WorldWideScience

Sample records for adhesive composite resin

  1. Posterior adhesive composite resin: a historic review.

    Science.gov (United States)

    Fusayama, T

    1990-11-01

    Since development of the BIS-GMA composite resin, there have been many innovations to improve the physical properties for posterior use. Subsequent development of a caries detector and chemically adhesive composite resin has further revolutionally raised the value of composite resin restoration, replacing the traditional restorative system of mechanical approach by the new system of biological approach. In this system only the infected irreversibly deteriorated insensitive tissue, stainable with the caries detector, is removed painlessly. The cavity is immediately filled with the composite resin with no further tissue reduction for retention or resistance form or extension for prevention. Both enamel and dentin walls are etched by a single etchant without lining. The chemical adhesion to the cavity margin and wall minimizes the marginal failure in size and prevalence and prevents secondary caries penetration along the wall. The chemically adhesive composite resin is thus a useful restorative material much kinder to teeth than amalgam.

  2. Candida albicans adhesion to composite resin materials.

    Science.gov (United States)

    Bürgers, Ralf; Schneider-Brachert, Wulf; Rosentritt, Martin; Handel, Gerhard; Hahnel, Sebastian

    2009-09-01

    The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane, and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be related to surface roughness, hydrophobicity, and the type of matrix. Cylindrical specimens of each material were made according to the manufacturers' instructions. Surface roughness R (a) was assessed by perthometer measurements and the degree of hydrophobicity by computerized contact angle analysis. Specimens were incubated with a reference strain of C. albicans (DMSZ 1386), and adhering fungi were quantified by using a bioluminometric assay in combination with an automated plate reader. Statistical differences were analyzed by the Kruskal-Wallis test and Mann-Whitney U test. Spearman's rank correlation coefficients were calculated to assess correlations. Median R (a) of the tested composite resin materials ranged between 0.04 and 0.23 microm, median contact angles between 69.2 degrees and 86.9 degrees . The two compomers and the ormocer showed lower luminescence intensities indicating less adhesion of fungi than all tested conventional hybrid composites. No conclusive correlation was found between surface roughness, hydrophobicity, and the amount of adhering C. albicans.

  3. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  4. Composites with improved fiber-resin interfacial adhesion

    Science.gov (United States)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  5. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2015-05-02

    With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adhesive resins. Alumina ceramic specimens (Techceram Ltd, Shipley, UK) were assigned to three groups. Three types of commercially available prosthodontic resin composites [BelleGlass®, (BG, Kerr, CA, USA), Sinfony® (SF, 3 M ESPE, Dental Products, Germany), and GC Gradia® (GCG, GC Corp, Tokyo, Japan)] were bonded to the alumina substrate using four different adhesive resins. Half the specimens per group (N = 40) were stored dry for 24 hours, the remaining were stored for 30 days in water. The bonding strength, so-called shear bond strengths between composite resin and alumina substrate were measured. Data were analysed statistically and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Bond strengths were influenced by the brand of prosthodontic resin composites. Shear bond strengths of material combinations varied from 24.17 ± 3.72-10.15 ± 3.69 MPa and 21.20 ± 4.64-7.50 ± 4.22 at 24 h and 30 days, respectively. BG resin composite compared with the other resin composites provided the strongest bond with alumina substrate (p resin composite was found to have a lower bond strength than the other composites. The Weibull moduli were highest for BG, which was bonded by using Optibond Solo Plus adhesive resin at 24 h and 30 days. There was no effect of storage time and adhesive brand on bond strength. Within the limitations of this study, the shear bond strengths of composite resins to alumina substrate are related to the composite

  6. [Bonding compatibility between adhesive systems and composite resins].

    Science.gov (United States)

    Giachetti, L; Scaminaci Russo, D; Landi, D

    2003-04-01

    The purpose of the present study was to analyse bonding compatibility between photo- and self-polymerising composite resins ad two-step total-etch (one component) adhesive systems with a different activation method. Thirty healthy extracted molars were cut transversally to obtain sixty flat dentin surfaces. The acid conditioned surfaces were bonded with Scotchbond 1 (3M), Excite (Vivadent) or Excite DSC (Vivadent). A cylinder of composite resin (3 mm diameter and 4 mm height) was constructed on each adhesive layer using photopolymerised Tetric Ceram (Vivadend) and dual Luxacore (DMG) but activated only chemically. The samples were subjected to the shear bond test. The fracture surfaces obtained were classified by type and site in the stereomicroscope. Twelve samples representing each group were further prepared for the SEM. The data obtained from the test, the microscopic investigation and statistical analysis (ANOVA and Bonferroni) seem to confirm the presence of a reduced bonding compatibility between one-component adhesive systems and self-polymerising composites. This incompatibility is evident for the adhesive Scotchbond 1 and limited for Excite, while it seems to be overcome by Excite DSC which appears to bond well with both Tetric Ceram and Luxacore. Adhesive-composite incompatibility seems to depend on the activation method of the composite as well as on that of the adhesive system. The chemical compatibility bet-ween these two materials is influenced not only by the chemical composition of the adhesive, but also by that of the composite.

  7. Use of dental adhesives as modeler liquid of resin composites.

    Science.gov (United States)

    Münchow, Eliseu Aldrighi; Sedrez-Porto, José Augusto; Piva, Evandro; Pereira-Cenci, Tatiana; Cenci, Maximiliano Sergio

    2016-04-01

    Resin adhesives (RA) have been applied between resin composite (RC) increments, but there is no consensus on the impact of this technique on the properties of the final restoration. This study evaluated the effect of the presence of RA between RC layers on physical properties, translucency and long-term color stability of the restorative material. Scotchbond™ Multi-Purpose (bond, 3M ESPE) and Adper™ Single Bond 2 (3M ESPE) were used as RA, and Filtek™ Z350 (3M ESPE) as RC. Specimens containing RA were prepared by applying 3 layers of the adhesive between 4 increments of RC; adhesive-free specimens were also used (control). Tests of water sorption and solubility, mechanical performance (microtensile cohesive strength, flexural strength, and flexural modulus, after immediate and long-term water storage), and translucency and color stability (after immediate and 1, 7, 90, and 180 days of water or wine storage) were performed. Scanning electron microscopy (SEM) images were also taken from the fractured specimens (flexural strength test). Data were analyzed using ANOVA and Tukey test (padhesive resin (SBMP). This study is the first to show positive results from the use of resin adhesives as modeler liquid of resin composite, which is common in clinical practice. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Cariogenic bacteria degrade dental resin composites and adhesives.

    Science.gov (United States)

    Bourbia, M; Ma, D; Cvitkovitch, D G; Santerre, J P; Finer, Y

    2013-11-01

    A major reason for dental resin composite restoration replacement is related to secondary caries promoted by acid production from bacteria including Streptococcus mutans (S. mutans). We hypothesized that S. mutans has esterase activities that degrade dental resin composites and adhesives. Standardized specimens of resin composite (Z250), total-etch (Scotchbond Multipurpose, SB), and self-etch (Easybond, EB) adhesives were incubated with S. mutans UA159 or uninoculated culture medium (control) for up to 30 days. Quantification of the BisGMA-derived biodegradation by-product, bishydroxy-propoxy-phenyl-propane (BisHPPP), was performed by high-performance liquid chromatography. Surface analysis of the specimens was performed by scanning electron microscopy (SEM). S. mutans was shown to have esterase activities in levels comparable with those found in human saliva. A trend of increasing BisHPPP release throughout the incubation period was observed for all materials and was more elevated in the presence of bacteria vs. control medium for EB and Z250, but not for SB (p adhesives; degree of degradation was dependent on the material's chemical formulation. This finding suggests that the resin-dentin interface could be compromised by oral bacteria that contribute to the progression of secondary caries.

  9. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2016-07-01

    The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p composite resin exhibited the lowest shear bond strength values when used with the same adhesive resins. The adhesive mode of failure was higher than cohesive with all laboratory composite resins bonded to the StickNet substructure at both storage times. Water storage had a tendency to lower the bond strengths of all laboratory composites, although the statistical differences were not significant. Within the limitations of this study, it was found that bonding of the veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.

  10. Mechanical and Physical Properties and Adhesion Durability of Flowable Resin Composite

    OpenAIRE

    金丸, 充徳; カナマル, ミツノリ; Mitsunori, KANAMARU

    2004-01-01

    The purpose of this study was to examine the mechanical and physical properties and adhesion durability to bovine dentin of the flowable resin composites in comparison with those of conventional resin composites and glass ionomers. In this experiment, four flowable resin composites, two conventional resin composites and two glass ionomers were used. The consistency, thermal expansion coefficiency, compressive strength, diametral tensile strength, brittleness, Vickers hardness, elastic modulus...

  11. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  12. Clinical approach to anterior adhesive restorations using resin composite veneers.

    Science.gov (United States)

    Mangani, Francesco; Cerutti, Antonio; Putignano, Angelo; Bollero, Raffaele; Madini, Lorenzo

    2007-01-01

    Scientific progress in adhesive dentistry has led to more conservative techniques, both direct and indirect, to solve esthetic problems in anterior teeth. This article will discuss only indirect techniques, which are clearly superior in complex cases in which it will be difficult to recreate harmonious tooth shape and color. After reviewing the literature and highlighting the properties of this technique, the indications and benefits compared to the direct technique will be assessed. This is followed by a step-by-step description of operative procedures, from treatment planning to relining and polishing of the cemented adhesive restoration. The long-term success of veneers depends mainly on the tooth preparation, which should be confined to enamel, involve proximal contact areas, maintain the cervical enamel margin, and incorporate the incisal edge to increase veneer resistance and enable correct placement. Although no clinical follow-up similar to that of ceramic materials is available, the latest-generation resin composites offer interesting features. They can withstand mechanical stress, have excellent esthetic properties, and, most importantly, can be repaired intraorally without impairing their physicochemical and mechanical properties.

  13. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments.

    Science.gov (United States)

    Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis

    2014-02-01

    Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  14. [Stress profile during curing contraction of composite resin adhesives].

    Science.gov (United States)

    Kunzelmann, K H; Hickel, R

    1990-11-01

    The wall-to-wall curing contraction of thin composite resin layers was recorded with a tensometer. The composite resin was applied to cylindrically shaped ceramic sample holders with diameters of 3 mm, 4 mm and 8 mm. The distances of the sample holders was set at 50 microns, 100 microns, 150 microns, 200 microns and 300 microns. The shrinkage stress recordings clearly show that the shrinkage forces are governed by the distance of the sample holders and not by the volume or the configuration factor of the composite resin layers.

  15. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-10-01

    The purpose of this study was to determine the relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. As controls, micro-hybrid and nano-hybrid resin composites were tested. The universal adhesives used were Scotchbond Universal, Adhese Universal, and G-Premio Bond. The fracture toughness and flexural properties of resin composites, and shear bond strength and shear fatigue strength of universal adhesive with resin composite using both total-etch and self-etch modes were determined. In the results, short fiber-reinforced resin composite showed significantly higher fracture toughness than did micro-hybrid and nano-hybrid resin composites. The flexural strength and modulus of short fiber-reinforced and nano-hybrid resin composites were significantly lower than were those of micro-hybrid resin composites. Regardless of etching mode, the shear bond strength of universal adhesives with short fiber-reinforced resin composite did not show any significant differences from micro-hybrid and nano-hybrid resin composites. The shear fatigue strength of universal adhesives with short fiber-reinforced resin composite and micro-hybrid resin composites were significantly higher than that of nano-hybrid resin composites. The results of this study suggest that the mechanical properties of short fiber-reinforced resin composite improve their bond durability with universal adhesive.

  16. Shear bond strength of new self-adhesive flowable composite resins.

    Science.gov (United States)

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent.

  17. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    Science.gov (United States)

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond strength, self-adhesive cement, silane, dentin, indirect composite. PMID:26855700

  18. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  19. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    2011-01-01

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion fo

  20. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  1. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  2. Effect of incremental filling technique on adhesion of light-cured resin composite to cavity floor.

    Science.gov (United States)

    Chikawa, Hirokazu; Inai, Norimichi; Cho, Eitetsu; Kishikawa, Ryuzo; Otsuki, Masayuki; Foxton, Richard M; Tagami, Junji

    2006-09-01

    The purpose of this study was to evaluate the effect of various incremental filling techniques on adhesion between composite and cavity floor using light-cured resin composite. Black ABS resin and hybrid resin composite were used as mold materials--instead of dentin--for the preparation of cavities, and standardized to 5x5x5 mm. Each cavity was then treated with a bonding system (Clearfil SE bond). Resin composite (Clearfil Photo Core) was placed on the bonding resin using different incremental filling techniques or in bulk and irradiated for a total of 80 seconds using a halogen light unit. Specimens were subjected to the micro-tensile bond test at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA. The results indicated that an incremental filling technique was more effective in improving adhesion to the cavity floor than a bulk filling technique.

  3. Fatigue resistance and failure mode of adhesively restored custom metal-composite resin premolar implant abutments.

    Science.gov (United States)

    Boff, Luís Leonildo; Oderich, Elisa; Cardoso, Antônio Carlos; Magne, Pascal

    2014-01-01

    To evaluate the fatigue resistance and failure mode of composite resin and porcelain onlays and crowns bonded to premolar custom metal-composite resin premolar implant abutments. Sixty composite resin mesostructures were fabricated with computer assistance with two preparation designs (crown vs onlay) and bonded to a metal implant abutment. Following insertion into an implant with a tapered abutment interface (Titamax CM), each metal-composite resin abutment was restored with either composite resin (Paradigm MZ100) or ceramic (Paradigm C) (n = 15) and attached with adhesive resin (Optibond FL) and a preheated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was then simulated, starting with 5,000 cycles at a load of 50 N, followed by stages of 200, 400, 600, 800, 1,000, 1,200, and 1,400 N (25,000 cycles each). Samples were loaded until fracture or to a maximum of 180,000 cycles. The four groups were compared using life table survival analysis (log-rank test). Previously published data using zirconia abutments of the same design were included for comparison. Paradigm C and MZ100 specimens fractured at average loads of 1,133 N and 1,266 N, respectively. Survival rates ranged from 20% to 33.3% (ceramic crowns and onlays) to 60% (composite resin crowns and onlays) and were significantly different (pooled data for restorative material). There were no restoration failures, but there were adhesive failures at the connection between the abutment and the mesostructure. The survival of the metal-composite resin premolar abutments was inferior to that of identical zirconia abutments from a previous study (pooled data for abutment material). Composite resin onlays/crowns bonded to metal-composite resin premolar implant abutments presented higher survival rates than comparable ceramic onlays/crowns. Zirconia abutments outperformed the metal-composite resin premolar abutments.

  4. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  5. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  6. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    Science.gov (United States)

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  7. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements.

    Science.gov (United States)

    Fuentes, María-Victoria; Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-02-01

    No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Bond strength values were significantly influenced by the resin cement used (pcomposite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Bond strength, self-adhesive cement, silane, dentin, indirect composite.

  8. Adhesion of indirect MOD resin composite inlays luted with self-adhesive and self-etching resin cements.

    Science.gov (United States)

    Inukai, T; Abe, T; Ito, Y; Pilecki, P; Wilson, R F; Watson, T F; Foxton, R M

    2012-01-01

    This study investigated the effect of loading on the bond strength to dentin and microleakage of MOD indirect composite restorations bonded with self-adhesive and self-etching resin cements with or without acid etching of the proximal enamel margins. Class II MOD cavities were prepared in 48 molar teeth into dentin and divided into three groups of 16 teeth. Impressions were taken and indirect composite inlays fabricated (Estenia C & B). The enamel margins of the proximal boxes of half the specimens were phosphoric acid etched, and the inlays were cemented with one of three cements (Panavia F 2.0, SA Cement, or Rely X Unicem). After luting, eight teeth in each cement group were mechanically loaded at 2.5 cycles/s for 250,000 cycles. Unloaded teeth acted as controls. Teeth were stored in Rhodamine B solution for 24 hours, sectioned buccolingually at the proximal boxes to examine microleakage using confocal microscopy, and further sectioned for μTBS testing of the resin-dentin interface. Analysis of variance was performed to assess the effect of loading and acid etching on microleakage and bond strength. Acid etching had no effect on microleakage. No significant difference in the dentin bond strengths between the three cements existed after loading. Panavia F 2.0 exhibited a significant reduction in bond strength. With regard to microleakage at the proximal boxes, loading had no effect on dye penetration at the cavity floor. However, at the axial walls, loading had a significant deleterious effect on Panavia F 2.0. No difference in microleakage existed between the three cements at both sites before and after loading. In conclusion, the two tested self-adhesive cements exhibited similar bond strengths before and after loading to the self-etching resin cement. Loading reduced dentin bond strengths and increased microleakage at the resin-dentin interface. However, acid etching of the enamel margins had no significant effect on microleakage in the approximal regions of

  9. Bond strength of self-adhesive resin cements to different treated indirect composites.

    Science.gov (United States)

    Fuentes, M Victoria; Ceballos, Laura; González-López, Santiago

    2013-04-01

    The objective of this study was to determine microtensile bond strength (μTBS) to dentin of three self-adhesive and a total-etch resin cements used for luting different treated indirect composites. Composite overlays (Filtek Z250) were prepared. Their intaglio surfaces were ground with 600-grit SiC papers and randomly assigned to three different surface treatments: no treatment, silane application (RelyX Ceramic Primer), and silane agent followed by a bonding agent (Adper Scotchbond 1 XT). The composite overlays were luted to flat dentin surfaces of extracted human third molars using the following self-adhesive resin cements: RelyX Unicem, Maxcem Elite and G-Cem, and a total-etch resin cement, RelyX ARC. The bonded assemblies were stored in water (24 h, 37 °C) and subsequently prepared for μTBS testing. Beams of approximately 1 mm(2) were tested in tension at 1 mm/min in a universal tester (Instron 3345). Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). A significant influence of the resin cement used was detected. Composite surface treatment and the interaction between the resin cement applied and surface treatment did not affect μTBS. Surface treatment of indirect resin composite did not improve the μTBS results of dentin/composite overlay complex. Self-adhesive resin cements tested obtained lower μTBS than the total-etch resin cement RelyX ARC. Specimens luted with Maxcem Elite exhibited the highest percentage of pretesting failures. Surface treatment of indirect resin composite with silane or silane followed by a bonding agent did not affect bond strength to dentin.

  10. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  11. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  13. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Science.gov (United States)

    Kim, Da Hye

    2017-01-01

    Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo. PMID:28194363

  14. The effect of elevated temperatures on the dentin adhesion of resin composites.

    Science.gov (United States)

    Brackett, William W; Covey, David A; Haisch, Larry D

    2003-01-01

    Although resin composite restorations may undergo relatively extreme temperature changes in the oral cavity, little is known about the effects of temperature on their adhesion to tooth structure. This study evaluated the effect of temperature on shear bond strength to dentin of three commercial resin dentin adhesives through testing of matured specimens over the 20 degrees to 55 degrees C temperature range. A significant difference (p < 0.05) was observed between 20 degrees C and 55 degrees C for all the materials, and for one of the materials, a significant difference was also observed between 20 degrees C and 37 degrees C.

  15. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    Science.gov (United States)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  16. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (P.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Padhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of bond strength and thickness of adhesive layer according to the techniques of applying adhesives in composite resin restorations.

    Science.gov (United States)

    de Menezes, Fernando Carlos Hueb; da Silva, Stella Borges; Valentino, Thiago Assunção; Oliveira, Maria Angélica Hueb de Menezes; Rastelli, Alessandra Nara de Souza; Conçalves, Luciano de Souza

    2013-01-01

    Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrushtype device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry microbrush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable.

  18. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  19. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Science.gov (United States)

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  20. Effect of surface roughness and adhesive system on repair potential of silorane-based resin composite

    Directory of Open Access Journals (Sweden)

    Enas H. Mobarak

    2012-07-01

    Full Text Available This study was performed to evaluate the influence of surface roughness and adhesive system on the repair strength of silorane-based resin composite. Twenty-four substrate discs from silorane-based FiltekP90 were made and stored for 24 h. Half of the discs were roughened against 320 grit SiC paper while the other half was polished against 4000 grit SiC paper. All discs were etched with phosphoric acid. Repair resin composite, FiltekP90 or FiltekZ250, was bonded to the treated surfaces using their corresponding adhesive; P90 System Adhesive (SA or Adper Scotchbond Multipurpose (SBMP ending up with four repair groups. The groups were as follows: G1: Smooth + SA + FiltekP90; G2: Roughened + SA + FiltekP90; G3: Smooth + SBMP + FiltekZ250; G4: Roughened + SBMP + FiltekZ250. Additional six unrepaired discs from each resin composite (G5 and G6 were prepared to test the cohesive strength. After 24 h, discs (n = 6/group were serially sectioned to obtain sticks (n = 30/group for microtensile bond strength (μTBS testing. Scanning electron microscopic (SEM evaluation of substrates that received different treatments as well as representative substrate-repair sticks from each group were performed. Modes of failure were also determined. Two-way ANOVA with Repeated-Measures revealed that surface treatment and repair material had no significant effect on repair bond strength of silorane-based composite material. Paired t-test showed that all repair strength values were significantly lower than the cohesive strength of FiltekP90. Adhesive failure was the predominant mode of failure which was confirmed by SEM. Surface treated FiltekP90 composite showed different textures under SEM whereas phosphoric acid did not produce clear changes. An interaction layer between SBMP adhesive and FiltekZ250 repairing composite was detected. Repair of the silorane composite was successful irrespective of the surface roughness and chemistry of the repair

  1. Two-year randomized controlled clinical study of a one step universal adhesive and a 2-step self-etch adhesive in Class II resin composite restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    Purpose: To evaluate in a randomized clinical evaluation the 2-year clinical durability of a one-step universal adhesive bonding system and compare it intraindividually with a 2-step self-etch adhesive in Class II restorations. Materials and Methods: Each of 57 participants (mean age 58.3 yr......) success rates (p>0.05). Annual failure rates were 1.8% and 2.6%, respectively.The main reason for failure was resin composite fracture. Conclusion: Class II resin composite restorations placed with a one-step universal adhesive showed good short time effectiveness.......) received at least two, as similar as possible, extended Class II restorations. The cavities in each of the 60 individual pairs of cavities were randomly distributed to the 1-step universal adhesive (All Bond Universal: AU) and the control 2-step self-etch adhesive (Optibond XTR: OX). A low shrinkage resin...

  2. [In vitro study of marginal microleakage of Clearfil S3 BOND adhesive systems and Majesty composite resin].

