drying effect. This study investigated the effect of 'plasma-drying' on the bond strength of an etch-and-rinse adhesive to dentin by comparison with the wet-bonding technique. Dentin surfaces of human third molars were acid-etched and divided into four groups according to the adhesion procedure: wet bonding, plasma-drying, plasma-drying/rewetting, and dry bonding. In plasma treatment groups, the demineralized dentin surfaces were treated with a plasma plume generated using a pencil-type low-power plasma torch. After the adhesion procedures, resin composite/dentin-bonded specimens were subjected to a microtensile bond-strength test. The hybrid layer formation was characterized by micro-Raman spectroscopy and scanning electron microscopy. The plasma-drying group presented significantly higher bond strength than the wet-bonding and dry-bonding groups. Micro-Raman spectral analysis indicated that plasma-drying improved the penetration and polymerization efficacy of the adhesive. Plasma-drying could be a promising method to control the moisture of demineralized dentin surfaces and improve the penetration of adhesive and the mechanical property of the adhesive/dentin interface. © 2015 Eur J Oral Sci.

  7. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.......4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4...... mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly...

  8. Durability of a low shrinkage TEGDMA/HEMA-free resin composite system in Class II restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    Objective: The objective of this randomized controlled prospective trial was to evaluate the durability of a low shrinkage and TEGDMA/HEMA-free resin composite system in posterior restorations in a 6-year follow up. Material and methods: 139 Class II restorations were placed in 67 patients...... with a mean age of 53 years (range 29-82). Each participant received at random two, as similar as possible, Class II restorations. In the first cavity of each pair the TEGDMA/HEMA-free resin composite system was placed with its 3-step etch-and-rinse adhesive (cmf-els). In the second cavity a 1-step HEMA...... for failure were fracture followed by recurrent caries. Most fractures and all caries lesions were found in high risk participants. Significance: The tested Class II resin composite restorations performed with the new TEGDMA/HEMA-free low shrinkage resin composite system showed good durability over six years....

  9. Microleakage of a self-adhesive resin cement after post cementation.

    Science.gov (United States)

    Camilotti, Veridiana; Consalter, Admilton Fritsche; Dobrovolsk, Max; Bosquirolli, Virginia; Busato, Priscila R D; Mendonça, Marcio J

    2011-01-01

    The aim of this study is to evaluate the microleakage a self-adhesive cement recently marketed Rely X U100 (3M ESPE). Thirty roots of bovine teeth with 14 mm long were restored with self-adhesive cement and Glassix fiber post DC3 (FGM). Roots were randomly divided into three groups (n=10) according to the technique of placement of the cementing agent: G1 - Centrix syringe; G2 - Lentulo drill and G3 - Manual technical. After cementation, provisional restorations were fabricated with composite resin (Opallis/FGM) without the use adhesive system. After they were finished, polished and thermo cycled by 1000 cycles, in water at temperature of 5 degrees C and 55 degrees C, 30 seconds in each bath. For microleakage test each group of roots was immersed in recipients with Rodhamine B dye solution buffered at 2%, during 24 hours. After this time, the samples were washed in tap water, sectioned and evaluation of dye leakage. The values of infiltration were obtained by the qualitative method (scoring) and statistical analysis using Kruskal-Wallis test and also by the quantitative method (Image Tool) and statistical analysis using ANOVA one way. For both tests, no significant difference between the techniques of placement of the self-adhesive cement. Based on these findings, micro-infiltration was present in all groups, and the placement technique did not influence the degree of micro-leakage, both for the qualitative analysis as to the quantitative.

  10. Retention of CAD/CAM resin composite crowns following different bonding protocols.

    Science.gov (United States)

    Nejat, Amir H; Lee, Jinwhan; Shah, Shreya; Lin, Chee Paul; Kulkarni, Prajakta; Chavali, Ramakiran; Lawson, Nathaniel C

    2018-04-01

    To evaluate the effect of different surface treatments and primers with a CAD/CAM resin composite block on its crown retention. 120 human molars were prepared with a 24° total convergence angle, 1.5 mm height, and axial walls in dentin. Surface area was measured by digital microscopy. Crowns were machined from CAD/CAM resin composite blocks. Teeth were randomly allocated to 12 groups (n= 10) based on possible combinations of three surface treatments: [Control, Alumina air abrasion (50-µm Al₂O₃ at 0.28 MPa) ]; 5% hydrofluoric acid etch (20-second scrub); silane application (with or without Kerr Silane primer); and adhesive application (with or without Optibond XTR Adhesive). Optibond XTR Adhesive was applied to the tooth preparations and crowns were bonded with MaxCem Elite cement. Crowns were fatigued for 100,000 cycles at 100 N in water and debonded in tension (1 mm/minute). Crown retention strength (maximum load/surface area) values were analyzed using a three-way ANOVA with Tukey's post-hoc tests (α= 0.05). Surface treatment, silane and adhesive applications independently affect retention force (P 0.05). Alumina airborne abrasion surface treatment, silane and adhesive applications all improve retention strength. Therefore, CAD/CAM resin composite crowns can withstand debonding while undergoing mechanical fatigue. Although all forms of surface treatment and primer application improve bond strength, the highest mean retention strength values were recorded when the crowns were alumina particle abraded and coated with adhesive (with or without silane). In order to improve the bonding of resin composite crowns, application of alumina airborne particle abrasion and a coat of adhesive (proceeded by an optional coat of silane) is recommended. If hydrofluoric acid is utilized, the crowns should be treated with a coat of silane followed by adhesive application. Copyright©American Journal of Dentistry.

  11. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  12. Experimental etch-and-rinse adhesive systems containing MMP-inhibitors: Physicochemical characterization and resin-dentin bonding stability.

    Science.gov (United States)

    da Silva, Eduardo Moreira; de Sá Rodrigues, Carolina Ullmann Fernandes; de Oliveira Matos, Marcos Paulo; de Carvalho, Thais Rodrigues; dos Santos, Glauco Botelho; Amaral, Cristiane Mariote

    2015-12-01

    To evaluate the degree of conversion (DC%), water sorption (WS), solubility (SO) and the resin-dentin bonding stability (μTBS) of experimental (EXP) etch-and-rinse adhesive systems containing MMP-inhibitors: Galardin-GAL, Batimastat-BAT, GM1489-GM1 and chlorhexidine diacetate-CHX. DC% was measured using FT-IR spectroscopy, while WS and SO were calculated based on ISO4049. Thirty-six human molars were wet ground until the occlusal dentin was exposed. The adhesive systems were applied and resin composite buildups were incrementally constructed. After 24 h immersion in distilled water at 37 °C, the specimens were cut into resin-dentin beams with a cross-sectional area of 1 mm(2). The μTBS was evaluated after 24 h, 6 months and 12 months of water storage at 37 °C. Adper Single Bond 2 (SB2) was used as a commercial control. The data were analyzed using ANOVA and Tukey's HSD test. SB2 presented the highest DC% (p0.05). SO was found to be not significant (p>0.05). All adhesive systems maintained μTBS stability after 6 months of water storage. Only BAT, GM1 and CHX maintained μTBs stability after 12 months of water storage. The experimental adhesive systems with GM1489 and chlorhexidine diacetate presented the best physicochemical properties and preserved resin-dentin bonding stability after 12 months of water storage. GM1489 could be suitable for inclusion as an MMP-inhibitor in etch-and-rinse adhesive systems to maintain resin-dentin bonding stability over time. Copyright © 2015. Published by Elsevier Ltd.

  13. Morphology of the Dentin-resin Interface yielded by Two-step Etch-and-rinse Adhesives with Different Solvents.

    Science.gov (United States)

    Ferreira, João C; Pires, Patrícia T; de Azevedo, Álvaro F; Arantes-Oliveira, Sofia; Silva, Mário J; de Melo, Paulo R

    2017-10-01

    The study aimed to analyze the morphology of the dentin-resin interface yielded by two-step etch-and-rinse adhesive systems with different solvents and compositions. A total of 32 dentine disks were prepared and randomly assigned to four groups of one-bottle etch-and-rinse adhesive systems containing different solvents: group I, Adper Scotchbond-IXT™ (ethanol/water); group II, XP-Bond™ (tertiary butanol); group III, Prime and Bond NT ® (acetone); and group IV, One Coat bond® (5% water). Adhesive systems were applied onto dentin disks, which were then thermal cycled, divided into two hemi-disks (n = 16), and prepared for field-emission scanning electron microscopy to examine the dentin-resin interdiffusion zone. Microphotographs were scanned and data were processed. Data were compared with analysis of variance multivariant test after Kolmogorov-Smirnov and Shapiro-Wilk tests using Statistic Package for the Social Sciences. The adhesive layer thickness average found was group I: 45.9 ± 13.41 urn, group II: 20.6 ± 16.32 urn, group III: 17.7 ± 11.75 urn, and group IV: 50.7 ± 27.81 urn. Significant differences were found between groups I and IV and groups II and III (p Adhesives systems with different solvents led to significant differences in the dentin-resin interface morphology. Solvents role in adhesives bond strength should be considered together with the other adhesive system components. The adhesive containing tertiary butanol, in addition, seems to originate a good-quality hybrid layer and long, entangled tags and also appears to have greater ability to originate microtags, which may indicate higher bond strength.

  14. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  15. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin.

    Science.gov (United States)

    Shin, Joo-Hee; Jang, Ji-Hyun; Park, Sang Hyuk; Kim, Euiseong

    2014-08-01

    The aim of this study was to evaluate the micromorphologic changes that accompany different surface treatments on mineral trioxide aggregate (MTA) and their effect on the bond strength to the composite resin with 4 adhesive systems. Three types of MTA cement, ProRoot MTA (WMTA) (Dentsply, Tulsa, OK), MTA Angelus (AMTA) (Angelus, Londrina, PR, Brazil), and Endocem MTA (EMTA) (Maruchi, Wonju, Korea), were prepared and stored for a week to encourage setting. Surface treatment was performed using phosphoric acid or self-etch primer, and an untreated MTA surface was prepared as a control. The surface changes were observed using scanning electron microscopy. MTA surfaces were bonded with 4 adhesive systems, including Scotchbond Multipurpose (3M ESPE, St Paul, MN), Single Bond 2 (3M ESPE), Clearfil SE BOND (Kuraray, Osaka, Japan), and AdheSE One F (Ivoclar Vivadent, Schaan, Liechtenstein), to evaluate the adhesive effectiveness of MTA followed by composite resin restoration. The shear bond strength of the polymerized specimens was tested. For WMTA and AMTA, untreated surfaces showed an irregular crystalline plate with clusters of globular aggregate particles. For EMTA, the untreated surface presented a reticular matrix with acicular crystals. After surface treatment, superficial crystalline structures were eroded regardless of the MTA cement and adhesive system used. WMTA bonded significantly more strongly than AMTA and EMTA, regardless of the adhesive system used. In the WMTA and AMTA groups, AdheSE One F showed the highest bond strength to the composite. For EMTA, no significant differences were found across adhesive systems. Acidic treatment of the MTA surface affected the micromorphology and the bond strength to the composite. Within the limitations of this study, using a 1-step self-etch adhesive system might result in a strong bond to WMTA when the composite resin restoration is required over MTA cement. Copyright © 2014 American Association of Endodontists

  16. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  17. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  18. Bacterial colonization of resin composite cements: influence of material composition and surface roughness.

    Science.gov (United States)

    Glauser, Stephanie; Astasov-Frauenhoffer, Monika; Müller, Johannes A; Fischer, Jens; Waltimo, Tuomas; Rohr, Nadja

    2017-08-01

    So-called secondary caries may develop in the cement gap between the tooth and the bonded restoration. Cement materials with a low susceptibility to biofilm formation are therefore desirable. In the present study, the adhesion of Strepococcus mutans onto three adhesive (Multilink Automix, RelyX Ultimate, and Panavia V5) and three self-adhesive (Multilink Speed Cem, RelyX Unicem 2 Automix, and Panavia SA plus) resin composite cements was evaluated. Previous studies have failed to evaluate concomitantly the effect of both the composition of the cements and their surface roughness on biofilm formation. The presence of S. mutans on cement surfaces with differing degrees of roughness was therefore recorded using fluorescence microscopy and crystal violet staining, and the composition of the cements was analyzed using energy-dispersive X-ray spectroscopy mapping. Biofilm formation on resin composite cements was found to be higher on rougher surfaces, implying that adequate polishing of the cement gap is essential. The use of copper-containing cements (Multilink Automix, Panavia V5, and Panavia SA plus) significantly reduced biofilm formation. © 2017 Eur J Oral Sci.

  19. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  20. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  1. Treatment planning and smile design using composite resin.

    Science.gov (United States)

    Marus, Robert

    2006-05-01

    Recent advances in dental materials and adhesive protocols have expanded the restorative procedures available to today's clinicians. Used in combination with proper treatment planning, these innovations enable dental professionals to provide enhanced aesthetic care that achieves the increasing expectations of their patients. Using a case presentation, this article will document the steps required to harmoniously integrate smile design, material selection, and patient communication that are involved in the provisional of aesthetic dental care. This article discusses the utilization of composite resin as a tool to enhance the patient's smile. Upon reading this article, the reader should: Become familiar with a smile-enhancing technique which can be completed in one office visit. Realize the benefits that intraoral composite mockups offer in terms of prototyping and confirming patient satisfaction.

  2. Degradation of resin-dentin bonds of etch-and-rinse adhesive system to primary and permanent teeth

    Directory of Open Access Journals (Sweden)

    Tathiane Larissa Lenzi

    2012-12-01

    Full Text Available The aim of this in vitro study was to compare the degradation of resin-dentin bonds of an etch-and-rinse adhesive system to primary and permanent teeth. Flat superficial coronal dentin surfaces from 5 primary second molars and 5 permanent third molars were etched with phosphoric acid and bonded with an adhesive system (Adper Single Bond 2, 3M ESPE. Blocks of resin composite (Z250, 3M ESPE were built up and the teeth sectioned to produce bonded sticks with a 0.8 mm² cross-sectional area. The sticks of each tooth were randomly divided and assigned to be subjected to microtensile testing immediately (24 h or after aging by water storage (6 months. Data were analyzed by two-way repeated measures ANOVA and Tukey post hoc test (α = 0.05. Failure mode was evaluated using a stereomicroscope (400×. Microtensile values significantly decreased after the 6 months aging, independent of the dentin substrate. In 24 h, the values obtained to primary dentin were lower compared with permanent dentin. This difference was not maintained after aging. Adhesive/mixed failure was predominant in all experimental groups. In conclusion, degradation of resin-dentin bonds of the etch-and-rinse adhesive system occurred after 6 months of water storage; however, the reduction in bond strength values was higher for permanent teeth.

  3. On adhesive properties of perlite and sewage sludge ash with epoxy resin bonded single-strap repairs

    Science.gov (United States)

    Bulut, Mehmet; Erkliğ, Ahmet; Furkan Doğan, Nurettin

    2017-08-01

    In this study, the tensile properties of epoxy adhesive with the inclusion of micro-scale perlite and sewage sludge ash (SSA) particles were investigated for glass-epoxy laminates adhesively bonded single-strap repairs. Particle fillers were incorporated in the epoxy resin as an additive material at different ratios by weight, namely, 5, 10, 15 wt% for perlite; 5, 10, 15 and 20 wt% for SSA as well as unfilled composites. Composite samples were weakened by opening a circular cutout at the center of them, and then repaired by the circular patches produced from the same material. The repairing performances of samples were explored for two different patch ratios (D/d  =  2 and 3). Results indicated that the inclusion of perlite and SSA particles in the epoxy adhesive contributed to a significant increase in load carrying capacity at a weight content of 10 wt%.

  4. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  5. Effect of intermediate agents and pre-heating of repairing resin on composite-repair bonds.

    Science.gov (United States)

    Papacchini, Federica; Magni, Elisa; Radovic, Ivana; Mazzitelli, Claudia; Monticellia, Francesca; Goracci, Cecilia; Polimeni, Antonella; Ferrari, Marco

    2007-01-01

    This study investigated the composite-to-composite microtensile bond strength and interfacial quality after using different combinations of intermediate agents and pre-curing temperatures of repairing resin. Forty-five composite discs (8x4 mm) of Gradia Direct Anterior (GC Corp), stored in a saline solution at 37 degrees C for one month, were sandblasted (50 microm aluminum oxide), cleaned (35% phosphoric acid) and randomly divided into three groups (n=15) according to the intermediate agent applied: (1) no treatment; (2) unfilled resin (Scotchbond Multi-Purpose Adhesive, 3M ESPE); (3) flowable composite (Gradia LoFlo, GC Corp). Each disc was incrementally repaired (8x8 mm) with the same resin as the substrate. For each group, three subgroups (n=5) were created, depending on the pre-curing temperature of the repairing resin-4 degrees C, 23 degrees C or 37 degrees C. Two bonded specimens per group were prepared to evaluate the composite-to-composite interfacial quality via scanning electron microscope. Microtensile bond strength measurements were performed with the remaining three specimens and failure mode was examined by stereomicroscopy. Two-way ANOVA revealed that temperature (p resin in groups where intermediate agents were used. The highest bond strengths were recorded when flowable composite was used as an intermediate agent under each of the three temperature conditions. Interfacial quality improved by raising the resin temperature from 4 degrees C to 37 degrees C.

  6. Tensile bond strength of an aged resin composite repaired with different protocols.

    Science.gov (United States)

    Celik, Esra Uzer; Ergücü, Zeynep; Türkün, L Sebnem; Ercan, Utku Kürșat

    2011-08-01

    To evaluate the effect of different surface treatments and bonding procedures on the tensile bond strength (TBS) of resin composites repaired 6 months after polymerization. Resin composite sticks were aged in distilled water at 37°C for 6 months. They were divided into 12 groups (n = 10) according to the combination of surface treatment/bonding procedures [none, only bur treatment, XP Bond (XPB/Dentsply/DeTrey) with/without bur, AdheSE (A-SE/Ivoclar/Vivadent) with/without bur, Composite Primer (CP/GC) with/without bur, CP after bur and acid-etching, XPB after acid etching and CP with bur, A-SE after bur and CP]. The ultimate tensile bond strength (UTS) of the resin composites was tested in intact but aged specimens. Tensile bond strengths were tested with a universal testing machine (Shimadzu). Data were analyzed using one-way ANOVA and Duncan Multiple Comparisons tests (p < 0.05). All repaired groups showed significantly higher TBS than the group without any sureface treatment (p < 0.05). Four groups resulted in TBS similar to those of intact resin composite UTS: A-SE, A-SE with bur, A-SE after CP with bur, and XPB after acid etching+CP with bur. Bur treatment, silane primer or etch-and-rinse adhesive application alone were not successful in the repair process of aged resin composite, whereas self-etching adhesive alone showed similar performance to the intact specimens. Combined procedures generally showed better performance: A-SE with bur, A-SE after CP with bur, and XPB after acid etching +CP with bur showed TBS similar to those of the intact specimens. It was concluded that bur roughening of the surfaces and rebonding procedures were essential for repairing aged resin composites.

  7. The study of radiation effect on 127-epoxy resin adhesive and its components

    International Nuclear Information System (INIS)

    Zhong Zhijing; Luo Shikai; Fu Yibei; Luo Shunzhong

    2001-01-01

    127-epoxy resin adhesive and its components: E-44 epoxy resin, dibutyl-o-phthalate and anhydrous ethylenediamine were irradiated with γ ray in air, nitrogen or vacuum at ambient temperature respectively. The gaseous products such as hydrogen, methane and carbon dioxide were examined by means of GC. Remarkable effect of ambiences and dose on γ radiated degradation of these specimen were found. The results indicated that the content of gaseous products increased with dose, but changed with ambiences. The forming of carbon dioxide was not only determined by the amount of oxygen in ambience, but also by whether the specimens structure contained oxygenous groups or not. It was shown that there were good linear increasing relationships between dose and the concentration of gaseous products hydrogen and methane for 127-epoxy resin adhesive, and methane for dibutyl-o-phthalate. All above indicated low radiation-resistance of 127-epoxy resin adhesive

  8. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Directory of Open Access Journals (Sweden)

    Akiko Haruyama

    2016-01-01

    Full Text Available This study evaluated the microtensile bond strength (μTBS of 1-step self-etch adhesives (1-SEAs and 2-step self-etch adhesives (2-SEAs to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2 solution with quartz-tungsten-halogen light-curing unit (Group 1 and 3.5% H2O2-containing titanium dioxide (TiO2 (Pyrenees® activated with 405-nm violet diode laser for 15 min (Group 2. Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens than 1-SEA (where 21 out of 36 failed. These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  9. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber.

    Science.gov (United States)

    Haruyama, Akiko; Kameyama, Atsushi; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength ( μ TBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H 2 O 2 ) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H 2 O 2 -containing titanium dioxide (TiO 2 ) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μ TBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μ TBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H 2 O 2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H 2 O 2 bleaching.

  10. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    Science.gov (United States)

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement.

  11. Marginal behaviour of self-etch adhesive/composite and combined amalgam-composite restorations.

    Science.gov (United States)

    Kournetas, Nikos; Kakaboura, Afrodite; Giftopoulos, Dimitrios; Chakmachi, Magdad; Rahiotis, Christos; Geis-Gerstorfer, J

    2010-06-01

    The aim of this study was to compare the marginal and internal adaptation in self-etching adhesive (SEA)/composite restorations with combined amalgam-resin-based composite restorations in the proximal box with and without bonding agent beneath amalgam both before and after load-cycling. Class II restorations, were manufactured as following a) Bonding agent (Clearfil Liner Bond 2V, Kuraray) beneath amalgam (Tytin, SDS Kerr) and resin-based composite (Clearfil APX, Kuraray) with SEA, b) Amalgam without bonding agent and resin-based composite with SEA and c) Resin-based composite with SEA. Each group divided into two equal subgroups (n=8). Marginal and internal adaptation of first subgroup evaluated after 7-day water storage and of the second after load-cycling in chewing simulator for 1.2 x 10(6) cycles. Marginal and internal adaptation at cervical and amalgam-composite sites evaluated by videomicroscope and ranked as "excellent"/"non-excellent". Slices of restorations examined under optical microscope to determine the quality of bonding layer. Defects in cervical adaptation observed in the three restorative techniques examined prior loading. Amalgam-composite combination in proximal surface provided comparable marginal and internal adaptation results at cervical wall, to self-etching-composite combination. Portion (25-37.5%) of amalgam-resin-based composite interfaces in proximal box presented no perfect sealing. The application of bonding agent beneath amalgam resulted in relatively inferior cervical adaptation. Loading resulted in fewer excellent restorations in all three restorative techniques but not in a statistically significant level.

  12. Comparison of Cashew Nut Shell Liquid (CNS Resin with Polyester Resin in Composite Development

    Directory of Open Access Journals (Sweden)

    C. C. Ugoamadi

    2013-12-01

    Full Text Available Natural resins can compete effectively with the synthetic ones in composite development. In this research, cashew nuts were picked and processed for the extraction of the resin content. The resin (natural resin so obtained was mixed with cobalt amine (accelerator, methyl ethyl ketone peroxide (catalyst to develop two sets of composite specimens – specimens without fibres and specimens reinforced with glass fibres. This method of sample specimen development was repeated with polyester (synthetic resin. Compressive and tensile strength tests conducted proved that composites developed with cashew nut shell liquid (CNSL resin were comparable to those developed with polyester resin. In the results, CNSL has an ultimate compressive strength of 55MPa compared to that of polyester resin with an ultimate strength of 68MPa. The result of tensile strength proved cashew nut shell liquid resin (with ultimate strength of 44MPa to be better than polyester resin with 39MPa as ultimate tensile strength. This means that natural resins could be a better substitute for the synthetic ones when the required quantities of fibers (reinforcements and fillers are used in the fibre-reinforced plastic composite developments.