    Science.gov (United States)

    Wang, Bei; Zhu, Ya-qin

    2009-08-01

    To evaluate the microleakage of standard box-type cavity filled with Clearfil S3 BOND self-etch adhesive systems and Majesty composite resin. 40 permanent molars were randomly divided into experimental and control groups, 20 of each . The box-type cavities, 3mm in length and width and 2mm in depth, were prepared at the cemento-enamel junction on buccal surface of forty permanent extracted teeth. According to grouping, the experimental group was filled with Clearfil S(3) BOND self-adhesive systems and Majesty composite resin, and the control group was filled with 3M Adper Prompt self-adhesive and Filtek Z350 composite resin. After thermal circulation(2000 times, 5 degrees centigrade-55 degrees centigrade) and soaked for 24 hours in 2% methyl blue solution, the samples were cut through the midline of the restoration and the leakage depth was measured with vernier caliper. The microleakage degrees and microleakage depth of 2 groups were analyzed with SPSS 17.0 software package for Mann-Whitney U test and independent-samples t test. Microleakage was observed in both groups. But the microleakage degrees and microleakage depth of 2 groups had no significant difference (P>0.05). The marginal sealibility of Clearfil S(3) BOND self-adhesive systems and Majesty composite resin is as good as Adper Prompt self-adhesive and Filtek Z350 composite resin,it may be an ideal clinical restoration material.

  3. Impact of different adhesives on work of adhesion between CAD/CAM polymers and resin composite cements.

    Science.gov (United States)

    Keul, Christine; Müller-Hahl, Manuel; Eichberger, Marlis; Liebermann, Anja; Roos, Malgorzata; Edelhoff, Daniel; Stawarczyk, Bogna

    2014-09-01

    To determine the impact of pre-treatment of adhesive systems on the work of adhesion (WA) between CAD/CAM polymers and resin composite cements and compare with conventional tests of previous studies. Surface parameters were measured by contact angle measurement (2700 measurements) and WA was calculated. Five CAD/CAM polymers were used for fabrication of specimens (n=75/subgroup): artBloc Temp (A), Telio CAD (B), Nano Composite CFI-C (C), exp. CAD/CAM nanohybrid composite (D), and LAVA Ultimate (E). Then, air-abraded specimens were pre-treated (n=15 per group): Ambarino P60 (I), Monobond Plus/Heliobond (II), visio.link (III), VP connect (IV), and no pre-treatment (V). Resin composite cement specimens (n=75) were smoothed out homogeneously on a glass plate (n=15/group): RelyX ARC (RXA), Variolink II (VAR), Panavia F2.0 (PAN), RelyX Unicem (RXU), and Clearfil SA Cement (CSA). Contact angles were determined with 3 drops of distilled water and diiodomethane each. Data were analyzed using Kruskal-Wallis-H test and Spearman-Rho correlation (pCAD/CAM materials (B), (A), and (C) showed higher WA compared to (D) and (E). (II) and (IV) resulted in higher WA than (I), (III) and (V). VAR had the significantly lowest WA, followed by RXU, RXA, CSA and PAN. No correlation occurred between WA and TBS/SBS whereas polar component of surface free energy of CAD/CAM resin and spreading coefficient showed significant positive correlation with TBS/SBS. Determination of WA is not a proper method to draw conclusions about the bond between resin materials. Destructive test methods are not dispensable. The successful outcome of fixed dental restorations depends, among others, on the quality of bonding between the tooth and the restoration. Additional pre-treatment of the dental CAD/CAM resin restoration by bonding systems can be recommended for clinical use. Pre-treatment showed a significant impact on the surface properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aminophenoxycyclotriphosphazene cured epoxy resins and the composites, laminates, adhesives and structures thereof

    Science.gov (United States)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1977-01-01

    Aminophenoxy cyclotriphosphazenes such as hexakis (4-aminophenoxy) cyclotriphosphazene and tris (4-aminophenoxy)-tris phenoxy cyclotriphosphazene are used as curing agents for epoxy resins. These 1,2-epoxy resins are selected from di- or polyepoxide containing organic moieties of the formula (CH2-CHO-CH2) m-W-R-W- (CH2CH-CH2O)m where R is diphenyl dimethylmethane, diphenylmethane; W is a nitrogen or oxygen atom; and m is 1 when W is oxygen and 2 when W is nitrogen. The resins are cured thermally in stages at between about 110 to 135 C for between about 1 and 10 min, then at between about 175 to 185 C for between 0.5 to 10 hr and post cured at between about 215 and 235 C for between 0.1 and 2 hr. These resins are useful for making fire resistant elevated temperature stable composites, laminates, molded parts, and adhesives and structures, usually for aircraft secondary structures and for spacecraft construction.

  5. Clinical Impact of Dental Adhesives on Postoperative Sensitivity in Class I and Class II Resin-Composite Restorations

    OpenAIRE

    Manchorova-Veleva Neshka A.; Vladimirov Stoyan B.; Keskinova Donka А.

    2015-01-01

    BACKGROUND: Self-etch adhesives are believed to prevent postoperative sensitivity when used under posterior resin-based composite restorations. STUDY OBJECTIVE: A hypothesis that a one-step self-etch adhesive (1-SEA) would result in less postoperative sensitivity than a three-step etch-and-rinse adhesive (3-E&RA) was tested. PATIENTS AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-compo...

  6. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  7. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review.

    Science.gov (United States)

    Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando

    2017-08-08

    To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Streptococcus mutans biofilm adhesion on composite resin surfaces after different finishing and polishing techniques.

    Science.gov (United States)

    Pereira, C A; Eskelson, E; Cavalli, V; Liporoni, P C S; Jorge, A O C; do Rego, M A

    2011-01-01

    This study evaluated Streptococcus mutans biofilm adhesion on the surface of three composite resins (nanofilled, Filtek Z350, 3M ESPE, Salt Lake City, UT, USA; nanohybrid, Vit-1-escence, Ultradent Products, South Jordan, UT, USA; and microhybrid, Esthet X, Dentsply, Milford, DE, USA) following different finishing and polishing techniques. Sixty standardized samples (6 × 3 mm) of each composite were produced and randomly divided into three finishing and polishing treatments (n=20): 1) control group: composite resin surface in contact with Mylar matrix strips with no finishing or polishing performed, 2) Sof-Lex aluminum oxide disc technique (3M ESPE, and 3) carbide bur finishing and Astrobrush polishing technique (Ultradent). Half the samples of each group were incubated in human saliva for 1 hour, and all the samples were subjected to S mutans (ATCC 35688) biofilm development. The mean log of CFU/mL present in the S mutans biofilm was calculated, and data were statistically analyzed by three-way analysis of variance and the Tukey test (pcomposites' surfaces, regardless of the polishing treatment performed (pcomposite (Filtek Z350) had the lowest bacterial adherence with each of the finishing and polishing techniques despite the presence or absence of human saliva (padhesion on the surface of the microhybrid and nanofilled composites in the absence of human saliva.

  9. Effect of laser preparation on adhesion of a self-adhesive flowable composite resin to primary teeth.

    Science.gov (United States)

    Memarpour, Mahtab; Shafiei, Fereshteh; Razmjoei, Faranak; Kianimanesh, Nasrin

    2016-04-01

    The aim of the study was to evaluate the adhesion of a self-adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All-In-One + Premise Flowable composite, OptiBond All-In-One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment.

  10. [Studies on the pre-treatment of dental alloy for adhesive restorations. 4. Adhesive durability of adhesive resin to various dental alloys treated with composite plating].

    Science.gov (United States)

    Kondo, Y; Yamashita, A; Suzuki, K; Omura, I; Yamauchi, J I

    1989-07-01

    In this study, the durability of adhesion between an adhesive resin (Panavia EX) and dental alloys (gold or Ni-Cr) were examined in regard to thermal cycling, immersion, either in water (70 degrees C or 100 degrees C) or in sodium chloride solutions (pH was 3, 7 and 9). An favourable adhesive strength, such as 450-500 kgf/cm2, was obtained even after 24 hours immersion in 37 degrees C water, when the surface pre-treatment of the alloy was done with either Sn- or composite (TMSAC/Sn or PVC/Sn)-plating. However, during the durability test, the adhesive strength has decreased to such on extent, that about 60% of early strength with Sn-plating and 80% with TMSAC/Sn composite plating. But, with PVC/Sn composite-plating, more than 90% of the early strength was maintained. In regard to the pH of the corrosive solution, no apparent difference was observed regarding the above mentioned adhesive characteristics.

  11. 5-year results comparing mineral trioxide aggregate and adhesive resin composite for root-end sealing in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård

    2014-01-01

    observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS: A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re...

  12. Dentin Bond Strength of Two One-Bottle Adhesives after Delayed Activation of Light-Cured Resin Composites

    Directory of Open Access Journals (Sweden)

    F. Shafiei

    2007-12-01

    Full Text Available Objective: Adverse surface interactions between one-bottle adhesives and chemical-cured composites may occur with delayed light activation of light-cured composites. The purpose of this study was to assess the Effects of delayed activation of light-cured compositeson shear bond strength of two one-bottle adhesives with different acidity to bovine dentin.Materials and Methods: Flat dentin surface was prepared on sixty-six bovine incisors using 600 grit carbide papers. Prime&Bond NT, and One-Step adhesives and resin composite were applied in six groups: 1 immediate curing of the composite, 2 the composite was left 2.5 minutes over the cured adhesive before light activation, 3 prior to delayed activation of the composite, the cured adhesive was covered with a layer of nonacidic hydrophobic porcelain bonding resin (Choice 2 and cured immediately. After thermocycling,shear bond strength (SBS test was performed using a universal testing machine at 1 mm/min crosshead speed. Data were analyzed with Friedmans two-way Non-parametric ANOVA.Results: The SBS of delayed activation of Prime&Bond was significantly lower than immediate activated (P<0.05. Decrease in the SBS of One-Step was not statistically significant after delayed activation. The SBS of delayed activation of Prime&Bond and One-Step with an additional resin layer was significantly higher than delayed activation (P<0.001.Conclusion: The bond strength of Prime&Bond might be compromised by the higher acidity of this adhesive during the 2.5 minutes delayed activation of light-cured composite.Addition of a layer of hydrophobic resin compensated the effect of delayed activation andimproved the bond strength.

  13. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  14. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives.

    Science.gov (United States)

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  15. Effect of Storage Time on Bond Strength Performance of Multimode Adhesives to Indirect Resin Composite and Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Makishi, P; André, C B; Silva, Jp Lyra E; Bacelar-Sá, R; Correr-Sobrinho, L; Giannini, M

    2016-01-01

    To investigate the bond strength performance of multimode adhesives (MMAs) to indirect resin composite and lithium disilicate glass ceramic after 24 hours or one year of water storage. Thirty flat and polished plates of indirect resin composite (Epricord) and thirty lithium disilicate glass ceramic plates (IPS e.max Press) were prepared. Surfaces were pretreated using sandblasting (indirect resin composite) or hydrofluoric acid (glass-based ceramic). Specimens were bonded with one of two MMAs (Scotchbond Universal [SBU] or All-Bond Universal [ABU]) or ceramic primer and hydrophobic bonding (RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Bond) as a control (n=10). Resin cement cylinders (0.75 mm in diameter × 0.5 mm in height) were bonded to both substrate surfaces using the respective adhesives. After 24 hours or one year of water storage, bonding performance was measured by microshear bond strength (MSBS) testing. Results were analyzed using three-way ANOVA with Bonferroni post hoc tests (α=0.05). For indirect resin composite, significantly higher MSBS values were found for ABU after 24 hours (ABU > SBU = control); however, no significant difference among the adhesives was observed after one year (p>0.05). For glass-based ceramic, significantly different bond strengths were observed among the adhesives after 24 hours (control = ABU > SBU) and one year (control > SBU = ABU; presin composite after aging, as they showed similar bond performance to that of the control group. However, separate bottles of silane bonding resin showed higher MSBS values and more durable bonding for etched glass-based ceramic.

  16. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian;

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  17. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    Directory of Open Access Journals (Sweden)

    Tijen Pamir

    2012-12-01

    Full Text Available OBJECTIVE: This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. MATERIAL AND METHODS: Conventional (KetacTM Molar Quick ApplicapTM or resin-modified (PhotacTM Fil Quick AplicapTM glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2 or single-step self-etching adhesive (AdperTM PromptTM L-PopTM was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1 no etching, (2 15 s of etching with 35% phosphoric acid, (3 30 s of etching, and (4 60 s of etching. Following the placement of the composite resin (FiltekTM Z250, the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA followed by the Tukey's HSD post hoc analysis (p=0.05. Then, the fractured surfaces were examined by scanning electron microscopy. RESULTS: The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p0.05. However, a greater bond strength was obtained with 30 s of phosphoric acid application. CONCLUSIONS: The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal.

  18. Effect of the applied power of atmospheric pressure plasma on the adhesion of composite resin to dental ceramic.

    Science.gov (United States)

    Han, Geum-Jun; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Oh, Kyu-Hwan; Cho, Byeong-Hoon

    2012-08-01

    To evaluate the effect of applied power on dental ceramic bonding of composite resin using nonthermal atmospheric pressure plasma (APP). A pencil-type APP torch was used to modify the surface chemical composition and hydrophilicity of dental ceramic and to improve the adhesion of composite resin to the surface. The effect of the applied power on chemical changes of the plasma polymer on a ceramic surface and the adhesive strength between the composite resin and feldspathic porcelain were examined. Adhesion was evaluated by comparing shear bond strengths (SBS) using the iris method. The chemical composition of the plasma polymer deposited on the ceramic surface was evaluated using x-ray photoelectron spectroscopy (XPS). Hydrophilicity was evaluated by contact angle measurements. The fracture mode at the interface was also evaluated. The APP treatment was effective and the SBS of the experimental groups were significantly higher than those of the negative control group (p adhesion by producing carboxyl groups on the ceramic surface and as a result by improving surface hydrophilicity. The carboxyl group contents in the plasma polymer on the ceramic surface increased as the applied power increased.

  19. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin.

    Science.gov (United States)

    Han, Geum-Jun; Kim, Jae-Hoon; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Seo, Deog-Gyu; Son, Ho-Hyun; Cho, Byeong-Hoon

    2014-12-01

    This study investigated the effect of low-power, non-thermal atmospheric pressure plasma (NT-APP) treatments, in pulsed and conventional modes, on the adhesion of resin composite to dentin and on the durability of the bond between resin composite and dentin. A pencil-type NT-APP jet was applied in pulsed and conventional modes to acid-etched dentin. The microtensile bond strength (MTBS) of resin composite to dentin was evaluated at 24 h and after thermocycling in one control group (no plasma) and in two experimental groups (pulsed plasma and conventional plasma groups) using the Scotchbond Multi-Purpose Plus Adhesive System. Data were analyzed using two-factor repeated-measures anova and Weibull statistics. Fractured surfaces and the bonded interfaces were evaluated using a field-emission scanning electron microscope. Although there were no significant differences between the plasma treatment groups, the plasma treatment improved the MTBS compared with the control group. After thermocycling, the MTBS did not decrease in the control or conventional plasma group but increased in the pulsed plasma group. Thermocycling increased the Weibull moduli of plasma-treated groups. In conclusion, plasma treatment using NT-APP improved the adhesion of resin composite to dentin. Using a pulsed energy source, the energy delivered to the dentin was effectively reduced without any reduction in bond strength or durability.

  20. Deproteinization technique stabilizes the adhesion of the fiberglass post relined with resin composite to root canal.

    Science.gov (United States)

    Cecchin, Doglas; Almeida, José F A; Gomes, Brenda P F A; Zaia, Alexandre A; Ferraz, Caio C R

    2012-02-01

    To evaluate the effects of pretreatment of root dentin by 5.25% sodium hypochlorite (NaOCl) alone, associated with 2% chlorhexidine in gel base (CHX) and/or ethanol (EtOH), and the air-drying technique (Air) on the bond strength and adhesive durability of fiberglass post relined with resin composite to root dentin. A total of 100 bovine incisor roots were divided into 10 groups: G1 (control), irrigation with physiologic solution; G2, Air; G3, NaOCl; G4, NaOCl + Air; G5, NaOCl + EtOH; G6, NaOCl + EtOH + Air; G7, NaOCl + CHX; G8, NaOCl + CHX + Air; G9, NaOCl + CHX + EtOH; G10, NaOCl + CHX + EtOH + Air. Fiberglass post relined with resin composite was cemented and each group was randomly divided into two subgroups: 24 h of water storage and 12 months of water storage. The push-out test was performed and bond strength values were analyzed by ANOVA and Tukey's test. The use of NaOCl alone or associated with CHX had the highest values of bond strength with or without Air in the immediate and stored groups, being statistically similar to the immediate control group (p > 0.05). The groups using EtOH or Air alone had lower bond strength in the immediate and stored groups (p 0.05). The use of NaOCl or NaOCl associated with CHX preserved the bond strength immediate and for 12 months. The air-drying technique and the other associations decreased the immediate bond strength values.

  1. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques.

    Science.gov (United States)

    Boruziniat, Alireza; Gharaei, Samineh

    2014-03-01

    To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adhesive systems, the RMGI samples were cured. Composite layers were applied and shear bond strength was measured. Two samples of each group were evaluated by SEM. Failure mode was determined by streomicroscope. Both curing methods and adhesive systems had significant effect on bond strength (P-value adhesives had significantly higher shear bond strength than the total-etch adhesive (P-value adhesives, but decreased the bond strength in total-etch adhesive (P-valueadhesive systems and co-curing technique can improve the bond strength between the RMGI and composite.

  2. Evaluation of dental adhesive systems with amalgam and resin composite restorations: comparison of microleakage and bond strength results.

    Science.gov (United States)

    Neme, A L; Evans, D B; Maxson, B B

    2000-01-01

    A variety of laboratory tests have been developed to assist in predicting the clinical performance of dental restorative materials. Additionally, more than one methodology is in use for many types of tests performed in vitro. This project assessed and compared results derived from two specific laboratory testing methods, one for bond strength and one for microleakage. Seven multi-purpose dental adhesives were tested with the two methodologies in both amalgam and resin composite restorations. Bond strength was determined with a punch-out method in sections of human molar dentin. Microleakage was analyzed with a digital imaging system (Image-Pro Plus, Version 1.3) to determine the extent of dye penetration in Class V preparations centered at the CEJ on both the buccal and lingual surfaces of human molar teeth. There were 32 treatment groups (n = 10); seven experimental (dental adhesives) and one control (copal varnish, 37% phosphoric acid) followed by restoration with either amalgam or resin composite. Specimens were thermocycled 500 times in 5 degrees and 55 degrees C water with a one-minute dwell time. Bond strength and microleakage values were determined for each group. ANOVA and Student-Newman-Keuls tests demonstrated an interaction between restorative material and adhesive system with a significant difference among adhesives (p resin composite restorations than in the amalgam restorations. Bond strength testing was more discriminating than microleakage evaluation in identifying differences among materials.

  3. Composite resin's adhesive resistance to dentin: influence of Er:YAG laser focal distance variation.

    Science.gov (United States)

    Corona, Silmara Aparecida Milori; Atoui, Juliana Abdallah; Chimello, Daniela Thomazatti; Borsatto, Maria Cristina; Pecora, Jesus Djalma; Dibb, Regina Guenka Palma

    2005-04-01

    The aim of this study was to analyze in vitro the influence of Er:YAG laser focal distance variation on tensile bond strength of a composite resin to dentin. Although there are several studies using the Er:YAG laser for dentin treatment, there is a lack of available literature related to the Er:YAG laser focal distance variation. Sixty vestibular and lingual dentin surfaces from extracted human third molars, kept in a 0.4% azide sodium solution, were ground and assigned to six groups. The control group was conditioned with 35% phosphoric acid (CA). In the lased groups, the dentin surface treatment was performed by irradiation with Er:YAG laser (80 mJ/2 Hz), varying the focal distance (11, 12, 14, 16, and 17 mm), followed by acid etching. The Single Bond/Filtek Z250 (3M) resinous system was used for the specimen manufacture. The tensile bond strength tests were performed in a Universal Testing Machine with 50 kgf load cell and 0.5 mm/min cross head speed. The averages in MPa were: CA: 18.03 (+/-2.09); 11 mm; 9.92 (+/-3.34); 12 mm: 9.49 (+/-2.29); 14 mm: 10.99 (+/-3.45); 16 mm: 10.56 (+/-1.93); and 17 mm: 17.05 (+/-2.31). It was concluded that the application of Er:YAG laser in a defocused mode (17 mm) associated with acid etching was similar to the treatment of acid solely. Er:YAG laser irradiation in a focused (12 mm) and a defocused (11, 14, and 16 mm) mode coupled with acid conditioning produced the lowest values of adhesion.

  4. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration.

    Science.gov (United States)

    Hashem, Danya F; Foxton, Richard; Manoharan, Andiappan; Watson, Timothy F; Banerjee, Avijit

    2014-03-01

    To compare in-vitro micro-shear bond strengths (μSBS) of resin composite to calcium silicate cement (Biodentine™) vs. glass ionomer cement vs. resin modified glass ionomer cement (RM-GIC) using an adhesive in self-etch (SE)/total etch (TE) mode after aging three substrates and bond and characterizing their failure modes. Resin composite was SE/TE bonded to 920 standardized disks of Biodentine™, GIC & RM-GIC. Dividing samples into two groups, the first underwent early (t=0min, 5min, 20min, 24h) or delayed (t=2wk, 1 month, 3 months, 6 months) substrate aging before bonding and μSBS (t=24h) testing. In the second, adhesive was applied after either early (t=5min) or delayed (t=2wk) substrate aging and then tested after bond aging (t=2wk, 1 month, 3 months, 6 months). The failure modes were identified using stereomicroscope. SEM images of selected samples were analyzed. No significant differences were observed between (SE)/(TE) bonding modes (P=0.42). With substrate aging, a significant reduction in μSBS occurred between early and delayed time intervals for Biodentine™ (P=0.001), but none for the GIC/RM-GIC (P=0.465, P=0.512 respectively). With bond aging, there was no significant difference between time intervals for all groups, except at 6 months for the GIC (PBiodentine™ is a weak restorative material in its early setting phase. Placing the overlying resin composite as part of the laminate/layered definitive restoration is best delayed for >2wk to allow sufficient intrinsic maturation to withstand contraction forces from the resin composite. A total-etch or self-etch adhesive may be used. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques

    OpenAIRE

    Alireza Boruziniat; Samineh Gharaei

    2014-01-01

    Aim: To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Materials and Methods: Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adh...

  6. Effect of adhesion to cavity walls on the mechanical properties of resin composites.

    Science.gov (United States)

    Nayif, Ma'an M; Nakajima, Masatoshi; Aksornmuang, Juthatip; Ikeda, Masaomi; Tagami, Junji

    2008-01-01

    To evaluate the regional mechanical properties of resin composite under free and constrained conditions during polymerization. Forty cavities (8mm diameter and 5mm depth) were fabricated in resin blocks. Half of the cavities were bonded and the other half left un-bonded. The cavities were bulk-filled with one of the following composites: flowable composite (Palfique Estelite LV, Unifil Lo Flo), and Universal composites (Clearfil AP-X, Palfique Estelite Sigma), followed by photo-curing for 30s. After 24h storage, each specimen was sliced parallel to the long axis to harvest three slabs. The middle slab was serially sliced to harvest five sticks, which were trimmed to an hour-glass shape for measurement of regional ultimate tensile strength (UTS). The remaining semi-circular slabs were polished for microhardness measurement (KHN). Data were analyzed using three-way ANOVA followed by Tukey's HSD test and t-test (alpha=.05). The KHNs of all the resin composites were not significantly different between the bonded and unbonded groups at each cavity depth (p>0.05). The Ucapital TE, CyrillicS of the bonded group of flowable composites was significantly lower than those of the un-bonded group at the upper regions (pcomposites, there were no significant differences in UTS between the bonded and un-bonded groups (p>0.05), although Clearfil AP-X had a trend toward lower UTS under the constrained condition at the upper regions. The UTS of resin composite decreases due to polymerization shrinkage stress when polymerized under a constrained condition, however, these effects were dependent upon regions in the cavity and the resin materials.

  7. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters.

    Science.gov (United States)

    Stawarczyk, Bogna; Taufall, Simon; Roos, Malgorzata; Schmidlin, Patrick R; Lümkemann, Nina

    2017-06-24

    The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods. Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1 = 80/pretreatment): (i) 50 μm Al2O3 (0.05 MPa); (ii) 50 μm Al2O3 (0.35 MPa); (iii) 110 μm Al2O3 (0.05 MPa); (iv) 110 μm Al2O3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2 = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H2O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan-Meier survival analysis with Breslow-Gehan test and Cox-regressions. The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al2O3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al2O3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH. The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact. According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with the pretreatment of

  8. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  9. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  10. Adhesion of resin composite to hydrofluoric acid-exposed enamel and dentin in repair protocols.

    Science.gov (United States)

    Saracoglu, A; Ozcan, M; Kumbuloglu, O; Turkun, M

    2011-01-01

    Intraoral repairs of ceramic fixed-dental-prostheses (FDP) often include cervical recessions that require pretreatment of the exposed tooth surfaces either before or after the ceramic is conditioned with hydrofluoric (HF) acid gel. The sequence of repair protocol may cross-contaminate the exposed etched enamel or dentin surfaces during the application or rinsing process and thereby affect the adhesion. This study evaluated the influence of HF acid gel with two concentrations on bond strengths of composite to enamel and dentin. Human third molars (N=100, n=10 per group) with similar sizes were selected and randomly divided into 10 groups. Flat surfaces of enamel and dentin were created by wet ground finishing. Before or after the enamel (E) or dentin (D) was conditioned with phosphoric acid (P), substrate surfaces were conditioned with either 9.5% HF (HF(9.5)) or 5% HF (HF(5)). Subsequently, a bonding agent (B) was applied. The experimental groups by conditioning sequence were as follows where the first letter of the group abbreviation represents the substrate (E or D) followed by the acid type and concentration: group 1 (EPHF(9.5)), group 2 (EPHF(5)), group 3 (EHF(9.5)P), group 4 (EHF(5)P), group 5 (DPHF(9.5)), group 6 (DPHF(5)), group 7 (DHF(9.5)P), and group 8 (DHF(5)P). Group 9 (EPB) and group 10 (DPB) acted as the control groups. Repair resin was adhered incrementally onto the conditioned enamel and dentin in polyethylene molds. Each layer was photo-polymerized for 40 seconds. All specimens were thermocycled (×1000, 5°-55°C) and subjected to shear test (universal testing machine, 1 mm/min). Specimens that debonded during thermocycling were considered as 0 MPa. The bond strength data were analyzed using Kruskal-Wallis test and failure types using the chi-square test (α=0.05). Overall, the bond results (MPa) were lower on dentin than on enamel (penamel and dentin surfaces (64 out of 80) (padhesion was not ideal. Contamination of the enamel or dentin surfaces

  11. Efficacy of Hydrophobic Layer On Sealing Ability of Dentin Adhesive Systems in Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleknejad

    2011-03-01

    Full Text Available Background and aims. Adhesive permeability is hindered by application of an additional layer of hydrophobic resin, which increases its concentration within the hydrophilic layer, reduces its affinity to water, and enhances its physical properties. The aim of the present study was to evaluate the effect of a hydrophobic layer on the microleakage of class V composite restorations using different adhesives. Materials and methods. The adhesives including total-etch Scotchbond MP and Single Bond, and the self-etch Clearfil SE Bond and Clearfil S3 Bond were applied to 80 class V cavities in vitro on the buccal surface in CEJ and then were followed by hydrophobic resin (Margin Bond in half of the cavities in each group (n=10. After restoration with microhybrid composite, Z100 and immersion in fuchsine, the degree of microleakage was assessed. Data were analyzed using the Kruskal-Wallis, Man-Whitney, and Wilcoxon tests. Results. The hydrophobic layer significantly reduced the microleakage of Clearfil SE Bond and Clearfil S3 Bond only in dentin (p0.05. Conclusion. Within the limitation of this study, only Clearfil S3 Bond could demonstrate the identical values of microleakage in enamel and dentinal margins.

  12. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials.

    Science.gov (United States)

    Bähr, Nora; Keul, Christine; Edelhoff, Daniel; Eichberger, Marlis; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2013-01-01

    This study tested the impact of different adhesives and resin composite cements on shear bond strength (SBS) to polymethyl methacrylate (PMMA)- and composite-based CAD/CAM materials. SBS specimens were fabricated and divided into five main groups (n=30/group) subject to conditioning: 1. Monobond Plus/Heliobond (MH), 2. Visio.link (VL), 3. Ambarino P60 (AM), 4. exp. VP connect (VP), and 5. no conditioning-control group (CG). All cemented specimens using a. Clearfil SA Cement and b. Variolink II were stored in distilled water for 24 h at 37 °C. Additionally, one half of the specimens were thermocycled for 5,000 cycles (5 °C/55 °C, dwell time 20 s). SBS was measured; data were analyzed using descriptive statistics, four- and one-way ANOVA, unpaired two-sample t-test and Chi(2)-test. CAD/CAM materials without additional adhesives showed no bond to resin composite cements. Highest SBS showed VL with Variolink II on composite-based material, before and after thermocycling.

  13. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    OpenAIRE

    Deepa, Velagala L; Bhargavi Dhamaraju; Indira Priyadharsini Bollu; Tandri S Balaji

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC TM (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine TM (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into th...

  14. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Science.gov (United States)

    Lim, Myung-Jin

    2017-01-01

    Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm) of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  15. In vitro detection of DNA damage in human leukocytes induced by combined effect of resin composites and adhesive systems.

    Science.gov (United States)

    Marovic, Danijela; Tadin, Antonija; Mladinic, Marin; Juric-Kacunic, Danijela; Galic, Nada

    2014-02-01

    To simultaneously evaluate the genotoxicity of dental composites and adhesive systems in vitro using a cytogenetic assay, with respect to the influence of composite shade. Genotoxicity assessment was carried out in human peripheral blood leukocytes using the comet assay. Three resin composite materials, two microhybrids and one nano-hybrid, in shade A1 and A3.5 were used with manufacturer-recommended four adhesive systems. Cultures were treated for 48 hours with samples after elusion for 1 hour, 1 day, 7 days or 30 days, in two different concentrations (4.16 mg/mL, 8.33 mg/mL). Kruskall-Wallis test was used for the statistical analysis (alpha = 0.05). For combinations of micro-hybrid composite (A3.5) with two self-etch adhesives (16.1 +/- 5.50 and 16.2 +/- 9.52) after exposure to samples eluted for 1 day, the incidence of primary DNA damage was significantly higher than for the corresponding negative control (14.7 +/- 2.85). Genotoxicity was also higher after treatment with samples eluted for 1 hour (15.3 +/- 4.70) and 1 day (15.3 +/- 9.10), comprised of nano-hybrid composite (A1) with self-etch adhesive in relation to the control (13.1 +/- 1.70). There was no clear trend of increased DNA damage in material combinations with darker shades of composites. Material composition and higher material concentrations showed greater influence on the genotoxicity.

  16. Clinical Impact of Dental Adhesives on Postoperative Sensitivity in Class I and Class II Resin-Composite Restorations

    Directory of Open Access Journals (Sweden)

    Manchorova-Veleva Neshka A.

    2015-12-01

    Full Text Available BACKGROUND: Self-etch adhesives are believed to prevent postoperative sensitivity when used under posterior resin-based composite restorations. STUDY OBJECTIVE: A hypothesis that a one-step self-etch adhesive (1-SEA would result in less postoperative sensitivity than a three-step etch-and-rinse adhesive (3-E&RA was tested. PATIENTS AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-composite and were evaluated for sensitivity to cold and masticatory forces at baseline, 7 days, 14 days, 30 days, and 6 months postoperatively. Vitality test scores of the teeth were recorded at the same periods. RESULTS: The evaluation of cold sensitivity intensity (VAS score for all observation periods in both restoration groups did not reveal any statistical significance. The differences in the response time to cold stimulation (0 - 15 sec for the restorations made with a 1-SEA and those made with a separate etch step are statistically insignificant. There are no significant differences in the vitality of the restored teeth at intra- or inter-group comparison. The statistical analysis revealed significant differences in postoperative sensitivity to masticatory forces at postoperative day 14 and day 30 in the 3-E&RA group. CONCLUSIONS: Postoperative sensitivity depends on the type of dentin adhesive used. More intensive complaints of postoperative sensitivity were recorded under masticatory forces at postoperative day 14 and day 30 in 3-E&RA in comparison with 1-SEA.

  17. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    Science.gov (United States)

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  18. Effect of aluminum chloride hemostatic agent on microleakage of class V composite resin restorations bonded with all-in-one adhesive

    Science.gov (United States)

    Mohammadi, Narmin; Bahari, Mahmood; Pournaghi-Azar, Fatemeh; Mozafari, Aysan

    2012-01-01

    Objectives: Since hemostatic agents can induce changes on enamel and dentin surfaces and influence composite resin adhesion, the aim of the present study was to evaluate the effect of the aluminum chloride hemostatic agent on the gingival margin microleakage of class V (Cl V) composite resin restorations bonded with all-in-one adhesive. Study design: Cl V cavities were prepared on the buccal surfaces of 60 sound bovine permanent incisors. Gingival margins of the cavities were placed 1.5 mm apical to the cemento-enamel junction (CEJ). The teeth were randomly divided into two groups of 30. In group 1, the cavities were restored without the application of a hemostatic agent; in group 2, the cavities were restored after the application of the hemostatic agent. In both groups all-in-one adhesive and Z250 composite resin were used to restore the cavities with the incremental technique. After finishing and polishing, the samples underwent a thermocycling procedure, followed by immersion in 2% basic fuschin solution for 24 hours. The samples were sectioned and gingival microleakage was evaluated under a stereomicroscope. The non-parametric Mann-Whitney U test was used to compare microleakage between the two groups. Statistical significance was defined at Padhesive with aluminum chloride hemostatic agent significantly increases restoration gingival margin microleakage. Key words:All-in-one adhesive resin, composite resin restoration, hemostatic agent, microleakage. PMID:22322497

  19. SiO2-nanocomposite film coating of CAD/CAM composite resin blocks improves surface hardness and reduces susceptibility to bacterial adhesion.

    Science.gov (United States)

    Kamonwanon, Pranithida; Hirose, Nanako; Yamaguchi, Satoshi; Sasaki, Jun-Ichi; Kitagawa, Haruaki; Kitagawa, Ranna; Thaweboon, Sroisiri; Srikhirin, Toemsak; Imazato, Satoshi

    2017-01-31

    Composite resin blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications have recently become available. However, CAD/CAM composite resins have lower wear resistance and accumulate more plaque than CAD/CAM ceramic materials. We assessed the effects of SiO2-nanocomposite film coating of four types of CAD/CAM composite resin blocks: Cerasmart, Katana Avencia block, Lava Ultimate, and Block HC on surface hardness and bacterial attachment. All composite blocks with coating demonstrated significantly greater Vickers hardness, reduced surface roughness, and greater hydrophobicity than those without coating. Adhesion of Streptococcus mutans to the coated specimens was significantly less than those for the uncoated specimens. These reduced levels of bacterial adherence on the coated surface were still evident after treatment with saliva. Surface modification by SiO2-nanocomposite film coating has potential to improve wear resistance and susceptibility to plaque accumulation of CAD/CAM composite resin restorations.

  20. A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites.

    Science.gov (United States)

    Ikemura, Kunio; Endo, Takeshi

    2010-10-01

    This paper reviews our recent studies on radical photopolymerization initiators, which are used in the design of light-curing dental adhesives and resin composites, by collating information of related studies from original scientific papers, reviews, and patent literature. The photopolymerization reactivities of acylphosphine oxide (APO) and bisacylphosphine oxide (BAPO) derivatives, and D,L-camphorquinone (CQ)/tertiary amine were investigated, and no significant differences in degree of conversion (DC) were found between BAPO and CQ/amine system (p>0.05). In addition, a novel 7,7-dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carbonyldiphenyl phosphine oxide (DOHC-DPPO=CQ-APO) was synthesized and its ultraviolet and visible (UV-VIS) spectral behavior was investigated. CQ-APO possessed two maximum absorption wavelengths (λmax) at 350-500 nm [372 nm (from APO group) and 475 nm (from CQ moiety)], and CQ-APO-containing resins exhibited good photopolymerization reactivity, excellent color tone, relaxed operation time, and high mechanical strength. It was also found that a newly synthesized, water-soluble photoinitiator (APO-Na) improved adhesion to ground dentin.

  1. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sawase, Takashi

    2017-01-09

    The present study was conducted to evaluate the effects of an experimental adhesive agent [methyl methacrylate-tributylborane liquid (MT)] and two adhesive agents containing silane on the bonding between a resin composite block of a computer-aided design and manufacturing (CAD/CAM) system and a light-curing resin composite veneering material. The surfaces of CAD/CAM resin composite specimens were ground with silicon-carbide paper, treated with phosphoric acid, and then primed with either one of the two silane agents [Scotchbond Universal Adhesive (SC) and GC Ceramic Primer II (GC)], no adhesive control (Cont), or one of three combinations (MT/SC, MT/GC, and MT/Cont). A light-curing resin composite was veneered on the primed CAD/CAM resin composite surface. The veneered specimens were subjected to thermocycling between 4 and 60 °C for 10,000 cycles, and the shear bond strengths were determined. All data were analyzed using analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). MT/SC (38.7 MPa) exhibited the highest mean bond strengths, followed by MT/GC (30.4 MPa), SC (27.9 MPa), and MT/Cont (25.7 MPa), while Cont (12.9 MPa) and GC (12.3 MPa) resulted in the lowest bond strengths. The use of MT in conjunction with a silane agent significantly improved the bond strength. Surface treatment with appropriate adhesive agents was confirmed as a prerequisite for veneering CAD/CAM resin composite restorations.

  2. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  3. Self-adhesive resin cements - chemistry, properties and clinical considerations.

    Science.gov (United States)

    Ferracane, J L; Stansbury, J W; Burke, F J T

    2011-04-01

    Self-adhesive resin cements were introduced to dentistry within the past decade but have gained rapidly in popularity with more than a dozen commercial brands now available. This review article explores their chemical composition and its effect on the setting reaction and adhesion to various substrates, their physical and biological properties that may help to predict their ultimate performance and their clinical performance to date and handling characteristics. The result of this review of self-adhesive resin cements would suggest that these materials may be expected to show similar clinical performance as other resin-based and non-resin based dental cements. © 2010 Blackwell Publishing Ltd.

  4. Effect of Cigarette Smoke on Resin Composite Bond Strength to Enamel and Dentin Using Different Adhesive Systems.

    Science.gov (United States)

    Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb

    2016-01-01

    To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (α<0.05). For enamel, there was no difference between the presence or absence of cigarette smoke (p=0.1397); however, there were differences among the adhesive systems (p<0.001). CSEB showed higher values and did not differ from SBU, but both were statistically different from SB. The SBMP showed intermediate values, while SB demonstrated lower values. For dentin, specimens subjected to cigarette smoke presented bond strength values that were lower when compared with those not exposed to smoke (p<0.001). For the groups without exposure to cigarette smoke, CSEB showed higher values, differing from SBMP. SB and SBU showed intermediary values. For the groups with exposure to cigarette smoke, SBU showed values that were higher and statistically different from SB and CSEB, which presented lower values of bond strength. SBMP demonstrated an intermediate value of bond strength. The exposure of dentin to cigarette smoke influenced the bonding strength of adhesives, but no differences were noted in enamel.

  5. Clinical results with two different methods of root-end preparation and filling in apical surgery: mineral trioxide aggregate and adhesive resin composite

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård

    2010-01-01

    The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral triox...... trioxide aggregate (MTA) and an adhesive resin composite (Retroplast)....

  6. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    OpenAIRE

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the res...

  7. Clinical Effectiveness of Different Polishing Systems and Self-Etch Adhesives in Class V Composite Resin Restorations: Two-Year Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Jang, J-H; Kim, H-Y; Shin, S-M; Lee, C-O; Kim, D S; Choi, K-K; Kim, S-Y

    The aim of this randomized controlled clinical trial was to compare the clinical effectiveness of different polishing systems and self-etch adhesives in class V composite resin restorations. A total of 164 noncarious cervical lesions (NCCLs) from 35 patients were randomly allocated to one of four experimental groups, each of which used a combination of polishing systems and adhesives. The two polishing systems used were Sof-Lex XT (Sof), a multistep abrasive disc, and Enhance/Pogo (EP), a simplified abrasive-impregnated rubber instrument. The adhesive systems were Clearfil SE bond (CS), a two-step self-etch adhesive, and Xeno V (XE), a one-step self-etch adhesive. All NCCLs were restored with light-cured microhybrid resin composites (Z250). Restorations were evaluated at baseline and at 6, 12, 18, and 24 months by two blinded independent examiners using modified FDI criteria. The Fisher exact test and generalized estimating equation analysis considering repeated measurements were performed to compare the outcomes between the polishing systems and adhesives. Three restorations were dislodged: two in CS/Sof and one in CS/EP. None of the restorations required any repair or retreatment except those showing retention loss. Sof was superior to EP with regard to surface luster, staining, and marginal adaptation (p0.05). Sof is clinically superior to EP for polishing performance in class V composite resin restoration. XE demonstrates clinically equivalent bonding performance to CS.

  8. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  9. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    Science.gov (United States)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  10. Adhesive analysis of voids in class II composite resin restorations at the axial and gingival cavity walls restored under in vivo versus in vitro conditions

    Science.gov (United States)

    Purk, John H.; Dusevich, Vladimir; Glaros, Alan; Eick, J. David

    2007-01-01

    Objectives Adhesive analysis, under the scanning electron microscope of microtensile specimens that failed through the adhesive interface, was conducted to evaluate the amount of voids present at the axial versus gingival cavity walls of class II composite restorations restored under in vivo and in vitro conditions. Methods Five patients received class II resin composite restorations, under in vivo and in vitro conditions. A total of 14 premolar teeth yielded 59 (n = 59) microtensile adhesive specimens that fractured through the adhesive interface. The fractured surfaces of all specimens were examined and the % area of voids was measured. Results Voids at the adhesive joint were highly predictive of bond strengths. An increase in the number of voids resulted in a decrease in the microtensile bond strength. The area of voids at the adhesive interface was as follows: in vivo axial 13.6 ± 25.6% (n = 12); in vivo gingival 48.8 ± 29.2% (n = 12); in vitro axial 0.0 ± 0.0% (n = 19) and in vitro gingival 11.7 ± 17.6% (n = 16). Significance Composite resin may bond differently to dentin depending upon the amount of voids and the cavity wall involved. The bond to the gingival wall was not as reliable as the bond to the axial wall. An increase in the amount of surface voids was a major factor for reducing microtensile bond strengths of adhesive to dentin. PMID:16950506

  11. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  12. Color stability of different composite resin materials.

    Science.gov (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. An in vitro microleakage study of class V cavities restored with a new self-adhesive flowable composite resin versus different flowable materials

    OpenAIRE

    Mostafa Sadeghi

    2012-01-01

    Background: Regarding the importance of sealing ability of restorative dental materials, this study was done to assess the microleakage of class V cavities restored with a new self-adhesive flowable composite resin and compare to different flowable materials. Materials and Methods: Seventy standardized class V cavities were prepared on the buccal surface of maxillary premolars teeth. The occlusal and the gingival margins of the cavities were located on the enamel and cementum/dentin, resp...

  14. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA bas

  15. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA

  16. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments.

    Science.gov (United States)

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention.

  17. Resin composites in minimally invasive dentistry.

    Science.gov (United States)

    Jacobsen, Thomas

    2004-01-01

    The concept of minimally invasive dentistry will provide favorable conditions for the use of composite resin. However, a number of factors must be considered when placing composite resins in conservatively prepared cavities, including: aspects on the adaptation of the composite resin to the cavity walls; the use of adhesives; and techniques for obtaining adequate proximal contacts. The clinician must also adopt an equally conservative approach when treating failed restorations. The quality of the composite resin restoration will not only be affected by the outline form of the preparation but also by the clinician's technique and understanding of the materials.

  18. Adhesion of resin composites to biomaterials in dentistry: an evaluation of surface conditioning methods

    OpenAIRE

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to glass ceramics, glass infiltrated alumina, glass infiltrated ZrO2 reinforced alumina. The three conditioning methods assesed were: (1) HF acid etching, (2) Air-borne particle ab...

  19. Translucency and color stability of resin composite and dental adhesives as modeling liquids - A one-year evaluation.

    Science.gov (United States)

    Sedrez-Porto, José Augusto; Münchow, Eliseu Aldrighi; Cenci, Maximiliano Sérgio; Pereira-Cenci, Tatiana

    2017-07-03

    The aim of this study is to evaluate the influence of modeling liquids on the translucency and color shade of resin composites (RCs) after one year of storage. RC specimens were prepared using either a conventional insertion technique (control; without modeling liquid) or a restorative dental modeling insertion technique (RDMIT) with dental adhesives as modeling liquids (Scotchbond™ Multi-Purpose [SBMP; 3M ESPE] or Adper™ Single Bond 2 [SB; 3M ESPE]). The initial colors of the specimens were obtained with a digital spectrophotometer and the CIEL*a*b* color system, after which specimens were stored (37°C) in distilled water or red wine for 12 months. Color measurements were reassessed after 6 and 12 months of storage, and scanning electron microscopy was performed after 12 months. Translucency and color change (ΔE*) were calculated and analyzed using ANOVA and Tukey's test (α = 5%). RC samples prepared via RDMIT showed a translucency similar to that of control samples. ΔE* was also less intense for RCs containing SBMP than for RCs containing SB. Specimens stored in wine showed a clear pattern of degradation, especially in the control group, and surface degradation seemed to be less intense for specimens prepared with SBMP and SB than for specimens without. Specimens stored in water did not show clear evidence of surface degradation. RDMIT appears to be an interesting approach to reduce ΔE* in RCs over time without negative effects on the translucency of the material. However, the modeling liquid should feature a hydrophobic composition, similar to that used in the SBMP group, the achieve the best results.

  20. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  1. New processable modified polyimide resins for adhesive and matrix applications

    Science.gov (United States)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  2. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  3. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer......-based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years...... and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. Clinical relevance: The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations....

  4. [Radiopacity of composite resins].