  13. Effect of Caries Removal Methods on the Shear Bond Strength of Resin and Glass IonomerAdhesives to Primary Dentin

    Directory of Open Access Journals (Sweden)

    Mohammadi N

    2015-12-01

    Full Text Available Statement of Problem: There is no enough published data about the shear bond strength of resin modified glass ionomer adhesives on caries-affected primary tooth dentin excavated using minimally invasive systems. Objectives: To evaluate the shear bond strength of 2 different adhesives (one resin modified glass ionomer and one resin using two caries removal tech- niques on healthy and caries-affected primary dentin. Materials and Methods: Two caries removal methods including mechanical (handpiece and chemomechanical (Carisolv techniques and two types of ad- hesives including one resin adhesive (Clearfil SE Bond; CSEB, Kuraray and one resin-modified glass ionomer adhesive (Riva Bond LC; RBLC, SDI were used in this study. Ten extracted healthy primary teeth were used for the control group. The teeth were sectioned bucco-lingually and mesio-distally in order to obtain four specimens from each tooth. Thirty suitable specimens were selected as the “control” and randomly divided into two groups of “sound dentin” based on the type of the adhesive used. Sixty extracted caries affected teeth were used for the carious group; sectioned as mentioned above and sixty suitable specimens were selected as the “treatment”. Then the specimens were arbitrarily divided into four groups based on caries removal techniques and the type of ad- hesive used (n = 15. After bonding with either CSEB or RBLC, the specimens were restored with a resin composite by means of PVC tubes and subjected to the shear bond strength test. The data was analyzed using ANOVA and Tukey’s test. Results: The specimens in Carisolv group bonded with CSEB (11.68 ± 3.1 showed a statistically significant higher mean bond strength followed by those in handpiece group bonded with CSEB (9.4 ± 2.7, which exhibited higher mean values than those groups with RBLC (p < 0.05. Shear bond strength values for Clearfil SE Bond was not significantly higher than Riva Bond LC when used in sound

  14. Marginal seal of composite resin restorations photo activated by L.E.D. and halogen-based light

    OpenAIRE

    Pineda Mejía, Martha Elena; Dpto. Acad. Estomatología Rehabilitadora. Fac. Odontologia. Universidad Nacional Mayor de San Marcos.; Terán Casafranca, Liliana Ángela; Dpto. Acad. Estomatología Rehabilitadora. Fac. Odontologia. Universidad Nacional Mayor de San Marcos.; Gloria Zevallos, Waldo Ernesto; Dpto. Acad. Estomatología Rehabilitadora. Fac. Odontologia. Universidad Nacional Mayor de San Marcos.; Cuadrao Zavaleta, Luis Alberto; Dpto. Acad. Ciencias Básicas. Fac. Odontologia. Universidad Nacional Mayor de San Marcos.

    2014-01-01

    Objective: to compare in vitro the marginal seal degree of composite resin restorations photopolomerized with L.E.D light and conventional halogen light, was the objective of this research.It was used 20 healthy molars recently extracted, in each of them, standardized dimensions class V cavities were prepared in the buccal and palatal aspects. Both cavities were filled with nanoparticles composite resin, Filteck Z350 and Single Bond adhesive (3M). Vestibular restaurations were light cured usi...

  15. Versatile composite resins simplifying the practice of restorative dentistry.

    Science.gov (United States)

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  16. Comparison of Shear Bond Strength between Composite Resin and Porcelain Using Different Bonding Systems

    Directory of Open Access Journals (Sweden)

    E.Yassini

    2005-03-01

    Full Text Available Statement of Problem: Ceramics as in ceramo-metallic and all ceramic tooth restorations have grown popular owing to their high tissue compatibility and esthetic advantages. Such restorations have the capability to deliver valuable services over a long period of time; however, failures under intraoral conditions are not unanticipated.Purpose: The purpose of this in-vitro study was to investigate the shear bond strength of composite resin to porcelain using different bonding system materials.Materials and Methods: In this experimental study forty porcelain blocks were prepared and randomly divided into four equal groups. The porcelain surfaces were then etched with HF for 2 minutes, washed with water for 2 minutes and treated with a silane layer. The silane treated porcelain surfaces were left for one minute and then the specimens were bonded to composite resin as follow:Group 1 (control group, hybrid composite Z100 was applied and light cured from four directions for 20 seconds. Group 2, flowable composite was applied and light cured for 20 seconds. Group 3, unfilled resin was used and photo cured for 20 seconds. Group 4,(Dentin bonding agent adhesive resin was used followed by 20 seconds photo curing.Hybrid composite resin Z100 was subsequently applied on all porcelain surfaces of groups 2, 3 and 4, and light cured for 20 seconds from four directions. Specimens were then subjected to thermocycling 1000 times. Shear bond strength was determined by a Universal testing machine. The data obtained was subjected to a one-way ANOVA test.Results: The results indicate that there is a statistically significant difference between adhesive group and the other three groups of hybrid, flowable and unfilled resin (P<0.05.Conclusion: The results from this study showed that the shear bond strength of composite resin to porcelain was significantly higher for porcelain bonded surfaces using a dentin bonding agent than that of other materials tested.

  17. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  18. Subsurface degradation of resin-based composites.

    Science.gov (United States)

    Bagheri, Rafat; Tyas, Martin J; Burrow, Michael F

    2007-08-01

    To determine the depth of a degraded subsurface layer produced in dental composites as a result of exposure to lactic acid or NaOH, by observing the penetration of AgNO(3) solution. Specimens were prepared from four resin composites; Point 4 (Kerr), Premise (Kerr), Filtek Supreme (3M/ESPE), Ceram X (Dentsply), and two polyacid-modified resin composites; Dyract (Dentsply) and F2000 (3M/ESPE). The specimens were immersed in distilled water for 1 week, transferred to one of three aqueous media at 60 degrees C for 2 weeks; distilled water, 0.01mol/L lactic acid or 0.1N NaOH, washed and immersed in 50% (w/w) aqueous silver nitrate for 10 days at 60 degrees C and placed in a photodeveloper solution. After reduction of the silver, specimens were embedded in epoxy resin, sectioned and polished, coated with carbon, and examined by backscattered mode scanning electron microscopy. The depth of silver penetration into the degraded area was measured from the SEM micrographs. Energy dispersive analysis X-ray (EDAX) was used to confirm the presence of silver. NaOH produced the greatest depth of degradation and lactic acid the least. Premise showed the greatest depth of silver penetration when subjected to NaOH, and Filtek Supreme the second with peeling of the surface and cracking, whereas F2000 and Point 4 showed the least in NaOH and lactic acid. ANOVA and Tukey's test showed that the depth of silver penetration was material and solution dependent, and the differences were significant for most of the materials (P<0.05).

  19. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2017-09-28

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  20. Method for curing alkyd resin compositions by applying ionizing radiation

    International Nuclear Information System (INIS)

    Watanabe, T.; Murata, K.; Maruyama, T.

    1975-01-01

    An alkyd resin composition is prepared by dissolving a polymerizable alkyd resin having from 10 to 50 percent of oil length into a vinyl monomer. The polymerizable alkyd resin is obtained by a half-esterification reaction of an acid anhydride having a polymerizable unsaturated group and an alkyd resin modified with conjugated unsaturated oil having at least one reactive hydroxyl group per one molecule. The alkyd resin composition thus obtained is coated on an article, and ionizing radiation is applied on the article to cure the coated film thereon. (U.S.)

  1. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  2. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  3. Evaluation of Degradation in Nanofilled Adhesive Resins Using Quantitative Light-Induced Fluorescence

    Directory of Open Access Journals (Sweden)

    Tae-Young Park

    2014-01-01

    Full Text Available The aim of this study was to evaluate degradation in commercial dental nanofilled adhesive resins using quantitative light-induced fluorescence (QLF. Three adhesives were selected: D/E resin (DR, Single Bond Plus (SB, and G-Bond (GB. The adhesives were mixed with porphyrin for the QLF analysis. Specimens were prepared by dispensing blended adhesives into a flexible mold and polymerizing. Then, the QLF analysis of the specimens was done and the porphyrin values (Simple Plaque Score and ΔR were measured. After thermocycling of the specimens (5000 cycles, 5 to 55°C for the degradation, the specimens were assayed by QLF again. The porphyrin values were analyzed using paired t-test at a 95% confidence level. A significant reduction in SPS was observed in all groups after thermocycling. The ΔR significantly decreased after thermocycling except area ΔR30 of SB group. Overall, porphyrin values decreased after thermocycling which indicates that the degradation of the adhesive resins may be measured by the change of porphyrin value. The QLF method could be used to evaluate the degradation of adhesive resin.

  4. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  5. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  6. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  7. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  8. Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.X. [Department of Applied Chemistry, Faculty of Science, Harbin Institute of Technology, PO Box 410, Harbin 150001 (China)], E-mail: jzxhit@yahoo.com.cn; Huang, Y.D. [Department of Applied Chemistry, Faculty of Science, Harbin Institute of Technology, PO Box 410, Harbin 150001 (China)], E-mail: huangyd@hit.edu.cn; Liu, L.; Long, J. [Department of Applied Chemistry, Faculty of Science, Harbin Institute of Technology, PO Box 410, Harbin 150001 (China)

    2007-10-15

    The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface.

  9. Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites

    Science.gov (United States)

    Jiang, Z. X.; Huang, Y. D.; Liu, L.; Long, J.

    2007-10-01

    The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface.

  10. Has resin-based composite replaced amalgam?

    Science.gov (United States)

    Christensen, Gordon J; Child, Paul L

    2010-02-01

    The major health organizations in the world continue to accept amalgam use, but the "amalgam war" of the 1800s is still going on. The end is not in sight. There is little disagreement that amalgam serves well and, although controversial, it appears to have minimal to no health hazards. There is a wide variation in the relative amount of amalgam placed in developed countries, and many dentists in North America do not use it. However, amalgam is still being used at least some of the time by the majority of practitioners in North America, and most of those practitioners also place resin-based composite in Class II locations. The evolution from amalgam to tooth-colored restorations has been a slow and tumultuous journey. The acceptability of resin-based composite in Class II locations continues to be a question for some dentists, while others have concluded that amalgam is "dead." It would be highly desirable if some of dentists using the alleged poisonous properties of amalgam as a "practice building" ploy would find more legitimate methods to increase their practice activity.

  11. Micro-CT evaluation of internal adaptation in resin fillings with different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Han

    2014-02-01

    Full Text Available Objectives The purpose of present study was to evaluate the internal adaptation of composite restorations using different adhesive systems. Materials and Methods Typical class I cavities were prepared in 32 human third molars. The teeth were divided into the following four groups: 3-step etch-and-rinse, 2-step etch-and-rinse, 2-step self-etch and 1-step self-etch system were used. After the dentin adhesives were applied, composite resins were filled and light-cured in two layers. Then, silver nitrate solution was infiltrated, and all of the samples were scanned by micro-CT before and after thermo-mechanical load cycling. For each image, the length to which silver nitrate infiltrated, as a percentage of the whole pulpal floor length, was calculated (%SP. To evaluate the internal adaptation using conventional method, the samples were cut into 3 pieces by two sectioning at an interval of 1 mm in the middle of the cavity and they were dyed with Rhodamine-B. The cross sections of the specimens were examined by stereomicroscope. The lengths of the parts where actual leakage was shown were measured and calculated as a percentage of real leakage (%RP. The values for %SP and %RP were compared. Results After thermo-mechanical loading, all specimens showed significantly increased %SP compared to before thermo-mechanical loading and 1-step self-etch system had the highest %SP (p < 0.05. There was a tendency for %SP and %RP to show similar microleakage percentage depending on its sectioning. Conclusions After thermo-mechanical load cycling, there were differences in internal adaptation among the groups using different adhesive systems.

  12. Effect of different cleaning regimens on the adhesion of resin to saliva-contaminated ceramics.

    Science.gov (United States)

    Aladağ, Akın; Elter, Bahar; Çömlekoğlu, Erhan; Kanat, Burcu; Sonugelen, Mehmet; Kesercioğlu, Atilla; Özcan, Mutlu

    2015-02-01

    The aim of this study was to evaluate the influence of different cleaning regimens on the microshear bond strength (μSBS) of three different all-ceramic surfaces after saliva contamination. Cubic ceramic specimens (3 × 3 × 3 mm(3) ) were prepared from three types of ceramics: zirconium dioxide (Z), leucite-reinforced glass ceramic (E), lithium disilicate glass ceramic (EX; n = 12/subgroup). A total of 144 composite resin cylinders (diameter: 1 mm, height: 3 mm) were prepared. Three human-saliva-contaminated surfaces of ceramic specimens were cleaned with either water spray (WS), with 0.5% sodium hypochlorite solution (HC), or with a cleaning paste (CP). Control surface (C) was not contaminated or cleaned. Composite cylinders were bonded to each surface with a resin luting cement. All specimens were stored at 37°C in deionized water until fracture testing. μSBS tests were performed in a universal testing machine (0.5 mm/min), and the results (MPa ± SD) were statistically analyzed (two-way ANOVA, Bonferroni a = 0.05). Fractured surfaces were analyzed to identify the failure types using an optical microscope at 50× magnification. Two representative specimens from all groups were examined with scanning electron microscopy. μSBS test results were significantly affected by the saliva cleaning regimens (p = 0.01) and the ceramic types (p = 0.03). The interaction terms between the ceramic type and saliva cleaning regimen were also significant (p 0.05). In the EX group, C resulted in significantly higher μSBS values (32.6 ± 7.4) than CP (17.4 ± 8.9), WS (15.6 ± 7.3), and HC (14.3 ± 4.5) (p resin were observed in the E and EX groups, whereas only adhesive failures were seen in zirconia groups for all surface treatments. Different ceramic surface cleaning regimens after saliva contamination of the zirconium dioxide revealed μSBS similar to the control group, whereas all surface cleaning regimens tested significantly decreased the bond strength values in the

  13. Effect of various teas on color stability of resin composites.

    Science.gov (United States)

    Dinç Ata, Gül; Gokay, Osman; Müjdeci, Arzu; Kivrak, Tugba Congara; Mokhtari Tavana, Armin

    2017-12-01

    To investigate the effect of various teas on color stability of resin composites. Two methacrylate-based (Arabesk Top, Grandio) and a silorane-based (Filtek Silorane) resin composites were used. 110 cylindrical samples of each resin composite were prepared (2 mm thickness and 8 mm diameter), polished and stored in distilled water (37°C for 24 hours). They were randomly divided into 11 groups (n= 10) and color measurements were taken. Then the samples were immersed in tap water (control), a black tea, a green tea or one of the eight herbal-fruit teas (37°C for 1 week) and subsequently subjected to the final color measurements. The color change of samples (ΔE*) was calculated, data were subjected to two-way ANOVA and Tukey's HSD tests. Teas, resin composites and their interactions were significant (P= 0.000). All the teas and control caused color changes in all three resin composites. Rosehip tea caused the most color changes, while tap water showed the least in all resin composites. Arabesk Top had the most staining potential in all the teas and control, whereas Filtek Silorane was the most stain resistant except Grandio immersed in sage tea. Color stability of all resin composites used were affected from both structure of resin materials and constituents of teas used. All resin composites were susceptible to staining by all teas especially rosehip tea. Arabesk Top composite showed the greatest color susceptibility in all teas and Filtek Silorane the least with one exception. Color of resin composites can be negatively affected from teas consumed. Clinicians should advise patients that drinking different kind of teas could intensify surface staining of resin based restorations.

  14. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  15. Effect of photoactivation on the reduction of composite resin contamination.

    Science.gov (United States)

    Pauletti, Natalia A; Girotto, Luiza P S; Leite, Françoise H S; Mario, Débora N

    2017-06-01

    Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination. © 2017 Eur J Oral Sci.

  16. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    Science.gov (United States)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  17. Aminealkylthiol and dithiol self-assembly as adhesion promoter between copper substrate and epoxy resin

    International Nuclear Information System (INIS)

    Denayer, J.; Delhalle, J.; Mekhalif, Z.

    2011-01-01

    To improve adhesion between copper and epoxy resin in printed circuit board, a roughness treatment of copper has been widely used. Nevertheless, new adhesion promoters have to be developed to face the miniaturization and sophistication of the electronic device. Self-assembled monolayers have met increasing interest in this field by using them as coupling agent between copper and the epoxy resin. This paper presents the deposition of an epoxy resin on copper modified by amine alkylthiol and dithiol monolayers and highlights the benefit brought by the monolayer in terms of adhesion. The chemical linkage between the amine SAMs and the epoxy function has been proved by the deposition on a short epoxy fragment, the 2-(4-fluorophenoxy-methyl)oxirane. The deposition of an epoxy resin mixed with amine curing agent has then been successfully achieved on amine terminated SAMs. The resulting polymer is homogeneous and well adherent on their surface, while the adhesion is lower on bare copper and not existing on methyl terminated SAMs. The formation of chemical bond Cu-S and N-epoxy is thus essential to increase the adhesion strength between copper and the polymer.

  18. Effects of different orthodontic adhesives and resin removal techniques on enamel color alteration.

    Science.gov (United States)

    Boncuk, Yasemen; Cehreli, Zafer C; Polat-Özsoy, Ömür

    2014-07-01

    To investigate the color alterations in enamel following the use of different orthodontic bonding resins and adhesive residue-removal burs. Metal brackets were bonded to extracted human premolars (n  =  175) by using an etch-and-rinse adhesive system, a self-etch adhesive system (SEP), or a resin-modified glass ionomer cement (RMGIC). After 24 hours of photoaging, the brackets were removed and the adhesive residue on the tooth surfaces was cleaned with either a tungsten carbide bur or a Stainbuster bur. Tooth colors were measured with a spectrophotometer at baseline, after adhesive removal, and after additional photoaging. Color evaluation was made, and color differences induced by photoaging were calculated. Statistical evaluation was made using the Kruskal-Wallis test and the Mann-Whitney U-test, with Bonferroni correction. All specimens showed discoloration at varying levels. The highest color change was observed in the etch-and-rinse adhesive/tungsten carbide bur group. When the etch-and-rinse and self-etch adhesives were used, adhesive-remnant removal with Stainbuster burs resulted in significantly lower discoloration. The type of bur did not affect the extent of enamel discoloration in the RMGIC group. Orthodontic treatment alters the original color of enamel, and both the adhesive system and the resin-removal methods are responsible for this change. When brackets are bonded with the etch-and-rinse system or the SEP, cleaning the adhesive residuals with Stainbuster burs is recommended for minimal change. RMGIC can be safely cleaned with tungsten carbide burs.

  19. Abrasive wear and surface roughness of contemporary dental composite resin.

    Science.gov (United States)

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  20. Simulated localized wear of resin luting cements for universal adhesive systems with different curing mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2018-01-29

    This study evaluated the simulated localized wear of resin luting cements for universal adhesive systems using different curing modes. Five resin luting cements for universal adhesive systems were evaluated and subsequently subjected to wear challenge in a Leinfelder-Suzuki wear simulation device. Overall, 20 specimens from each resin luting cement were photo-cured for 40 s (dual-cure group), and 20 specimens of each material were not photo-cured (chemical-cure group). Simulated localized wear was generated using a stainless steel ball-bearing antagonist in water slurry of polymethylmethacrylate beads. In addition, scanning electron microscopy (SEM) observations of resin luting cements and wear facets were conducted. Significant differences in simulated wear and SEM observations of wear facets were evident among the materials in the dual- and chemical-cure groups. The simulated wear and SEM observations of wear facets of G-CEM LinkForce and Panavia V5 were not influenced by the curing mode. SEM observations of resin luting cements were material dependent. In most cases, dual curing appears to ensure greater wear resistance of resin luting cements than chemical curing alone. The wear resistance of some resin luting cements appears to be material dependent and is not influenced by the curing mode.

  1. Metameric effect between dental porcelain and porcelain repairing resin composite.

    Science.gov (United States)

    Kim, Sung-Hee; Lee, Yong-Keun; Lim, Bum-Soon; Rhee, Sang-Hoon; Yang, Hyeong-Cheol

    2007-03-01

    The objectives were to evaluate the metameric color and hue angle (degrees) changes between dental porcelain and porcelain repairing resin composites. Color of three shades (A2, A3, A3.5) of one brand of dental porcelain and three original shades (A2, A3, A3.5) and three combinations (A2-A3, A3-3.5, A2-A3.5) of three brands of porcelain repairing resin composites (ABT, FSP, TCR) were measured relative to the three standard illuminants (D65, A and F2). Specimen was 2mm in thickness, and 1mm of each shade was layered to make combined shades. Color differences (DeltaEab*) between each shade of dental porcelain and repairing resin composites relative to the three illuminants were calculated, and the ratios of color difference (modified metamerism index) by the change of illuminant were calculated. The ratios of hue angle changes were also compared. Differences in modified metamerism index and the ratio of hue angle changes were influenced by the porcelain shade, brand of resin composites and shade of resin composites. In all three brands of resin composites, A3.5 shade showed the smallest values in modified metamerism index regardless of the shade of porcelain. The average ratio of hue angle changes between each porcelain shade and all the shades of each resin composites showed similar trend when illuminant was changed from D65 to F2. Metameric effect between dental porcelain and repairing resin composites varied depending on the shade of porcelain, brand of resin composite and the illuminant. Therefore, shade matching between porcelain and repairing resin composite should be performed carefully. This study confirmed that shades should be matched under the light corresponding to that of use.

  2. Repair bond strength of dual-cured resin composite core buildup materials.

    Science.gov (United States)

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  3. The effect of surface conditioning on the bond strength of resin composite to amalgam.

    Science.gov (United States)

    Blum, Igor R; Hafiana, Khaula; Curtis, Andrew; Barbour, Michele E; Attin, Thomas; Lynch, Christopher D; Jagger, Daryll C

    2012-01-01

    This study evaluated the effect of different surface conditioning methods on the tensile bond strength (TBS) and integrity of the amalgam-resin composite interface, using commercially available restoration repair systems. One hundred and sixty Gamma 2 amalgam specimens were stored in artificial saliva for 2 weeks and then randomly assigned to one of the following conditioning groups (n=20/group): Group 1: air abrasion, alloy primer and 'Panavia 21', Group 2: air abrasion and 'Amalgambond Plus', Group 3: air abrasion and 'All-Bond 3', Group 4: diamond bur, alloy primer and 'Panavia 21', Group 5: diamond bur and 'Amalgambond Plus', Group 6: diamond bur and 'All-Bond 3', Group 7: silica coating technique, and Group 8: non-conditioned amalgam surfaces (control group). Subsequently, resin composite material was added to the substrate surfaces and the amalgam-resin composite specimens were subjected to TBS testing. Representative samples from the test groups were subjected to scanning electron microscopy and surface profilometry. The data was analysed statistically with one-way ANOVA and post hoc Tukey's tests (α=0.05). The mean TBS of amalgam-resin composite ranged between 1.34 and 5.13MPa and varied with the degree of amalgam surface roughness and the type of conditioning technique employed. Significantly highest TBS values (5.13±0.96MPa) were obtained in Group 1 (p=0.013). Under the tested conditions, significantly greater tensile bond strength of resin composite to amalgam was achieved when the substrate surface was conditioned by air abrasion followed by the application of the Panavia 21 adhesive system. Effecting a repair of an amalgam restoration with resin composite via the use of air abrasion and application of Panavia 21 would seem to enhance the integrity of the amalgam-resin composite interface. Clinical trials involving the implementation of this technique are indicated to determine the usefulness of this technique. Copyright © 2011 Elsevier Ltd. All

  4. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Presin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  5. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    Directory of Open Access Journals (Sweden)

    Siavash Savadi Oskoee

    2017-06-01

    Full Text Available Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05, post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001. The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04 Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins.