    Science.gov (United States)

    Tamburús, J R

    1990-01-01

    The author studied the radiopacity of six composite resins, submitted to radiographic examination in standardized conditions, only with kilovoltage variations. Along with resins it was radiographed an aluminium penetrometer, to compare their optical densities. The results showed that kilovoltagem variations interfered in optical densities of the resins, being more pronounced in 50-55, 55-60 and 60-65 kilovoltages. Despite this, the relations of optical densities as compared with that of penetrometer steps kept unaltered most fo the kilovoltages used.

  5. Biocompatibility of composite resins

    OpenAIRE

    Sayed Mostafa Mousavinasab

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concern...

  6. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  7. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    Directory of Open Access Journals (Sweden)

    Velagala L Deepa

    2016-01-01

    Full Text Available Aims: To compare and evaluate the bonding ability of resin composite (RC to three different liners: TheraCal LC TM (TLC, a novel resin-modified (RM calcium silicate cement, Biodentine TM (BD, and resin-modified glass ionomer cement (RMGIC using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC, Group B (BD, and Group C (RMGIC. Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA and post hoc test using Statistical Package for the Social Sciences (SPSS version 20. Results: No significant difference was observed between group A and group C (P = 0.573 while group B showed the least bond strength values with a highly significant difference (P = 0.000. The modes of failure were predominantly cohesive in Groups A and B (TLC and BD while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive.

  8. Randomized 3-year clinical evaluation of Class I and II posterior resin restorations placed with a bulk-fill resin composite and a one-step self-etching adhesive.

    Science.gov (United States)

    van Dijken, Jan Wv; Pallesen, Ulla

    2015-02-01

    To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations. Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were evaluated using slightly modified USPHS criteria at baseline and then annually for 3 years. Caries risk and bruxing habits of the participants were estimated. No post-operative sensitivity was reported. At the 3-year follow-up, 196 restorations - 74 Class I and 122 Class II - were evaluated. Seven restorations failed (3.6%), 4 SDR-CeramX mono+ and 3 CeramX mono+ only restorations, all of which were Class II. The main reason for failure was tooth fracture, followed by resin composite fracture. The annual failure rate (AFR) for all restorations (Class I and II) was 1.2% for the bulkfilled restorations and 1.0% for the resin composite-only restorations (p > 0.05). For the Class II restorations, the AFR was 2.2% and 1.6%, respectively. The 4-mm bulk-fill technique showed good clinical effectiveness during the 3-year follow-up.

  9. Randomized 3-year Clinical Evaluation of Class I and II Posterior Resin Restorations Placed with a Bulk-fill Resin Composite and a One-step Self-etching Adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2015-01-01

    PURPOSE: To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations. MATERIALS AND METHODS: Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years......). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR...... in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were...

  10. Biocompatibility of composite resins

    Directory of Open Access Journals (Sweden)

    Sayed Mostafa Mousavinasab

    2011-01-01

    Full Text Available Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity.

  11. Adhesive-composite incompatibility, part II.

    Science.gov (United States)

    Carvalho, Ricardo M; Garcia, Fernanda Cristina P; e Silva, Safira M A; Castro, Fabrício L A

    2005-01-01

    Apart from some questions related to the repairability of resin composite restorations, dentists have always assumed that methacrylate-based resins are compatible with each other. For example, there is no clinically relevant problem in using a microfilled composite to laminate a Class IV restoration made with a hybrid composite, even if they are not of the same brand or manufacturer. In the context of adhesive systems, we have always believed that resin composites, regardless of their type or composition, bond well to all types of bonding agents. However, unexpected debonding of self-cured, core buildup composites that had been bonded with single-bottle adhesive systems was reported about 5 years ago. Subsequent studies demonstrated that there were, indeed, compatibility problems between simplified adhesive systems and self- or dual-cured resin composites. Apparently, when such combinations are used, reduced bond strengths and subsequent failures at the resin-adhesive interface can occur because of adverse reactions between the acidic resin monomers, an integral part of the simplified adhesive systems, and the chemicals involved in the polymerization mechanism of the self- or dual-cured composites, particularly the basic tertiary amines.

  12. Comparison of depth of dentin etching and resin infiltration with single-step adhesive systems.

    Science.gov (United States)

    Sato, Mitsuo; Miyazaki, Masashi

    2005-07-01

    Adhesion of resin composites to dentin is currently believed to result from impregnation of adhesive resin into superficially demineralized dentin. The purpose of this study was to use micro-Raman spectroscopy and scanning electron microscopy (SEM) to investigate the extent of resin penetration into etched dentin with single-step adhesive systems. Adhesive systems used were One-Up Bond F (Tokuyama Dental) and Reactmer Bond (Shofu, Inc.). A self-etching primer system Mac Bond II (Tokuyama Dental) was employed as a control. Resin composites were bonded to bovine dentin with the adhesive systems, and specimens were sectioned parallel to dentinal tubules. Raman spectra were successively recorded along a line perpendicular to the dentin-adhesive interface in steps of 0.2 microm and the spectra were obtained. SEM observations of the resin-dentin interface were also conducted. The dentin-resin interface of single-step adhesive systems showed a gradual transition in the relative amount of adhesive from the resin side to dentin side. The widths of resin penetration into demineralized dentin detected by Raman microscopy were greater than those obtained by the morphological analysis using SEM. From the results of this study, a gradual variation in the composition of the dentin-resin interface was detected, and the degree of resin impregnation observed with SEM observation was less than that detected with the Raman microscopy.

  13. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer-based nan......Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer......-based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years...... and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. Clinical relevance: The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations....

  14. Effect of proanthocyanidin incorporation into dental adhesive resin on resin-dentine bond strength.

    Science.gov (United States)

    Epasinghe, D J; Yiu, C K Y; Burrow, M F; Tay, F R; King, N M

    2012-03-01

    This study evaluated the effect of proanthocyanidin (PA) incorporation into experimental dental adhesives on resin-dentine bond strength. Four experimental hydrophilic adhesives containing different PA concentrations were prepared by combining 50wt% resin comonomer mixtures with 50wt% ethanol. Proanthocyanidin was added to the ethanol-solvated resin to yield three adhesives with PA concentrations of 1.0, 2.0 and 3.0wt%, respectively. A PA-free adhesive served as the control. Flat dentine surfaces from 40 extracted third molars were etched with 32% phosphoric acid. The specimens were randomly assigned to one of the four adhesive groups. Two layers of one of the four experimental adhesives were applied to the etched dentine and light-cured for 20s. Composite build-ups were performed using Filtek Z250 (3M ESPE). After storage in distilled water at 37°C for 24h, twenty-four bonded teeth were sectioned into 0.9 mm×0.9 mm beams and stressed to failure under tension for bond strength testing. Bond strength data were evaluated by one-way ANOVA and Tukey's test (α=0.05). Interfacial nanoleakage was examined in the remaining teeth using a field-emission scanning electron microscope and analysed using the Chi-square test (α=0.05). No significant difference in bond strength was found amongst PA-free, 1% and 2% PA adhesives. However, incorporation of 3% PA into the adhesive significantly lowered bond strength as demonstrated by a greater number of adhesive failures and more extensive nanoleakage along the bonded interface. Incorporation of 2% proanthocyanidin into dental adhesives has no adverse effect on dentine bond strength. The addition of proanthocyanidin to an experimental adhesive has no adverse effect on the immediate resin-dentine bond strength when the concentration of proanthocyanidin in the adhesive is less than or equal to 2%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Water sorption/solubility of dental adhesive resins.

    Science.gov (United States)

    Malacarne, Juliana; Carvalho, Ricardo M; de Goes, Mario F; Svizero, Nadia; Pashley, David H; Tay, Franklin R; Yiu, Cynthia K; Carrilho, Marcela Rocha de Oliveira; de Oliveira Carrilho, Marcela Rocha

    2006-10-01

    This study evaluated the water sorption, solubility and kinetics of water diffusion in commercial and experimental resins that are formulated to be used as dentin and enamel bonding agents. Four commercial adhesives were selected along with their solvent-monomer combination: the bonding resins were of Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) systems, and the "one-bottle" systems, Adper Single Bond (SB) and Excite (EX). Five experimental methacrylate-based resins of known hydrophilicities (R1, R2, R3, R4 and R5) were used as reference materials. Specimen disks were prepared by dispensing the uncured resin into a mould (5.8mm x 0.8mm). After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. Resin composition and hydrophilicity (ranked by their Hoy's solubility parameters) influenced water sorption, solubility and water diffusion in both commercial and experimental dental resins. The most hydrophilic experimental resin, R5, showed the highest water sorption, solubility and water diffusion coefficient. Among the commercial adhesives, the solvated systems, SB and EX, showed water sorption, solubility and water diffusion coefficients significantly greater than those observed for the non-solvated systems, MP and SE (p<0.05). In general, the extent and rate of water sorption increased with the hydrophilicity of the resin blends. The extensive amount of water sorption in the current hydrophilic dental resins is a cause of concern. This may affect the mechanical stability of these resins and favor the rapid and catastrophic degradation of resin-dentin bonds.

  16. Microleakage of Composite Resin Restorations Using a Type of Fifth and Two Types of Seventh Generations of Adhesive Systems: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mitra Tabari

    2015-12-01

    Full Text Available Introduction: In recent dentin adhesive systems etching of enamel/dentin are achieved simultaneously. The objective was to evaluate the microleakage of composite restorations using Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. Methods: Class V cavities were prepared on  45 extracted intact premolars with gingival margins at the cementoenamel junction and they were randomly divided into 3 groups (n=15 based on the type of adhesives: Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. After applying the adhesives, the cavities were filled with Z250 composite resin. The occlusal and gingival microleakage was evaluated using 2% basic fuchsin staining technique. Data were analyzed using Kruskal-Wallis and Bonferroni corrected Mann-Whitney U tests. Results: The mean rank of occlusal microleakage exhibited significant differences by comparison of G Bond, Clearfil S3 Bond and Single Bond2 (21.07, 30.67 and 17.27, respectively (P=0.005. There was a significant difference in gingival microleakage of different bonding agents (34.40, 17.83 and 16.77 for G Bond, Clearfil S3 Bond and Single Bond2, respectively (P

  17. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment.

    Science.gov (United States)

    Shafiei, Fereshteh; Saadat, Maryam

    2016-05-01

    This study evaluated the effect of dentin surface treatment on the micromorphology and shear bond strength (SBS) of a self-adhering flowable composite, Vertis Flow (VF). Flat dentin surfaces obtained from sixty extracted human molars were divided into six groups (n = 10) according to the following surface treatments: (G1) control, no treatment; (G2) self-etching adhesive, Optibond All-in-One; (G3) phosphoric acid etching for 15 s; (G4) polyacrylic acid for 10 s; (G5) EDTA for 60 s; and G6) sodium hypochlorite (NaOCl) for 15 s. After restoration using VF, SBS was measured in MPa. Data were analyzed using one-way ANOVA and Tamhane test (α = 0.05). Six additional specimens were prepared for scanning electron microscopy analysis. SBS was significantly affected by surface treatment (P < 0.001). SBS of six groups from the highest to the lowest were as follows: (G3) 13.5(A); (G5) 8.98(AB); (G2) 8.85(AB); (G4) 8.21(AB); (G1) 7.53(BC); and (G6) 4.49(C) (groups with the same superscript letter were statistically similar). Morphological analysis revealed numerous long resin tags at the adhesive interface for acid-etched group, with a few short resin tags for the control group and small gap formation for NaOCl-treated group. In conclusion, dentin surface treatments tested differently affected bonding performance of VF; only acid-etching effectively improved this.

  18. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  19. Bond strength of adhesive resin cement with different adhesive systems

    Science.gov (United States)

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  20. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2017-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth...

  1. Indirect resin composites

    Directory of Open Access Journals (Sweden)

    Nandini Suresh

    2010-01-01

    Full Text Available Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ′indirect resin composites,′ composite inlays,′ and ′fiber-reinforced composites.′

  2. Adhesion Analysis of Resin/Resin Interface by Molecular Dynamics Simulation

    National Research Council Canada - National Science Library

    MIYAZAKI, Mariko; KANEGAE, Yoshiharu; IWASAKI, Tomio

    2012-01-01

    .... In this paper, a technique for using a molecular dynamics simulation to analyze the adhesion of the interface between adhesive and polyimide, that is the resin/resin interface, has been proposed...

  3. Four-year clinical evaluation of Class II nano-hybrid resin composite restorations bonded with a one-step self-etch and a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical trial was to evaluate the 4-year clinical performance of an ormocer-based nano-hybrid resin composite (Ceram X; Dentsply/DeTrey) in Class II restorations placed with a one-step self-etch (Xeno III; Dentsply/DeTrey) and two-step etch-and-rinse adhesive...

  4. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    This study determined whether the strength with which resin composite bonds to dentin is influenced by variations in the curing rate of resin composites. Resin composites were bonded to the dentin of extracted human molars. Adhesive (AdheSE, Ivoclar Vivadent) was applied and cured (10 seconds...

  5. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a weigh

  6. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  7. A Histopathological Study of Direct Pulp Capping with Adhesive Resins

    Directory of Open Access Journals (Sweden)

    J. Salhenejad

    2004-12-01

    Full Text Available Statement of Problem: Recently, it has been proposed that different adhesive materials can be used for direct pulp capping. Previous studies have demonstrated that multi steps dentin adhesives could form reparative dentin similar to calcium hydroxide (CH.Purpose: The aim of this study was to evaluate the histological pulp response of ninety mechanically exposed cat pulps to two adhesive resins (Scotch Bond MP and Single Bond 3M were compared with a calcium hydroxide cement (Dycal, Dentsply.Materials and Methods : Class V facial cavities with similar pulpal exposures were prepared in canines. In the experimental groups phosphoric acid was used to etch the enamel and dentin and pulp exposure, and after it dentin adhesives was applied. The exposure point of the control group was capped with Dycal then the remainder of the cavities was etched and a dentin adhesive (single bond was applied. All of the cavities were restored with a composite resin (Z 100 in usual manner. The animals were scarified after 7, 30 and 60 days (n=30, and the pulp evaluated histologically, statistical analysis was carried out with Kruskal- Wallis test (a=0.05.Results: The data showed that most of the cases had mild inflammation of pulp tissue.There was no significant difference in inflammatory reaction of pulp by Dycal and two adhesive systems, severe inflammatory reaction of pulp was observed only in most of the 30- day Single Bond group. Soft tissue organization of dentin bridge was less than ScotchBond and Dycal groups, the differentiation of dentin bridge was less than Scotch Bond group after 7 days.Conclusion: Slight inflammatory cell infiltration was the main reaction of exposed pulp when two commercially available adhesive resins were placed directly on the exposed pulp.There was no significant difference in inflammatory reaction of pulp between Dycal and two adhesive systems after 7 days and 60 days. After 7 days most of the specimens showed an amount of predentin

  8. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer-based nan......Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer......-based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years....... Results: One hundred and fifty-eight restorations were evaluated after 8 years. Three participants with five restorations (three Xeno III, two Excite) were registered as dropouts. Twenty-one failed restorations (13.3 %) were observed during the follow-up. Twelve in the one-step self-etch adhesive group...

  9. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    Science.gov (United States)

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration.

  10. Effects of light curing method and resin composite composition on composite adaptation to the cavity wall.

    Science.gov (United States)

    Yoshikawa, Takako; Morigami, Makoto; Sadr, Alireza; Tagami, Junji

    2014-01-01

    This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios duringpolymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method.

  11. Conventional and microfilled composite resins. Part II. Chip fractures.

    Science.gov (United States)

    Lambrechts, P; Ameye, C; Vanherle, G

    1982-11-01

    Dentists are accustomed to advantages and disadvantages in the materials at their disposal. This article was concerned with one disadvantage of microfilled composite resins, namely, chip fractures. Probably due to their higher coefficient of thermal expansion, higher water sorption, higher polymerization shrinkage, and lower tensile strengths, cohesive as well as adhesive chip fractures occur three to four times more often with microfilled composite resins than with conventional composite resins. Microfilled composite resins are indicated for esthetic purposes. They are contraindicated for Class IV and stress-bearing restorations. They are indicated for limited use in Class I restorations where esthetics is of primary importance. The technique of use must include acid-etching and intermediate bonding. The microfilled composite resins enjoy a smooth finish and high luster. This offers advantages in areas where smoothness is paramount. They may replace conventional composite resins for resurfacing existing restorations and veneering stained or mottled anterior teeth. They are indicated for treatment of cervical erosion.

  12. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin.

    Science.gov (United States)

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-05-01

    Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008-2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan's logistic regression test. In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly

  13. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin

    Science.gov (United States)

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-01-01

    Background Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. Aim To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008–2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan’s logistic regression test. Results In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition

  14. The influence of a packable resin composite, conventional resin composite and amalgam on molar cuspal stiffness.

    Science.gov (United States)

    Molinaro, J D; Diefenderfer, K E; Strother, J M

    2002-01-01

    Packable resin composites may offer improved properties and clinical performance over conventional resin composites or dental amalgam. This in vitro study examined the cuspal stiffness of molars restored with a packable resin composite, a conventional posterior microfilled resin composite and amalgam. Forty-eight intact caries-free human third molars were distributed into four treatment groups (n=12) so that the mean cross-sectional areas of all groups were equal. Standardized MOD cavity preparations were made and specimens restored using one of four restorative materials: (1) a spherical particle amalgam (Tytin); (2) Tytin amalgam with a dentin adhesive liner (OptiBond Solo); (3) a conventional microfilled posterior resin composite (Heliomolar); (4) a packable posterior resin composite (Prodigy Posterior). Cuspal stiffness was measured using a Bionix 200 biomaterials testing machine (MTS). Specimens were loaded vertically to 300 N at a crosshead speed of 1.0 mm/minute. Stiffness was measured at 10 intervals: (1) prior to cavity preparation (intact); (2) following cavity preparation, but before restoration; (3) seven days after restoration; then (4) 1, 2, 3, 4, 5, 6 and 12 months after restoration. All specimens were stored at 37 degrees C in deionized water throughout the study and thermocycled (5 degrees/55 degrees C; 2000 cycles) monthly for 12 months. Repeated Measures ANOVA revealed significant differences among treatment groups over time (presin composite increased cuspal stiffness over that of amalgam.

  15. Evaluation of bond strength between glass fiber and resin composite using different protocols for dental splinting

    Directory of Open Access Journals (Sweden)

    Amaral R Fabrício

    2013-01-01

    Full Text Available Context: Many different polymeric materials to chair-side application on pre-impregnated glass fibers (PGF are available and different protocols are used in clinical procedure. Aims: This study evaluated protocols used for dental splinting on adhesion between PGF and resin. Settings and Design: 42 pair of nano composite resin blocks with (6 × 6 × 8 mm 3 were assigned into seven groups (n=6 and bonded according to the protocol: Gar adhesive, resin; Ggr glass fiber, resin; Ggar glass fiber, adhesive, resin; Gfgar flowable resin, glass fiber, adhesive, resin; Ggafr glass fiber, adhesive, flowable resin, resin; Ggfar glass fiber, flowable resin, adhesive, resin; Gfgr flowable resin, glass fiber, resin. Materials and Methods: Micro sticks obtained from each group were submitted to the micro tensile bond strength test. Statistical Analysis: The data were statistically evaluated using ANOVA and Tukey`s test (5%. Results: The protocol had a significant effect on the bond strength results (P=0.00. Gar and Ggar resulted in the highest bond strength with no statistical difference. Conclusions: The use of adhesive agent showed to be efficient to promote initial adhesion between fiber and nano composite resin.

  16. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond.

    Science.gov (United States)

    Yiu, Cynthia K; Hiraishi, Noriko; Tay, Franklin R; King, Nigel M

    2012-08-01

    This study evaluated the effect of chlorhexidine (CHX) incorporation into experimental dentin adhesives with different hydrophilicities on the microtensile bond strength (µTBS) to dentin. Flat, deep dentin surfaces were prepared from 60 extracted human third molars. Three ethanol-solvated (50 wt% ethanol/50 wt% comonomers) experimental adhesives with varying degrees of hydrophilicity were prepared for the CHX-free groups. For the CHX-containing groups, chlorhexidine diacetate was further added to the ethanol-solvated adhesives to form a concentration of 2.0 wt% CHX. Dentin surfaces were etched with 37% phosphoric acid for 15 s, rinsed and blot dried before bonding. The adhesives were generously applied to dentin with a microbrush for 15 s. A second application of fresh adhesive was made and light cured for 20 s (600 mW/cm2) after solvent evaporation. Composite buildups were made using Filtek Z250 (3M ESPE). The bonded teeth were sectioned into 0.9 mm x 0.9 mm beams and stressed to failure at a crosshead speed of 1 mm/min. Testing was performed 24 h after specimen preparation and 12 months after storage in artificial saliva. The µTBS data were analyzed using three-way ANOVA and Tukey's multiple comparison tests. Fractographic analysis was performed by SEM. Significant differences were observed for the three factors "adhesive hydrophilicity" (p adhesives (p > 0.05). After storage in artificial saliva, significant reduction in bond strength was observed in all adhesive groups, except for CHX-containing adhesive I (p adhesive III was significantly higher than the corresponding CHX-free adhesive (p dental adhesives, chlorhexidine can partially reduce the degradation of the resin-dentin bonds.

  17. Guidelines for Direct Adhesive Composite Restoration.

    Science.gov (United States)

    Society Of Cariology And Endodontology, Chinese Stomatological Association Csa

    2015-01-01

    Direct adhesive composite restoration, a technique to restore tooth defects by bonding composite resin materials, has been widely used in the restoration of dental caries or other tooth defects. Retention of composite resin restoration mainly relies on bonding strength between the materials and dental tissue. The clinical outcomes rely greatly on the regulated clinical practice of dentists. In 2011, the Society of Cariology and Endodontology of Chinese Stomatological Association (CSA) published the 'Practices and evaluation criteria of composite resin bonded restoration (Discussion Version)'. Since then, opinions and comments regarding the 'Discussion Version' have been widely circulated within the Society. The final version of the guideline was based on systematic reviews of scientific literature and requirements for the edit of technical guidelines, and through several rounds of discussions, revisions and supplements. The society recommends this guideline for clinicians to use in their practices, when conducting direct composite restorations.

  18. Resin adhesion to enamel and dentin: a review.

    Science.gov (United States)

    Hewlett, Edmond R

    2003-06-01

    This article reviews the current knowledge base regarding resin adhesion to enamel and dentin. A descriptive classification system for adhesive resin products as well as clinical considerations derived from the review are also presented to assist the clinician in the selection and application of these products.

  19. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-08-07

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  1. Effect of ultraviolet light irradiation on bonding of experimental composite resin artificial teeth.

    Science.gov (United States)

    Loyaga-Rendon, Paola G; Takahashi, Hidekazu; Iwasaki, Naohiko; Reza, Fazal

    2007-11-01

    The purpose of the present study was to evaluate how ultraviolet light (UV) irradiation using an ordinary UV sterilizer would affect the bonding of experimental composite resins to an autopolymerizing acrylic resin. To this end, three composite resins and one unfilled resin--of which the compositions were similar to commercial composite resin artificial teeth--were prepared as repair composites. Their shear bond strengths after UV irradiation for one to 60 minutes were significantly greater than those before UV irradiation regardless of composite resin type. Failure mode after UV irradiation for one to 60 minutes was mainly cohesive failure of the composite resins, but that before UV irradiation and after 24 hours' irradiation was mainly adhesive failure. These results thus suggested that a short period of UV irradiation on composite resin teeth would improve the bonding efficacy of composite resin artificial teeth to autopolymerizing resin.

  2. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    Science.gov (United States)

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  3. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-05-01

    Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.

  4. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  5. Adhesion of adhesive resin cements to dental zirconia ceramic and human dentin

    OpenAIRE

    YANG Bin

    2008-01-01

    In this work, the long-term bond strengths of adhesive resin cements to zirconia ceramic and human dentin were evaluated, and resin-ceramic and resin-dentin bonding mechanisms were investigated. In chapter 3, the influence of surface pre-treatment on the bonding durability of three resin cements (Super-Bond C&B resin cement : SB, Clearfil™ Esthetic cement: CEC, Chemiace II: CH) to zirconia ceramic was studied. Most importantly, the influence of chemical reactions of functional monomers in...

  6. Interfacial adhesion of dental ceramic-resin systems

    Science.gov (United States)

    Della Bona, Alvaro

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses

  7. Effect of laser preparation on bond strength of a self-adhesive flowable resin.

    Science.gov (United States)

    Yazici, A Rüya; Agarwal, Ishita; Campillo-Funollet, Marc; Munoz-Viveros, Carlos; Antonson, Sibel A; Antonson, Donald E; Mang, Thomas

    2013-01-01

    The aim of this in vitro study was to evaluate the effect of laser treatment on shear bond strength of a self-adhesive flowable resin composite to human dentin. Eighty extracted sound human molar teeth were used for the study. The teeth were sectioned mesiodistally and embedded in acrylic blocks. The dentin surfaces were ground wet with 600-grit silicon carbide (SiC) paper. They were randomly divided into two preparation groups: laser (Er:YAG laser, with 12 Hz, 350 mJ energy) and control (SiC). Each group was then divided into two subgroups according to the flowable resin composite type (n = 20). A self-adhesive flowable (Vertise Flow) and a conventional flowable resin (Premise Flow) were used. Flowable resin composites were applied according to the manufacturer's recommendations using the Ultradent shear bond Teflon mold system. The bonded specimens were stored in water at 37 °C for 24 h. Shear bond strength was tested at 1 mm/min. The data were logarithmically transformed and analyzed using two-way analysis of variance and Student-Newman-Keul's test at a significance level of 0.05. The self-adhesive flowable resin showed significantly higher bond strength values to laser-prepared surfaces than to SiC-prepared surfaces (p flowable resin did not show such differences (p = 0.224). While there was a significant difference between the two flowable resin composites in SiC-prepared surfaces (p flowable resin composite differs according to the type of dentin surface preparation. Laser treatment increased the dentin bonding values of the self-adhesive flowable resin.

  8. Effectiveness of bonding resin-based composite to healthy and fluorotic enamel using total-etch and two self-etch adhesive systems.

    Science.gov (United States)

    Torres-Gallegos, Iranzihuatl; A Martinez-Castañon, Gabriel; Loyola-Rodriguez, Juan-Pablo; Patiño-Marin, Nuria; Encinas, Armando; Ruiz, Facundo; Anusavice, Kenneth

    2012-01-01

    The aim of this study was to evaluate the bond strength of three adhesive systems: Excite™, Adper Prompt L-Pop™ and AdheSE One™ to varying degrees of fluorotic enamel using micro-tensile bond strength (μTBS) tests. Human enamel was classified according to the Thylstrup and Fejerskov Index. The interface resin-enamel was observed using stereoscopic and electron microscopy. The Excite™, achieved the highest μTBS when bonded to healthy enamel and decreased as the degree of fluorosis increased (p<0.05). The Prompt L-Pop™ improved the bonding on moderate and severe fluorosis. The μTBS of the AdheSE One™, was significantly lower in all degrees of fluorotic enamel (p<0.05) indicating a very poor bonding ability to enamel. These results will provide clinicians with preliminary data to assist them in the selection of the most effective adhesive systems for treatment of fluorosis enamel, resulting in more successful restorative care.

  9. Effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin

    Science.gov (United States)

    Ebrahim, Mohamed I.

    2017-01-01

    Background Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. Material and Methods Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey’s post-hoc test was used. Results The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. Conclusions Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite. PMID:28210433

  10. Analysis of the enamel/adhesive resin interface with laser Raman microscopy.

    Science.gov (United States)

    Miyazaki, Masashi; Sato, Hikaru; Onose, Hideo; Moore, B Keith; Platt, Jeffery A

    2003-01-01

    Adhesion of resin composites into enamel is currently believed to rely on infiltration of bonding resin into the porous zone, establishing micromechanical retention to etched enamel. This study investigated the change in chemical composition of the enamel/resin interface using a laser Raman microscopic system (System-2000, Renishaw). Two-step bonding systems, Mac Bond II (Tokuyama Corp), Clearfil Mega Bond and Single Bond (3M/ESPE) were employed. Resin composites were bonded to bovine enamel with bonding systems and sectioned through the bonded interface. The sectioned surfaces were then polished with diamond pastes down to 1.0 microm particle size. Raman spectra were successively recorded along a line perpendicular to the enamel/ resin interface. The sample stage was moved in 0.2 microm increments on a computer-controlled X-Y precision table. Additional spectra from samples of enamel and cured bonding resins were recorded for reference. The relative amounts of the hydroxyapatite (960cm(-1), P-O), bonding agent (640cm(-1), aromatic ring) and alkyl group (1450cm(-1), C-H) in the enamel/resin bonding area were calculated. From Raman spectroscopy, a gradual decrease in hydroxyapatite was observed, and it was estimated to extend 2.2-2.6 microm for Mac Bond II, 1.2-1.6 pm for Clearfil Mega Bond and 5.2-5.6 microm for Single Bond. Furthermore, the enamel/resin interface represents a gradual transition of bonding agent from the resin to tooth side. Evidence of poor saturation of adhesive resin in etched enamel with Single Bond was detected. From the results of this study, non-uniform resin infiltration into etched enamel was detected and the degree of resin infiltration was found to be different among the bonding systems used.

  11. Postoperative sensitivity in class I composite resin restorations in vivo

    OpenAIRE

    Casselli, DSM; Martins, LRM

    2006-01-01

    Purpose: This study evaluated the postoperative sensitivity of posterior Class I composite resin restorations, restored with a self-etching or a total-etch one-bottle adhesive system. Materials and Methods: One hundred four restorations were replaced by one clinician in 52 patients. Each patient received two restorations. After cavity preparations were completed under rubber-dam isolation, they were restored using Clearfil SE Bond or Single Bond and a resin-based restorative material (Filtek ...

  12. Avaliação da interação entre resina composta e diferentes adesivos dentinários Evaluation of the interaction between composite resin and different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Luciana Lourenço RIBEIRO

    1999-01-01

    Full Text Available O objetivo deste estudo foi avaliar a resistência à tração de quatro diferentes sistemas adesivos. Scotchbond Multi Purpose Plus, 3M (Grupo 1, Prime & Bond 2.0, Dentsply (Grupo 2 ProBOND, Dentsply (Grupo 3, PAAMA 2, (Grupo 4 foram usados com a resina composta Glacier (SDI. Um grupo sem a utilização de qualquer sistema adesivo serviu como controle (Grupo 5. Cinqüenta espécimes foram divididos em cinco grupos com dez espécimes cada. Uma matriz de aço inoxidável com 6,0 mm de diâmetro e 1,0 mm de profundidade foi usada para se obterem dois discos de resina composta. A resina composta foi inserida em uma metade da matriz em pequenas porções e fotopolimerizada por 40 segundos. Os adesivos foram então aplicados na superfície dos discos de resina, seguindo a instrução dos fabricantes. A segunda parte da matriz foi colocada em posição e preenchida com a resina composta. Após uma hora, a matriz foi adaptada em um dispositivo especial na máquina de ensaios Kratos para determinar a resistência de união, a uma velocidade de 0,05 mm/min. Os resultados, expressos em kgf, foram: Grupo 1 (3,99 ± 1,47, Grupo 2 (4,24 ± 2,00, Grupo 3 (3,84 ± 0,88, Grupo 4 (4,33 ± 1,23 e Grupo 5 (4,21 ± 1,38. Os resultados foram analisados pelo teste estatístico ANOVA a um critério. Não houve diferença estatisticamente significante (p The purpose of this study was to evaluate the tensile bond strength of four different adhesive systems. Scotchbond Multi-Purpose Plus, 3M (Group 1, Prime & Bond 2.0, Dentsply (Group 2, ProBOND, Dentsply (Group 3, PAAMA 2, SDI (Group 4 were used with GLACIER (SDI composite resin. One group without any adhesive was used as control (Group 5. Fifty specimens were divided into 5 groups of 10 each. A stainless steel split matrix with 6.00 mm diameter and 1.00 mm depth was used to obtain two discs of composite resin. The composite resin was applied into one half of the matrix in small portions and light cured for 40 seconds

  13. Wetting characteristic of ceramic to water and adhesive resin.

    Science.gov (United States)

    Oh, Won-Suck; Shen, Chiayi; Alegre, Brandon; Anusavice, Kenneth J

    2002-12-01

    Maximum wetting of ceramic by adhesive resin is required to achieve optimal adhesion of the resin to ceramic. It is unknown whether the adhesion of the resin to the ceramic is affected by the surface topography and wetting by water or the adhesive resin. This study was designed to characterize the effect of surface topography on the wetting of ceramics by water and adhesive resin. Three materials, a veneering ceramic, Eris (ERV), and 2 core ceramics, Empress 1 core ceramic (E1C) and an experimental core ceramic (EXC), were used. Four surface-roughening procedures were used. They included polishing through 1200-grit SiC paper (P), air abrasion with 50 microm Al(2)O(3) (A), etching with 5% hydrofluoric acid gel (E), and a combination of airborne particle abrasion and etching (A/E). Forty bar specimens (15 x 10 x 1.5 mm) were prepared from each material (N=120). Twelve groups of 10 specimens each were prepared for the 4 surface-roughening procedures. Advancing (theta(A)) and receding (theta(R)) contact angles were measured with a CAHN Dynamic Contact Analyzer, on the basis of the Wilhelmy plate technique, with water and adhesive resin. The work of adhesion (W(A)) by the probing media was calculated by use of advancing contact angle data. The data were analyzed by t testing, analysis of variance, and Duncan's tests (alpha=0.05) to determine the statistical significance of differences in the contact angles between ceramic and water or resin as a function of surface roughening. In general, the mean theta(A) values were higher than the mean theta(R) values except for groups of E or A/E specimens with water used as a probing medium. E and A/E treatments yielded the lowest contact angle values, followed by A and P treatments (P<.001). The E1C exhibited the highest mean contact angles, whereas EXC exhibited the lowest mean contact angle except for the theta(R) with resin. The corresponding values for ERV were between those of E1C and EXC except for theta(R) values with resin

  14. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  15. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    NARCIS (Netherlands)

    Samimi, P.; Hasankhani, A.; Matinlinna, J.P.; Mirmohammadi, H.

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided int

  16. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    NARCIS (Netherlands)

    Samimi, P.; Hasankhani, A.; Matinlinna, J.P.; Mirmohammadi, H.

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided

  17. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and attribu

  18. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  19. Critical appraisal: adhesive-composite incompatibility, part I.

    Science.gov (United States)

    Carvalho, Ricardo M; Garcia, Fernanda Cristina P; E Silva, Safira M A; Castro, Fabrício L A

    2005-01-01

    Apart from some questions related to the repairability of resin composite restorations, dentists have always assumed that methacrylate-based resins are compatible with each other. For example, there is no clinically relevant problem in using a microfilled composite to laminate a Class IV restoration made with a hybrid composite, even if they are not of the same brand or manufacturer. In the context of adhesive systems, we have always believed that resin composites, regardless of their type or composition, bond well to all types of bonding agents. However, unexpected debonding of self-cured, core buildup composites that had been bonded with single-bottle adhesive systems was reported about 5 years ago. Subsequent studies demonstrated that there were, indeed, compatibility problems between simplified adhesive systems and self- or dual-cured resin composites. Apparently, when such combinations are used, reduced bond strengths and subsequent failures at the resin-adhesive interface can occur because of adverse reactions between the acidic resin monomers, an integral part of the simplified adhesive systems, and the chemicals involved in the polymerization mechanism of the self- or dual-cured composites, particularly the basic tertiary amines. At least one research group has expanded the information on this issue by further investigating the mechanisms involved in this phenomenon. This group demonstrated that not only adverse chemical reactions but also the permeability of such simplified systems contribute to the compromised bonding. This issue has profound clinical implications in view of the wide use of self- and dual-cured composites as core buildup materials and in the bonding of indirect restorations and endodontic posts. Some of the most representative studies of this group are described in this Critical Appraisal. Part II will appear in the next issue of the Journal.

  20. The effect of resin infiltration and oxidative pre-treatment on microshear bond strength of resin composite to hypomineralised enamel.

    Science.gov (United States)

    Chay, Pui Ling; Manton, David J; Palamara, Joseph E A

    2014-07-01

    Reduced bond strengths of resin composites to hypomineralised enamel increase restorative failure. To investigate if the adhesion of resin composite to hypomineralised enamel can be improved by pre-treatments: resin infiltration, oxidative pre-treatment followed by a resin infiltration, or oxidative pre-treatment. Twenty-one enamel specimens in each of five Groups: 1) Normal enamel; 2) Hypomineralised enamel; 3) Hypomineralised enamel pre-treated with a resin infiltrant, (Icon(®)); 4) Hypomineralised enamel pre-treated with 5.25% sodium hypochlorite then treatment with resin infiltrant; 5) Hypomineralised enamel pre-treated with 5.25% sodium hypochlorite. A resin composite rod was bonded to each specimen using Clearfil™ SE bond as the adhesive (hereafter termed 'routine bonding'), then subjected to microshear bond strength (MSBS) testing. Overall, the mean MSBS between the five groups differed significantly (P = 0.001). Pre-treatment of hypomineralised enamel with 5.25% sodium hypochlorite with or without subsequent resin infiltration in Groups 4 and 5 prior to routine bonding resulted in increased mean MSBS compared to Groups 2 and 3, with mean MSBS values not differing significantly when compared to routine bonding to normal enamel. Increased bond strength of resin composite to hypomineralised enamel was obtained by pre-treatment of hypomineralised enamel specimens with 5.25% sodium hypochlorite with or without subsequent resin infiltration. © 2013 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Affordable Resins and Adhesives From Optimized Soybean Varieties (ARA Program)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Richard WOol; Dr. X. Susan Sun; Rich Chapas

    2004-04-21

    The Mission of the ARA Program was to develop the Corporate Infrastructure to mass-produce new bio-based materials from Soybeans. The resins were integrated with the bio-fuels program. (1) to research, develop, and commercialize low cost adhesives and resins from soy oil and protein, the co-products of the soy bio-diesel process. (2) to study structure-functionality of soy oil and proteins at molecular and genomic levels

  2. Three-year clinical evaluation of a silorane composite resin.

    Science.gov (United States)

    Walter, Ricardo; Boushell, Lee W; Heymann, Harald O; Ritter, Andre V; Sturdevant, John R; Wilder, Aldridge D; Chung, Yunro; Swift, Edward J

    2014-01-01

    Composite resins are still outperformed by amalgams in the clinical practice with secondary caries and fractures being their most common failures. A material that suffers less polymerization shrinkage might improve the clinical performance of composite resins. To evaluate the clinical performance of a low-shrink silorane-based composite resin (Filtek LS Low Shrink Posterior Restorative, 3M ESPE, St. Paul, MN, USA) in comparison with a methacrylate-based composite resin (Tetric EvoCeram, Ivoclar Vivadent, Schaan, Principality of Liechtenstein) over time. Candidates in need of Class II composite resin restorations participated in this randomized controlled clinical trial. Those were 25 female and six male subjects with average age of 44.3 ± 12.7 years. Participants received 82 restorations, being 54 in premolars and 28 in molars. Procedures, which included the restoration of primary caries lesions or replacement of failing restorations, were done using modified preparations with no bevels or additional retention. Restorations were placed using Filtek LS (and dedicated self-etch adhesive) or Tetric EvoCeram (with AdheSE, Ivoclar Vivadent), following manufacturers' instructions. Incremental placement technique was applied and the restorations were immediately finished. Follow-up evaluations occurred at six, 12, 24, and 36 months and were done using the Fédération Dentaire Internationale criteria. Statistical analysis was performed using generalized estimating equations. The recall rate at 36 months was 89%. All interaction terms were not significant. Filtek LS performs as well as Tetric EvoCeram performs in the clinical setting at 36 months. The silorane-based composite resin Filtek LS and the conventional methacrylate-based composite resin Tetric EvoCeram performed similarly well in posterior restorations over at least 36 months of clinical service. © 2013 Wiley Periodicals, Inc.

  3. Resin-based composites and compomers in primary molars.

    Science.gov (United States)

    García-Godoy, F

    2000-07-01

    Resin-based composite resins and polyacid-modified resin-based composites (compomers) have become popular for the restoration of primary anterior and posterior teeth. In some European countries, resin-based composites or glass-ionomers are the materials of choice for primary teeth because of the controversy over dental amalgam and its alleged adverse health effects resulting from the release of mercury, although a clear correlation between amalgam restorations and health has not been determined. Another reason for the worldwide increased use of resin-based composites and glass-ionomers in pediatric dentistry could be attributed to the growing demand from parents to provide esthetic restorations to their children. More conservative preparations can be performed maintaining more tooth structure because of the adhesive properties of the composites and compomers. The most conservative treatment planning and meticulous care in the placement of the resin-based composites and compomers would produce long-term satisfactory results. These restorations should be placed in patients with low-to-moderate caries risk, and after placement the restorations should be monitored carefully to avoid complications mainly produced by recurrent caries and wear.

  4. Synthesis of melamine-glucose resin adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuanhu; ZHANG Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  5. Resistência de união à dentina de resinas compostas associadas a sistemas adesivos com e sem carga Bond strength of resin composites to dentin associated to filled and unfilled adhesive systems

    Directory of Open Access Journals (Sweden)

    Jandyra A. YOUSSEF

    2001-06-01

    Full Text Available Este trabalho analisou in vitro duas marcas de adesivos de quarta geração do sistema simplificado (Optisolo - Kerr, com carga, e Single Bond - 3M, sem carga e duas marcas de resinas compostas (Prodigy - Kerr e Z100 - 3M, com o objetivo de verificação da adesividade na dentina. Oitenta corpos-de-prova, confeccionados a partir de molares humanos extraídos, foram incluídos em resina acrílica e desgastados até exposição de dentina no sentido longitudinal, e divididos em 4 grupos. Cones de resina composta foram aderidos a estes corpos-de-prova precedidos dos sistemas adesivos, seguindo a orientação dos fabricantes. Os corpos-de-prova foram submetidos a teste de tração numa máquina de ensaios Universal Mini-Instron 4442, a uma velocidade de 0,5 mm/min. Os resultados obtidos foram transformados em MPa de acordo com a área de adesão e submetidos a análise estatística pela ANOVA. Pelos resultados obtidos, concluiu-se que houve diferença estatisticamente significante (p 0,05.This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo - Kerr, filled; and Single Bond - 3M, unfilled and two composite resins (Prodigy - Kerr and Z100 - 3M, aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p 0.05 between the composites (F = 0.43.

  6. Release and toxicity of dental resin composite

    OpenAIRE

    Saurabh K Gupta; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies h...

  7. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a...

  8. Advanced resin systems for graphite epoxy composites

    Science.gov (United States)

    Gilwee, W. J.; Jayarajan, A.

    1980-01-01

    The value of resin/carbon fiber composites as lightweight structures for aircraft and other vehicle applications is dependent on many properties: environmental stability, strength, toughness, resistance to burning, smoke produced when burning, raw material costs, and complexity of processing. A number of woven carbon fiber and epoxy resin composites were made. The epoxy resin was commercially available tetraglycidylmethylene dianiline. In addition, composites were made using epoxy resin modified with amine and carboxyl terminated butadiene acrylonitrile copolymer. Strength and toughness in flexure as well as oxygen index flammability and NBS smoke chamber tests of the composites are reported.

  9. Laser ablation assisted adhesive bonding of automotive structural composites

    Energy Technology Data Exchange (ETDEWEB)

    Boeman, R.G.; Paulauskas, F.L.; Warren, C.D.

    1999-07-03

    Laser ablation has been evaluated as a surface pretreatment prior to adhesive bonding. In prior experimental work, it was observed that when adhesively bonded, composite, single lap shear samples fail, the fracture often occurs at either the adhesive/adherend interface or in the resin rich surface layer of the composite. These two areas represent the weakest portion of the joint. Laser ablation pretreatment generates areas where the resin on the composite surface is selectively removed leaving behind exposed reinforcing fibers which are the major load bearing members of the composite. In a subsequent adhesive bonding operation, this allows portions of the fibers to be encapsulated in the adhesive while other portions of the fiber remain in the composite resin. This type of pretreatment permits fibers to bridge and reinforce the interface between adhesive and adherend. A secondary benefit is the removal of surface contaminantes by pyrolysis. Microscopic observation of laser ablated surfaces indicates a prominent, fiber rich area. Results of the mechanical evaluation indicated that the lap shear strength for laser ablated samples was significantly higher than specimens with no pretreatment or with solvent cleaning only, but were slightly lower than specimens that were mechanically roughened and cleaned with solvents prior to bonding.

  10. Evaluation of resin adhesion to zirconia ceramic using some organosilanes

    NARCIS (Netherlands)

    Matinlinna, Jukka P.; Heikkinen, Mo; Ozcan, Mutlu; Lassila, Lippo V. J.; Vallittu, Pekka K.

    2006-01-01

    Objectives. This study evaluated and compared the effect of three trialkoxysilane coupling agents on the bond strength of a Bis-GMA-based unfilled resin and a dimethacrylate-based resin composite luting cement to a zirconia ceramics (Procera(R) AllZircon, Nobel Biocare, Goteborg, Sweden). Methods. S

  11. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  12. Adhesion of different resin cements to enamel and dentin.