  6. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tamer M. Hamdy

    2017-10-01

    Full Text Available Background: The newly introduced self-adhering flowable resin-composites decrease the required time for application by incorporation of an acidic adhesive monomer, thus reducing the number of steps, but its bonding is still uncertain. The aim of this study was to evaluate the interfacial microscopic examination and chemical analysis at the resin-dentin interface of a self-adhering flowable resin composite (Vertise™Flow Self-Adhering Flowable Composite, Kerr Dental, USA versus a total-etch (Te-Econom Plus resin composite, using an etching agent (Eco-Etch gel and bonding agent (Single Bond Universal. Methods: Sixteen freshly extracted sound human posterior teeth were used. The teeth were randomly divided into two groups: 8 specimens per type of composite. Standard-shaped class V cavities were prepared on the buccal surface. One group was restored by Te-Econom Plus resin composite by total-etch technique using Eco-Etch gel, which was applied to dentine for 15 seconds, followed by rinsing, drying and bonding agent application (Single Bond Universal. The other group restored directly with self-adhering resin composite (Vertise-Flow without application of etch or bond. Curing was done for 20 seconds using a light emitting diode light curing unit. Evaluation of the resin-dentin interface was done microscopically by examination of marginal gap distance in μm using scanning electron microscope (SEM, and chemical analysis of silver particles was observed using SEM with energy-dispersive X-ray spectrometry after 24 hours of specimen storage in ammoniacal silver nitrate. Results: Regarding marginal gap distance (µm and silver atomic % mean values, teeth restored with self-adhering resin composite (Vertise-Flow showed significantly higher mean values than the multi-step etch and rinse resin composite group (5.2 vs 0; 12.2 vs 8.2, respectively. Conclusions: Resin-dentin bonding using total-etch resin composite technique was more effective than self

  7. Effect of an adhesive resin luting agent on the dowel-head retention of three different core materials.

    Science.gov (United States)

    Aksoy, Gokhan; Cotert, H Serdar; Korkut, Levent

    2005-05-01

    A dowel-and-core restoration may fail due to failure at either the dowel-tooth or dowel head-core material interface. Long-term clinical success of a dowel-and-core restoration depends on retention of both the dowel to the tooth and the dowel head to the core material. Thus, strengthening of the dowel head-core interface is important. This study evaluated the retention between a prefabricated dowel and 3 different core materials with or without a dual-polymerized adhesive resin luting agent. Sixty prefabricated dowels (Gold Plated Anchorage Post) were divided into 3 groups (n=20) consisting of 1 of 3 core materials, amalgam (Standalloy F), light-polymerized resin composite (Clearfil Ray), or glass ionomer (Chelon-Silver). Each core group was divided into 2 subgroups (n=10), and a dual-polymerized adhesive resin luting agent (Panavia F) was applied to the dowel heads of 1 of these subgroups before application of the core material. The manufacturing procedure was standardized by using a plastic index (4.5-mm internal diameter and 5-mm height) and a custom-made dowel holder, which held the dowel head. Prepared specimens were stored in water at room temperature for 3 months and then loaded to fracture in a universal testing machine with a crosshead speed of 0.05 mm/min until failure. Bond strengths were recorded (MPa). Data were analyzed with 2-way analysis of variance (ANOVA) in a 2 x 3 factorial randomized design (alpha=.05). Afterward, core material differences were computed with 1-way ANOVA for both of the bonded and nonbonded groups. Post hoc multiple comparisons were made with the Dunnett C multiple range test. Dowel-head retention values (MPa) of the tested core materials (mean +/- SD) from the highest to the lowest were as follows: bonded amalgam core, 296.1 +/- 108; bonded composite core, 284.3 +/- 38.3; nonbonded composite core, 177.0 +/- 53.7; nonbonded amalgam core, 128.5 +/- 35.0; bonded glass-ionomer core (GIC), 128.0 +/- 24.5; nonbonded GIC, 61.8 +/- 13

  8. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    Science.gov (United States)

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  9. A conservative treatment approach using direct composite resins for anterior teeth eroded by lemon sucking.

    Science.gov (United States)

    Passos, Vanara Florencio; de Souza, Andre Mattos Brito; Rodrigues, Lidiany Karla Azevedo; Bombonatti, Juliana Campos Fraga Soares; Santiago, Sergio Lima

    2013-08-01

    An excessively acidic diet results in the progressive deterioration of dental health, with functional, esthetic, and biological consequences. Previously, rehabilitation required placing numerous full crowns and root canal treatments; however, with improved adhesive techniques, a more conservative approach may be utilized to preserve tooth structure. This article describes 2 cases that utilized conservative dental treatments (involving direct composite resins with minimal preparation of the tooth structure) to treat eroded dentition induced by lemon sucking.

  10. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tamer M. Hamdy

    2017-10-01

    Full Text Available Background: The newly introduced self-adhering flowable resin-composites decrease the required time for application by incorporation of an acidic adhesive monomer, thus reducing the number of the steps, but its bonding is still uncertain. The aim of this study was to evaluate the interfacial microscopic examination and chemical analysis at the resin-dentin interface of a self-adhering flowable resin composite (Vertise-Flow versus a total-etch (Te-Econom Plus resin composite, using an etching agent (Eco-Etch gel and  bonding agent (Single Bond Universal. Methods: Sixteen freshly extracted sound human posterior teeth were used. The teeth were randomly divided into two groups: 8 specimens per type of composite. Standard-shaped class V cavities were prepared on the buccal surface. One group was restored by Te-Econom Plus resin composite by total-etch technique using Eco-Etch gel, which was applied to dentine for 15 seconds, followed by rinsing, drying and bonding agent application (Single Bond Universal. The other group restored directly with self-adhering resin composite (Vertise-Flow without application of etch or bond. Curing was done for 20 seconds using a light emitting diode light curing unit. Evaluation of the resin-dentin interface was done microscopically by examination of marginal gap distance in μm using scanning electron microscope (SEM, and chemical analysis of silver particles was observed using SEM with energy-dispersive X-ray spectrometry after 24 hours of specimen storage in ammoniacal silver nitrate. Results: Regarding marginal gap distance (µm and silver atomic % mean values, teeth restored with self-adhering resin composite (Vertise-Flow showed significantly higher mean values than the multi-step etch and rinse resin composite group (5.2 vs 0; 12.2 vs 8.2, respectively. Conclusions: Resin-dentin bonding using total-etch resin composite technique was more effective than self-adhering flowable resin composite (Vertise

  11. HPLC analysis of monomers eluted from self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Özgür Genç Şen

    2016-08-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the residual monomer leaching from two self-adhesive resin cements polymerized with Light Emitting Diode (LED or halogen light curing unit. MATERIALS AND METHOD: Clearfil SA (group A, n = 48 and BisCem (group B, n = 48 cements were inserted in plastic moulds. Each group was further divided into two subgroups. Specimens were light cured with LED light curing unit (LCU in group A1 and group B1 and halogen LCU in group A2 and group B2 for 20 seconds. The following compounds released from the samples stored in distilled water were analyzed: triethylene glycol-dimethacrylate (TEGDMA and bisphenol A glycidyl methacrylate (Bis-GMA. Analysis of substances was performed with the use of high performance liquid chromatography, after 1 hour and 24 hour incubation periods. Factorial experimental design and independent t-test was used for statistical analyses. RESULTS: Self-adhesive resin cements released more Bis-GMA and TEGDMA when they were polymerized with LED LCUs (p0.05. Clearfil SA cement released more Bis-GMA than BisCem (p<0.05. BisCem released more TEGDMA than Clearfil SA (p<0.05. CONCLUSION: The results of this study showed that the quantity of Bis-GMA and TEGDMA leached from self-adhesive resin cements was influenced by the type of LCU and by the type of self-adhesive resin cement.

  12. Preparation and Characterizations of Composite Material Based on Carbon Fiber and Two Thermoset Resins

    OpenAIRE

    Fouda Hany; Guo Lin; Elsharkawy Karim

    2017-01-01

    In the present investigation, we used two types of thermoset resins (epoxy resin and phenol formaldehyde resin) with carbon fiber (CF) to produce composite materials. CF/epoxy resin composite and CF/phenolformaldhyde resin composite were fabricated and compared between their mechanical properties as compression, tension and flexural. it was found that mechanical properties of CF/epoxy composite higher than mechanical properties of CF/phenolformaldhyde resin composite such as flexural strength...

  13. Color Stability of IDM Composite Resin

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2000-06-01

    Full Text Available Discoloration of composite resins is considered to be a major factor in esthetic restoration"nfailures. The aim of this study was to evaluate color stability of IDM composite (both light and self cure"nsamples namely IL and IS, and to compare it with a self-cure composite (Degufill named DS and a light"ncure ormocer composite (Definite, called DL in the Report. 60 disk shaped samples of each composite"nwere prepared, according to ISO-7491. The samples were divided into 3 groups and aged as follows:"nA- (Control 7 days in dark 37°c chamber"nB- Foil covered and kept in 100% humidity, and 37°c in xenotest chamber for 24 hours, then transferred"nto a dark 37°c chamber for 6 more days."nC- Kept in 37°c, 100% humidity under the emission of xiiion lamp of xenotest chamber for 24 hours,"nand then transferred to 37°c dark chamber for 6 more days"nThe lightness and chromaticity values of samples were measured both before and after aging using a"nspectrophotometer (Data Flash. The total color changes as well as changes in lightness and chromaticity"nvalues were measured in the CIE L * a * b * scale, and analyzed. Color change was recorded to be"nsignificant in all samples after aging. The maximum change belonged to IL, which was significantly"ndifferent from DL and DS. It seems, in order to have a durable esthetic restoration using IDM, more"nscientific and professional consideration is needed in the production process.

  14. Preparation and Characterizations of Composite Material Based on Carbon Fiber and Two Thermoset Resins

    Directory of Open Access Journals (Sweden)

    Fouda Hany

    2017-01-01

    Full Text Available In the present investigation, we used two types of thermoset resins (epoxy resin and phenol formaldehyde resin with carbon fiber (CF to produce composite materials. CF/epoxy resin composite and CF/phenolformaldhyde resin composite were fabricated and compared between their mechanical properties as compression, tension and flexural. it was found that mechanical properties of CF/epoxy composite higher than mechanical properties of CF/phenolformaldhyde resin composite such as flexural strength of CF/epoxy resin composite increased by 30 % than flexural strength of CF/phenolformaldhyde resin composite, tensile strength of CF/epoxy resin composite increased by 11.4 % than flexural strength of CF/phenolformaldhyde resin and axial compression strength of CF/epoxy resin composite increased by 14.5 % than flexural strength of CF/phenolformaldhyde resin.

  15. Radiopacity Of Glass-ionomer/composite Resin Hybrid Materials.

    OpenAIRE

    Hara A.T.; Serra M.C.; Rodrigues Junior A.L.

    2001-01-01

    This study visually compared the radiopacity of seven restorative materials (3 resin-modified glass-ionomer cements, 3 polyacid-modified composite resins, and 1 conventional glass-ionomer cement) to a sound tooth structure sample, and an aluminium stepwedge. All hybrid materials were more radiopaque, except for one resin-modified glass-ionomer cement, than both the tooth structure and conventional glass-ionomer cement.

  16. Association of different primers and resin cements for adhesive bonding to zirconia ceramics.

    Science.gov (United States)

    Maeda, Fernando Akio; Bello-Silva, Marina Stella; de Paula Eduardo, Carlos; Miranda Junior, Walter Gomes; Cesar, Paulo Francisco

    2014-06-01

    To evaluate the shear bond strength (SBS) to zirconia ceramics using different associations of primers and resin cements. Two blocks of LAVA zirconia (3Y-TZP) were randomly submitted to an application of three different commercially available primers: Alloy Primer (AP), Z-Prime Plus (ZP), and Signum Zirconia Bond (SZB). Nonprimed specimens were considered controls. After treatment, the 80 specimens (5 mm × 5 mm × 2 mm) were randomly cemented with one of the resin cements: Panavia F, Multilink, seT, and NX3. For cementation, cylinders of resin cement were built on the ceramic surfaces using the SDI SBS apparatus. The specimens were submitted to the SBS test. Fractured surfaces were observed under stereomicroscopy to determine the failure mode, and mean bond strength values were analyzed using the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Signum Zirconia Bond had the highest SBS compared to all other primers and the control group, regardless of the resin cement used. The highest values were obtained when associating Panavia F with Signum Zirconia Bond. Alloy Primer increased bonding values when associated with seT cement only. When no primer was used, no statistical difference was observed among resin cements. All specimens fractured due to adhesive failure. Signum Zirconia Bond is capable of increasing bonding values of resin cements to zirconia ceramics. Its association with Panavia F shows enhanced results when considering short-term adhesion to zirconia.

  17. Effects of different cavity disinfectants on shear bond strength of a silorane-based resin composite.

    Science.gov (United States)

    Arslan, Soley; Yazici, A Ruya; Gorucu, Jale; Ertan, Atilla; Pala, Kansad; Ustun, Yakup; Antonson, Sibel A; Antonson, Donald E

    2011-07-01

    This in vitro study evaluated the effect of different cavity disinfection agents on bond strength of a silorane-based resin composite. Thirty-six caries-free human third mandibular molars sectioned in mesio-distal direction were mounted in acrylic resin with their flat dentin surfaces exposed. After the dentin surfaces were wet ground with # 600 silicon carbide paper, the teeth were randomly divided into 6 groups of 12 each according to the cavity disinfection agents; chlorhexidine (CHX); sodium hypochlorite (NaOCl), propolis, ozone, Er,Cr:YSGG laser and no treatment (control). After treatment of dentin surfaces with one of these cavity disinfection agents, Filtek Silorane adhesive system was applied. The silorane-based resin composite, Filtek Silorane was condensed into a mold and polymerized. After storage at 37°C for 24 hours, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. The results were analyzed by one-way ANOVA. No statistically significant difference was observed between the groups (p>0.05). The use of the tested cavity disinfection agents, chlorhexidine, sodium hypochlorite, propolis, ozone and Er,Cr:YSGG laser did not significantly affect the dentin bond strength of a silorane-based resin composite, filtek supreme. Cavity disinfectant applications did not affect the dentin bond strength of a silorane-based resin composite.

  18. Resin composite for sealing and its use in a solar cell. Fushiyo jushi soseibutsu oyobi sore wo mochiita taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Toma, H.; Mimura, T.; Takehara, N.

    1994-01-28

    This invention presents resin composites for sealing of a solar cell composed of a hardening resin and a thermoplastic resin which has a number average molecular weight larger than that of the hardening resin and is soluble in the hardening resin, and the invention affords a solar cell to endure a long-term stable operation and to give a good performance. The hardening resin includes unsaturated polyester resin, phenolic resin, alkyd resin, unsaturated acrylic resin, epoxy resin, polyurethane resin, melamine resin, diallyl phthalate resin, their oligomers and their modifications. The thermoplastic resin includes saturated polyester resin, phenolic resin, acrylic resin, styrene resin, epoxy resin, polyurethane resin, polyvinyl acetate resin, polyvinyl chloride resin, polyvinyl alcohol resin, polyacetal resin, their modifications and their copolymer resin. 2 figs., 3 tabs.

  19. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment; Avaliacao in vitro da microinfiltracao marginal em restauracoes de classe V com resina composta em dentes bovinos. Influencia da irradiacao laser e sistema adesivo no pre-tratamento dentinario

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Wendell Lima de

    2003-07-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm{sup 2}, Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm{sup 2}) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than

  20. Influence of curing rate of resin composite on the bond strength to dentin.

    Science.gov (United States)

    Benetti, A R; Asmussen, E; Peutzfeldt, A

    2007-01-01

    This study determined whether the strength with which resin composite bonds to dentin is influenced by variations in the curing rate of resin composites. Resin composites were bonded to the dentin of extracted human molars. Adhesive (AdheSE, Ivoclar Vivadent) was applied and cured (10 seconds @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode. In continuous curing mode, in order to give an energy density totaling 16 J/cm2, the power densities (1000, 720, 550, 200 mW/cm2) emitted by the various curing units were compensated for by the light curing period (16, 22, 29 or 80 seconds). In the pulse-delay curing mode, two seconds of light curing at one of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent; Filtek Supreme XT, 3M ESPE) were stored in water at 37 degrees C for seven days. The specimens were then either immediately subjected to shear bond strength testing or subjected to artificial aging (6,000 cycles between 5 degrees C and 55 degrees C baths) prior to testing. Failure modes were also assessed. The shear bond strengths were submitted to factorial analysis of variance, and the failure modes were submitted to a Chi-square test (alpha = 0.05). All but power density (curing mode, resin composite material and mode of aging) significantly affected shear bond strength. The curing mode and resin composite material also influenced the failure mode. At the selected constant energy density, pulse-delay curing reduced bonding of the resin composite to dentin.

  1. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  2. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  3. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.

    Science.gov (United States)

    Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo

    2016-07-01

    To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.

  4. Adhesively luted, metal-free composite crowns after five years.

    Science.gov (United States)

    Lehmann, Franziska; Spiegl, Katrin; Eickemeyer, Grit; Rammelsberg, Peter

    2009-12-01

    The effect of location and preparation design of abutment teeth and of preparation design on the survival and complication rate of metal-free, adhesively luted composite crowns (Artglass, Heraeus Kulzer) and their clinical performance was investigated in this controlled, randomized, prospective clinical study. After randomization, 114 single crowns (68 posterior, 46 anterior) were prepared either with a 0.5 mm chamfer finishing line or with a 0.5 mm shoulder combined with occlusal reduction of at least 1.5 mm. Buildups were made with a composite material, using the corresponding dentin adhesive. Crowns were manufactured on stone dies and intraorally adhesively luted with resin cement. Follow-up examinations were conducted after 1 month and 1, 2, 3, and 5 years. Documentation included failures and complications, occlusal contacts, plaque accumulation and patients' rating of esthetics and functionality. After 5 years, data for 83 single crowns had been obtained. Within an observation period of 5 years, 18 complications occurred, including 13 major failures which resulted in replacement of the crowns, and 5 minor complications which could be repaired. All loosened crowns (n = 2) were successfully re-cemented. The Cox Regression did not reveal any effect of location or preparation design on complication rate. Calculation of the Kaplan-Meier survival curve on the basis of major failures indicated a probability of survival of 96% after 3 years and 88.5% after 5 years. Four Artglass crowns had no contact in static occlusion after 5 years and plaque accumulation was significantly higher than for control teeth. esthetic and functional evaluation by patients revealed that acceptance was high. Metal-free composite crowns may be recommended for long-term temporary use. However, the complication rate and the increased plaque accumulation restrict the indication for permanent restorations.

  5. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  6. Moisture diffusion parameter characteristics for epoxy composites and neat resins

    Science.gov (United States)

    Long, E. R., Jr.

    1979-01-01

    The moisture absorption characteristics of two graphite/epoxy composites and their corresponding cured neat resins were studied in high humidity and water immersion environments at elevated temperatures. Moisture absorption parameters, such as equilibrium moisture content and diffusion coefficient derived from data taken on samples exposed to high humidity and water soak environments, were compared. Composite swelling in a water immersion environment was measured. Tensile strengths of cured neat resin were measured as a function of their equilibrium moisture content after exposure to different moisture environments. The effects of intermittent moderate tensile loads on the moisture absorption parameters of composite and cured neat resin samples were determined.

  7. Shrinkage-stress kinetics of photopolymerised resin-composites

    Science.gov (United States)

    Satterthwaite, Julian D.

    The use of directly-placed substances as restorative materials in teeth remains the technique of choice for preserving function and form in teeth that have cavities. The current aesthetic restorative materials of choice are resin-composite materials, although these undergo molecular densification during polymerisation, which has deleterious effects. Although shrinkage-strain is the cause, it is the shrinkage-stress effects that may be seen as being responsible for the problems with adhesive resin-based restorations that are encountered clinically, the bond may fail with separation of the material from the cavity wall, leading to marginal discolouration, pulpal irritation and subsequent necrosis, post operative sensitivity, recurrent caries and eventual failure of restorations. Other outcomes include cohesive fracture of enamel or cusps, cuspal movement (strain) and persistent pain. The aims of this research were to characterise the effects of variations in resin-composite formulation on shrinkage-strain and shrinkage-stress kinetics. In particular, the influence of the size and morphology of the dispersed phase was investigated through the study of experimental formulations. Polymerisation shrinkage-strain kinetics were assessed with the bonded-disk method. It was found that resin-composites with spherical filler particles had significantly lower shrinkage-strain compared to those with irregular filler particles. Additionally, shrinkage-strain was found to be dependent on the size of filler particle, and this trend was related, in part, to differences in the degree of conversion. The data were also used to calculate the activation energy for each material, and a relationship between this and filler particle size for the irregular fillers was demonstrated. A fixed-compliance cantilever beam instrument (Bioman) was used for characterisation of shrinkage-stress kinetics. Significant differences were identified between materials in relation to filler particle size and

  8. The Adhesive Bonding of Thermoplastic Composites

    Science.gov (United States)

    1989-09-19

    greater than a smooth surface. I T._ ." ’-.5. The mean and standa,d deviation results of the surface rouchness coiection factcrs f. good-:ca cd UC-PEEK...Reinforced Plastics and Composites, 2, p. 2, (1983). [72] J. G. Williams, Int. J. of Fracture, 36, p. 101, (1988). I [73] S. M. Lee , J. of Composite...Technology", 12A, "Adhesion and Adsorption of Polymers", Edited by L. H. Lee , Plenum, New-York, p. 43, (1980). 1 [168] R, S. Drago, G. C. Vogel and T. E

  9. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Phenolic resin; nanometric silicon carbide; nanocomposites; friction coefficient. 1. Introduction. Phenolic resin composites have their applications in a wide range of fields ... Curing time and temperature as well as mold materials influence the resulting homogeneity, glass transition temperature and mechanical properties.

  10. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  11. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/ transmission. Nanocrystalline barium titanate (BaTiO3 or BT) ... Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin ..... electromagnetic waves, the two port calibrations have been.

  12. Resin-dentin Bond Stability of Experimental 4-META-based Etch-and-rinse Adhesives Solvated by Ethanol or Acetone.

    Science.gov (United States)

    Amaral, Cristiane Mariote; Diniz, Alice Marques; Arantes, Eugênio Braz Rodrigues; Dos Santos, Glauco Botelho; Noronha-Filho, Jaime Dutra; da Silva, Eduardo Moreira

    To investigate the influence of 4-META concentration and type of solvent on the degree of conversion (DC%) and resin-dentin bond stability of experimental etch-and-rinse adhesives. Four different concentrations of 4-META (12 wt%, 20 wt%, 30 wt%, 40 wt%) were added to a model adhesive system consisting of TEG-DMA (25 wt%), UDMA (20 wt%), HEMA (30 wt%), water (4 wt%), camphorquinone (0.5 wt%), and tertiary amine (0.5 wt%) dissolved in 20% acetone (A12, A20, A30 and A40) or 20% ethanol (E12, E20, E30 and E40). DC% was evaluated by FT-IR spectroscopy. Human molars were wet ground until the occlusal dentin was exposed, the adhesive systems were applied after 37% phosphoric acid etching, and resin composite buildups were incrementally constructed. After storage in distilled water at 37°C for 24 h, the teeth were cut into resin-dentin beams (cross-sectional area 1 mm2). Microtensile bond strength (μTBS) was evaluated after 24 h, 6 months, and 1 year of water storage at 37°C. The failure mode was categorized as adhesive, mixed, or cohesive. Data were analyzed using ANOVA and Tukey's HSD test (α = 0.05). A12 presented the lowest DC% (p 0.05). All adhesive systems maintained resin-dentin bond stability after 6 months of water storage, while only A40 and E40 maintained it after 1 year. Irrespective of the type of organic solvent, the incorporation of high concentrations of 4-META (40 wt%) improved the resin-dentin bond stability of the experimental etch-and-rinse adhesive systems over a period of 1 year.