    Science.gov (United States)

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  13. Resina fluida autoadhesiva utilizada como sellante de fosas y fisuras: Estudio de microinfiltración Self-adhesive flowable composite-resin as a fissure sealant: A microleakage study

    Directory of Open Access Journals (Sweden)

    D De Nordenflycht

    2013-04-01

    Full Text Available Objetivo: Evaluar la capacidad de sellado de una resina fluida autoadhesiva (Fusio Liquid Dentin, Pentron Clinical utilizada como sellante de fosas y fisuras con distintos acondicionamientos de la superficie de esmalte. Materiales y Métodos: Se seleccionaron 140 terceros molares recientemente extraídos, los que fueron distribuidos aleatoriamente en cuatro grupos (n=35 y recibieron una técnica de acondicionamiento del esmalte y aplicación de un sellante. Se establecieron los siguientes grupos: Grupo 1, grabado ácido y aplicación de sellante (Clinpro, 3M ESPE; Grupo 2, grabado ácido y aplicación de resina autoadhesiva (Fusio Liquid Dentin, Pentron Clinical; Grupo 3, aplicación de resina autoadhesiva; Grupo 4, microarenado del esmalte y aplicación de resina autoadhesiva. Los dientes sellados fueron termociclados (500 ciclos, 5-55°C, y posteriormente sumergidos en solución de nitrato de plata amoniacal por 24 h (pH=14 y luego en revelador radiográfico (GBX, Kodak por 8h. Posteriormente, los dientes fueron cortados para obtener 2 láminas por diente que fueron observadas bajo magnificación (4x y analizadas digitalmente para evaluar la microinfiltración y la penetración en la fisura. Los resultados fueron analizados estadísticamente (ANOVA, Dunnett, pAim: To evaluate the sealing ability of a self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical with different conditioning treatments of the enamel surface used as a fissure sealant. Materials and Method: 140 recently extracted human third molars were selected and randomly divided into four groups (n=35. Each group received an enamel conditioning treatment and a sealant application. The following groups were established: Group 1, acid etching and sealant application (Clinpro, 3M ESPE; Group 2, acid etching and self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical; Group 3, self-adhesive flowable composite-resin; Group 4, sandblasting and

  14. Adhesion of PBO Fiber in Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  15. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    Science.gov (United States)

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment.

  16. [Studies of dental methacrylic resin. (Part 8) Flexural and impact adhesive strength of self-curing methacrylic resin to cross-linked polymethyl methacrylate resins (author's transl)].

    Science.gov (United States)

    Hirasawa, T; Hirabayashi, S; Harashima, I

    1981-10-01

    Heat-curing methacylic resins cross-linked with three kinds of dimethacrylates, i.e. EDMA, tri-EDMA and nona-EDMA, were prepared, and the flexural and the impact adhesive strength of the dough moulding type and the pour type self-curing methacrylic resins to them were examined. The results obtained were as follows. (1) The flexural and the impact adhesive strength of the pour type self-curing resin were higher and more stable than those of the dough moulding type one. (2) The flexural and the impact adhesive strength of self-curing resins to cross-linked adherent resins rised in order of nona-EDMA greater than tri-EDMA greater than EDMA in the range of higher concentration of cross-linking agents. This tendency was marked for the pour type resin. (3) When the dough moulding type resin was used as adhesive resin, to adherent resin cross-linked with EDMA or tri-EDMA which had relatively short chain, the respective adhesive strength of that decreased with increasing the concentration of cross-linking agent. While, to adherent resin cross-linked with nona-EDMA, which had relatively long and more flexible chain, the respective adhesive strength of the dough moulding type resin increased with increasing the concentration of cross-linking agent. (4) When the pour type resin was used as adhesive resin, to adherent resin cross-linked with EDMA or tri-EDMA, the respective adhesive strength of that showed the maximum at the concentration near 2 to 5 mole% and decreased with increasing the concentration. While, to adherent resin cross-linked with nona-EDMA, the flexural adhesive strength of the pour type resin was approximately constant without the effect of the concentration, but the impact adhesive strength of that increased with increasing the concentration. (5) The flexural adhesive strength of the dough moulding and the pour type resin under the wet condition decreased about 30 to 60% compared with under the dry condition, but the percentage of the falling for the impact

  17. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... Therefore, manufacturers declared several adhesives including a variety of ... The time required layering procedures with customary resin composites can .... measured and data were collected with Auto CAD 2000 software (Autodesk Inc., San .... International Organization for Standardization ISO TR 11405,.

  18. Release and toxicity of dental resin composite.

    Science.gov (United States)

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  19. Microshear bond strength between restorative composites and resin cements

    Directory of Open Access Journals (Sweden)

    Rubens Nazareno GARCIA

    2008-08-01

    Full Text Available Introduction and objective: The techniques of adhesive cementationhave been widely used in dental restoration. The purpose of this studywas to evaluate the microshear bond strength between restorativecomposites and resin cements. Material and methods: Twenty composites blocks were prepared in order to obtain a flat surface, using 600-grid sandpaper. The samples were randomly divided in four groups(n=15 according to the experimental groups: [1] Z250 block + Single Bond + cylinder of RelyX ARC; [2] Z250 block + Single Bond + cylinder of Panavia F; [3] Clearfil AP-X block + Clearfil SE Bond adhesive + cylinder of RelyX ARC; [4] Clearfil AP-X block + Clearfil SE Bond adhesive + cylinder of Panavia F. The adhesive systems and the resin cements were applied according to the experimental groups, using a Tygon matrix.The samples were stored in distilled water at 37±2ºC for 24 hours.Microshear bond strengths were determined using an apparatus attached to an Instron universal testing machine at a crosshead speed of 0.5 mm/minute. Results: The results obtained in MPa (SD were statistically analyzed (ANOVA and Tukey test, p<0.05, and showed the following results: [1] 39.76 (5.34; [2] 45.01 (8.53; [3] 46.39 (9.22; [4]45.78 (9.06.There was no statistically significant difference between groups [1] and [2]; and between groups [3] and [4]. However, there was statistically significant difference between groups [1] and [3]. Conclusion:When Clearfil AP-X block was used with Clearfil SE Bond adhesive or RelyX resin cement, the microshear bond strength values were higher.The results suggest that in the union of the resin cements to the restorative composites, hydrophobic adhesives are necessary.

  20. Determining Optimal Fluorescent Agent Concentrations in Dental Adhesive Resins for Imaging the Tooth/Restoration Interface.

    Science.gov (United States)

    Bim Júnior, Odair; Cebim, Marco A; Atta, Maria T; Machado, Camila M; Francisconi-Dos-Rios, Luciana F; Wang, Linda

    2017-02-01

    Fluorescent dyes like Rhodamine B (RB) have been used to identify the spatial distribution of adhesive restorative materials in the tooth/restoration interface. Potential effects of the addition of RB to dental adhesives were addressed in the past, but no further information is available on how to determine suitable concentrations of RB in these bonding agents for imaging in the confocal laser scanning microscope. This study provides systematical strategies for adding RB to viscous dental adhesive resins, focusing on the determination of the lowest range of dye concentrations necessary to achieve an acceptable image of the dentin/adhesive interface. It was demonstrated that optimized images of the resin distribution in dentin can be produced with 0.1-0.02 mg/mL of RB in the (tested) adhesives. Our approaches took into account aspects related to the dye concentration, photophysical parameters in different host media, specimen composition and morphology to develop a rational use of the fluorescent agent with the resin-based materials. Information gained from this work can help optimize labeling methods using dispersions of low-molecular-weight dyes in different monomer blend systems.

  1. Indirect resin onlay cemented with self-adhesive resin cement: a comprehensive clinical overview

    OpenAIRE

    Bandéca,Matheus Coelho; Tonetto, Mateus Rodrigues [UNESP; Barros, Érico Damasceno; Pinto,Shelon Cristina Souza; Firoozmand,Leily Macedo; Andrade, Marcelo Ferrarezi de [UNESP; Saad, José Roberto Cury [UNESP; Maia Filho,Etevaldo Matos; Queiroz, Rejane Christine De Souza

    2012-01-01

    Advances in adhesive technology and esthetic dental materials have permitted clinicians to perform conservative preparation of the dentition for onlay restorations. Indirect resin onlays are a great alternative to dental crowns for reestablishment the function and esthetic in teeth with great destruction.

  2. Does Adhesive Resin Application Contribute to Resin Bond Durability on Etched and Silanized Feldspathic Ceramic?

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Valandro, Luiz Felipe; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco Antonio; Kimpara, Estevao Tomomitsu

    2008-01-01

    Purpose: To assess the effect of adhesive application and aging on the bond durability of resin cement to etched and silanized feldspathic ceramic. Materials and Methods: Twenty blocks (6.4 x 6.4 x 4.8 mm) of feldspathic ceramic (Vita VM7) were produced. The ceramic surfaces were conditioned with 10

  3. Luminous Efficient Compositions Based on Epoxy Resin

    Directory of Open Access Journals (Sweden)

    R.S. Palaiah

    2006-07-01

    Full Text Available Magnesium/sodium nitrate illuminating compositions with epoxy resin - E 605 have beenstudied for luminosity and luminous efficiency by varying fuel oxidizer ratio and binder content.The compositions have been evaluated for impact and friction sensitivities, burn rate, thermalcharacteristics, and mechanical properties. Flame temperature and combustion products areevaluated theoretically by using REAL program. Experimental results show that, luminosity,burn rate, and calorimetric value are higher for polyester resin-based compositions. The highluminous efficiency composition is achieved with magnesium/sodium nitrate ratio of 70/30 with4 per cent epoxy resin.

  4. Bond strength of a resin cement to a cured composite inlay material.

    Science.gov (United States)

    Latta, M A; Barkmeier, W W

    1994-08-01

    Although resin cements have been effectively bonded to mineralized tooth structures, bonding to a cured composite material has remained a challenge. This study evaluated the shear bond strength of a resin cement bonded to a cured composite inlay material by use of a variety of composite surface treatments: (1) hydrofluoric acid/60 seconds, (2) ammonium bifluoride/60 seconds, (3) resin adhesive, (4) microabrasion with 50 microns aluminum oxide, and (5) microabrasion with 50 microns aluminum oxide and application of a resin adhesive. The resin cement was also bonded to human enamel that was etched with phosphoric acid. Scanning electron microscopy examinations were completed to evaluate the effects of the composite surface treatments. The results indicated that microabrasion of a cured composite enhances bonding of a resin cement. The bond strength of a resin cement to a composite surface that was air abraded with aluminum oxide, with or without the application of a resin adhesive, was higher than surface treatments with hydrofluoric acid or ammonium bifluoride. Scanning electron microscopy indicated that an irregular surface on the composite was created with aluminum oxide air abrasion.

  5. Bond Strength of Repaired Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Rodrigo Máximo de ARAÚJO

    2007-05-01

    Full Text Available Purpose: To evaluate the bond strength of direct composite resins and composite repairs, using 3 different commercial brands - GI: Palfique Estelite Ó (Tokuyama, GII: Filtek Z350 (3M/ESPE and GIII: Te Econon (Ivoclar/Vivadent - and the use of AdperTM Single Bond 2 (3M/ESPE adhesive system at the base/repair interface. Method: Thirty conic bases (5 mm x 5 mm x 3 mm of each commercial brand of composite resin were fabricated. All bases of each group were submitted to a thermocycling regimen of 20,000 cycles (5ºC to 55ºC ± 2ºC, for 30 s. The bases of each group were randomly assigned to 3 sub-groups, in which a combination of the commercial brands was performed for the repairs. The specimens were stored in distilled water at 37°C during 7 days and were thereafter tested in tensile strength in a universal testing machine (EMIC - MEM 2000 with 500 kgf load cell running at a crosshead speed of 1.0 mm/min until fracture. Data in MPa were submitted to ANOVA and Tukey’s test (5%.Results: The following results were found: GI: Palfique Estelite Ó (11.22±4.00 MPa, Te Econom (12.03±3.47 MPa and Filtek Z350 (10.66±2.89 MPa; GII: Palfique Estelite Ó (8.88±2.04 MPa, Te Econom (7.77±1.64 MPa and Filtek Z350 (10.50±6.14 MPa; and GIII: Palfique Estelite Ó (8.41±2.50 MPa, Te Econom (12.33±3.18 MPa and Z350 (11.73±3.54 MPa.Conclusion: The bond strengths at the interface of the different composite resins submitted to repair were statistically similar regardless of the commercial brand.

  6. Regional bond strengths of adhesive resins to pulp chamber dentin.

    Science.gov (United States)

    Belli, S; Zhang, Y; Pereira, P N; Ozer, F; Pashley, D H

    2001-08-01

    Microleakage of oral microorganisms, which can occur due to the lack of sealing ability of permanent restorative materials, may cause failure of root canal treatments. Although a great deal of research has been done on sealing enamel and coronal dentin with resins, little research has been done on the adhesion of resins to the walls of pulp chambers. The purpose of this study was to evaluate regional bond strengths of two adhesive systems to the walls of pulp chambers. A section was made horizontally through the middle of the pulp chamber of extracted human third molars to divide the chamber into upper and lower halves. The pulp tissue was removed and the tooth segments were then divided into treatment subgroups. The pulp chambers were bonded with C&B Metabond (Parkell) or One-Step (Bisco), with or without 5% NaOCI pretreatment. The microtensile bond strengths of these resins to four different pulp chamber regions (bottom, wall, roof, and pulp horn areas) were then measured using an Instron machine. The data were expressed in MPa and were analyzed by a three-way ANOVA. Statistically significant differences were found among the test groups (p < 0.001). One-Step produced higher bond strengths to all pulp chamber regions except the floor, compared with C&B Metabond. The results indicated that high bond strengths can be achieved between adhesive resins and the various regions of the pulp chamber. This should permit the use of a thick layer of unfilled resin along the floor of the pulp chamber and over the canal orifices as a secondary protective seal after finishing root canal therapy.

  7. Microleakage of adhesive resinous materials in root canals

    Directory of Open Access Journals (Sweden)

    Jason Gilbert Wong

    2013-01-01

    Full Text Available Aim: The purpose of this study was to compare the in vitro micro-leakage resistance of adhesive resin materials to long-used zinc oxide-eugenol and epoxy resin sealers. Materials and Methods: Seven materials, five test (Real Seal, Real Seal XT, Panavia F 2.0, Infinity Syringeable, GCEM and two controls (Tubliseal, AH Plus, were evaluated for micro-leakage resistance in a bovine incisor root model, with 12 roots per material. Teeth were root canal treated, stored in water, artificially aged by thermal-cycling, stained with silver nitrate, sectioned to yield eight measurement points per tooth (four coronal and four apical, giving 672 measurement points. Stain penetration was measured using digital positioners and a toolmakers microscope; then analyzed using descriptive statistics, two-way analysis of variance and multiple comparisons testing ( P < 0.05. Results: All modern adhesive resinous materials leaked significantly less than long-used zinc oxide-eugenol and epoxy resin sealers ( P < 0.05. Mean leakage values and their associated (standard deviations in mm were: Infinity Syringeable 2.5 (1.5, Real Seal XT 3.2 (1.4, Real Seal 3.4 (1.6, Panavia F 2.0 3.8 (2.7, GCEM 4.2 (1.8, Tubli-seal 5.4 (2.8, AH Plus 6.3 (2.3. Overall, more leakage occurred apically than coronally ( P < 0.0001. Many materials exhibited dimensional instability: Marked contraction, expansion, or lack of cohesion. Conclusion: A variety of adhesive resinous materials, endodontic sealers and crown cements, reduced micro-leakage in comparison to long and widely used zinc oxide- eugenol and epoxy sealers.

  8. Initial bacterial adhesion on resin, titanium and zirconia in vitro

    OpenAIRE

    Lee, Byung-Chul; Jung, Gil-Yong; Kim, Dae-Joon; Han, Jung-Suk

    2011-01-01

    PURPOSE The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with 1 µm diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting fro...

  9. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  10. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Science.gov (United States)

    2010-10-01

    ... resins. 173.173 Section 173.173 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed...

  11. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  12. [Nanoleakage at the resin-dental interface of four self-etching adhesives].

    Science.gov (United States)

    Liao, Zhi-qing; Ouyang, Yong; Yang, Jian-zhen

    2011-09-01

    To evaluate the nanoleakage and ultramorphology of four self-etching adhesives. Sixteen freshly extracted, caries-free human third molars were selected. A flat dentin surface was exposed by removing occlusal enamel. All teeth were randomly divided into four groups acorrding to four different self-etch adhesive: Adper Prompt (A), iBond (B), Xeno III (C) and SE Bond (D). The dentin were bonded with dentin adhesive system according to manufacturer's directions. Composite layers were built up incrementally. The specimens were sectioned longitudinally across the resin-dentin interface into 4.0 mm×0.9 mm sticks and then traced with ammoniacal silver solution. Epoxy resin-embedded sections were prepared for transmission electron microscope (TEM) to observe nanoleakage. The images were qualitatively compared by NIH software, and data was analyzed by SPSS. Different thickness of hybrid layer and adhesives layer were observed for each adhesive. The hybrid layer of A, C was thicker than that of B, D, and adhesive layer of D was thicker than the others. The extent of nanoleakage varied among different adhesives: A (45.02 ± 9.49), B (43.97 ± 8.55), C (27.02 ± 10.86), D (12.94 ± 2.07). D presented significantly less silver deposition than any of the others did (P adhesive layer vary among the four adhesives. The shape and extent of nanoleakage of each adhesive are also different. Two-step system shows less nanoleakage than one-step systems do.

  13. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  14. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  15. Tensile bond srength between composite resin using different adhesive systems Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2002-11-01

    Full Text Available The aim of this study was evaluate the tensile bond strength (TBS among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1, Etch & Prime 3.0 /Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/ Copalite-Cooley & Cooley (G7, Prime & Bond NT/Dentsply (G8, Scotchbond Multi Purpose Plus/3M (G9. The control group (G10 was made only with the composite resin (Z100/3M. One hundred specimens were made, 10 for each group. There were significant differences on TBS among groups. G3 showed the hightest TBS in comparison to other tested groups. G10 presented higher TBS than all groups. O objetivo desta pesquisa foi investigar in vitro a resistência de união entre uma resina composta e nove sistemas adesivos dentinários. Os adesivos estudados foram assim agrupados: Single Bond/3M (G1, Etch & Prime 3.0/ Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/Copalite (G7, Prime & Bond NT/Dentsply (G 8, Scotchbond Multi Purpose Plus/3M (G9. O Grupo controle (G10. foi confeccionado somente com a resina composta (Z100/3M. Foram confeccionados 100 espécimes, 10 para cada grupo. Houve diferenças estatísticas significantes entre os grupos. O grupo 3 foi o que mostrou a mais alta resistência em comparação aos nove testados. O grupo controle (G10 apresentou a mais alta resistência entre todos os Grupos.  

  16. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives.

  17. The Role of the Composition of Adhesive Systems on Adhesive System-Tooth Surface Adhesion

    National Research Council Canada - National Science Library

    Yeliz GÜVEN; Oya AKTÖREN

    2014-01-01

    .... Keeping an updated knowledge of the composition, characteristics and mechanisms of adhesion of the currently available adhesive systems as well as knowing how the dental substrates interact with...

  18. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  19. Repair of dental resin-based composites.

    Science.gov (United States)

    Baur, Veronika; Ilie, Nicoleta

    2013-03-01

    The study analyzed the reparability and compatibility of light-curing resin-based composites (RBCs) of the categories "microhybrid," "nanohybrid," and "packable." Six RBCs with different matrix and filler formulation--purely methacrylate-based composites (MBCs), ormocer-based composites (OBCs), and silorane-based composites (SBCs)--were used for the specimens. Every material was combined with itself and with the other five RBCs, resulting in a total of 36 combination groups (n = 20). The specimens were polymerized, aged for 8 weeks in distilled water at 37 °C, and then repaired by means of a repair kit. Shear bond strength and fracture mode were measured after aging of the specimens, undergoing storage for 24 h in distilled water at 37 °C followed by thermocycling (5,000 cycles, 5-55 °C) and an additional 4-week storage in distilled water at 37 °C. Data were statistically analyzed using ANOVA with TUKEY HSD post hoc test (α = 0.05). On average, the OBC Admira reached the highest value as a substrate material (30.41 MPa), and the SBC Filtek Silorane reached the lowest value (8.14 MPa). Filtek Silorane was identified as the repair material with the highest bond strength value (28.70 MPa), while a packable composite reached the lowest bond strength value (15.55 MPa). The analysis of the break modes showed that adhesive breaks are typical when strength is at its lowest (6.27 MPa). A large number of cohesive fractures are conspicuous when identical materials are used for repair, except Filtek Silorane (2 % cohesive fractures). The study demonstrated that the effect of the different materials on bond strength varies strongly, depending on whether the material is used as filling or as repair material. It is generally advisable but not compulsory to combine identical RBCs.

  20. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-06-01

    The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (pcomposite resins. Meanwhile, RMGI without HA has the best bond strength to silorane-based composite resins.

  1. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-09-28

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  2. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin

    Science.gov (United States)

    2015-06-30

    Universal Adhesive (3M/ESPE) and veneered with either Filtek Supreme Ultra or Sinfony composite resin. Also, monolithic blocks without composite...also have been shown to have higher enamel wear rates than composite-resin CAD/CAM restorations (Mӧrmann et al, 2013). As material choices, cost, and...although the longevity of these repairs has not been validated by clinical studies. Paradigm MZ100 showed the least amount of opposing enamel wear

  3. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  4. Composite resin in medicine and dentistry.

    Science.gov (United States)

    Stein, Pamela S; Sullivan, Jennifer; Haubenreich, James E; Osborne, Paul B

    2005-01-01

    Composite resin has been used for nearly 50 years as a restorative material in dentistry. Use of this material has recently increased as a result of consumer demands for esthetic restorations, coupled with the public's concern with mercury-containing dental amalgam. Composite is now used in over 95% of all anterior teeth direct restorations and in 50% of all posterior teeth direct restorations. Carbon fiber reinforced composites have been developed for use as dental implants. In medicine, fiber-reinforced composites have been used in orthopedics as implants, osseous screws, and bearing surfaces. In addition, hydroxyapatite composite resin has become a promising alternative to acrylic cement in stabilizing fractures and cancellous screw fixation in elderly and osteoporotic patients. The use of composite resin in dentistry and medicine will be the focus of this review, with particular attention paid to its physical properties, chemical composition, clinical applications, and biocompatibility.

  5. Resin composites : Sandwich restorations and curing techniques

    OpenAIRE

    Lindberg, Anders

    2005-01-01

    Since the mid-1990s resin composite has been used for Class II restorations in stress-bearing areas as an alternative to amalgam. Reasons for this were the patients’ fear of mercury in dental amalgam and a growing demand for aesthetic restorations. During the last decades, the use of new resin composites with more optimized filler loading have resulted in reduced clinical wear. Improved and simplified amphiphilic bonding systems have been introduced. However, one of the main problems with res...

  6. Fracture of composite-adhesive-composite systems

    Science.gov (United States)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  7. UV-cured adhesives for carbon fiber composite applications

    Science.gov (United States)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  8. Tensile strength of thin resin composite layers as a function of layer thickness.

    Science.gov (United States)

    Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L

    1995-11-01

    As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.

  9. Evaluation of cuspal deflection in premolar teeth restored with low shrinkable resin composite (in vitro study).

    Science.gov (United States)

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud; Baroudi, Kusai

    2015-01-01

    This study evaluated cuspal deflection in premolar teeth restored with low shrinkable resin composite. A total of 40 human premolars were used for cuspal deflection evaluation in this study. Each group was divided into four equal groups according to the type of resin composite and the adhesive used as follows: group A: Using low shrinkable resin composite (silorane) with its adhesive system; group B: Using low shrinkable composite (silorane) with G-bond; group C: Using Filtek Z350 composite with G-bond; and group D: Using Filtek Z350 composite with AdheSE. Cusp deflection was detected using Universal measuring microscope and laser horizontal metroscope. This study was done to investigate the effect of polymerization shrinkage stresses of two resin composite materials (Filtek Z350 and Filtek P90) on cuspal deflection of mesio-occluso-distal restoration. For this study, the extracted non-carious maxillary second premolars were selected. Forty teeth that showed no more than 5% variation in their dimensions were used. A significant increase in cuspal deflection of cavities restored with the methacrylate-based (Filtek Z350) compared with the silorane (P90) resin-based composites was obtained. The change in the organic matrix or materials formulation of the resin composite using silorane has a positive effect on controlling the cusp deflection.

  10. The effect of subject age on the microtensile bond strengths of a resin and a resin-modified glass ionomer adhesive to tooth structure.

    Science.gov (United States)

    Brackett, William W; Tay, Franklin R; Looney, Stephen W; Ito, Shuichi; Haisch, Larry D; Pashley, David H

    2008-01-01

    In this study, the microtensile bond strengths of an etch-and-rinse resin adhesive to dentin and enamel and a resin-modified glass ionomer adhesive to dentin were determined on teeth known to have originated from subjects over 60 years of age. The same tests were repeated on teeth originating from young subjects. The resin adhesive was Prime & Bond NT (Caulk/Dentsply), while the resin-modified glass ionomer adhesive was Fuji Bond LC (GC America). Both were paired with the same hybrid resin composite, TPH3 (Caulk/Dentsply). Testing was performed after 48 hours using a "non-trimming" microtensile test at a crosshead speed of 0.6 mm/minute. No significant differences were observed between the young and aged teeth for any comparison (p > 0.05). SEM evaluation of the etched dentinal surfaces demonstrated less depth of decalcification in the intertubular areas of aged dentin, but there was no observable difference within the tubules of young and aged dentin.

  11. Temperature rise during polymerization of different cavity liners and composite resins

    Directory of Open Access Journals (Sweden)

    Ozcan Karatas

    2015-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH] 2 , resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers′ instructions. The rise in temperature during polymerization with a LED curing unit (LCU was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05. Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05. The smallest temperature rises were observed in Ca(OH 2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing.

  12. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  13. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives.

    Science.gov (United States)

    Muñoz, Miguel Angel; Sezinando, Ana; Luque-Martinez, Issis; Szesz, Anna Luiza; Reis, Alessandra; Loguercio, Alessandro D; Bombarda, Nara Hellen; Perdigão, Jorge

    2014-05-01

    To evaluate the effect of an additional hydrophobic resin coating (HE) on the resin-dentine microtensile bond strengths (μTBS), nanoleakage (NL), and in situ degree of conversion (DC) of three universal adhesives used in the etch-and-rinse (ER) and the self-etch (SE) modes. Sixty caries-free extracted third molars were divided into 12 groups according to the combination of the factors adhesive (All-Bond Universal [ABU]; G-Bond Plus [GBP] and Scotchbond Universal [SBU]), adhesive strategy (ER and SE), and the use of HE (Heliobond; yes or no). After restorations were constructed, specimens were stored in water (37°C/24h) and sectioned into resin-dentine beams (0.8mm(2)) to be tested under tension (0.5mm/min). Selected beams from each tooth were used for DC quantification and for NL evaluation. Data from each adhesive were analyzed with two-way ANOVA and Tukey's test (α=0.05). ABU and GBP resulted in higher μTBS in the ER mode. The use of HE increased the μTBS of ABU and GBP only in the SE mode. Lower NL was observed for SBU and ABU in the ER mode+HE, and for GBP in the SE mode+HE. SBU and GBP showed higher DC when used in the ER mode, which was increased with HE application. The DC of ABU was similar in all conditions. The conversion of 1-step SE to 2-step SE may increase the μTBS and DC of current universal adhesives. The reduction in the NL is more dependent on the adhesive composition than on the bonding strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nanoleakage Evaluation of Posterior Teeth Restored with Low Shrinkable Resin Composite- An invitro Study

    Science.gov (United States)

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud

    2016-01-01

    Introduction The effect of nanoleakage on the integrity of resin–dentin bond has been in interest for long-term adhesion. Aim This study evaluated the nanoleakage in premolar teeth restored with low shrinkable resin composite. Materials and Methods A total of 40 human premolars were used for nanoleakage evaluation in this study. Each group was divided into four equal groups; Group A: using silorane with its adhesive system. Group B: using silorane with G-bond. Group C: using Filtek supreme composite with G-bond. Group D: using Filtek supreme composite with AdheSE adhesive. Nanoleakage analysed using Scaning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectrometery (EDX). Results The amount of silver present in hybrid layer depend on the adhesive used; this indicated different nanoleakage expressions in different adhesive systems. Filtek Z350 composite with G-bond showed clear silver uptake in both the adhesive and hybrid layer. Low shrinkable resin composite (silorane) with its adhesive system showed less silver penetration and slight silver peak on the elemental energy spectroscopy of energy dispersive X-Ray spectrometry (EDS) as compared to other samples. Conclusion Adhesives used between different groups, influence the location and degree of nanoleakage. There is difference in nanoleakage patterns between two-step and one-step adhesives and also among the one-step adhesives themselves. PMID:27630943

  15. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    Science.gov (United States)

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  16. Influence of hydroxyethyl acrylamide addition to dental adhesive resin.

    Science.gov (United States)

    Rodrigues, Stéfani Becker; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Schneider, Luis Felipe Jochims; Ogliari, Fabrício Aulo; Petzhold, Cesar Liberato; Samuel, Susana Maria Werner

    2015-12-01

    to determine the physicochemical properties of experimental adhesive resins containing hydroxyethyl acrylamide. Three groups of experimental resin were formulated, GHEAA33% (33.3wt% HEAA+66.6wt% BisGMA), GHEAA50% (50wt% HEAA+50wt% BisGMA), and GHEAA-FREE (33.3wt% HEMA+66.6wt% of BisGMA). The polymerization process of each adhesive resin group, as well as for the homopolymers, BisGMA, HEMA, HEAA, HEMA* without EDAB, and HEAA* without EDAB, was characterized through differential scanning calorimetry (DSC). Elution of monomers was evaluated by (1)H NMR. Dynamic mechanical analysis (DMA) was used to collect the glass transition temperature (Tg), the storage modulus (E') and the reticulation degree (ρ). Flexural strength was calculated by three-point bending test with 0.75mm/min. Softening in solvent was calculated through hardness before and after immersion in water or ethanol. GHEAA50%, GHEAA33%, GHEAA-FREE presented higher polymerization rate ( [Formula: see text] , 12.3 and 5.3mmolg(-1)s(-1), respectively) than homopolymers HEMA, HEMA* and HEAA*. Group with HEAA presented higher degree of conversion (GHEAA50%=64.07%>GHEAA33%=55.82%>GHEAA-FREE=49.02%; p=0.008) All groups presented low elution of monomers (p>0.05). The values of E' were higher on GHEAA33% than GHEAA-FREE (p=0.034). Tg and flexural strength values of GHEAA-FREE were higher than acrylamide groups (p=0.022 and padhesive resin. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. The curative effect observation of super adhesive bonding of light cured composite resin inlay in the repair of deciduous teeth Ⅱ complex cavities%超级黏接剂黏接光固化复合树脂嵌体在修复乳牙Ⅱ类复面洞型的疗效观察

    Institute of Scientific and Technical Information of China (English)

    辜赵娜

    2015-01-01

    目的:观察超级黏接剂黏接材料黏接复合树脂嵌体在修复乳牙Ⅱ类洞型的临床疗效。方法:收治乳牙Ⅱ类洞型患者18例,采用超级黏接剂黏接材料黏接复合树脂嵌体进行修复治疗,观察临床效果。结果:经过随访观察,用超级黏接剂黏接材料黏接光固化复合树脂嵌体在口腔无脱落,嵌体边缘继发龋发生率4.8%。结论:使用超级黏接剂材料黏接光固化复合树脂嵌体具有很好防止脱落和防止继发龋的效果。%Objective:To explore the curative effect observation of super adhesive bonding of light cured composite resin inlay in the repair of deciduous teeth Ⅱ complex cavities.Methods:18 patients with deciduous teeth Ⅱ complex cavities were selected. They were treated by super adhesive bonding of light cured composite resin inlay.We observed the clinical effect.Results:After follow-up observation,with super adhesive bonding of light cured composite resin inlay,there was no shedding in oral,and secondary caries incidence at inlay edge was 4.8%.Conclusion:Using super adhesive bonding of light cured composite resin inlay was good to prevent the shedding and prevent the incidence of secondary caries.

  18. Resin cement to indirect composite resin bonding: effect of various surface treatments.

    Science.gov (United States)

    Kirmali, Omer; Barutcugil, Cagatay; Harorli, Osman; Kapdan, Alper; Er, Kursat

    2015-01-01

    Debonding at the composite-adhesive interface is a major problem for indirect composite restorations. The aim of this study was to evaluate the bond strength (BS) of an indirect composite resin after various surface treatments (air-abrasion with Al2O3, phosphoric acid-etchig and different applications of NdYAG laser irradiations). Fifty composite disks were subjected to secondary curing to complete polymerization and randomly divided into five experimental groups (n = 10) including Group 1, untreated (control); Group 2, phosphoric acid-etched; Group 3, air-abrasion with Al2 O3 ; Group 4, Nd:YAG laser irradiated with non-contact and Group 5, Nd:YAG laser irradiated with contact. They were then bonded to resin cement and shear BS was determined in a universal testing device at a crosshead speed of 1 mm/min. One way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the BS values. The highest BS value was observed in Group 4 and followed by Group 3. Tukey test showed that there was no statistical difference between Group1, 2 and 5. Furthermore, differences in BSs between Group 4 and the other groups except Group 3 were significant (p composite and resin cement. © Wiley Periodicals, Inc.

  19. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    Science.gov (United States)

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond.

  20. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  1. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  2. PMR Resin Compositions For High Temperatures

    Science.gov (United States)

    Vannucci, Raymond D.

    1989-01-01

    Report describes experiments to identify polymer matrix resins suitable for making graphite-fiber laminates used at 700 degree F (371 degree C) in such applications as aircraft engines to achieve higher thrust-to-weight ratios. Two particular high-molecular-weight formulations of PMR (polymerization of monomer reactants) resins most promising. PMR compositions of higher FMW exhibit enhanced thermo-oxidative stability. Formation of high-quality laminates with these compositions requires use of curing pressures higher than those suitable for compositions of lower FMW.

  3. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    Directory of Open Access Journals (Sweden)

    Shahin Kasraie

    2013-01-01

    Full Text Available Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4. Four cylinders of composite resin (z250 were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001. Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used.

  4. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  5. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  6. In vitro evaluation of the bond strength of composite resin foundation materials to dentin.

    Science.gov (United States)

    Al-Ansari, Asim; Al-Harbi, Fahad; Baba, Nadim Z

    2015-10-01

    Achieving adequate bonding of composite resin foundation materials to dentin can be a challenge. Bonding can be affected by the type of bonding material and method used. The purpose of this in vitro study was to test the bond strengths of selected dual-polymerizing composite resin foundation materials to dentin using light, chemical, or dual-polymerized adhesive systems. Eighty freshly extracted human third molars were sectioned vertically into mesial and distal halves and embedded in acrylic resin using a copper cylinder. Specimens were divided into 16 groups. Each group received a resin foundation that was bonded to dentin according to each manufacturer's instructions. All tested foundations were dual polymerized except Tetric Ceram, which was light polymerized. BisCore, Build-it, CompCore, CoreRestore, and FluoroCore resin foundation materials were bonded to dentin with the use of the corresponding adhesives in 3 different bonding methods: adhesive was light polymerized; adhesive was chemically polymerized; and adhesive was dual polymerized. Each specimen was seated in a custom shear test device, and a load was applied with the descending rod of the jig from a mechanical testing machine with a perpendicular force to the dentin-adhesive interface. Statistical analysis was performed using 2-way ANOVA and post hoc pairwise comparison with Tukey test when statistically significant differences were found (α=.05). Resin foundation materials bonded to dentin with light-polymerized adhesives produced significantly higher bond strengths than when bonded with chemically or dual-polymerized adhesives. No significant difference was found between the single-component and multiple-components adhesives used with Tetric Ceram and BisCore foundations (P=.083). However, BisCore used with All-Bond 2 adhesive (multiple components) produced significantly lower bond strengths than when used with One-Step (P=.024). Adhesive failure was the most common failure location. Cohesive

  7. Advances in the history of composite resins.

    Science.gov (United States)

    Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo

    2003-11-01

    The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.

  8. Effect of dentine conditioning on adhesion of resin-modified glass ionomer adhesives.

    Science.gov (United States)

    Hamama, H H; Burrow, M F; Yiu, C

    2014-06-01

    The aim of this study was to investigate the use of phosphoric acid as a surface treatment compared to traditional conditioning agents to dentine bonded with resin-modified glass ionomer (RMGIC) adhesives. Forty human molars were utilized in microtensile bond strength testing, while another 16 were used for evaluation of the bonded interface with scanning electron microscopy. Three RMGIC adhesives were evaluated: Fuji Bond LC (GC Corp); Riva Bond LC (SDI Ltd); and Ketac N100 (3M-ESPE). Surface treatments were 37% phosphoric acid (5 s) or 25-30% polyacrylic acid (PAA) (10 s), or the manufacturer's method - Fuji Bond LC: Cavity Conditioner (20% PAA + 3% AlCl3 10 s) or Ketac N100 primer: Ketac Nano priming agent (15 s). Teeth were finished with 600-grit SiC paper, surfaces treated and bonded with RMGIC adhesive and stored in distilled water for 24 h then subjected to microtensile bond strength testing. Two-way analysis of variance (ANOVA) revealed adhesion was affected by the 'type of RMGIC adhesive' and 'method of dentine surface treatment' (p adhesives a brief etch with phosphoric acid does not adversely effect short-term bond strengths, but is no better than traditional conditioning with PAA. © 2014 Australian Dental Association.

  9. Failure analysis of resin composite bonded to ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Anusavice, Kenneth J; Mecholsky, John J

    2003-12-01

    To use fractographic principles to classify the mode of failure of resin composite bonded to ceramic specimens after microtensile testing. A leucite-based ceramic (IPS Empress)-E1) and a lithia disilicate-based ceramic (IPS Empress2)-E2) were selected for the study. Fifteen blocks of E1 and E2 were polished through 1 microm alumina abrasive. The following ceramic surface treatments were applied to three blocks of each ceramic: (1) 9.5% hydrofluoric acid (HF) for 2 min; (2) 4% acidulated phosphate fluoride (APF) for 2 min; (3) Silane coating (S); (4) HF+S; (5) APF+S. An adhesive resin and a resin composite were applied to all treated surfaces and light cured. Twenty bar specimens for each group were prepared from the composite-ceramic blocks and stored in 37 degrees C distilled water for 30 days before loading to failure under tension in an Instron testing machine. Fracture surfaces were examined using scanning electron microscopy and X-ray dot mapping. Statistical analysis was performed using one-way ANOVA, Duncan's multiple range test, and Weibull analyses. Similar surface treatments were associated with significantly different bond strengths and modes of failures for E1 and E2. All fractures occurred within the adhesion zone. The microstructural difference between etched E1 and E2 ceramics was a major controlling factor on adhesion. The quality of the bond should not be assessed based on bond strength data alone. Mode of failure and fractographic analyses should provide important information leading to predictions of clinical performance limits.

  10. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  11. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding.

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-05-01

    The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Pcomposite resin. RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range.

  12. Optical characterization of one dental composite resin using bovine enamel as reinforcing filler

    Science.gov (United States)

    Tribioli, J. T.; Jacomassi, D.; Rastelli, A. N. S.; Pratavieira, S.; Bagnato, V. S.; Kurachi, C.

    2012-01-01

    The use of composite resins for restorative procedure in anterior and posterior cavities is highly common in Dentistry due to its mechanical and aesthetic properties that are compatible with the remaining dental structure. Thus, the aim of this study was to evaluate the optical characterization of one dental composite resin using bovine enamel as reinforcing filler. The same organic matrix of the commercially available resins was used for this experimental resin. The reinforcing filler was obtained after the gridding of bovine enamel fragments and a superficial treatment was performed to allow the adhesion of the filler particles with the organic matrix. Different optical images as fluorescence and reflectance were performed to compare the experimental composite with the human teeth. The present experimental resin shows similar optical properties compared with human teeth.

  13. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    OpenAIRE

    Mostafa Sadeghi

    2016-01-01

    Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12) and treated as follows: without any treatment (negative control group); total-e...

  14. µCT-3D visualization analysis of resin composite polymerization and dye penetration test of composite adaptation.

    Science.gov (United States)

    Yoshikawa, Takako; Sadr, Alireza; Tagami, Junji

    2017-08-25

    This study evaluated the effects of the light curing methods and resin composite composition on composite polymerization contraction behavior and resin composite adaptation to the cavity wall using μCT-3D visualization analysis and dye penetration test. Cylindrical cavities were restored using Clearfil tri-S Bond ND Quick adhesive and filled with Clearfil AP-X or Clearfil Photo Bright composite. The composites were cured using the conventional or the slow-start curing method. The light-cured resin composite, which had increased contrast ratio during polymerization, improved adaptation to the cavity wall using the slow-start curing method. In the μCT-3D visualization method, the slow-start curing method reduced polymerization shrinkage volume of resin composite restoration to half of that produced by the conventional curing method in the cavity with adhesive for both composites. Moreover, μCT-3D visualization method can be used to detect and analyze resin composite polymerization contraction behavior and shrinkage volume as 3D image in the cavity.

  15. Extended Resin Composite Restorations: Techniques and Procedures

    NARCIS (Netherlands)

    Loomans, B.A.C.; Hilton, T.

    2016-01-01

    This article gives an overview of the state of the art of different restorative treatment procedures and techniques needed for placing extended posterior resin composite restorations. Clinical aspects related to the procedure are discussed and reviewed based on the current literature, such as the

  16. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section.

    Science.gov (United States)

    Lynch, Christopher D; Opdam, Niek J; Hickel, Reinhard; Brunton, Paul A; Gurgan, Sevil; Kakaboura, Afrodite; Shearer, Ann C; Vanherle, Guido; Wilson, Nairn H F

    2014-04-01

    There have been many developments in operative dentistry in recent years, including a progressive shift to the use of resin composites, rather than dental amalgam, in the restoration of posterior teeth. This shift allows the adoption of minimal intervention approaches, thereby helping to conserve and preserve remaining tooth tissues and structures. This paper presents the position of the Academy of Operative Dentistry European Section (AODES) in relation to posterior resin composites. The AODES considers adhesively bonded resin composites of suitable composition and properties to be the "material of choice" for use in direct minimal intervention approaches to the restoration of posterior teeth. In so doing, the AODES emphasises the importance of the practice of evidence-based minimal intervention dentistry, including the use of refurbishment and repair techniques to extend the longevity of restorations. Guidance, based on best available evidence, has been made in relation to certain aspects of resin composite placement techniques in posterior teeth.

  17. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  18. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  19. In vitro wear of flowable resin composite for posterior restorations.

    Science.gov (United States)

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Shiro; Suzuki, Masaya

    2016-01-01

    The purpose of this study was to examine three- and two-body wear values of flowable resin composites for posterior restorations, using a mechanical loading device. The cavities prepared on flattened extracted molars were restored with flowable resin composites (Clearfil Majesty LV: MLV, Estelite Flow Quick: EFQ, Beautifil Flow Plus F00: BFP, and MI Fill: MIF) using accompanying adhesive systems. A universal resin composite (Clearfil Majesty) was used as a control. The specimens were subjected to in vitro three- and two-body wear testing. MLV showed high wear value (three-body: 14.69 µm, two-body: 0.268 mm(3)) compared with other materials tested in both three- and two-body wear tests. BFP showed high three-body wear value (5.78 µm), whereas low two-body wear value (0.008 mm(3)). MIF and EFQ showed equivalent wear values (MIF, three-body: 0.42 µm, two-body: 0.026 mm(3); EFQ, three-body: 1.15 µm, two-body: 0.14 mm(3)) to that of the control in both wear tests.

  20. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  1. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  2. Irradiation of dental enamel with Q-switched lambda = 355-nm laser pulses: surface morphology, fluoride adsorption, and adhesion to composite resin.

    Science.gov (United States)

    Wheeler, Cameron R; Fried, Daniel; Featherstone, John D B; Watanabe, Larry G; Le, Charles Q

    2003-01-01

    Lasers can be used to modify the chemical composition of dental enamel to increase the bond strength to restorative materials and to render the mineral phase more resistant to acid dissolution. Previous studies have suggested a synergistic relationship between CO(2) laser irradiation and fluoride treatment on increased resistance to acid dissolution. In this study a near-UV laser operating with lambda = 355-nm laser pulses of 3-5 nanoseconds duration was used to modify the surface morphology of dental enamel to increase the bond strength to restorative materials and increase the uptake of topical fluoride to render the surface more resistant to acid dissolution. We hypothesize that the short UV laser pulses are primarily absorbed by protein and lipid localized between the enamel prisms resulting in removal of intact mineral effectively etching the surface without thermal modification of the mineral phase. Such modification is likely to increase the permeability of the enamel surface and the subsequent absorption of fluoride. In addition, there is an increase in surface roughness without the formation of a layer of loosely adherent, thermally modified enamel that increases the bond strength to composite restorative materials. The surfaces of blocks of bovine enamel, 5 x 5 mm(2), were uniformly irradiated by 355-nm laser pulses and subsequently bonded to composite. The shear bond test was used to assess the bond strength of non-irradiated blocks (negative control), acid etched blocks (positive control), and laser irradiated blocks. The resistance to acid dissolution was evaluated using controlled surface dissolution experiments on irradiated samples, irradiated samples exposed to topical fluoride, and non-irradiated control samples with and without fluoride. The laser surface treatments significantly increased the shear-bond strength of enamel to composite, to a level exceeding 20 MPa which was significantly more than the non-irradiated control samples and

  3. Avaliação in vitro da resistência de união de diferentes combinações entre adesivos e resinas compostas In vitro evaluation of the bond strength of different combinations of adhesives and composite resins

    Directory of Open Access Journals (Sweden)

    Eduardo Batista FRANCO

    2000-09-01

    Full Text Available O objetivo desta pesquisa foi avaliar in vitro a compatibilidade entre as resinas compostas Herculite XR, Z100, AP.H e os diferentes adesivos XR-Bond, Scotchbond MP e PUB 3, uma vez que, por uma série de motivos, é muito freqüente na prática clínica do cirurgião-dentista a utilização de resina e adesivo de marcas comerciais diferentes. Utilizou-se um dispositivo constituído de base e matriz, as quais, quando justapostas, apresentavam uma cavidade em forma de halteres que recebeu a resina composta. Inicialmente, confeccionaram-se 45 meio-espécimes de cada resina. Após uma semana armazenados em água destilada a 37ºC, os meio-espécimes foram reposicionados na matriz para confecção da segunda metade e divididos em grupos de modo a combinar cada resina com cada um dos três adesivos. Armazenaram-se os espécimes em água destilada a 37ºC por 7 dias e procedeu-se ao teste de tração na máquina Kratos. Concluiu-se que: de forma geral, as interações entre as resinas e os adesivos testados mostraram-se compatíveis; a combinação AP.H/XR-Bond apresentou a maior discrepância, pois a resistência à tração foi estatisticamente inferior à associação original proposta pelo fabricante; as demais combinações entre os adesivos e as resinas testadas apresentaram resistência à tração estatisticamente semelhantes ou superiores à associação recomendada pelo fabricante.The aim of this work was to evaluate the in vitro compatibility between some composite resins (Herculite XR, Z100 and AP.H and different adhesives (XR-Bond, Scotchbond MP and PUB3, since for various reasons, the utilization of composite resins and adhesives from different commercial brands is very frequent in the dental practice. We used a device constituted of a base and a matrix which, when juxtaposed, showed a cavity in dumbbell shape which received the composite resin. Firstly, 45 half-specimens of each composite resin were made and stored in distilled water at

  4. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.......4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4...