  13. Characterization and Process Development of Cyanate Ester Resin and Composite

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  14. Effect of the cross-linking silane concentration in a novel silane system on bonding resin-composite cement

    NARCIS (Netherlands)

    Matinlinna, Jukka; Ozcan, Mutlu; Lassila, Lippo; Kalk, Warner; Vallittu, Pekka

    2008-01-01

    Objective. Four experimental blends of an organo-functional silane monomer with a non-functional cross-linking silane monomer (a novel silane system) were evaluated as adhesion promoters in an experiment in which a resin-composite cement was bonded to silica-coated titanium. Material and Methods.

  15. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek

  16. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  17. Relationship between Color and Translucency of Multishaded Dental Composite Resins

    Directory of Open Access Journals (Sweden)

    Homan Naeimi Akbar

    2012-01-01

    Full Text Available The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N=3 and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel shades had the highest translucency. There was a significant decrease in translucency from A2 to C2 of regular body shades and also from A4 to C4 of opaque dentine shades of Esthet.X composite resin. Grey enamel shade had a significantly higher diffuse translucency compared to clear and yellow enamel shades. There was a significant decrease in translucency from A2B to D2B and also in diffuse translucency from A4D to C6D shades of Filtek Supreme composite resin. It can be concluded that the color of the composite resins tested in this study had a significant effect on their translucency. Information on the translucency of different shades of composite resins can be very useful for the clinicians in achieving optimal esthetic restorative outcome.

  18. Effect of filler size and filler loading on wear of experimental flowable resin composites

    Directory of Open Access Journals (Sweden)

    Koichi Shinkai

    2018-02-01

    Full Text Available Abstract The relationship between wear resistance and filler size or filler loading was clarified for the universal resin composite; however, their relationship in flowable resin composites has not been clarified. Objectives: The purpose of this study was to investigate the effect of filler size and filler loading on wear of experimental flowable resin composites by using a cyclic loading device. Material and Methods: Nine experimental flowable resin composites consisting of three different sizes (70, 200 and 400 nm and loading (50, 55 and 60 wt% of filler were prepared. Bowl-shaped cavities were prepared on a flat surface of ceramic blocks using a No. 149 regular cut diamond point. The cavities were treated with a silane coupling agent and an all-in-one adhesive and then filled with each experimental flowable resin composite. The restored surfaces were finished and polished with a 1500-grit silicon carbide paper. The specimens were subjected to an in vitro two-body wear test using a cyclic loading device. The localized worn surfaces were evaluated at 10,000, 20,000, 30,000, and 40,000 cycles using a computer-controlled three-dimensional measuring microscope (n=5. The volumetric wear loss of the materials was calculated automatically by the equipment. Data were statistically analyzed with two-way ANOVA and post hoc Tukey test. Results: Two-way ANOVA showed that the filler size significantly influenced wear volume (p0.05. A post hoc Tukey test detected significant differences in filler size between 70 nm and 400 nm, and 200 nm and 400 nm (p<0.007. Conclusion: The experimental flowable resin composite containing a mean filler size of 400 nm exhibited significantly lower wear resistance in two-body wear compared with those containing mean filler sizes of 200 nm or 70 nm.

  19. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  20. The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test

    DEFF Research Database (Denmark)

    Minty, Ross; Thomason, James L.; Petersen, Helga Nørgaard

    2015-01-01

    This paper focuses on an investigation into the role of the epoxy resin: curing agent ratio in composite interfacial shear strength of glass fibre composites. The procedure involved changing the percentage of curing agent (Triethylenetetramine [TETA]) used in the mixture with several different...... percentages used, ranging from 4% up to 30%, including the stoichiometric ratio. It was found by using the microbond test, that there may exist a relationship between the epoxy resin to curing agent ratio and the level of adhesion between the reinforcing fibre and the polymer matrix of the composite....

  1. Evaluation of adhesive bonding of lithium disilicate ceramic material with duel cured resin luting agents.

    Science.gov (United States)

    Lambade, Dipti Pravin; Gundawar, Sham M; Radke, Usha M

    2015-02-01

    The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area.

  2. Influence of infected root dentin on the bond strength of a self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Débora Delai

    2018-01-01

    Full Text Available Aim: The aim of this study was to determine the bond strength (BS of a self-adhesive resin cement to the contaminated root dentin. Materials and Methods: The crown and apical third of twenty single-rooted teeth were removed. The root canals were flared and 1-mm-thick root sections were obtained. The sections were rinsed, dried, and sterilized. The control group (n=20 was composed of one section of each third, which remained immersed in sterile trypticase soy broth (TSB for 2 months. The other sections comprised the experimental group (n = 40 and were immersed in a suspension of Enterococcus faecalis. The culture medium was changed at every 4 days for 2 months. The sections were rinsed with distilled water, dried, and the root canal space was fi lled with the self-adhesive resin cement RelyX™ U200. After 24 h, the push-out test was performed and the types of interface failure were observed on a stereo microscope. Statistical Analysis: Data were statistically analyzed by the nonparametric Mann–Whitney test (α=5%. Results: A significant reduction was observed in the BS of resin cement to the contaminated dentin compared to the healthy dentin, for both thirds analyzed (P < 0.05. The BS was signifi cantly greater at the cervical third compared to the middle third for specimens in the experimental group (P < 0.05. Adhesive and mixed failures were observed more frequently in specimens contaminated with E. faecalis. Conclusion: Bacterial contamination negatively infl uenced the BS of the self-adhesive resin cement to the root dentin, and there was a predominance of adhesive and mixed failures.

  3. Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Hass, Viviane; Dobrovolski, Max; Zander-Grande, Christiana; Martins, Gislaine Cristine; Gordillo, Luís Alfonso Arana; Rodrigues Accorinte, Maria de Lourdes; Gomes, Osnara Maria Mongruel; Loguercio, Alessandro Dourado; Reis, Alessandra

    2013-09-01

    The aim of this study was to correlate the degree of conversion measured inside the hybrid layer (DC) with the microtensile resin-dentin bond strength (μTBS) and silver nitrate uptake or nanoleakage (SNU) for five simplified etch-and-rinse adhesive systems. Fifty-five caries free extracted molars were used in this study. Thirty teeth were used for μTBS/SNU [n=6] and 25 teeth for DC [n=5]. The dentin surfaces were bonded with the following adhesives: Adper Single Bond 2 (SB), Ambar (AB), XP Bond (XP), Tetric N-Bond (TE) and Stae (ST) followed by composite resin build-ups. For μTBS and SNU test, bonded teeth were sectioned in order to obtain stick-shaped specimens (0.8mm(2)), which were tested under tensile stress (0.5mm/min). Three bonded sticks, from each tooth, were not tested in tensile stress and they were immersed in 50% silver nitrate, photo-developed and analyzed by scanning electron microscopy. Longitudinal 1-mm thick sections were prepared for the teeth assigned for DC measurement and evaluated by micro-Raman spectroscopy. ST showed lowest DC, μTBS, and higher SNU (p0.05), except for TE which showed an intermediate SNU level. The DC was positively correlated with μTBS and negatively correlated with SNU (p<0.05). SNU was also negatively correlated with μTBS (p<0.05). The measurement of DC inside the hybrid layer can provide some information about bonding performance of adhesive systems since this property showed a good correlation with resin-dentin bond strength and SNU values. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  5. Surface discoloration of composite resins: Effects of staining and bleaching

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-01-01

    Background: The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. Materials and Methods: The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L*a*b* system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab*) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). Results: All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Conclusions: Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested. PMID:23559921

  6. Surface discoloration of composite resins: Effects of staining and bleaching

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2012-01-01

    Full Text Available Background: The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet·X HD, Clearfil AP-X, Gradia Direct and five nanohybrid composite resins (Ceram·X, GC Kalore, G-aenial, Grandio, GrandioSO, after staining and bleaching procedures. Materials and Methods: The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h, for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco. The color of specimens was measured with a spectrophotometer according to the CIE LFNx01aFNx01bFNx01 system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DE abFNx01 between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA. Results: All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Conclusions: Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  7. Surface discoloration of composite resins: Effects of staining and bleaching.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  8. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  9. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  10. Effect of a low-viscosity adhesive resin on the adhesion of metal brackets to enamel etched with hydrochloric or phosphoric acid combined with conventional adhesives.

    Science.gov (United States)

    Yetkiner, Enver; Ozcan, Mutlu; Wegehaupt, Florian Just; Wiegand, Annette; Eden, Ece; Attin, Thomas

    2013-12-01

    This study investigated the effect of a low-viscosity adhesive resin (Icon) applied after either hydrochloric (HCl) or phosphoric acid (H3PO4) on the adhesion of metal brackets to enamel. Failure types were analyzed. The crowns of bovine incisors (N = 20) were sectioned mesio-distally and inciso-gingivally, then randomly assigned to 4 groups according to the following protocols to receive mandibular incisor brackets: 1) H3PO4 (37%)+TransbondXT (3M UNITEK); 2) H3PO4 (37%)+Icon+TransbondXT; 3) HCl (15%)+Icon (DMG)+TransbondXT 4) HCl (15%)+Icon+Heliobond (Ivoclar Vivadent)+TransbondXT. Specimens were stored in distilled water at 37°C for 24 h and thermocycled (5000x, 5°C to 55°C). The shear bond strength (SBS) test was performed using a universal testing machine (1 mm/min). Failure types were classified according to the Adhesive Remnant Index (ARI). Contact angles of adhesive resins were measured (n = 5 per adhesive) on ceramic surfaces. No significant difference in SBS was observed, implying no difference between combinations of adhesive resins and etching agents (p = 0.712; ANOVA). The Weibull distribution presented significantly lower Weibull modulus (m) of group 3 (m = 2.97) compared to other groups (m = 5.2 to 6.6) (p group 1 (45.4 ± 7.9) > group 2 (44.2 ± 10.6) > group 3 (42.6 ± 15.5). While in groups 1, 3, and 4 exclusively an ARI score of 0 (no adhesive left on tooth) was observed, in group 2, only one specimen demonstrated score 1 (less than half of adhesive left on tooth). Contact angle measurements were as follows: Icon (25.86 ± 3.81 degrees), Heliobond (31.98 ± 3.17 degrees), TransbondXT (35 ± 2.21 degrees). Icon can be safely used with the conventional adhesives tested on surfaces etched with either HCl or H3PO4.

  11. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    Science.gov (United States)

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  12. Comparison of Shear Bond Strengths of Conventional Resin Cement and Self-adhesive Resin Cement bonded to Lithium Disilicate: An in vitro Study.

    Science.gov (United States)

    Roy, Anip K; Mohan, Dennis; Sunith, M; Mandokar, Rashmi B; Suprasidh, S; Rajan, Soumya

    2017-10-01

    The aim of this study is to compare the shear bond strengths of conventional resin cement and self-adhesive resin cement bonded to lithium disilicate. A total of 40 extracted human molar teeth were mounted in self-cure acrylic resin. Teeth were prepared to obtain flat occlusal surface. About 40 lithium disilicate specimens of dimension-10 mm in diameter and thickness of 2 mm-were fabricated using lost wax technique. The samples were divided into four groups: Groups I, II, III, and IV (n = 10). The specimens were surface treated with Monobond S silane coupling agent. Self-etching primer and bonding agent were applied on the bonding surface of the teeth in groups I and III. The specimens were bonded to the primed teeth with the Multilink N resin cement and subjected to the universal testing machine. The specimens were light-cured. Specimens in groups II and IV were luted to teeth using self-adhesive cement RelyX U100. The same force was applied over the specimen as mentioned above. Excess cement was removed, and light curing was done. The specimens in groups III and IV were subjected to thermocycling for 10,000 cycles at temperatures altering between 5°C and 55°C. The shear bond strengths of conventional resin cement and self-adhesive resin cement with lithium disilicate were tested before and after thermocycling. Results indicated that thermocycling has no significant effect on the bond strengths of conventional or self-adhesive resin cement. However, from the study, it is seen that conventional resin cement had a higher shear bond strength value than the self-adhesive resin cement. There was a significant difference between the average shear bond strength values of conventional resin cement (Multilink N) and self-adhesive resin cement (RelyX U100) when bonded to lithium disilicate disks, and thermocycling had no significant effect on the bond strength of conventional or self-adhesive resin cements. Among all-ceramic systems available, lithium disilicate materials

  13. Direct composite resin layering techniques for creating lifelike CAD/CAM-fabricated composite resin veneers and crowns.

    Science.gov (United States)

    LeSage, Brian

    2014-07-01

    Direct composite resin layering techniques preserve sound tooth structure and improve function and esthetics. However, intraoral placement techniques present challenges involving isolation, contamination, individual patient characteristics, and the predictability of restorative outcomes. Computer-aided design and computer-aided manufacturing (CAD/CAM) restorations enable dentists to better handle these variables and provide durable restorations in an efficient and timely manner; however, milled restorations may appear monochromatic and lack proper esthetic characteristics. For these reasons, an uncomplicated composite resin layering restoration technique can be used to combine the benefits of minimally invasive direct restorations and the ease and precision of indirect CAD/CAM restorations. Because most dentists are familiar with and skilled at composite resin layering, the use of such a technique can provide predictable and highly esthetic results. This article describes the layered composite resin restoration technique. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  15. Studying Room Temperature Curing of Phenolic Resin and their Composites

    Directory of Open Access Journals (Sweden)

    M.H. Beheshty

    2007-10-01

    Full Text Available Phenolic resins are synthetic low molecular weight thermoset resins which are polymerized and cured to higher molecular weights by condensation method. These resins have high weathering resistance, high oxidative thermal properties and good chemical resistance. Phenolic resins can be cured thermally or by acid curing. The most common method of curing phenolic resin is by thermal curing that takes place in the range of 130-180oC. At room temperature, however, phenolic resins are cured by acid catalysts. In this paper, room temperature curing of resol phenolic resin by para toluene sulphonic acid has been investigated. The acid quantity has been determined for room temperature curing of two types of resols to achieve a reasonable hardness and gelation time. Temperature curing and thermal stability of respective resins have been investigated by DSC and TGA, respectively. A glass-phenolic composite plate has been prepared and cured by these two methods. The results show that the optimum amount of acid is 20% by weight. Optimum mechanical properties, chemical resistance and thermal properties have been achieved for acid cured system. The hot cured resin, however, has better properties.

  16. In vitro two-body wear of inlay-onlay composite resin restoratives.

    Science.gov (United States)

    Burgoyne, A R; Nicholls, J I; Brudvik, J S

    1991-02-01

    Inlay-onlay composite resin restorations have been introduced to the profession as alternatives to amalgam and direct composite resins. Two-body wear testing was performed on three inlay-onlay resins and one direct composite resins using a machine designed to produce sliding wear. The composite resins were opposed by human enamel, type III gold alloy, and porcelain. Of the investigated materials, the homogeneously microfilled inlay-onlay material showed significantly less wear. The direct composite resin showed significantly the greatest wear. The hybrid inlay-onlay resins showed intermediate wear. The hybrid inlay-onlay resins and the direct composite (small particle, heavily filled) resin created wear tracks in the opposing surfaces while the homogeneous microfill inlay-onlay resin did not. The depth of the observed wear tracks in the opposing surface was sufficiently substantial to warrant further investigation into the wear of materials that oppose composite resin restorations.

  17. The Effect of Different Disinfecting Agents on Bond Strength of Resin Composites

    Directory of Open Access Journals (Sweden)

    Ahmed Mohammed Hassan

    2014-01-01

    Full Text Available Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials. Methods. A total of 80 sound posterior teeth were used. They were divided into four groups (n=20 according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%. Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one. Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram. Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed by t-test and one-way ANOVA followed by Tukey’s post hoc test. Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength. Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.

  18. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  19. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    Science.gov (United States)

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S 3 Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer.

    Science.gov (United States)

    Boroujeni, Parvin M; Mousavinasab, Sayyed M; Hasanli, Elham

    2015-05-01

    Polymerization shrinkage is one of the important factors in creation of gap between dental structure and composite resin restorations. The aim of this study was to evaluate the effect of configuration factor (C-factor) on gap formation in a hybrid composite resin, a low shrinkage composite resin and a resin modified glass ionomer restorative material. Cylindrical dentin cavities with 5.0 mm diameter and three different depths (1.0, 2.0 and 3.0 mm) were prepared on the occlusal surface of 99 human molars and the cavities assigned into three groups (each of 33). Each group contained three subgroups depend on the different depths and then cavities restored using resin modified glass ionomer (Fuji II LC Improved) and two type composite resins (Filtek P90 and Filtek Z250). Then the restorations were cut into two sections in a mesiodistal direction in the middle of restorations. Gaps were measured on mesial, distal and pulpal floor of the cavities, using a stereomicroscope. Data analyses using Kruskal-Wallist and Mann-Whitney tests. Increasing C-factor from 1.8 to 3.4 had no effect on the gap formation in two type composite resins, but Fuji II LC Improved showed significant effect of increasing C-factor on gap formation. Taken together, when C-factor increased from 1.8 up to 3.4 had no significant effect on gap formation in two tested resin composites. Although, Filtek P90 restorations showed smaller gap formation in cavities walls compared to Filtek Z250 restorations. High C-factor values generated the largest gap formation. Silorane-based composite was more efficient for cavity sealing than methacrylate-based composites and resin modified glass ionomer. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Mechanical properties and bond strength of dual-cure resin composites to root canal dentin.

    Science.gov (United States)

    Aksornmuang, Juthatip; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2007-02-01

    To evaluate the regional mechanical properties of dual-cure resin composites and their regional bond strengths to root canal dentin. One of the following dual-cure resin composites was placed in artificial post spaces: Unifil Core (UC), Clearfil DC Core (DC), Build-It FR (BI), Clearfil DC Core-automix (DCA), and photo-cured for 60s. After 24h storage, each specimen was serially sliced to harvest eight hour-glass shaped specimens for measurement of regional ultimate tensile strength (UTS), and the remaining eight semi-circular slabs were polished for the measurement of Knoop Hardness Number (KHN). For the microtensile bond strength (muTBS) test, post cavities were prepared in human premolar roots, and the cavity surfaces treated with Clearfil SE Bond and photo-cured for 10s. The post spaces were then filled with one of the above resin composites and photo-cured for 60s. After 24h storage, each specimen was serially sliced into 8, 0.6x0.6 mm-thick beams for the muTBS test. The data were divided into coronal and apical regions and analyzed using ANOVA and post hoc test (alpha=0.05). UTS and KHN were affected by the type of dual-cure resin composite and region (presin composite possessed superior UTS to that of the hand-mix type. muTBS among the four composite materials were not significantly different at both apical and coronal regions (p>0.05). Regional differences in bond strengths were found for all materials (presin composites varied among each material, however, differences in the mechanical properties of the resin core materials did not affect their adhesion to root canal dentin.

  2. Composition of asphaltenes and resins of west Siberian petroleums

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, I.V.; Babicheva, T.A.; Bodak, A.N.; Nemirovskaya, G.B.; Mashigorov, A.A.

    1985-01-01

    ESR and X-ray diffraction analysis was used to examine asphaltene and resin samples of West Siberia. Experiments were carried out to simulate the effect of catagenesis on resin and asphaltene composition. Processes of thermocatalytic transformations of crude oil in the deposit were found to have no marked effect on asphaltene and resin composition. Transformation of the organic input at sedimentation was assumed to be the main factor determining the qualitative and quantitative composition of crude oil resins and asphaltenes of West Siberia. Petroleums formed from organic matter, accumulating under reducing conditions, contain more asphaltenes and resins, they include much tetravalent vanadium and the asphaltenes have abundant paramagnetic centres. Petroleums formed from oxidized organic matter contain very little asphaltene low concentrations of paramagnetic centers, and little tetravalent vanadium. Resins of these petroleums are rich in oxygen. High levels of asphalt-resin matter in petroleums is related to the presence in the initial organic progenitors of polyunsaturated fatty acids and various nitrogen- and sulfur-containing compounds.

  3. [Is amalgam stained dentin a proper substrate for bonding resin composite?].

    Science.gov (United States)

    Scholtanus, J D

    2016-06-01

    After the removal of amalgam restorations, black staining of dentin is often observed, which is attributed to the penetration of corrosion products from amalgam. A study was carried out to determine whether this amalgam stained dentin is a proper substrate for bonding resin composites. A literature study and an in vitro study showed that Sn and Zn in particular are found in amalgam stained dentin, and this was the case only in demineralised dentin. In vitro, demineralised dentin acted as porte d'entrÈe for amalgam corrosion products. Bond strength tests with 5 adhesive strategies showed no differences between bond strengths to amalgam stained and to sound dentin, but did show different failure types. A clinical study showed good survival of extensive cusp replacing resin composite restorations. No failures were attributed to inadequate adhesion. It is concluded that staining of dentin by amalgam corrosion products has no negative effect upon bond strength of resin composite. It is suggested that Sn and Zn may have a beneficial effect upon dentin, thus compensating the effects of previous carious attacks, preparation trauma and physico-chemical challenges during clinical lifetime.

  4. On the design of dental resin-based composites: a micromechanical approach.

    Science.gov (United States)

    Kahler, Bill; Kotousov, Andrei; Swain, Michael V

    2008-01-01

    Adhesive resin-based restorative materials have the potential to considerably strengthen teeth and offer more economically viable alternatives to traditional materials such as gold, amalgam or ceramics. Other advantages are direct and immediate placement and the elimination of the use of mercury. However, polymerization shrinkage during curing of an adhesive restoration and mismatch in mechanical properties can lead to the initiation and development of interfacial defects. These defects could have a detrimental effect on the longevity of the restored tooth. The current study is focused on some design issues of resin-based composites affecting the longevity of the tooth-restoration interface. The theoretical approach is based on self-consistent micromechanical modelling that takes into account the effect of the material properties, volume concentration of the dispersed particle phase as well as the shape of these particles on the overall thermomechanical properties of the composite. Results obtained for resin-based composites reinforced with spherical, disc and short fibre particles highlight the advantages of disc shaped and short fibre particles.

  5. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite.......The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  6. Effect of adhesion promoting monomer addition to MMA-TBBO resin on bonding to pure palladium.

    Science.gov (United States)

    Minami, Hiroyuki; Murahara, Sadaaki; Muraguchi, Koichi; Sakoguchi, Kenji; Suzuki, Shiro; Tanaka, Takuo

    2013-01-01

    This study evaluated the effects of combined use of metal primers and modified monomers on the bonding of MMA-TBBO resins to pure palladium (Pd). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of these four metal primers: V-Primer, M. L. Primer, Metaltite, or Alloy Primer. Four monomers, including three modified ones, were added to MMATBBO resin. One was a methyl methacrylate monomer containing no adhesion promoting monomers, while the other two modified monomers contained the functional monomer of either V-Primer or Alloy Primer. Bonded specimens were prepared by incremental build-up of MMA-TBBO resin on primed Pd surfaces. Shear bond strengths were measured after thermal cycling. Bonding to Pd was significantly improved when modified monomer containing the functional monomer of Alloy Primer was used in combination with M. L. Primer or Metaltite applied on the bonding surface.

  7. The interaction between lining materials and composite resin restorative materials.

    Science.gov (United States)

    Lingard, G L; Davies, E H; Von Fraunhofer, J A

    1981-03-01

    The effects of four lining materials, Dycal, Procal, Cavitec and Poly F cement on Adaptic and Concise have been investigated in vitro. The parameters studied were surface roughness, hardness and colour both with and without an intermediate (or bonding) resin being present between the restorative material and the liner. The effects of the four liners on the composites varied both between the lining materials themselves and with the composite resin. Two materials, Procal and Dycal, had little interaction with the composites, provided an intermediate resin was used with the latter. Cavitec appeared to have an adverse reaction with the composites and Poly F, whilst having no effect on the colour of the composites, did increase surface roughness. The adverse effects of linig materials were ascribed to minor constituents, particularly methyl salicylate, present in the formulation.

  8. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  9. [Hardness development of self-adhesive resin cement in simulated root canal].