  5. Wear of dental resin composites: insights into underlying processes and assessment methods--a review.

    Science.gov (United States)

    Turssi, Cecilia Pedroso; De Moraes Purquerio, Benedito; Serra, Mônica Campos

    2003-05-15

    Given the increased aesthetic demands of patients, along with improvements in the formulation of resin composites, the ability of these materials to bond to tooth structures, and concerns about dental amalgam fillings, the applicability of resin composites in dentistry has become increasingly widespread. As resistance to wear represents an important factor in determining the clinical success of resin composite restoratives, the aim of this article was to define what constitutes wear; the major underlying phenomena involved in this process-adhesion, abrasion, fatigue, and corrosion-being described. Discussions were also focused on factors that contribute both to the magnitude and minimization of resin composite wear. Finally, insights were included on both in vivo and laboratory studies used to determine wear resistance. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 280-285, 2003

  6. Color difference of composite resins after cementation with different shades of resin luting cement.

    Science.gov (United States)

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  7. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  8. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo Pereira

    2015-01-01

    Full Text Available Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse. Two composite resin cylinders were built up on each dentin surface (n = 10 and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal-Wallis one-way analysis of variance and Tukey test (P = 0.05. Results: According to the results, Kruskal-Wallis test evidenced at least one statistical significant difference (P = 0.001. The Tukey test showed statistically significant differences among the group (P < 0.05. Group PSM8 (P90 + SM showed statically significant higher results when compared with groups PSP4 (P90 + SP, PSB2 (P90 + SB, and ZSE5 (Z250 + SE. Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin.

  9. Factors affecting marginal integrity of class II bulk-fill composite resin restorations.

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins.

  10. Influence of drying time of adhesive systems on the bond strength between resin cement and feldspathic ceramic

    OpenAIRE

    Feitosa, Sabrina Alves; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Graduate Program in Restorative Dentistry (Prosthetic Dentistry Unit) – São José dos Campos – SP – Brazil.; Moura, Isabela Gomes; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Graduate Program in Restorative Dentistry (Operative Dentistry Unit) – São José dos Campos – SP – Brazil.; Corazza, Pedro Henrique; Post-graduation Program in Dentistry – Dental School – University of Passo Fundo – Passo Fundo – RS – Brazil.; Bergolli, Cesar Dalmolin; Faculty of Dentistry – Prosthetic Dentistry Unit – Federal University of Pelotas (UFPEL) – RS – Brazil.; Pagani, Clóvis; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Department of Restorative Dentistry – São José dos Campos – SP – Brazil.; Souza, Rodrigo Othavio A; Department of Restorative Dentistry – Division of Prosthodontics – Federal University of Rio Grande do Norte (UFRN) – Natal – RN – Brazil.; Valandro, Luiz Felipe; Rio Grande do Sul

    2016-01-01

    Objective: This study evaluated the effect of drying times of two total-etch & rinse adhesives on the resin bond strength to a feldsphatic ceramic, before and after aging. Material and Methods: Feldsphatic-ceramic CAD-CAM bars were cut into blocks (12×10×4 mm) with a cutting machine (N = 32). Impressions were made of each ceramic block with silicone putty material and the negative space was filled with a composite resin. The bonding ceramic surface was etched with hydrofluoric acid, silan...

  11. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  12. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  13. Bond strength of self-adhesive resin cements to tooth structure

    Directory of Open Access Journals (Sweden)

    Susan Hattar

    2015-04-01

    Conclusions: Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.

  14. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    OpenAIRE

    LIN, JIE; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coat...

  15. Aspects of adhesion between CAD/CAM ceramics and resin cements

    OpenAIRE

    Tian, Tian(Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China); 田恬

    2016-01-01

    Glass ceramics are one of the preferred choices in the case for preservation of tooth structure. They also exhibit excellent aesthetic outcomes, and life-like translucency. Moreover, glass ceramics can provide better adhesion to the underlying tooth preparation, compared with metal-bonded ceramics and oxide ceramics. This is achieved by application of HF etching and silanization, followed by bonding with resin cement. The resin cement is applied as the means to provide a seal, adhesion and ‘f...

  16. Dimensions of color: creating high-diffusion layers with composite resin.

    Science.gov (United States)

    Terry, Douglas A

    2003-02-01

    The objective of this article is to provide the clinician with fundamental principles for achieving success with directly placed composite resin restorations in posterior teeth. It describes the adhesive technique and protocol for the development of tooth-colored composite restorations in the posterior dentition by integrating the concepts of function, form, and color. A case presentation demonstrates the anatomical stratification and proper placement of tints and opaquers for the development of the direct posterior composite resin-bonded restoration. Used with an understanding of tooth morphology, restorative material selection, color options, and the physical properties of light, these techniques allow optimally esthetic restorations to be predictably achieved.

  17. New Resins for Dental Composites.

    Science.gov (United States)

    Fugolin, A P P; Pfeifer, C S

    2017-09-01

    Restorative composites have evolved significantly since they were first introduced in the early 1960s, with most of the development concentrating on the filler technology. This has led to improved mechanical properties, notably wear resistance, and has expanded the use of composites to larger posterior restorations. On the organic matrix side, concerns over the polymerization stress and the potential damage to the bonded interface have dominated research in the past 20 y, with many "low-shrinkage" composites being launched commercially. The lack of clinical correlation between the use of these materials and improved restoration outcomes has shifted the focus more recently to improving materials' resistance to degradation in the oral environment, caused by aqueous solvents and salivary enzymes, as well as biofilm development. Antimicrobial and ester-free monomers have been developed in the recent past, and evidence is mounting for their potential benefit. This article reviews literature on the newest materials currently on the market and provides an outlook for the future developments needed to improve restoration longevity past the average 10 y.

  18. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  19. Properties of magnetically attractive experimental resin composites.

    Science.gov (United States)

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  20. Silanising agents promote resin-composite repair.

    Science.gov (United States)

    Staxrud, Frode; Dahl, Jon E

    2015-12-01

    The aim of this study was to investigate the effect of silane in the repair of old and new resin-composite restorations. Part 1: repair of old composite was performed on 60 resin-composite substrates that were 6 years old and were made of six different brands of composite. Three experiments were performed. In the first experiment, the substrates were ground flat and composite was fixed to the surface with bonding agent without silane (i.e. Clearfil Bond SE only, the control). Shear bond strength (SBS) was tested according to ISO/TS 11405 after thermocycling. In the second experiment, the same 60 substrates were ground again and treated with bis-silane a 2-part silane mixed shortly before application before applying bonding agent (Clearfil Bond SE plus silane) and repair composite before SBS testing. In the third experiment, the same substrates were ground again and a one-step bonding product containing silane (Scotchbond Universal bond containing silane) was used for the repair procedure before SBS testing. Part 2: to evaluate the repair of newly made composite restorations, 66 composite substrates were made and stored in water for 2 months. The specimens were divided into three groups and were tested using the same protocols as used to evaluate repair of old composite. Mean SBS (± standard deviation), in MPa, for repair of old composite was 6.2 ± 4.0 (Clearfil Bond SE only, control), 14.8 ± 7.8 (Clearfil Bond SE plus silane) and 15.3 ± 5.6 (Scotchbond Universal bond with silane), whereas for new composite mean SBS was 15.4 ± 8.6 (Clearfil Bond SE only, control), 23.4 ± 8.3 (Clearfil Bond SE with silane) and 23.7 ± 5.8 (Scotchbond Universal containing silane). A significant difference was observed between the control and the test groups with silanising agents, both in Part 1 (P resin composite repair. © 2015 FDI World Dental Federation.

  1. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems.

    Science.gov (United States)

    Van Meerbeek, B; Conn, L J; Duke, E S; Eick, J D; Robinson, S J; Guerrero, D

    1996-03-01

    The resin-dentin interface formed by two dentin adhesives, Optibond (OPTI, Kerr) and Scotchbond Multi-Purpose (SBMP, 3M), was ultramorphologically examined by transmission electron microscopy (TEM). Ultrastructural information from nondemineralized and demineralized sections was correlated. It was hypothesized that the different chemical formulations of the two adhesives would result in a different morphological appearance of the hybrid layer. Ultrastructural TEM examination proved that each of the two dentin adhesive systems was able to establish a micromechanical bond between dentin and resin with the formation of a hybrid layer. However, the interfacial hybridization process that took place to produce this resin-dentin bond appeared to be specifically related to the chemical composition and application modes of both systems. OPTI consistently presented with a hybrid layer with a relatively uniform ultrastructure, electron density, and acid resistance. These three parameters were found to be more variable for the hybrid layer formed by SBMP. Characteristic of SBMP was the identification of an amorphous phase deposited at the outer surface of the hybrid layer. Although both adhesive systems investigated follow a total-etch concept, their specific chemical formulations result in different interfacial ultrastructures that are probably related to different underlying bonding mechanisms. The clinical significance of these morphological findings, however, is still unknown.

  2. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  3. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods.

    Science.gov (United States)

    Gilbert, Simona; Keul, Christine; Roos, Malgorzata; Edelhoff, Daniel; Stawarczyk, Bogna

    2016-03-01

    The aim of this study was to assess the bonding properties between CAD/CAM resin and three resin composite cements combined with different bonding agents using three test methods. Four hundred twenty CAD/CAM resin substrates were fabricated and divided into three test methods (shear bond strength (SBS, n = 180), tensile bond strength (TBS, n = 180) and work of adhesion (WA, n = 60)), further into four pretreatment methods (VP connect (VP), visio.link (VL), Clearfil Ceramic Primer (CP) and no pretreatment (CG)) and three cements (RelyX ARC, Variolink II and Clearfil SA Cement). Each subgroup contained 15 specimens. SBS and TBS were measured after 24 h H2O/37 °C + 5000 thermal-cycles (5/55 °C) and failure types were assessed. WA was determined for pretreated CAD/CAM resin and non-polymerized resin composite cements. Data were analysed with Mann-Whitney U, Kruskal-Wallis H, Chi(2) and Spearman's Rho tests. Within SBS and TBS tests, CGs and groups pretreated with CP (regardless of resin composite cements), and VP pretreated with Clearfil SA Cement showed no bond. However, CG combined with RelyX ARC showed a TBS of 5.6 ± 1.3 MPa. In general, highest bond strength was observed for groups treated with VL. CG and groups pretreated using VL showed lower WA than the groups treated with VP or CP. Measured TBS values were higher than SBS ones. In general, SBS and TBS showed similar trends for the ranges of the values for the groups. WA results were not comparable with SBS/TBS results and admitted, therefore, no conclusions on it. For a clinical use of XHIP-CAD/CAM resin, the bond surface should be additionally pretreated with visio.link as bonding agent.

  4. Comparison of Cashew Nut Shell Liquid (CNS Resin with Polyester Resin in Composite Development

    Directory of Open Access Journals (Sweden)

    C. C. Ugoamadi

    2013-12-01

    Full Text Available Natural resins can compete effectively with the synthetic ones in composite development. In this research, cashew nuts were picked and processed for the extraction of the resin content. The resin (natural resin so obtained was mixed with cobalt amine (accelerator, methyl ethyl ketone peroxide (catalyst to develop two sets of composite specimens – specimens without fibres and specimens reinforced with glass fibres. This method of sample specimen development was repeated with polyester (synthetic resin. Compressive and tensile strength tests conducted proved that composites developed with cashew nut shell liquid (CNSL resin were comparable to those developed with polyester resin. In the results, CNSL has an ultimate compressive strength of 55MPa compared to that of polyester resin with an ultimate strength of 68MPa. The result of tensile strength proved cashew nut shell liquid resin (with ultimate strength of 44MPa to be better than polyester resin with 39MPa as ultimate tensile strength. This means that natural resins could be a better substitute for the synthetic ones when the required quantities of fibers (reinforcements and fillers are used in the fibre-reinforced plastic composite developments.

  5. Bonding of resin composite to caries-affected dentin after Carisolv(®) treatment.

    Science.gov (United States)

    Zawaideh, Feda; Palamara, Joseph E A; Messer, Louise B

    2011-01-01

    The purpose of this study was to investigate the effect of Carisolv(®) on resin composite adhesion on caries-affected dentin. Carious lesion specimens (N =46) were prepared from 45 extracted primary molars: Group 1 (N =23)-chemomechanical (Carisolv(®)) treatment; Group 2 (N =23)-rotary instrumentation; and Group 3 (N =23)-caries-free specimens from 20 noncarious primary molars. After caries removal (Groups 1 and 2) or washing and drying (Group 3), a resin composite rod (2-mm high, 0.975-mm diameter) was bonded vertically to dentin. Specimens were stressed at constant displacement (1.0 mm/minute) to failure; treated surfaces were examined under a scanning electron microscope. The mean (±SD) microshear bond strengths of resin composite to dentin were: Group 1=6.69 (±4.08) MPa; Group 2=10.31 (±5.47) MPa; and Group 3=7.16 (±6.64) MPa. The mean bond strength of resin composite of Group 2 significantly exceeded that of Groups 1 (P=.02) and 3 (P=.01); Groups 1 and 3 did not differ significantly. There was no significant association between failure mode and treatment type (P=.22) or mean bond strength (P=.44). Carisolv(®) removed the smear layer or limited its formation, producing demineralization incompletely infiltrated by resin composite. Chemomechanical treatment of caries-affected dentin of primary teeth did not adversely affect resin composite bonding.

  6. On adhesive properties of perlite and sewage sludge ash with epoxy resin bonded single-strap repairs

    Science.gov (United States)

    Bulut, Mehmet; Erkliğ, Ahmet; Furkan Doğan, Nurettin

    2017-08-01

    In this study, the tensile properties of epoxy adhesive with the inclusion of micro-scale perlite and sewage sludge ash (SSA) particles were investigated for glass-epoxy laminates adhesively bonded single-strap repairs. Particle fillers were incorporated in the epoxy resin as an additive material at different ratios by weight, namely, 5, 10, 15 wt% for perlite; 5, 10, 15 and 20 wt% for SSA as well as unfilled composites. Composite samples were weakened by opening a circular cutout at the center of them, and then repaired by the circular patches produced from the same material. The repairing performances of samples were explored for two different patch ratios (D/d  =  2 and 3). Results indicated that the inclusion of perlite and SSA particles in the epoxy adhesive contributed to a significant increase in load carrying capacity at a weight content of 10 wt%.

  7. [Classification and several mechanical properties of core composite resins].

    Science.gov (United States)

    Yamada, T; Hosoda, H; Tsurugai, T

    1990-03-01

    According to the classification proposed by Hosoda, six core resins could be divided into two categories on the basis of the elemental composition and size distribution of filler particles by SEM observation and EDX analysis. Furthermore, several mechanical properties of the resins were determined. The following facts were found: Bell Feel Core, Clearfil Core, Clearfil PhotoCore, Core Max, and Core Max II resins were classified as a semihybrid resin, and Microrest Core resin as a hybrid type resin. The elements detected in the resins by the EDX were Si, Zr, Al, Ba and La. The mechanical properties of the resins were shown to be highly stable at one day or one week after curing. The mechanical properties of the resins suggest that the subsequent crown preparation and impression taking should be postponed until the next appointment.

  8. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat.

    Science.gov (United States)

    Perdigão, J; Muñoz, M A; Sezinando, A; Luque-Martinez, I V; Staichak, R; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the effect of acid etching and application of a hydrophobic resin coat on the enamel/dentin bond strengths and degree of conversion (DC) within the hybrid layer of a universal adhesive system (G-Bond Plus [GB]). A total of 60 extracted third molars were divided into four groups for bond-strength testing, according to the adhesive strategy: GB applied as a one-step self-etch adhesive (1-stepSE); GB applied as in 1-stepSE followed by one coat of the hydrophobic resin Heliobond (2-stepSE); GB applied as a two-step etch-and-rinse adhesive (2-stepER); GB applied as in 2-stepER followed by one coat of the hydrophobic resin Heliobond (3-stepER). There were 40 teeth used for enamel microshear bond strength (μSBS) and DC; and 20 teeth used for dentin microtensile bond strength (μTBS) and DC. After restorations were constructed, specimens were stored in water (37°C/24 h) and then tested at 0.5 mm/min (μTBS) or 1.0 mm/min (μSBS). Enamel-resin and dentin-resin interfaces from each group were evaluated for DC using micro-Raman spectroscopy. Data were analyzed with two-way analysis of variance for each substrate and the Tukey test (α=0.05). For enamel, the use of a hydrophobic resin coat resulted in statistically significant higher mean enamel μSBS only for the ER strategy (3-stepER vs 2-stepER, penamel etching technique, because it improves bond strengths to enamel when applied with the ER strategy and to dentin when used with the SE adhesion strategy. The application of a hydrophobic resin coat may improve DC in resin-dentin interfaces formed with either the SE or the ER strategy. On enamel, DC may benefit from the application of a hydrophobic resin coat over 1-stepSE adhesives.

  9. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Science.gov (United States)

    Haruyama, Akiko; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength (μTBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H2O2-containing titanium dioxide (TiO2) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching. PMID:27747220

  10. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber.

    Science.gov (United States)

    Haruyama, Akiko; Kameyama, Atsushi; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength (μTBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H2O2-containing titanium dioxide (TiO2) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  11. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Directory of Open Access Journals (Sweden)

    Akiko Haruyama

    2016-01-01

    Full Text Available This study evaluated the microtensile bond strength (μTBS of 1-step self-etch adhesives (1-SEAs and 2-step self-etch adhesives (2-SEAs to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2 solution with quartz-tungsten-halogen light-curing unit (Group 1 and 3.5% H2O2-containing titanium dioxide (TiO2 (Pyrenees® activated with 405-nm violet diode laser for 15 min (Group 2. Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens than 1-SEA (where 21 out of 36 failed. These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  12. Effect of surface treatment and aging on bond strength of composite resin onlays.

    Science.gov (United States)

    Cura, Maria; González-González, Inmaculada; Fuentes, Victoria; Ceballos, Laura

    2016-09-01

    Additional polymerization of indirect composite resins enhances their physical properties but lessens the potential for chemical bonding. The purpose of this in vitro study was to evaluate the influence of different surface treatments and 6-month water storage on the microtensile bond strength (μTBS) of composite resin onlays. Composite resin onlays (Filtek Z250) randomly received 6 different surface treatments: (1) airborne-particle abrasion with 27-μm alumina particles+Adper Scotchbond 1XT adhesive application, (2) airborne-particle abrasion with alumina particles+silane application (ESPE SIL)+Adper Scotchbond 1XT, (3) airborne-particle abrasion with alumina particles+Scotchbond Universal adhesive, (4) tribochemical silica coating with 30-μm particles (CoJet Sand)+Adper Scotchbond 1XT adhesive, (5) tribochemical silica coating+silane application+Adper Scotchbond 1XT, and (6) tribochemical silica coating+Scotchbond Universal adhesive. Onlays were luted to fresh composite resin specimens with RelyX Ultimate resin cement. Bonded assemblies were stored in water for 24 hours or 6 months at 37°C and subjected to the μTBS test. Additional surface-treated composite resin onlays were analyzed with a contact profilometer to determine average roughness, and micromorphologic changes were analyzed with scanning electron microscopy. Airborne-particle abrasion with alumina followed by Adper Scotchbond 1XT or Scotchbond Universal adhesive application provided the highest bond strength values at 24 hours. Lower values were obtained after tribochemical silica coating. After 6 months of artificial aging, airborne-particle abrasion with alumina or silica-coated alumina particles followed by Scotchbond Universal application yielded the greatest bond strength results. Airborne-particle abrasion with alumina produced the highest roughness values and a more irregular surface. Adhesive selection seems to be relevant to the μTBS of luted composite resin onlays after 6 months of

  13. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    OpenAIRE

    Okuyama, Katsushi; Komatsu, Hisanori; YAMAMOTO, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system; however, demineralization also introduce...

  14. Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

    OpenAIRE

    Kim, Hyun-Dong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Hee-Sun; Cha, Hyun-Suk

    2013-01-01

    PURPOSE Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiber-reinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and th...

  15. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2017-09-28

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  16. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    Science.gov (United States)

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual-cure composite resins exhibited no significant differences in muTBS irrespective of whether polymerization was chemically or photoinitiated (P > 0.05). Both dual-cure composite resins exhibited good bonding to root canal dentin, which was not dependent upon region or mode of polymerization.

  17. Comparison of Shear Bond Strength between Composite Resin and Porcelain Using Different Bonding Systems

    Directory of Open Access Journals (Sweden)

    E.Yassini

    2005-03-01

    Full Text Available Statement of Problem: Ceramics as in ceramo-metallic and all ceramic tooth restorations have grown popular owing to their high tissue compatibility and esthetic advantages. Such restorations have the capability to deliver valuable services over a long period of time; however, failures under intraoral conditions are not unanticipated.Purpose: The purpose of this in-vitro study was to investigate the shear bond strength of composite resin to porcelain using different bonding system materials.Materials and Methods: In this experimental study forty porcelain blocks were prepared and randomly divided into four equal groups. The porcelain surfaces were then etched with HF for 2 minutes, washed with water for 2 minutes and treated with a silane layer. The silane treated porcelain surfaces were left for one minute and then the specimens were bonded to composite resin as follow:Group 1 (control group, hybrid composite Z100 was applied and light cured from four directions for 20 seconds. Group 2, flowable composite was applied and light cured for 20 seconds. Group 3, unfilled resin was used and photo cured for 20 seconds. Group 4,(Dentin bonding agent adhesive resin was used followed by 20 seconds photo curing.Hybrid composite resin Z100 was subsequently applied on all porcelain surfaces of groups 2, 3 and 4, and light cured for 20 seconds from