    Science.gov (United States)

    Ding, Hong; Lan, Weidong; Meng, Xiangfeng

    2012-06-01

    To compare the hardness development of dual-cured self-adhesive and universal resin cement in simulated root canal. The light-proof half-cylinder steel slot with one end open were syringed and filled respectively by self-adhesive A (RelyX Unicem), B (BisCem) and universal C (DUOLINK) resin cements, then the open end of slot was irradiated directly by a light unit for 20 s. Specimens were stored in a light-proof box for 0.5 h, Knoop microhardness was measured along the vertical surfaces of specimens from 1 mm to 10mm depth at 1 mm intervals. The same measurements were taken at 24 h and 120 h after irradiation. Data were analyzed by One-way ANOVA. Hardness of each group decreased with the increase of simulated canal depth (Phardness showed no significant change between 5 mm and more depth of group A, between 4 mm and more depth of group B and C. The increase of hardness for each group was more rapid within 0.5 h after irradiation, thereafter the hardness increased gradually to maximum at 24 h. At 120 h after irradiation, hardness of group C was greater than that of other two groups at more than 1 mm depth (Phardness has significant difference between self-adhesive and universal resin cements, however their hardness development is similar.

  10. Microleakage of inlay ceramic systems luted with self-adhesive resin cements.

    Science.gov (United States)

    Uludag, Bulent; Yucedag, Elif; Sahin, Volkan

    2014-12-01

    To evaluate the microleakage of Cerec 3, IPS e.max Press, and Turkom-Cera inlays cemented with three self-adhesive resin cements. Ninety standardized class III MOD cavities were prepared in intact human mandibular third molars. Ceramic inlays were fabricated according to the manufacturer's instructions and were cemented using three self-adhesive resin cements (RelyX Unicem, Smartcem 2, and SpeedCEM). The specimens were stored in distilled water at 37°C for 24 h and subjected to 1000 thermocycles in water between 5°C and 55°C with a dwell time of 30 s. Subsequently, the specimens were subjected to 100,000 cycles of mechanical loading of 50 N at 1.6 Hz in 37°C water. The specimens were immersed in 0.5% basic fuchsine for 24 h and were sectioned using a low-speed diamond blade. The percentage of dye leakage at the tooth/restoration interface was measured and compared by Kruskal-Wallis tests with Bonferonni correction and Mann-Whitney U-tests at a significance level of pinlays (p<0.05). Regardless of the ceramic system and self-adhesive resin cement used, dentin margins were associated with higher microleakage than enamel margins.

  11. Water sorption and water solubility of self-etching and self-adhesive resin cements.

    Science.gov (United States)

    Petropoulou, Aikaterini; Vrochari, Areti D; Hellwig, Elmar; Stampf, Susanne; Polydorou, Olga

    2015-11-01

    The long-term success of indirect restorations depends on the clinical behavior of luting cements. In the oral environment, properties such as water sorption and solubility negatively affect the cements' clinical performance over time, jeopardizing the restoration's longevity. The purpose of this in vitro study was to compare the water sorption and solubility characteristics of self-etching, self-adhesive, and conventional resin cements. One conventional (Calibra), 1 self-etching (Panavia F), and 2 self-adhesive (Clearfil SA, G-Cem Automix) dual-polymerized resin cements were used. Fourteen disks of each material were prepared. Water sorption and solubility were calculated according to International Organization for Standards (ISO) specification 4049:2009. According to the water sorption test, all materials were found to interact with water. No statistically significant differences were found between the water sorption of Panavia F and Clearfil SA (P=.911). These cements exhibited higher water sorption values than the other materials (Psolubility (Psolubility values than the other materials. G-Cem Automix and Calibra exhibited negative solubility. However, all water sorption and solubility values were below the threshold values proposed by the ISO standard. Within the limitations of the present in vitro study, the interaction of resin cements with water is not type-related (conventional, self-etching, or self-adhesive). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. [Color stability of ceromer of different thicknesses and resin adhesive materials of different types after accelerated aging].

    Science.gov (United States)

    Likai, Wang; Yanan, Liu; Yan, Zheng; Pingping, Li

    2015-04-01

    This study aims to investigate the color stability of ceromer with different thicknesses and different types of resin adhesive materials after accelerated aging and provide references for clinical application and selections. Nine groups of experimental samples were used, and each group contained five samples. We made joint samples with ceromer having three different thicknesses (1.00, 0.75, 0.50 mm) combined with three different resin adhesive materials (RelyX Veneer, RelyX Unicem, Filtek Z350 Flow), respectively. All samples were placed into Xenon Lamp Aging Instrument to implement accelerated aging. Spectrophotometer was used to measure the lightness (L*), red green color value (a*), and blue yellow color value (b*) of all samples before and after accelerated aging. The change of lightness (ΔL), red green color value (Δa), blue yellow color value (Δb), and color variation (ΔE) were also calculated. We investigated the influence of ceromer veneer thicknesses and resin adhesive material types on color variation by two-factor analysis of variance. The thickness and type factors showed significant influence on ΔE values, and exhibited interactions (P Ceromer veneer thickness and resin adhesive material types could affect the color stability of ceromer veneer and resin adhesive materials. The changes in lightness and color in ceromer veneer and resin adhesive materials are considered clinically acceptable after accelerated aging.

  13. Integrating electrostatic adhesion to composite structures

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  14. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  15. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  16. Effect of Surface Treatment, Silane, and Universal Adhesive on Microshear Bond Strength of Nanofilled Composite Repairs.

    Science.gov (United States)

    Fornazari, I A; Wille, I; Meda, E M; Brum, R T; Souza, E M

     The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs.  One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al 2 O 3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)-containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05).  The variables "surface treatment" and "adhesive" showed statistically significant differences for psilane did not lead to a statistically significant increase in bond strength. Silane-containing universal adhesive on its own was as effective as any combination of silane and adhesive, particularly when applied on air-abraded surfaces.

  17. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L. (UIC)

    2008-11-03

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  18. High elastic modulus nanopowder reinforced resin composites for dental applications

    Science.gov (United States)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the

  19. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  20. Effects of different sulfuric acid etching concentrations on PEEK surface bonding to resin composite.

    Science.gov (United States)

    Chaijareenont, Pisaisit; Prakhamsai, Sasiprapha; Silthampitag, Patcharawan; Takahashi, Hidekazu; Arksornnukit, Mansuang

    2018-01-26

    This study evaluated the effects of surface pretreatment with different concentrations of sulfuric acid etching on surface properties and bonding between Polyetheretherketone (PEEK) and a resin composite. Six groups of surface pretreatment (no pretreatment, etched with 70, 80, 85, 90, and 98% sulfuric acid for 60 s) were treated on PEEK. Surface roughness, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses were examined. Shear bond strength (SBS) and cross-sectional observations of the interfaces were performed. One-way ANOVA analysis revealed differences in surface roughness and SBS between groups. The 90 and 98% sulfuric acid etching significantly achieved the highest SBS (psulfuric acid etching were suggested to be the optimal concentration to improve adhesion between PEEK and the resin composite.

  1. Effects of modeling liquid/resin and polishing on the color change of resin composite

    Directory of Open Access Journals (Sweden)

    José Augusto SEDREZ-PORTO

    Full Text Available Abstract Modeling liquids/resins have been used to build up resin composite (RC restorations, although there is a lack of information regarding their effects on the color stability of the latter. Therefore, the purpose of the present study was to evaluate the effects of the presence of modeling liquid between layers of RC and the finishing/polishing state of the material on color change in specimens exposed to red wine staining over time. Specimens were prepared by placing four increments (±0.5 mm thick of RC (Filtek™ Z350 XT, 3M ESPE into molds; half of which were prepared by applying modeling liquid (Scotchbond™ Multi-Purpose™ Adhesive, SBMP, 3M ESPE between the layers of RC, whereas the other half were prepared without SBMP (control. Light-activation was performed after application of the final RC layer using a light-emitting diode (Radii, SDI curing unit with an irradiance of 900 mW/cm2 for 20 s. Each group was divided according to the surface finishing protocol (n = 7: nothing (non-polished or polishing with Sof-Lex™/diamond paste (polished. Initial colors of the specimens were evaluated with a digital spectrophotometer and the CIEL*a*b* color system. The specimens were stored in wine (37°C for 12 months, and the color measurements were reassessed after 4, 6, and 12 months of storage. Scanning electron microscopy (SEM analysis was performed at the end. Data were analyzed using ANOVA and Tukey’s test (α = 5%. The presence of SBMP resulted in lower overall color change of the RC as compared with the control. The non-polished specimens exhibited a significantly higher color change than the polished specimens. SEM images corroborated the previous findings. In summary, the use of modeling liquid between layers of RC shows potential for application to reduce or delay the staining process of RC over time. Moreover, polishing is essential to provide increased color stability of the RC restoration.

  2. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin composites; microwave absorbers; radio frequency absorbers. ... The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network ...

  3. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  4. Effect of dentin-cleaning techniques on the shear bond strength of self-adhesive resin luting cement to dentin.

    Science.gov (United States)

    Santos, M J M C; Bapoo, H; Rizkalla, A S; Santos, G C

    2011-01-01

    This in vitro study evaluated the influence of different cleansing techniques on the bond strength of self-adhesive cement to dentin. A total of 33 noncarious human molars were sectioned mesiodistally and embedded in chemically cured resin with the buccal or lingual surfaces facing upward. Superficial dentin was exposed and resin disk provisional restorations were cemented to the dentin surfaces with noneugenol provisional cement and were stored in distilled water at 37°C. After seven days, the provisional restorations were removed and 13 specimens were randomly assigned to each of the five groups (n=13), according to the following cleansing treatments: G1-excavator (control); G2-0.12% chlorhexidine digluconate; G3-40% polyacrylic acid; G4-mixture of flour pumice and water; and G5-sandblasting with 50 μm aluminum oxide particles at a pressure of 87 psi. Resin composite disks (Filtek Supreme Plus, 3M ESPE Dental Products, St Paul, MN, USA) 4.7 (±0.1) mm in diameter and 3.0 (±0.5) mm in height were cemented with self-adhesive cement (RelyX Unicem, 3M ESPE), photocured, and stored in distilled water at 37°C for 24 hours. Shear bond strength testing was conducted using a universal test machine at a crosshead speed of 0.5 mm/min until failure. Data were analyzed using analysis of variance (ANOVA) and the Tukey-B rank order test. Sandblasting with aluminum oxide (11.32 ± 1.70 MPa) produced significantly higher shear bond strength values compared with any other treatment groups (p<0.05). No significant differences were found between G1-control (7.74 ± 1.72 MPa), G2-chlorhexidine (6.37 ± 1.47 MPa), and G4-pumice (7.33 ± 2.85 MPa) (p<0.05).

  5. The effect of time between handling and photoactivation on self-adhesive resin cement properties.

    Science.gov (United States)

    da Silva Fonseca, Andrea Soares Quirino; Mizrahi, Jamil; Menezes, Livia Rodrigues; Valente, Lisia Lorea; de Moraes, Rafael Ratto; Schneider, Luis Felipe

    2014-06-01

    To evaluate the degree of conversion, absorption, and solubility in water of self-adhesive resin cements subjected to different time intervals between material preparation and the photoactivation procedure. Two dual self-adhesive resin cements were tested: RelyX Unicem and SmartCem2. The degree of conversion as a function of time was evaluated by Fourier-transformed infrared spectroscopy using the attenuated total reflectance technique. Three time intervals between handling and photoactivation were applied: Group 1 = immediately; Group 2 = a 1-minute interval; Group 3 = a 4-minute interval. All specimens were irradiated with a light-emitting diode source for 40 seconds. Thirty discs of each cement (1 mm thick × 6 mm diameter, n = 10) were prepared for the absorption and solubility tests. These specimens were stored in distilled water at 37°C for 90 days. The results were subjected to ANOVA with two factors (material and activation time intervals) and Tukey's test (95% significance). The 4-minute interval significantly reduced the degree of conversion of SmartCem2 (30.6% ± 8.3%). No other significant changes were observed for the degree of conversion; however, the time intervals before photoactivation interfered significantly in the water absorption of the RelyX Unicem specimens but not the SmartCem2 specimens. The time intervals did not affect the solubility of either cement. In all cases, SmartCem2 had higher solubility than RelyX Unicem. The time interval between handling and photoactivation significantly influenced the degree of conversion and water sorption of the resin-based cements. In general, one can say that the self-adhesive resin cements should be photoactivated as soon as possible after the material handling process. © 2014 by the American College of Prosthodontists.

  6. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  7. Bisphenol A Release: Survey of the Composition of Dental Composite Resins.

    Science.gov (United States)

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate "not disclosed". 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete.

  8. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    Science.gov (United States)

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  9. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  10. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  11. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  12. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  13. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  14. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture.

    Science.gov (United States)

    Kim, Ji Hye; Choe, Han Cheol; Son, Mee Kyoung

    2014-01-01

    This study aimed to evaluate the tensile and transverse bond strength of chairside reline resins (Tokuyama Rebase II, Mild Rebaron LC) to a thermoplastic acrylic resin (Acrytone) used for non metal clasp denture. The results were compared with those of a conventional heat polymerized acrylic resin (Paladent 20) and a thermoplastic polyamide resin (Biotone). The failure sites were examined by scanning electron microscopy to evaluate the mode of failure. As results, the bond strength of reline resins to a thermoplastic acrylic resin was similar to the value of a conventional heat polymerized acrylic resin. However, thermoplastic polyamide resin showed the lowest value. The results of this study indicated that a thermoplastic acrylic resin for non metal clasps denture allows chairside reline and repair. It was also found that the light-polymerized reline resin had better bond strength than the autopolymerizing reline resin in relining for a conventional heat polymerized acrylic resin and a thermoplastic acrylic resin.

  15. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  16. A clinical evaluation on adhesive posts in extensive composite restorations

    Directory of Open Access Journals (Sweden)

    Ghavamnasiri M. Associate Professor

    2003-06-01

    Full Text Available Problem: A few studies have been conducted about bioglass posts."nAim: The aim of this study was to compare bioglass posts with prefabricated metallic posts in clinical performance of extensive composite restorations for anterior endodontically treated teeth. Materials and Methods: Sixty endodontocally maxillary anterior teeth, with horizontally or vertically destruction, were selected. Teeth were divided into two groups based on the kind of post: Metallic prefabricated parapost and bioglass post. Each group was divided into three subgroups based on anterior bite: normal, deep bite and edge to edge. Gutta-percha was removed from 2/3 of canal length for parapost and 1/3 for bioglass post. After etching with phosphoric-acid (37% and applying dentine bonding syntac, Duo cement was used for the adhesion of bioglass post and a self cured composite (Degufil for parapost. Restoration was done with a hybrid composite (Heliomolar. Follow up studies, radio-graphically and clinically, were done every three months for a 1.5-year period. Exact Fisher and Pearson tests were used for data analysis."nResults: Apical lesion was not observed in any of the radiographs. Post seal was increased by resin cement and dentin bonding agent. Post type did not significantly affect on the clinical success rate of the restorations. The retention of restoration, for both posts, was the same. Crown destruction had no significant effect on success rate. The type of anterior bite had a significant effect on success rate, as the total 6.6% failure rate was related to the patients with anterior deep bite."nConclusion: It is suggested to use metallic paraposts and bioglass posts, in extensive composite restorations for patients with deep-bite, more conservatively.

  17. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2015-01-01

    This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems.

  18. Effects of surface roughness and dimorphism on the adhesion of Candida albicans to the surface of resins: scanning electron microscope analyses of mode and number of adhesions.

    Science.gov (United States)

    Mayahara, Mitsuori; Kataoka, Ryuta; Arimoto, Takafumi; Tamaki, Yukimichi; Yamaguchi, Nobuaki; Watanabe, Yuki; Yamasaki, Yoshizumi; Miyazaki, Takashi

    2014-11-01

    Candida albicans is a common oral fungus but can cause serious conditions such as Candida stomatitis. We investigated C. albicans adhesion to the surface of denture-base resins at two growth phases. Fungal suspensions of logarithmic (9 h) and stationary phase (24 h) C. albicans (JCM2085) were used. Scanning electron microscopy (SEM) confirmed that yeast and mycelial forms were predominant in 9-h and 24-h cultures, respectively. Resin strips were polished to three surface roughness levels (Ra 3.2 μm, Ra 0.48 μm and Ra 0.06 μm) and were then immersed in C. albicans suspensions for both phases. The SEM images were taken at five sites on each strip. Adhesion of mycelial-form C. albicans on rough surfaces (Ra = 3.2) was 2.2 times higher than on smooth surfaces (Ra = 0.06; 7030 vs 3580 adhesions/mm(2), P < 0.01). The hyphae of these mycelial forms fully penetrated the surface cracks. Fewer adhesions occurred for yeast-form C. albicans, regardless of surface type (440-620 adhesions/mm(2), P = n.s.). Adhesion of yeast-form C. albicans was indifferent to surface roughness. In contrast, mycelial adhesion increased with surface roughness of the resin because mycelia infiltrated the minute protuberances on rough surfaces. © 2013 Wiley Publishing Asia Pty Ltd.

  19. Ultraviolet light and ultraviolet light-activated composite resins

    International Nuclear Information System (INIS)

    Murray, G.A.; Yates, J.L.; Newman, S.M.

    1981-01-01

    In a comparison of the UV light--activated composite resins, Estilux was polymerized to a significantly greater depth than the other composite resins. In general, Lee-fill polymerized the least. When comparing the UV light sources, the Lee light and the Duralux light did not significantly differ from each other, but both polymerized the materials tested to a significantly greater depth than the other light sources. Of the two time exposures, 60-second exposure provided a significantly greater depth of polymerization than 20 seconds for each light with each material

  20. Graphene Oxide and Thermally Exfoliated Graphene Cyanate Ester Resin Composites

    Science.gov (United States)

    2013-05-01

    arranged in a honey -comb lattice, its high surface to volume ratio allows property improvements at lower weight fractions than other composite fillers...Resin Composites 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Josiah T. Reams, Kevin R. Lamison...materials for space and propulsion applications have brought attention to the need for high temperature composite materials with improved stiffness

  1. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    International Nuclear Information System (INIS)

    Liu Ping; Guan Qingbao; Gu Aijuan; Liang Guozheng; Yuan Li; Chang Jianfei

    2011-01-01

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  2. Resin adhesion strengths to zirconia ceramics after primer treatment with silane coupling monomer or oligomer.

    Science.gov (United States)

    Okada, Masahiro; Inoue, Kazusa; Irie, Masao; Taketa, Hiroaki; Torii, Yasuhiro; Matsumoto, Takuya

    2017-09-26

    Resin bonding to zirconia ceramics is difficult to achieve using the standard methods for conventional silica-based dental ceramics, which employ silane coupling monomers as primers. The hypothesis in this study was that a silane coupling oligomer -a condensed product of silane coupling monomers- would be a more suitable primer for zirconia. To prove this hypothesis, the shear bond strengths between a composite resin and zirconia were compared after applying either a silane coupling monomer or oligomer. The shear bond strength increased after applying a non-activated ethanol solution of the silane coupling oligomer compared with that achieved when applying the monomer. Thermal treatment of the zirconia at 110°C after application of the silane coupling agents was essential to improve the shear bond strength between the composite resin cement and zirconia.

  3. Effects of silane application on luting fiber posts using self-adhesive resin cement.

    Science.gov (United States)

    Leme, Ariene Arcas; Pinho, André Luis; de Gonçalves, Luciano; Correr-Sobrinho, Lorenço; Sinhoreti, Mario Alexandre

    2013-06-01

    To evaluate the effects of different glass-fiber post surface treatments on the bond strength to root dentin. Fifty bovine incisors were used in this study. After removing the crowns, the teeth were endodontically treated. The roots were randomly divided into five groups according to post surface treatment. The groups were as follows: CO (Control) - no treatment; G1 - RelyX Ceramic Primer (silane) only; G2 - silane and Solobond M; G3 - silane and Scotchbond Adhesive; G4 - silane and Excite. For post cementation, RelyX Unicem was used according to the manufacturer's recommendation and the roots were stored in a light-proof container with 100% relative humidity for 24 h. The specimens were transversally sectioned. Subsequently, the cervical, middle, and apical regions of the root were positioned in a push-out device and tested at 0.5 mm/min using a universal testing machine (Instron). The data were statistically analyzed with two-way ANOVA and Tukey's post-hoc test. The fractured specimens were then observed under a stereoscopic loupe at 60X magnification. No significant difference in bond strength was found among the groups that received a silane or silane plus an adhesive system (p > 0.05). However, the CO (no silane) showed the lowest bond strength. Regarding G1, G2, G3, and G4, the cervical region of the root canal attained better bond strengths than did the middle or apical regions. The most frequent failure mode occurred at the cement/dentin interface. Silane application may be necessary to improve the adhesion of fiber posts luted with the self-adhesive resin cement evaluated here. The application of an adhesive layer between the fiber post and resin cement did not have any influence on the bond strength when the silane coupling was previously used.

  4. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months.

    Science.gov (United States)

    Vogl, Vanessa; Hiller, Karl-Anton; Buchalla, Wolfgang; Federlin, Marianne; Schmalz, Gottfried

    2016-12-01

    A new universal adhesive with corresponding luting composite was recently marketed which can be used both, in a self-etch or in an etch-and-rinse mode. In this study, the clinical performance of partial ceramic crowns (PCCs) inserted with this adhesive and the corresponding luting material used in a self-etch or selective etch approach was compared with a self-adhesive universal luting material. Three PCCs were placed in a split-mouth design in 50 patients. Two PCCs were luted with a combination of a universal adhesive/resin cement (Scotchbond Universal/RelyX Ultimate, 3M ESPE) with (SB+E)/without (SB-E) selective enamel etching. Another PCC was luted with a self-adhesive resin cement (RelyX Unicem 2, 3M ESPE). Forty-eight patients were evaluated clinically according to FDI criteria at baseline and 6, 12 and 18 months. For statistical analyses, the chi-square test (α = 0.05) and Kaplan-Meier analysis were applied. Clinically, no statistically significant differences between groups were detected over time. Within groups, clinically significant increase for criterion "marginal staining" was detected for SB-E over 18 months. Kaplan-Meier analysis revealed significantly higher retention rates for SB+E (97.8 %) and SB-E (95.6 %) in comparison to RXU2 (75.6 %). The 18-month clinical performance of a new universal adhesive/composite combination showed no differences with respect to bonding strategy and may be recommended for luting PCCs. Longer-term evaluation is needed to confirm superiority of SB+E over SB-E. At 18 months, the new multi-mode adhesive, Scotchbond Universal, showed clinically reliable results when used for luting PCCs.

  5. Benzoxazine resin/carbon nanotube nanostructured composite's degradation kinetic.

    Science.gov (United States)

    Untem, Flávia O; Botelho, Edson C; Rezende, Mirabel C; Costa, Michelle Leali

    2014-07-01

    In the last decades a new class of thermoset phenolic resin is emerging as a substitute of the traditional epoxy and phenolic resins in the aircraft industry. This new class is called polybenzoxazines and its associates the epoxy resin's mechanical properties and phenolic resin's thermal and flame retardant properties, resulting in a resin with superior properties when analyzed with the others singly. The introduction of carbon nanotubes in low concentration into polymeric matrices can produce nanostructured materials with good properties. Thus, in this study, nanostructured composites of benzoxazine resin were processed with different concentration of carbon nanotubes (0.1%, 0.5% and 1.0% w/w). In order to evaluate the thermostability of the benzoxazine resin and its nanostructured composites, it was performed a degradation kinetic study using the thermogravimetric technique. For that, the analysis have been done with the temperature ranging from 25 degrees C to 1000 degrees C at nitrogen atmosphere (100 mL x min(-1)) and in different heating rates (2, 4, 6, 8, 10 and 20 degrees C x min(-1)), in order to obtain the kinetic parameters (activation energy, E(a), and pre-exponential factor, A), based on Ozawa-Wall-Flynn model. The results showed excellent agreement between the thermogravimetric curves obtained and the Ozawa-Wall-Flynn method. The degradation kinetic study showed that the introduction of carbon nanotubes in the benzoxazine matrix does not change the thermostability of the resin, so that it does not have a significant influence in the shelf life of the material.

  6. The Preparation and Characterization of Pyrolysis Bio-Oil-Resorcinol-Aldehyde Resin Cold-Set Adhesives for Wood Construction

    Directory of Open Access Journals (Sweden)

    Xueyong Ren

    2017-06-01

    Full Text Available Resorcinol-formaldehyde (RF resin is a kind of excellent exterior-grade wood structural adhesive, which can be conveniently cold-set for various applications. In order to decrease the production cost, pyrolysis bio-oil from renewable bioresources was used to replace resorcinol to synthesize the bio-oil-resorcinol-aldehyde (BRF resin. The effect of replacing resorcinol with bio-oil on the properties, bonding performance, and characterization of resorcinol-aldehyde resin was comparatively investigated. A higher solid content and viscosity, albeit a lower shear strength, was found when the replacement ratio of bio-oil increased. The bonding performance of BRF with 10 and 20 wt % bio-oil was close to that of the pure RF resin. However, the trends of being less cross-linked, more easily decomposed, but more porous were found when the substitution ratio of bio-oil was higher than 20 wt %. Interestingly, it was found that the wood failure values of the BRF resins with bio-oil of no more than 20 wt % were slightly higher than that of the pure RF resin. On the whole, BRF resins with 20 wt % bio-oil is recommended as a wood structural adhesive, comprehensively considering the bio-oil substitution ratio and resin properties. The results obtained here showed that pyrolysis bio-oil is a promising green raw material for the production of RF resin with lower cost.

  7. [Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic].

    Science.gov (United States)

    Łagodzińska, Paulina; Bociong, Kinga; Dejak, Beata

    2014-01-01

    Resin cements establish a strong durable bond between zirconia ceramic and hard tissues of teeth. It is essential to use primers with proper chemical composition before cementation. The aim of this study was to assess the influence of primer's chemical composition on the shear bond strength of zirconia ceramic to resin cements. 132 zirconia specimens were randomly assigned to four groups. There were four resin systems used. They included resin cement and respective primer, dedicated to zirconia: Clearfil Ceramic Primer/Panavia F2.0, Monobond Plus/Multilink Automix, AZ - Primer/ResiCem, Z - Prime Plus/Duo-Link. In each group the protocol of cementation was as follows: application of primer to the zirconia surface and application of the respective resin cement in cylindric mold (dimensions: 3.0 mm height and 3.0 mm diameter). Then, the shear bond strength was evaluated and the failure type was assessed in lupes (×2.5 magnification), also random specimens under SEM. The Wilcoxon test was used to analyze the data, the level of significance was α = 0.05. Finally, the known chemical composition of each primer was analysed in reference to probable chemical bonds, which may occure between primers and zirconia. The mean shear bond strength between resin cements and zirconia was the highest for Z-Prime Plus/Duo-Link (8.24 ± 3,21 MPa) and lowest for Clearfil Ceramic Primer/Panavia F 2.0 (4.60 ± 2.21 MPa). The analysis revealed significant difference between all groups, except pair Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem. The failure type in groups of Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem was mainly adhesive, in groups Monobond Plus/ /Multilink Automix and Z-Prime Plus/Duo-Link mainly mixed. The chemical composition of primers affects different bond mechanisms between resin cements and zirconia. The highest shear bond strength of resin cement to zirconia can be obtained for the primer composed of 10-Methacryloyloxydecyl dihydrogen

  8. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  9. Fatigue resistance of CAD/CAM resin composite molar crowns.

    Science.gov (United States)

    Shembish, Fatma A; Tong, Hui; Kaizer, Marina; Janal, Malvin N; Thompson, Van P; Opdam, Niek J; Zhang, Yu

    2016-04-01

    To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    Science.gov (United States)

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  11. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    Science.gov (United States)

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite

  12. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions.

    Science.gov (United States)

    Ozcan, Mutlu; Barbosa, Silvia Helena; Melo, Renata Marques; Galhano, Graziela Avila Prado; Bottino, Marco Antonio

    2007-10-01

    This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 microm SiO(x)) (CoJet, 3M ESPE)+silane (ESPE-Sil) (CJ), (2) phosphoric acid+adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA+PA; Gr2:CA+CJ; Gr3:BW+PA; Gr4: BW+CJ; Gr5:TC+PA; Gr6: TC+CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)). The means and standard deviations of bond strength (MPa+/-S.D.) per group were as follows: Gr1: 25.5+/-10.3; Gr2: 46.3+/-10.1; Gr3: 21.7+/-7.1; Gr4: 52.3+/-15.1; Gr5: 16.1+/-5.1; Gr6, 49.6+/-13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (presin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water.

  13. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  14. Effect of Ingested Liquids on Color Change of Composite Resins.

    Science.gov (United States)

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (Pcomposite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  15. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Science.gov (United States)

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  16. Dentin-enamel adhesives in pediatric dentistry: an update.

    Science.gov (United States)

    García-Godoy, Franklin; Donly, Kevin J

    2015-01-01

    Adhesives and composite technology have made composite resins and polyacid-modified resin-based composites (compomers) very popular as materials to restore primary and permanent anterior and posterior teeth. More conservative preparations can be performed that maintain more tooth structure due to the adhesive properties of the adhesives used with composites and compomers. Meticulous care in the placement of adhesives and, subsequently, resin-based composites and compomers is necessary to produce long-term satisfactory results. The purpose of this paper is to update the current status in regards to dentin-enamel adhesives in primary teeth.

  17. A preliminary evaluation into the performance of posterior resin bonded cast metal restorations (adhesive onlays).

    Science.gov (United States)

    Marchan, S M; Eder, A; Marchan, Q M; Coldero, L; Choon, A Tang; Smith, W A

    2013-03-01

    Posterior resin bonded cast metal restorations (adhesive onlays) were used in a variety of clinical scenarios including: management of tooth wear and cracked tooth, as retainers for fixed bridge work, for correction of the occlusal plane and in providing cuspal coverage following endodontic treatment. The mean length in service for the examined onlays was 42 months, with a range of 9-75 months. Two restorations in two patients failed resulting in an overall success of 94%. Patient satisfaction was high at 95%. Such restorations seem to be a viable option for managing a number of clinical scenarios.

  18. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  19. Bonding Strength of Universal Adhesives To Er,Cr:YSGG Laser ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... of the infiltrated resin monomers, dentin hybrid layer and resin tags are formed, providing micromechanical bonding for composite resin via the use of adhesive system.[3] Self-etching is another approach for bonding to dentin using the resin adhesive systems. Self-. Original Article. INTRODUCTION.

  20. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio.

    Science.gov (United States)

    Vidotti, Hugo A; Manso, Adriana P; Leung, Victor; do Valle, Accácio L; Ko, Frank; Carvalho, Ricardo M

    2015-09-01

    To evaluate the influence of different resin blends concentrations and nanofibers mass ratio on flexural properties of experimental Poliacrylonitrile (PAN) nanofibers reinforced composites. Poliacrylonitrile (PAN) nanofibers mats were produced by electrospinning and characterized by tensile testing and scanning electron microscopy (SEM). Experimental resin-fiber composite beams were manufactured by infiltrating PAN nanofiber mats with varied concentrations of BisGMA-TEGDMA resin blends (BisGMA/TEGDMA: 30/70, 50/50 and 70/30weight%). The mass ratio of fiber to resin varied from 0% to 8%. Beams were cured and stored in water at 37°C. Flexural strength (FS), flexural modulus (FM) and work of fracture (WF) were evaluated by three-point bending test after 24h storage. The tensile properties of the PAN nanofibers indicated an anisotropic behavior being always higher when tested in a direction perpendicular to the rotation of the collector drum. Except for WF, the other flexural properties (FS and FM) were always higher as the ratio of BisGMA to TEGDMA increased in the neat resin beams. The addition of different ratios of PAN fibers did not affect FS and FM of the composite beams as compared to neat resin beams (p>0.05). However, the addition of fibers significantly increased the WF of the composite beams, and this was more evident for the blends with higher TEGDMA ratios (presin blends did not negatively affect the properties of the composite and resulted in an increase in toughness that is a desirable property for a candidate material for prosthodontics application. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Cavity Adaptation of Water-Based Restoratives Placed as Liners under a Resin Composite

    Directory of Open Access Journals (Sweden)

    Sheela B. Abraham

    2017-01-01

    Full Text Available Purpose. To investigate the cavity adaptation of mineral trioxide (ProRoot MTA/MT, tricalcium silicate (Biodentine/BD, and glass ionomer (Equia Fil/EF cements used as liners and the interfacial integrity between those liners and a composite resin placed as the main restorative material. Materials and Methods. Standardized class I cavities (n: 8 per group were prepared in upper premolars. Cavities were lined with a 1 mm thick layer of each of the tested materials and restored with Optibond FL adhesive and Herculite Precis composite resin. Cavity adaptation of the restorations was investigated by computerized X-ray microtomography. The regions of interest (ROI were set at the cavity-liner (CL interface and the liner-resin (LR interface. The percentage void volume fraction (%VVF in the ROI was calculated. The specimens were then sectioned and the interfaces were evaluated by reflection optical microscopy, to measure the % length (%LD of the interfacial gaps. Selected samples were further evaluated by scanning electron microscopy. Statistical analysis was performed by two-way ANOVA and Student-Newman-Keuls multiple comparison test (a=0.05. Results. MT showed significantly higher %VVF and %LD values in CL interfaces than BD and EF (p<0.05. No significant differences were found among the materials for the same values at the LR interfaces. Conclusions. When used as a composite liner, ProRoot MTA showed inferior cavity adaptation at dentin/liner interface when compared to Biodentine and Equia Fil.

  2. Composite Resin – A Versatile Restorative Tool | Koleoso | Nigerian ...

    African Journals Online (AJOL)

    ... the use of composite resin restorations as a treatment option in several situations where conventional aesthetic restorations such as porcelain veneers, crowns and cream-metal crown could otherwise be placed. Methods and Materials: Patients who presented with restoration aesthetic challenges over a six months period ...

  3. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  4. Repair of Defective Composite Resin Restoration: Current Trend ...

    African Journals Online (AJOL)

    Background: Repair of defective composite resins restorations is being increasingly recognized as a viable alternative to replacement. there is however no consensus yet on the treatment protocol. Objective: To determine the views and practice of specialists in Conservative Dentistry in Nigeria as regard to repair procedure ...

  5. Fracture strength of cusp replacing resin composite restorations.

    NARCIS (Netherlands)

    Kuys, R.H.; Fennis, W.M.M.; Kreulen, C.M.; Roeters, F.J.M.; Burgersdijk, R.C.W.

    2003-01-01

    PURPOSE: To assess the influence of an additional shoulder preparation on the fracture strength of a cusp-replacing direct resin composite restoration in a premolar that previously had an amalgam MOD restoration followed by fracture of a cusp. MATERIALS AND METHODS: Two preparation designs were

  6. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  7. Chemical composition and palaeobotanical origin of Miocene resins ...

    Indian Academy of Sciences (India)

    The terpenoid composition of resins from the Miocene lignite horizons from the Kerala –Konkan Coast,western India was analyzed by Curie-point pyrolysis –gas chromatography –mass spectrometry (Cupy –GC –MS).The major pyrolysates were cadalene-based bicyclic sesquiterpenoids including some C30-C31 ...

  8. Chemical composition and palaeobotanical origin of Miocene resins ...

    Indian Academy of Sciences (India)

    The terpenoid composition of resins from the Miocene lignite horizons from the Kerala –Konkan Coast,western India was analyzed by Curie-point pyrolysis –gas ... These sesquiterpenoids which are commonly detected in many SE Asian crude oils may be utilised as useful biomarkers for petroleum exploration in the ...

  9. Degradation of dental resin composites during intra-oral wear

    NARCIS (Netherlands)

    Yulianto, Heribertus Dedy Kusuma

    2017-01-01

    Dental resin composites have become an integral part of modern dentistry and used worldwide to restore missing tooth structures, to modify tooth color and anatomical contour, and to enhance aesthetics and function. The dentist should be aware that, the aggressive complexity of the oral environment

  10. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    Science.gov (United States)

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin restorative for class II MOD cavities resulted in reduced cuspal deflection in comparison to the two other bulk-fill composite resins tested. The silorane-based Filtek LS restorative resulted in the least cuspal deflection in

  11. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  12. Can heat treatment procedures of pre-hydrolyzed silane replace hydrofluoric acid in the adhesion of resin cement to feldspathic ceramic?

    Science.gov (United States)

    Cotes, Caroline; de Carvalho, Rodrigo Furtado; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa; Ozcan, Mutlu

    2013-12-01

    To evaluate the influence of heat treatment (HT) procedures of a pre-hydrolyzed silane on bond strength of resin cement to a feldspathic ceramic. Ceramic and composite blocks (N = 30) were divided into six groups (n = 5) and subjected to the following conditioning procedures: G1: 9.6% hydrofluoric acid (HF) for 20 s + silane (RelyX Ceramic Primer, 3M ESPE) + resin cement (Panavia F2.0, Kuraray) (control); G2: HF (20 s) + silane + heat treatment in furnace (HTF) (100°C, 2 min) + resin cement; G3: silane + HTF + resin cement; G4- HF (20 s) + silane + heat treatment with hot air (HTA) (50 ± 5°C for 1 min) + resin cement; G5: silane + HTA + resin cement; G6: silane + resin cement. The microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using a stereomicroscope and SEM to categorize the failure types. The data were statistically evaluated using one-way ANOVA and Tukey's test (5%). The control group (G1) showed no pre-test failures and presented significantly higher mean MTBS (16.01 ± 1.12 MPa) than did other groups (2.63 ± 1.05 to 12.55 ± 1.52 MPa) (p = 0.0001). In the groups where HF was not used, HTF (G3: 12.55 ± 1.52 MPa) showed significantly higher MTBS than did HTA (G5: 2.63 ± 1.05 MPa) (p silane either in a furnace or with the application of hot air cannot replace the use of HF gel for the adhesion of resin cement to feldspathic ceramic. Yet when mean bond strengths and incidence of pre-test failures are considered, furnace heat treatment delivered the second best results after the control group, being considerably better than hot air application.

  13. Are flowable resin-based composites a reliable material for metal orthodontic bracket bonding?

    Science.gov (United States)

    Pick, Bárbara; Rosa, Vinícius; Azeredo, Tatiana Rocha; Cruz Filho, Eduardo Augusto Mascarenhas; Miranda, Walter Gomes

    2010-07-01

    To compare the tensile bond strength (TBS) and adhesive remnant index (ARI) of three flowable resin-based composites and three orthodontic adhesive systems for metal bracket bonding. Sixty bovine incisors were randomly divided into six groups. Enamel surfaces were etched with 37 percent phosphoric acid for 30 seconds and stainless steel orthodontic brackets were bonded using either flowable resin-based composites (3M Flow, FL; Tetric Flow, TF; and Wave, WA) or orthodontic bonding systems (Transbond XT, TX; Concise Orthodontic, CO; Fill Magic Ortodôntico, FM). All specimens were thermal cycled and stored in distilled water at 37°C for 24 hours, after which they were subsequently tested for TBS using a universal testing machine. ARI scores were determined after the failure of brackets. TBS and ARI data were submitted to ANOVA, Tukey, and Kruskal-Wallis tests (p=0.05), respectively. Rankings of the resin-based composites based on TBS means (MPa) were TX (6.4 ± 2.1), followed by CO (4.5 ± 2.7), FM (3.7 ± 1.2), FL (3.6 ± 1.2), TF (3.3 ± 1.2), and WA (2.4 ± 0.6). CO exhibited the lowest ARI mean score (0.9 ± 1.2) which was significantly different from the other five materials: TX (2.8 ± 0.42), FM (2.8 ± 0.42), FL (2.9 ± 0.32), TF (2.9 ± 0.32), and WA (3.0 ± 0.01). However, there were no statistically significant differences among the other groups with mean scores of 2.8-3.0. A score of 3.0 indicated that all the resin remained bonded to the tooth surface. The flowable resin-based composites tested (Fl, TF, and WA) used to bond metal orthodontic brackets to bovine enamel had low mean TBS values but acceptable ARI mean scores. Flowable composites may not be appropriate for bracket bonding, unless the teeth to be bonded are not subjected to higher orthodontic stresses, such as those without an antagonist.

  14. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  15. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  16. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  17. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  18. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  19. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  20. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  1. Bond Strength of Composite Resin to Pulp Capping Biomaterials after Application of Three Different Bonding Systems

    Directory of Open Access Journals (Sweden)

    Zahra Jaberi-Ansari

    2013-08-01

    Full Text Available Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA, Root MTA (RMTA and calcium enriched mixture (CEM cement, using three bonding systems [a total-etch (Single Bond and two self-etch systems (Protect bond and SE Bond]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 subgroups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitro study, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems.

  2. Microwave absorption properties of graphite flakes-phenolic resin composite

    Science.gov (United States)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  3. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  4. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... dried with compressed air leaving the surface moist. Etch-and-rinse adhesive was utilized to the cavity and left for 20 s. The solvent was detached with air and adhesive was light‑cured for 20 s. Then, the cavities were filled with flowable composite followed by polymerizing for. 20 s. For the second group, the ...

  5. Resin composite repair for implant-supported crowns.

    Science.gov (United States)

    Bonfante, Estevam A; Suzuki, Marcelo; Hirata, Ronaldo; Bonfante, Gerson; Fardin, Vinicius P; Coelho, Paulo G

    2017-08-01

    This study evaluated the reliability of implant-supported crowns repaired with resin composites. Fifty-four titanium abutments were divided in three groups (n = 18 each) to support resin nanoceramic molar crowns, as follows: (LU) (Lava Ultimate, 3M ESPE); LU repaired with either a direct or an indirect resin composite. Samples were subjected to mouth-motion accelerated-life testing in water (n = 18). Cumulative damage with a use stress of 300 N was used to plot Weibull curves for group comparison. Reliability was calculated for a mission of 100,000 cycles at 400 N load. Beta values were 0.83 for LU, 0.31 and 0.27 for LU repaired with Filtek and Ceramage, respectively. Weibull modulus for LU was 9.5 and η = 1047 N, m = 6.85, and η = 1002 N for LU repaired with Ceramage, and m = 4.65 and η = 766 N for LU repaired with Filtek (p material, and detailed fractography is presented. The performance of resin nanoceramic material repaired with an indirect composite was maintained after accelerated-life testing compared to unrepaired controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1481-1489, 2017. © 2016 Wiley Periodicals, Inc.

  6. Ten-year Clinical Performance of Posterior Resin Composite Restorations.

    Science.gov (United States)

    Krämer, Norbert; Reinelt, Christian; Frankenberger, Roland

    2015-08-01

    To investigate the clinical behavior of two different resin-based restorative systems in Class II cavities in a controlled prospective split-mouth study over 10 years. Thirty patients received 68 resin composite restorations (Solobond M + Grandio: n = 36; Syntac + Tetric Ceram: n = 32) by one dentist in a private practice. 35% of cavities revealed no enamel at the bottom of the proximal box, 48% of cavities provided Grandio restoration suffered marginal fracture with exposed dentin and one Tetric Ceram restoration failed due to cusp fracture. After 10 years, Grandio showed higher surface roughness (p = 0.03) and less color match (p = 0.024; Mann-Whitney U-test). Molar restorations performed worse than premolar fillings regarding marginal integrity (4 and 10 years), filling integrity (4, 8, and 10 years), and tooth integrity (4, 8, and 10 years). The main reasons for degradation of resin composites were chipping and cracks in molar restorations after 8 years. Beyond the 4-year recall, marginal staining increased (43% bravo for stained margins at four years, 52% at 8 years, and 71% at 10 years). Tooth integrity deteriorated significantly due to more enamel cracks and chipping over time (9% at baseline and 89% after 10 years (p<0.05). Direct resin composite restorations performed satisfactorily over 10 years of clinical service.

  7. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Directory of Open Access Journals (Sweden)

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  8. Evaluation of residual monomer release and toxicity of self-adhesive resin cements.

    Science.gov (United States)

    Kurt, Aysegul; Altintas, Subutay Han; Kiziltas, Mustafa Volkan; Tekkeli, Serife Evrim; Guler, Eray Metin; Kocyigit, Abdurrahim; Usumez, Aslihan

    2018-01-30

    The aim of this study was to evaluate the amount of leached residual monomers from self-adhesive resin cements and evaluate their toxicity in-vitro. A total of 60 disk-shaped specimens (5 mm in diameter and 0.5 mm in thickness) were prepared from each cement (RelyX U200, SpeedCEM, G-Cem) (n=20). Specimens were immersed in artificial saliva and the amount of released monomers [urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA)] was identified. Then, the cytotoxicity and genotoxicity effect on cells were evaluated using the defined amounts of released monomers from cements. The highest monomer release was detected in G-Cem (p<0.05). The highest cytotoxicity value was identified from SpeedCEM (p<0.01) and the highest genotoxicity values were calculated from RelyX U200 (p<0.05). Released UDMA and TEGDMA from self-adhesive resin cements induced cytotoxicity and genotoxicity effect on cells.

  9. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    Science.gov (United States)

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Time-Dependent Effect of Refrigeration on Viscosity and Conversion Kinetics of Dental Adhesive Resins

    Science.gov (United States)

    Faria-e-Silva, André L; Piva, Evandro; Moraes, Rafael R

    2010-01-01

    Objectives: This study evaluated the effect of refrigeration at 4°C and post-refrigeration times (immediate, 5, 10, 15, or 20 min) on the viscosity and conversion kinetics of adhesive bonding resins. Methods: Scotchbond Dual-Cure (3M ESPE) and Clearfil SE Bond (Kuraray) were tested. Control samples were kept at 25°C for 24 h. At each post-refrigeration time, the temperature was checked with a K-type thermocouple. Viscosity measurements as a function of temperature were performed using a cone-plate viscometer. Real-time polymerization was monitored by infrared spectroscopy. Degree of conversion (DC) was calculated for each second during polymerization, and the rate of polymerization analyzed. Data were separately submitted to two-way ANOVA and Tukey’s test (Prefrigerated groups (68.8–69.5%). Clearfil always showed significantly higher DC than Scotchbond. Conclusions: Refrigeration presented a significant time- and material-dependent effect on the viscosity and polymerization kinetics of the bonding resins. Under clinical conditions, adhesive agents should be removed from the refrigerator at least 20 min before being used. PMID:20396445

  11. Effects of metal primers on bonding of adhesive resin cement to noble alloys for porcelain fusing.

    Science.gov (United States)

    Okuya, Nobuhiro; Minami, Hiroyuki; Kurashige, Hisanori; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo

    2010-03-01

    This study evaluated the effects of metal primers on the bonding of adhesive resin to four pure metals (Au, Pd, Ag, Cu) and two noble alloys for porcelain fusing (high-gold and high-palladium content alloys). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of the three metal primers (V-Primer, Metaltite, and M.L. Primer). Bonded specimens were fabricated by applying adhesive resin (Super-Bond C&B) on the primed surface. Shear bond strength (SBS) was determined both before and after thermocycling (4-60 degrees C for 2,000 cycles). The highest SBS values to each pure metal after thermocycling were 33.5 MPa for Au by M.L. Primer, 35.0 MPa for Ag by V-Primer, and 34.4 MPa for Cu by Metaltite. SBS to high-gold content alloy after thermocycling was 33.3 MPa by M.L. Primer. None of the primers was effective for pure Pd and high-palladium content alloy after thermocycling.

  12. Repair of amalgam restorations with composite resin and bonded amalgam: a microleakage study.

    Science.gov (United States)

    Popoff, Daniela Araújo Veloso; Gonçalves, Fabiana Santos; Magalhães, Cláudia Silami; Moreira, Allyson Nogueira; Ferreira, Raquel Conceição; Mjör, Ivar A

    2011-01-01

    Total replacement is the most common technique for defective amalgam restorations, and it represents a major part of restorative dental treatment. Repair is an alternative option for amalgam restorations with localized defects. This study compared microleakage of amalgam restorations repaired by bonded amalgam or composite resin. Thirty extracted human pre-molars were prepared and restored with class I amalgam. A simulated defect was prepared that included the cavosurface margin on restorations, and the pre-molars were assigned to two treatment groups (n=15): In group 1, premolars were treated by composite resin (34% Tooth Conditioner Gel + Adper Single Bond 2 + Z100) and in group 2, premolars were repaired by bonded amalgam (34% Tooth Conditioner Gel + Prime and Bond 2.1 + Permite C). The teeth were immersed in a 50% silver nitrate solution, thermocycled, sectioned longitudinally and then observed by three examiners using a stereomicroscope. Microleakage was evaluated using a 0-4 scale for dye penetration, and data was analyzed by Kruskal Wallis and Dunn tests. Neither of the two methods eliminated microleakage completely. Composite resin was significantly the most effective for repair/tooth interface sealing (score 0 = 80.0%; P=0.0317). For the repair/restoration interface, composite resin was also statistically more effective as a sealant (score 0=66%; P=0.0005) when compared to the bonded amalgam technique (score 0=13%; P=0.0005). The use of adhesive systems significantly affected the ability to seal the repair/ tooth interface. However, at the level of the repair/restoration interface, the bonded amalgam technique may increase microleakage.

  13. Comparative analysis of the shrinkage stress of composite resins

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Pereira

    2008-02-01

    Full Text Available The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500. In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05. The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 µm; Filtek Supreme = 10.66 ± 1.211µm; Admira = 11.16 ± 2.041 µm and Grandio = 10.50 ± 1.224 µm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization and third method (wall-to-wall shrinkage. The composite resins obtained with the second method (Teflon method differed significantly regarding gap formation.

  14. Comparative analysis of the shrinkage stress of composite resins.

    Science.gov (United States)

    Pereira, Rosana Aparecida; Araujo, Paulo Amarante de; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05). The obtained contraction forces were: Grandio = 12.18 +/- 0.428N; Filtek Z 250 = 11.80 +/- 0.760N; Filtek Supreme = 11.80 +/- 0.707 N; and Admira = 11.89 +/- 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 +/- 0.0357%; Filtek Supreme = 0.36 +/- 0.0438%; Admira = 0.25 +/- 0.0346% and Grandio = 0.16 +/- 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 +/- 2.160 microm; Filtek Supreme = 10.66 +/- 1.211 microm; Admira = 11.16 +/- 2.041 microm and Grandio = 10.50 +/- 1.224 microm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation.

  15. Differences in color, translucency and fluorescence between flowable and universal resin composites.

    Science.gov (United States)

    Yu, Bin; Lee, Yong-Keun

    2008-10-01

    To evaluate the optical properties such as color, translucency and fluorescence of flowable resin composites, and compare them with the corresponding shade universal resin composites of the same brand. Four brands of flowable and universal resin composites of the same shade designation (A2) were investigated. Color of specimens (2mm in thickness) was measured after polymerization on a reflection spectrophotometer over background of white, black and each corresponding composite material itself. Color differences (DeltaE(ab)(*)) between each combination of resin composites were determined. Translucency parameter (TP) and color difference by the fluorescent emission (DeltaE(ab)(*)-FL) of materials were also calculated. Differences in the optical properties of flowable and universal resin composites were analyzed with one-way ANOVA. DeltaE(ab)(*) between the flowable and the corresponding universal resin composites was in the range of 1.0-6.0 DeltaE(ab)(*) units, which was perceptible (DeltaE(ab)(*)>2.6) in three brands. Flowable resin composites revealed lower TP values in two of the four brands. DeltaE(ab)(*) between flowable and the corresponding universal resin composites was influenced by their difference in translucency. All the four universal resin composites and two flowable resin composites showed fluorescent peak, and the range of DeltaE(ab)(*)-FL was 0.3-2.3 DeltaE(ab)(*) units. Optical properties of flowable and universal resin composites was significantly different (presin composites should be considered for clinically acceptable color matching.

  16. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-03-01

    In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey's test were used to analyze the data (pself-etch) was significantly different from group D (total-etch) (pself-etch) with D (p= 0.024). The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive.

  17. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  18. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia: a function of water storage and thermal cycling.

    Science.gov (United States)

    Keul, Christine; Liebermann, Anja; Roos, Malgorzata; Uhrenbacher, Julia; Stawarczyk, Bogna; Ing, Dipl

    2013-11-01

    The authors investigated the use of ceramic primers combined with self-adhesive resin composite cements on the shear bond strength (SBS) to zirconia and compared them with one conventional resin composite cement. The authors divided zirconia substrates (N = 550) into three groups: RelyX Unicem Aplicap self-adhesive universal resin composite cement (3M ESPE, St. Paul, Minn.) (group A) (n = 220); G-CEM Capsule self-adhesive resin composite cement (GC Europe, Leuven, Belgium) (group B) (n = 220); and Panavia 21 with Clearfil Porcelain Bond Activator and Clearfil SE Bond primer (n = 110) (Kuraray Dental, Tokyo) used as a standard comparison (SC). The authors examined the self-adhesive resin composite cements without (0) and with (1) the use of a ceramic primer. They measured SBS initially (37°C for three hours), after water storage (37°C for one, four, nine, 16 or 25 days) and after thermal cycling (5°C and 55°C for 1,500, 6,000, 13,500, 24,000 or 37,500 cycles). The authors analyzed data by using descriptive statistics, the Mann-Whitney test, the Kruskal-Wallis test and a χ(2) test. Application of a ceramic primer did not result in a negative impact on SBS. Specimens in the A1 group (that is, RelyX Unicem Aplicap with ceramic primer) exhibited significantly higher SBS before and after water storage and thermal cycling compared with specimens that were not treated with a primer. The self-adhesive resin composite cements combined with ceramic primer exhibited similar or higher SBS values compared with those in the SC group at each aging duration (that is, water storage and thermal cycling). With respect to G-CEM Capsule, the authors observed a significantly positive effect of the primer after nine and 16 days' water storage and after one and four days' thermal cycling. They observed predominantly adhesive failures. Ceramic primer in combination with self-adhesive resin composite cement demonstrated a positive effect on SBS to zirconia and should be used for

  19. Shear bond strength of the amalgam-resin composite interface.

    Science.gov (United States)

    Machado, Camilo; Sanchez, Eliana; Alapati, Satish; Seghi, Robert; Johnston, William

    2007-01-01

    This study compared the initial and one year shear bond strengths (SBS) of resin composite bonded to amalgam using Amalgambond-Plus. Resin composite cylinders (Point 4, Kerr Corporation) were bonded to either etched-enamel (A), 50% etched enamel-50% polished amalgam (B), airborne-particle abraded amalgam (C), carbide bur prepared amalgam (D) and airborne-particle abraded 50% amalgam-50% etched-enamel (E). Shear bond strengths were determined using a standardized testing device (Ultradent Products) in a universal testing machine (Instron model 4204). The failed interfaces were evaluated with SEM to obtain visual evidence of the failure mode. ANOVA indicated significant differences among the groups (p composite masking has the strongest, most durable SBS on airborne-particle abraded amalgam and airborne-particle abraded enamel-amalgam surfaces and could be used as a method to improve the esthetics of amalgam restorations.

  20. Effects of abrasive and fiber components in medium on wear of composite resins.

    Science.gov (United States)

    Kakuta, Kiyoshi; Ogura, Hideo

    2008-09-01

    Effects of abrasive and fiber components in a medium on the wear behavior of composite resins were evaluated. Calcium diphosphate and methyl cellulose were included in the medium as abrasive and fiber components respectively. A range of 0, 4, or 8% abrasive- or fiber-containing media were applied on a composite resin specimen during a simulated occlusal wear test. Four composite resins, Clearfil AP-X, Z100 Restorative, SOLARE P, and SOLIDEX F, were tested to evaluate the effects of these components in the medium. Presence of abrasive material in the medium increased the wear of composite resins significantly, but its effect differed among the composite resins. Presence of fiber material in the medium significantly decreased the wear of two composite resins, whereas the other two composites showed no significant differences. Nonetheless, presence of fiber in the medium generally tended to prevent the wear of composite resins.

  1. Radiopacity of 28 Composite Resins for Teeth Restorations.

    Science.gov (United States)

    Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene

    2016-02-01

    Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.

  2. Does the light source affect the repairability of composite resins?

    Science.gov (United States)

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  3. Comparison of Microleakage of Composite Resin Veneering Systems at the Alloy Interface

    Science.gov (United States)

    1988-09-01

    technique that there is leakage around resin veneers in gold crowns. Microleakage studies have been used primarily for the evaluation of direct...investigation is to evaluate the bond between veneering composite resin and metal substructure. Measurement of microleakage at the composite resin-alloy...34OVERPRINT" COMPARISON OF MICROLEAKAGE OF COMPOSITE RESIN VENEERING SYSTEMS AT THE ALLOY INTERFACE A THESIS Presented to the Faculty of The University

  4. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  5. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  6. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  7. Effect of Curing Mode on Shear Bond Strength of Self-Adhesive Cement to Composite Blocks

    Directory of Open Access Journals (Sweden)

    Jin-Young Kim

    2016-03-01

    Full Text Available To overcome the disadvantages of computer-aided design/computer-aided manufacturing (CAD/CAM processed indirect restorations using glass-ceramics and other ceramics, resin nano ceramic, which has high strength and wear resistance with improved polish retention and optical properties, was introduced. The purpose of this study was to evaluate the shear bond strength and fracture pattern of indirect CAD/CAM composite blocks cemented with two self-etch adhesive cements with different curing modes. Sand-blasted CAD/CAM composite blocks were cemented using conventional resin cement, Rely X Ultimate Clicker (RXC, 3M ESPE, St. Paul, MN, USA with Single Bond Universal (SB, 3M ESPE, St. Paul, MN, USA for the control group or two self-adhesive resin cements: Rely X U200 (RXU, 3M ESPE, St. Paul, MN, USA and G-CEM Cerasmart (GC, GC corporation, Tokyo, Japan. RXU and GC groups included different curing modes (light-curing (L and auto-curing (A. Shear bond strength (SBS analyses were performed on all the specimens. The RXC group revealed the highest SBS and the GC A group revealed the lowest SBS. According to Tukey’s post hoc test, the RXC group showed a significant difference compared to the GC A group (p < 0.05. For the curing mode, RXU A and RXU L did not show any significant difference between groups and GC A and GC L did not show any significant difference either. Most of the groups except RXC and RXU L revealed adhesive failure patterns predominantly. The RXC group showed a predominant cohesive failure pattern in their CAD/CAM composite, LavaTM Ultimate (LU, 3M ESPE, St. Paul, MN, USA. Within the limitations of this study, no significant difference was found regarding curing modes but more mixed fracture patterns were showed when using the light-curing mode than when using the self-curing mode.

  8. Comparison between water and ethanol wet bonding of resin composite to root canal dentin.

    Science.gov (United States)

    Sauro, Salvatore; Di Renzo, Simona; Castagnola, Raffaella; Grande, Nicola M; Plotino, Gianluca; Foschi, Federico; Mannocci, Francesco

    2011-02-01

    To evaluate the bond strength of resin dentin interfaces created with adhesives applied on root dentin using the water wet or ethanol wet bonding technique. The morphology of resin dentin interfaces was evaluated using confocal microscopy. Four experimental resin adhesives (R#A to R#D) and one commercial three-step/etch and rinse adhesive were applied to the root canal dentin of endodontically treated single canal incisors using the water (control) or ethanol wet bonding technique. The ethanol wet bonding substrate was achieved by keeping the root canal immersed in absolute ethanol (100%) for 3 minutes. The root dentin bonded specimens were sectioned into beams, stored in distilled water (24 hours) and finally tested for microtensile bond strengths (tTBS). Additional dentin surfaces were conditioned and bonded as previously described. They were prepared for the microscopy study and finally observed using confocal microscopy. The ethanol wet bonding technique gave higher bond strength values for all the adhesives tested: in Group 1 (water wet bonding technique) no significant difference was found between the resins tested; the only exception being the most hydrophilic Resin #4 showing the highest bond strength values (P < 0.05). In Group 2 (ethanol wet bonding technique) no statistical differences were present between Resin #A and Resin #D. Resin #C showed the highest bond strength values. Confocal microscopy showed better resin diffusion and hybrid layer formation when the ethanol wet bonding was used.

  9. Dynamic thermo-mechanical properties of various flowable resin composites

    Science.gov (United States)

    Balthazard, Rémy; Vincent, Marin; Dahoun, Abdessellam; Mortier, Eric

    2016-01-01

    Background This study compared the storage modulus (E’), the loss modulus (E’’) and the loss tangent (tan δ) of various flowable resin composites. Material and Methods Grandio Flow (GRF), GrandioSo Heavy Flow (GHF), Filtek Supreme XTE (XTE) and Filtek Bulk Fill (BUL) flowable resins and Clinpro Sealant (CLI) ultra-flowable pit and fissure sealant resin were used. 25 samples were tested using a dynamical mechanical thermal analysis system in bending mode. Measurements were taken within a temperature range of 10 to 55°C. The results were statistically analyzed using mixed-effect and repeated-measure analysis of variance followed by paired multiple comparisons. Results For all the materials, the E’ values decrease with temperature, whereas the tan δ values increase. Irrespective of the temperature, GHF and GRF present E’ and E’’ values significantly higher than all the other materials and CLI presents values significantly lower than all the other materials. Observation of the values for all the materials reveals a linear progression of the tan δ values with temperature. Conclusions A variation in temperature within a physiological range generates modifications in mechanical properties without damaging the material, however. Filler content in volume terms appears to be the crucial parameter in the mechanical behavior of tested materials. Key words:Dynamic mechanical thermal analysis, elastic modulus, filler content, flowable resin composites, loss modulus, loss tangent. PMID:27957266

  10. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Directory of Open Access Journals (Sweden)

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  11. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  12. Interactions between resin monomers and commercial composite resins with human saliva derived esterases.

    Science.gov (United States)

    Jaffer, F; Finer, Y; Santerre, J P

    2002-04-01

    Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.

  13. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    Science.gov (United States)

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  14. Alternative methods for determining shrinkage in restorative resin composites.

    Science.gov (United States)

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Clinical evaluation of a nanohybrid and a flowable resin composite in non-carious cervical lesions: 24-month results.

    Science.gov (United States)

    Karaman, Emel; Yazici, A Rüya; Ozgunaltay, Gül; Dayangac, Berrin

    2012-08-01

    To evaluate the 24-month clinical performance of cervical restorations using a nanohybrid and a flowable resin composite with a one-step self-etching adhesive. Twenty-one patients with at least one pair of non-carious cervical lesions participated in this study. A total of 134 non-carious cervical lesions were restored (67 with a nanohybrid resin composite, Grandio; 67 with a flowable resin composite, Grandio Flow) using a one-step self-etching adhesive system, Futura Bond NR, by one dentist. The restorations were evaluated for retention, color match, marginal discoloration, marginal adaptation, surface texture, anatomic form, and secondary caries by two calibrated examiners at baseline and after 6, 12, and 24 months using modified USPHS criteria. The survival rates of the restorations were calculated by the Kaplan-Meier estimator. The comparison of resin composites for each category was performed with the Pearson chi-square test, and the performance of restorations at baseline and after each recall time was evaluated using McNemar's test (p Grandio and Grandio Flow, respectively. At the 24-month recall, the retention rate was 60% for Grandio and 54% for Grandio Flow. No statistically significant differences were found in retention rates among the restorative materials in any evaluation period (p > 0.05). For marginal discoloration and anatomical form, three Grandio and three Grandio Flow restorations showed Bravo scores at the end of 24 months. The restorations in both groups had Alfa ratings of 100% for the rest of the criteria evaluated. The nanohybrid and flowable resin composites showed similar clinical performances in the restoration of non-carious cervical lesions over 24 months.

  16. The comparative evaluation of fracture resistance and microleakage in bonded amalgam, amalgam, and composite resins in primary molars.

    Science.gov (United States)

    Vanishree, H S; Shanthala, B M; Bobby, W

    2015-01-01

    The intense development of adhesive restorative materials and parents' preferences for esthetic restorations prompt clinicians to use alternative restorative materials for primary molars. Amalgam, however, is the choice of material when it comes to occlusal stress bearing areas, either in primary or permanent molars. To overcome the drawbacks of amalgam and restorative adhesive materials, the bonded amalgam technique is employed. To evaluate microleakage and fracture resistance of bonded amalgam in primary molars, and compare it with the microleakage and fracture resistance of high-copper amalgam and composite resin materials. An in vitro study and 60 caries-free primary molars were used. A total of 60 samples were randomly divided into two equal groups for the evaluation of microleakage and fracture resistance. Class V cavities for microleakage study prepared on 30 samples and Class II mesio-occluso-distal cavities for fracture resistance study on other 30 samples were prepared and randomly divided into three equal groups. Group I received amalgam, Group II received bonded amalgam, and Group III received composite resins. The microleakage was viewed under a stereomicroscope. The fracture resistance was evaluated using a universal testing machine. Bonded amalgam exhibited minimum microleakage, when compared to amalgam and composite resin and was found to be statistically insignificant (P = 0.203), while amalgam showed better fracture resistance compared to bonded amalgam and composite resin. It was found to be statistically insignificant (P = 0.144). Bonded amalgam appears to be comparable to amalgam when microleakage is considered and to composite resin when fracture resistance is considered; hence, bonded amalgam can also be an alternative material to amalgam in primary molars.

  17. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  18. Adhesion of resin-modified glass-ionomer cements may affect the integrity of tooth structure in the open sandwich technique.

    Science.gov (United States)

    Czarnecka, Beata; Kruszelnicki, Anna; Kao, Anthony; Strykowska, Marta; Nicholson, John W

    2014-12-01

    To study the interfaces between model cavities prepared in teeth and four glass ionomer cements (two conventional and two resin-modified). Ten non-cavitated molars and premolars were used and, in each, two 3mm deep slot preparations were created on opposing sides of the tooth. The teeth were conditioned as appropriate, then restored using the open sandwich technique, using a conventional glass ionomer (Fuji IX, Ketac Molar) or resin modified glass ionomer (Fuji II LC or N100), followed by completion with composite resin. The teeth were then embedded in a transparent acrylic resin and cut parallel to the long axis through both restorations, using a low speed diamond wheel saw. Samples were evaluated using a metallographic light microscope (100×). Three areas were assessed: the axial wall, the axial gingival line angle and the cavo-surface line angle. Bonding was categorized as inadequate or adequate based on the appearance and inadequate bonding was further studied and classified. Data were analysed statistically using the McNamara analysis. The majority of materials failed to make adequate contact with the axial wall, and there were also flaws at the axial/gingival line angle in several samples. By contrast, the cavo-surface line angle was generally soundly filled and the materials showed intimate contact with the tooth surface in this region. The most serious inadequacy, though, was not lack of intimate contact and/or adhesive bond, but the presence of perpendicular cracks in 30% of the Fuji II LC samples which extended into the underlying dentin. The problems of placement and dentin cracking experienced with these materials demonstrate that adhesive bond strength alone cannot be used as the criterion of success for restorative materials. In fact good adhesion can, in certain cases, promote cracking of the dentin due to stresses within the material, an outcome which is undesirable. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All

  19. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2012-01-01

    Full Text Available To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n=10. Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37∘C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth.

  20. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    Directory of Open Access Journals (Sweden)

    Abo El Naga A

    2015-03-01

    Full Text Available Abeer Abo El Naga,1 Mohammed Yousef,1 Rasha Ramadan,2,3 Sherif Fayez Bahgat,4,5 Lana Alshawwa6 1Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Operative Dentistry Department, Modern Science and Arts University, Cairo, Egypt; 3Operative Dentistry Department, Dentistry Program, Batterjee Medical College, Jeddah, Saudi Arabia; 4Fixed Prosthodontics Department, Modern Science and Arts University, Cairo, Egypt; 5Fixed Prosthodontics Department, Dentistry Program, Batterjee Medical College, Jeddah, Saudi Arabia; 6Medical Education Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods: Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth] on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30 according to the used adhesive (Xeno® V [self-etching adhesive system] and BOND-1® SF (solvent-free self-etching adhesive system in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite, consecutively. Each group was further divided into three subgroups (n=10: (A control, (B subjected to occlusal cyclic loading (90N for 5,000 cycles, and (C subjected to occlusal cyclic loading (90N for 10,000 cycles. Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey's post hoc tests (P≤0.05. Results: The Fusio Liquid Dentin group showed

  1. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  2. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study.

    Science.gov (United States)

    Chuang, Shu-Fen; Kang, Li-Li; Liu, Yi-Chuan; Lin, Jui-Che; Wang, Ching-Cheng; Chen, Hui-Min; Tai, Cheng-Kun

    2017-08-01

    To evaluate the 3-methacryloyloxypropyltrimethoxysilane (MPS)- and 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-base primers, in their single or sequential applications, with regard to modifying zirconia surfaces and improving resin-zirconia adhesion. Zirconia disks received different treatments: without primer (Zr), MPS-base primer (S), MDP-base primer (M), MPS/MDP mixture (SMmix), MPS followed by MDP (SM), and MDP followed by MPS (MS). The compositions and chemical interactions of the coatings to zirconia were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and reconstructed 3D ion images. Surface wettability of these coatings to water and resin adhesive was assessed. The shear bond strength (SBS) between resin and the treated zirconia was also examined before and after thermocycling. Groups S and MS presented substantial OH - ions in the coatings and zirconia substrate. PO 2 - and PO 3 - fragments existed in all MDP-treatment groups with various proportions and distributions, while groups M and SM showed higher proportions of PO 3 - and the zirconium phosphate related ions. In 3D ion images, PO 3 - in groups M and SM was denser and segregated to the interface, but was dispersed or overlaid above PO 2 - in SMmix and MS. All the primers increased the surface wettability to water and resin, with M and SM presenting superhydrophilic surfaces. All MDP-treatment groups showed improved SBS before thermocycling, while M and SM retained higher SBS after this. The MDP-base primer shows a relevant function in facilitating POZr bonding and enhancing resin-zirconia bonding. The co-treated MPS impairs the chemical activity of MDP, especially if it is the final coat. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  4. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  5. Resin composites: Modulus of elasticity and marginal quality.

    Science.gov (United States)

    Benetti, Ana R; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2014-09-01

    To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity but quite similar polymerization contraction. MOD cavities (n=30) were prepared in extracted premolars, restored and then subjected to thermocyclic and mechanical loading. Marginal quality of the restorations before and after loading was analyzed on epoxy replicas under a scanning electron microscope. The percentage of gap-free margins and occurrence of paramarginal fractures were registered. Modulus of elasticity and polymerization contraction were analyzed with parametric and margins with nonparametric ANOVA and post hoc Tukey HSD or Wilcoxon rank-sum tests, respectively. The number of paramarginal fractures was analyzed with exact Fisher tests (α=0.05). Grandio demonstrated significantly more gap-free enamel margins than Charisma and Filtek Supreme XTE, before and after loading (p0.05). No significant effect of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (pGrandio when compared to Charisma (p=0.008). The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. The results from this study suggest that the marginal quality of restorations can be improved by the selection of a resin composite with modulus of elasticity close to that of dentine, although an increase in paramarginal enamel fractures can result as a consequence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of polishing procedures on color stability of composite resins.

    Science.gov (United States)

    Güler, Ahmet Umut; Güler, Eda; Yücel, Ali Cağin; Ertaş, Ertan

    2009-01-01

    The purpose of this study was to investigate the effect of different polishing methods on color stability of posterior, universal and nanohybrid composite resin restorative materials upon exposure to a staining agent. Twenty-five specimens were prepared for each of 5 different composite resins (Filtek Z250, Filtek P60, Quadrant LC, Grandio and Filtek Supreme). Specimens were divided into 5 groups and different polishing procedures, including polishing discs (Pd), polishing discs then diamond polishing paste (PdP), polishing discs then a liquid polishing system (Biscover) (PdB), and combinations of these (PdPB) were used. Unpolished specimens served as the control (C). The specimens were stored for 48 h in a coffee solution. The color of all specimens was measured before and after exposure with a colorimeter, and total color change (DeltaE*) were calculated. The data were analyzed with a two-way ANOVA and the means were compared by Tukey HSD test (alpha=0.05). The lowest color difference was observed in the groups PdP and C, while the highest color difference was observed in PdPB, and PdB. When comparing the five different restorative materials, no significant difference was observed between FiltekP60 and FiltekZ250, and these materials demonstrated significantly less color change than Quadrant LC and the nanohybrid materials (Grandio, Filtek Supreme). The posterior (Filtek P60) and universal (Filtek Z250) composite resin restorative materials, which do not contain tetraethyleneglycol dimethacrylate (TEGDMA), were found to be less stainable than the nanohybrid (Grandio, Filtek Supreme) and universal (Quadrant LC) composite resins, which contain TEGDMA. The use of diamond polishing paste after polishing with polishing discs significantly decreased staining when compared to the groups that used polishing discs alone, for all restorative materials tested. The highest color change values were obtained for the specimens that were polished with the Biscover liquid polish

  7. Effects of polishing procedures on color stability of composite resins

    Directory of Open Access Journals (Sweden)

    Ahmet Umut Güler

    2009-04-01

    Full Text Available The purpose of this study was to investigate the effect of different polishing methods on color stability of posterior, universal and nanohybrid composite resin restorative materials upon exposure to a staining agent. Twenty-five specimens were prepared for each of 5 different composite resins (Filtek Z250, Filtek P60, Quadrant LC, Grandio and Filtek Supreme. Specimens were divided into 5 groups and different polishing procedures, including polishing discs (Pd, polishing discs then diamond polishing paste (PdP, polishing discs then a liquid polishing system (Biscover (PdB, and combinations of these (PdPB were used. Unpolished specimens served as the control (C. The specimens were stored for 48 h in a coffee solution. The color of all specimens was measured before and after exposure with a colorimeter, and total color change (DE* were calculated. The data were analyzed with a two-way ANOVA and the means were compared by Tukey HSD test (a=0.05. The lowest color difference was observed in the groups PdP and C, while the highest color difference was observed in PdPB, and PdB. When comparing the five different restorative materials, no significant difference was observed between FiltekP60 and FiltekZ250, and these materials demonstrated significantly less color change than Quadrant LC and the nanohybrid materials (Grandio, Filtek Supreme. The posterior (Filtek P60 and universal (Filtek Z250 composite resin restorative materials, which do not contain tetraethyleneglycol dimethacrylate (TEGDMA, were found to be less stainable than the nanohybrid (Grandio, Filtek Supreme and universal (Quadrant LC composite resins, which contain TEGDMA. The use of diamond polishing paste after polishing with polishing discs significantly decreased staining when compared to the groups that used polishing discs alone, for all restorative materials tested. The highest color change values were obtained for the specimens that were polished with the Biscover liquid polish

  8. Evaluation of inorganic particles of composite resins with nanofiller content.

    Science.gov (United States)

    Mota, Eduardo Gonçalves; Hörlle, Lucas; Oshima, Hugo Mitsuo; Hirakata, Luciana Mayumi

    2012-01-01

    The purposes of this study were evaluate by energy dispersed X-ray (EDS) and scanning electron microscopy (SEM) the inorganic particles of three nanofilled composite resins, comparing particles sizes, shape and composition, and the filler weight content by thermogravimetric analyzes (TGA). Three composite resins classified as nanofilled were selected to this study: Esthet-X; Grandio; Filtek Supreme XT. The shade was standardized (A2) for enamel (E) or dentin (D). Ten samples with 20 mg (±10 mg) of each composite resin were submitted to thermogravimetric analyzes (TGA) in order to record the filler weight content (wt%). The amount of inorganic phase ranged from 75.75 to 87 wt%, to Esthet-X (D) and Grandio (D), respectively. The filler composition was analyzed by energy dispersed X-ray (EDS), and the size and shape were evaluated by scanning electron microscopy (SEM). The filler average size (µm) obtained by SEM were: Esthet-X (E) 1.16; Esthet-X (D) 1.39; Filtek Supreme XT (E) 0.6 (nanocluster); Filtek Supreme XT (D) 1.14 (nanocluster); Grandio (E) 2.05 and Grandio (D) 3.1. Silica (SiO2), Ba and Al were observed through EDS. The shape of Esthet-X and Grandio fillers showed similar characteristics with high quantity of irregular inorganic particles and heterogeneous filler. However, Filtek Supreme XT showed spherical and regular particles with homogeneous distribution and sizes. Based in the analysis of nanofilled composites inorganic phase, inconsistencies of weight content, composition, shape and size can be stated between the literature and manufacturer's instructions.

  9. Influence of brush type as a carrier of adhesive solutions and paper points as an adhesive-excess remover on the resin bond to root dentin.

    Science.gov (United States)

    Souza, Rodrigo O A; Lombardo, Geraldo H L; Michida, Silvia M A; Galhano, Graziela; Bottino, Marco Antônio; Valandro, Luiz Felipe

    2007-12-01

    To evaluate the influence of the brush type as a carrier of priming adhesive solutions and the use of paper points as a remover of the excess of these solutions on the push-out bond strength of resin cement to bovine root dentin. The null hypotheses were that brush type and the use of paper points do not affect the bond strength. The canals of 80 single-root bovine roots (16 mm in length) were prepared at 12 mm using the preparation drill (FRC Postec Plus, Ivoclar). Half of each root was embedded in acrylic resin and the specimens were divided into 8 groups, considering the factors "brush type" (4 levels) and "paper point" (2 levels) (n = 10): Gr 1: small microbrush (Cavi-Tip, SDI); Gr 2: Microbrush (Dentsply); Gr 3: Endobrush (Bisco); Gr 4: conventional brush (Bisco); Gr 5: Cavi-Tip (SDI) + paper points; Gr 6: Microbrush (Dentsply) + paper points; Gr 7: Endobrush (Bisco) + paper points; Gr 8: conventional brush (Bisco) + paper points. The root dentin was treated with a multistep total-etch adhesive system (All Bond 2). The adhesive system was applied using each microbrush, with and without using paper points. One fiber post was molded with addition silicon and 80 posts were made of resin cement (Duolink). The resin posts were luted (Duolink resin cement), and the specimens were stored for 24 h in water at 37 degrees C. Each specimen was cut into 4 disk-shaped samples (1.8 mm in thickness), which were submitted to the push-out test. The brush type (p microbrush = endobrush = conventional brush) and the use of paper points (p = 0.0001) (with > without) influenced the bond strength significantly (two-way ANOVA). The null hypotheses were rejected. The smallest brush (Cavi-Tip) and the use of paper points significantly improved the resin bond to bovine root dentin.

  10. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  12. Effect of EDTA Conditioning on Microleakage of Four Adhesive Systems in Composite Restorations

    Directory of Open Access Journals (Sweden)

    F. Shafiei

    2008-12-01

    Full Text Available Objective: Evaluating the effect of dentin conditioning with EDTA on microleakage of composite resin restorations, using two etch and rinse and two self-etch adhesives.Materials and Methods: One hundred and sixty extracted molars received class V cavity preparations right under the CEJ and were randomly divided into eight groups of 20, usingfour different adhesive systems. These adhesives included Adper Scotchbond Multi-purpose (SBMP, Adper Single Bond (SB, Clearfil SE Bond (CSEB, and Adper Prompt L-Pop (PLP. In the SBMP and SB experimental groups, EDTA was applied instead of phosphoric acid. In the CSEB and PLP experimental groups, EDTA conditioning was added to the bonding process. After thermocycling, the amount of dye penetration was evaluated using stereomicroscope. The data were analyzed using the Kruskal-Wallis and Dunn tests.Results: Two etch and rinse adhesives (SBMP, SB showed a significantly lower micro-leakage than the two self-etch adhesives, CSEB and PLP, (P<0.05. No significant differ-ence was observed among the experimental groups. PLP and CSEB showed significantly less microleakage using EDTA conditioning (P<0.05. There was no significant difference for SBMP and SB when applying either phosphoric acid or EDTA.Conclusion: In the cases of SBMP and SB, EDTA conditioning is as effective as phos-phoric acid in preventing microleakage. In cases of CSEB and PLP, EDTA conditioning can significantly improve the sealing ability.

  13. Hygroscopic expansion kinetics of dental resin-composites.

    Science.gov (United States)

    Alrahlah, A; Silikas, N; Watts, D C

    2014-02-01

    To evaluate the extent and rate of hygroscopic expansion of resin composites at 37°C. Eight resin composites were examined: 1 micro-hybrid (Bright Light(®)), 5 nano-hybrids (Experimental Vertise™; Nanoceram-Bright(®); Tetric EvoCeram(®); Grandio(®) SO; Ceram X™ duo) and 2 flowables (X-tra base; Venus(®) Diamond Flow). Five disks (15 mm×2 mm) of each material were prepared. The mean change in specimen diameter was recorded by a custom-built non-contact laser micrometer. Specimens were initially measured dry and then at fixed time intervals, over 150 days, after storage in distilled water at 37±1°C. Data were re-expressed in volumetric terms and analysed by repeated measures ANOVA, one-way ANOVA and Tukey's post hoc test (α=0.05). The volumetric hygroscopic expansion ranged from 0.58 to 2.26 and can be considered in three bands. First, Experimental Vertise had the highest expansion (pGrandio So, Nanoceram-Bright and X-tra base, with no significant difference between them. For the size (2mm thickness) and shape of specimen measured, equilibrium was attained in all cases by 60 days. Within this set of resin-composites the equilibrium expansion varied by almost 400% of the lowest material. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzyńska-Mizera, Monika, E-mail: monika.dobrzynska-mizera@doctorate.put.poznan.pl; Sterzyński, Tomasz [Poznan University of Technology, Institute of Materials Technology, Polymer Division, Piotrowo, 3, 61-138 Poznan (Poland); Dutkiewicz, Michał [Centre for Advanced Technologies, Adam Mickiewicz University, Umultowska 89 C, 61-614 Poznan (Poland); Di Lorenzo, Maria Laura [Consiglio Nazionale delle Ricerche, Istituto per i Polimeri, Compositi e Biomateriali, c/o Comprensorio Olivetti, Via Campi Flegrei, 34, 80078 Pozzuoli (Italy)

    2015-12-17

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  15. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  16. Marginal Fit and Retention Strength of Zirconia Crowns Cemented by Self-adhesive Resin Cements.

    Science.gov (United States)

    Pilo, R; Folkman, M; Arieli, A; Levartovsky, S

    The absolute marginal gap (AMG) precementation and postcementation and the retention of zirconia crowns cemented to standardized molar preparations (4×10) by self-adhesive resin cements (SARCs) were evaluated. The following SARCs were used: RelyX U-200 (RXU200; 3M ESPE, Seefeld, Germany), SmartCem 2 (SC2; Dentsply, Milford, DE, USA), and G-Cem Automix (GCA; GC, Alsip, IL, USA). The control adhesive resin cement was Panavia 21 (PAN; Kuraray Dental Co Ltd, Osaka, Japan). Twenty measuring locations at a constant interval along the margins were marked, and the AMG was measured by an image analysis system connected to a stereomicroscope (20×). The cemented copings were aged 270 days at 100% humidity and 37°C and then underwent 10,000 thermal cycles, 5°C-55°C. After aging, the crowns were tested for retention, and the debonded surfaces were examined at 3× magnification. The mean marginal gaps precementation and postcementation were 34.8 ± 17.4 μm and 72.1 ± 31 μm, respectively, with no statistically significant differences between the cements. A significant difference ( p≤0.001) in retention between the cements was found. The highest values were obtained for SC2 and GCA (1385 Pa and 1229 Pa, respectively), but these presented no statistically significant differences. The lowest values were found for PAN and RXU200 (738 Pa and 489 Pa, respectively), but these showed no statistically significant differences. The predominant mode of failure in all of the groups was mixed, and no correlations were found between marginal gap and retention.

  17. Comparative evaluation of shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown.

    Science.gov (United States)

    Khatri, A; Nandlal, B

    2007-01-01

    To evaluate and compare the shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown. The study samples consisted of 30 primary anterior stainless steel crowns (Unitek TM, size R4), embedded in resin blocks with crown, in test groups of 15 samples each. Mounting of the crown was done using resin block with one crown each. Sandblasting was done and the bonding agent Prime and Bond NT (Dentsply) was applied on the labial surface of the primary anterior sandblasted crown. The composite resin and nanocomposite resin were placed into the well of Teflon jig and bonded to Stainless Steel Crowns. The cured samples were placed in distilled water and stored in incubator at 37 degrees C for 48 hours. Shear bond strength was measured using universal testing machine (Hounsefield U.K. Model, with a capacity of 50 KN). Independent sample 't' test revealed a nonsignificant (P resin and nanocomposite resin had statistically similar mean shear bond strength, with nanocomposite having little more strength compared to conventional composite.

  18. Bond strength and monomer conversion of indirect composite resin restorations, Part 1: Light vs heat polymerization.

    Science.gov (United States)

    Malta, Daniel Alexandre Menezes Pedrosa; Magne, Pascal; Monteiro-Junior, Sylvio

    2014-12-01

    To assess the resin microtensile bond strength (MTBS) and the monomer conversion (MC) of indirect composite resin restorations made of three different materials. Two light-polymerized direct materials (Filtek Z100 and Premise) and one light- and heat-polymerized indirect material (Premise Indirect) were used. For MTBS testing, 42 cylindrical samples were fabricated (7 pairs per material). Surface conditioning included airborne-particle abrasion, cleaning, and application of a silane. Cylinders were bonded to each other using adhesive resin (Optibond FL). Specimens were stored in water for 24 h. Another 15 cylinders (5 per material) were fabricated for MC measurements (FT-IR) immediately and at 24 h. The MTBS data were submitted to one-way ANOVA and the MC to two-way ANOVA (material and storage time) (α=0.05), followed by post-hoc comparisons with the Tukey test. The MTBS to Z100 was 72.2 MPa, significantly higher than that to Premise (48.4 MPa) and Premise Indirect (52.7 MPa). The immediate MC was similar for all materials (range 51% to 56%) and significantly increased at 24 h (range 57% to 66%), except for Z100. Premise Indirect showed the highest MC (66% at 24 h). Z100 showed better "bondability" than Premise and Premise Indirect. Premise Indirect, with its heat initiator, did not present a higher MC.

  19. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  20. Process for curing ionizing radiation-highly sensitive resin composition

    International Nuclear Information System (INIS)

    Araki, K.; Sasaki, T.; Tabei, K.; Goto, K.

    1979-01-01

    A process is described for curing a radiation curable composition consisting essentially of (a) an amide represented by the formula R,CONR 2 R 3 and (b) an unsaturated polyester resin by irradiating the composition with an ionizing radiation. R 1 is H, an alkyl groups having from 1 to 17 carbon atoms or an alkenyl groups having from 1 to 17 carbon atoms, and R 2 and R 3 are each -H, -CH 3 , or -CH 2 OH. R 1 and R 2 taken together represent alkylene having 2 to 5 carbon atoms

  1. Comparison of fracture resistance of teeth restored with ceramic inlay and resin composite: an in vitro study.

    Science.gov (United States)

    Desai, Priti D; Das, Utapal Kumar

    2011-01-01

    The aim of this study was to evaluate the in vitro fracture resistance of teeth restored with bonded ceramic inlay and direct composite resin restoration in comparison to the normal tooth. This study evaluated the fracture strength of the teeth restored with bonded ceramic inlay and direct composite resin restoration in comparison to the normal teeth. Thirty intact human maxillary first premolars were assigned to three groups: Group 1 - comprising sound/unprepared teeth (control). Group 2 - comprising of Class-II direct composite resin restored teeth and Group 3 - comprising Class-II ceramic inlay restored teeth. Cavities were prepared with occlusal width of 1/3 intercuspal distance and 2 mm deep pulpally. Group 2 teeth were restored with hybrid composite resin (Z350 3M ESPE, USA) and group 3 teeth were restored with Vitadur Alpha alumina (Ivoclare Vivadent, Liechtenstein, Europe). Ceramic inlay was bonded with adhesive cement (rely X resin cement of 3MESPE, USA). The specimens were subjected to a compressive load until they fractured. Data were analyzed statistically by unpaired Student's t test. The fracture resistant strength, expressed as kilonewton (KN), was group 1 - 1.51 KN, group 2 - 1.25 KN, and group 3 - 1.58 KN. Statistically, group III had highest fracture resistance followed by group I, while group II had the lowest average fracture resistance. The fracture resistant strength of teeth restored with ceramic inlay was comparable to that of the normal intact teeth or slightly higher, while teeth restored with direct composite resin restoration showed less fracture resistant strength than that of the normal teeth.

  2. COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTAL ENAMEL CONDITIONED WITH PHOSPHORIC ACID OR Nd: YAG LASER

    Directory of Open Access Journals (Sweden)

    EDUARDO Carlos de Paula

    1997-01-01

    Full Text Available This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used

  3. Effect of Hydrofluoric Acid Concentration on Resin Adhesion to a Feldspathic Ceramic.

    Science.gov (United States)

    Venturini, Andressa Borin; Prochnow, Catina; Rambo, Dagma; Gundel, Andre; Valandro, Luiz Felipe

    2015-08-01

    To evaluate the effect of different concentrations of hydrofluoric acid (HF) on the contact angle and the resin bond strength durability to feldspathic ceramic. To evaluate the contact angles of distilled water on etched feldspathic ceramic, 25 specimens (12×10×2.4 mm) of VitaBlocks Mark II were used, divided into 5 groups (n=5): one unconditioned control (UC) group with no ceramic surface treatment, and 4 other groups that were etched for 60 s with different concentrations of HF: 1% (HF1), 3% (HF3), 5% (HF5) and 10% (HF10). The bond testing utilized 40 ceramic blocks (12×10×4 mm) that were fabricated and subjected to the same surface treatments as previously mentioned (excluding the control). The etched surfaces were silanized and resin cement was applied. After 24 h, the blocks were sectioned to produce bar specimens that were divided into two groups, non-aged (immediate testing) and aged (storage for 230 days+12,000 thermocycles at 5°C and 55°C), and subjected to microtensile testing (μTBS). Micromorphogical analysis of the treated surfaces was also performed (atomic force and scanning electron microscopy). One-way ANOVA and Tukey's tests were applied for data analysis. UC had the highest contact angle (61.4°), whereas HF10 showed the lowest contact angle (17.5°). In non-aged conditions, different acids promoted statistically similar bond strengths (14.2 to 15.7 MPa) (p>0.05); in terms of bond durability, only the bond strength of the HF1 group presented a statistically significant decrease comparing before and after aging (14.5 to 10.2 MPa). When etched with 3%, 5%, or 10% hydrofluoric acid, the ceramic tested showed stable resin adhesion after long-term aging.

  4. Retentive strength of fiber-reinforced composite posts with composite resin cores: Effect of remaining coronal structure and root canal dentin conditioning protocols.

    Science.gov (United States)

    Saker, Samah; Özcan, Mutlu

    2015-12-01

    The prognosis of a fixed dental prosthesis cemented to endodontically treated teeth is primarily determined by the presence of a ferrule on the tooth. Adhesion of the post in the root canal, conditioning methods for the canal and the amount of coronal structure could also be decisive on survival of reconstructions cemented on endodontically treated teeth. The purpose of this in vitro study was to test the effect of remaining coronal structure on the retention of airborne-particle abraded fiber-reinforced composite resin posts built up with composite resin cores after the treatment of root canal dentin with different conditioning protocols. One hundred and fifty extracted human teeth with single root canal space were endodontically treated and divided into 3 groups as follows: group CEJ: the teeth were sectioned at the level of cementoenamel junction (CEJ); group CEJ1: the teeth were sectioned 1 mm above the CEJ; group CEJ2: the teeth were sectioned 2 mm above the CEJ. Each group was further divided into 5 subgroups (n=10 per group) according to the root canal treatments as follows: group C: no conditioning (control); group PH: conditioning with 37% phosphoric acid gel for 15 seconds; group E: conditioning with 17% ethylenediaminetetraacetic acid (EDTA) for 60 seconds; group CHX: conditioning with 2% chlorhexidine (CHX) for 60 seconds; group Q: conditioning with combination of 2% CHX with 17% EDTA and a surfactant solution for 60 seconds. Glass fiber-reinforced composite resin posts were airborne-particle abraded and luted to the root canal dentin with a self-adhesive resin cement (RelyX Unicem). The retentive force was tested by applying a tensile load parallel to the long axis of these posts at a crosshead speed of 2 mm/min. Two-way ANOVA and the Tukey HSD post hoc test were used to analyze the data. The highest retention (N) was obtained with the CHX-EDTA conditioned group (374.7 ±29.8) followed by 17% EDTA (367.9 ±33.3) conditioning when 2 mm remaining

  5. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  6. Does the light source affect the repairability of composite resins?

    Directory of Open Access Journals (Sweden)

    Emel KARAMAN

    2014-08-01

    Full Text Available The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin—Filtek Silorane, Filtek Z550 (3M ESPE, Gradia Direct Anterior (GC, and Aelite Posterior (BISCO—were prepared and light-cured with a QTH light curing unit (LCU. The specimens were aged by thermal cycling and divided into three subgroups according to the light source used—QTH, LED, or PAC (n = 10. They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray. The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  7. Effect of two abrasive systems on resin bonding to laboratory-processed indirect resin composite restorations.

    Science.gov (United States)

    Bouschlicher, M R; Cobb, D S; Vargas, M A

    1999-01-01

    This study compared two methods of surface roughening or preparation, with or without the use of proprietary surface wetting agents, to evaluate their effect on resin cement adhesion to the following laboratory-processed, indirect restorations: Artglass (AG), belleGlass HP (BG), Concept (C), and Targis (T). Methods of surface roughening or preparation included microetching with aluminum oxide (AO): 50 microns at 34 psi and silanized silica coating, CoJet-Sand (CJ): 30 microns at 34 psi. Artglass and Concept were tested with and without the use of their respective surface wetting agents: Artglass Liquid (AGL) and Special Bond II (SB). One hundred twenty specimens, each consisting of a pair of cylinders (7.0 x 3 mm and 4.3 x 3 mm) were fabricated. The larger cylinder or base was embedded in self-curing resin in a phenolic ring, and bonding surfaces were finished with 320-grit silicon carbide paper. Specimen pairs for each restorative material were randomly assigned to treatment groups (n = 10) and received the following surface treatments prior to cementation: group 1 (AG/AO/+AGL), group 2 (AG/AO/-AGL), group 3 (AG/CJ/+AGL), group 4 (AG/CJ/-AGL), group 5 (BG/AO), group 6 (BG/CJ), group 7 (C/AO/+SB), group 8 (C/AO/-SB), group 9 (C/CJ/+SB), group 10 (C/CJ/-SB), group 11 (T/AO), and group 12 (T/CJ). Specimen pairs were cemented with a dual-cure resin cement (Dual) and a standardized force of 1 MPa. Specimens were light-cured 40 seconds per side (80 s total), then thermocycled 300 times at between 5 degrees and 55 degrees C. Shear bond strengths (MPa) were determined using a Zwick Materials Testing Machine at a crosshead speed of 5 mm per minute. One-way analysis of variance (ANOVA) and Duncan's multiple range test (alpha = 0.05) by restoration type indicated no significant differences in shear bond strength between BG group 5 (29.8 +/- 5.8), BG group 6 (28.3 +/- 4.3), T group 11 (29.3 +/- 4.9), and T group 12 (29.0 +/- 4.4). Shear bond strength in AG group 3 (35.9 +/- 3

  8. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA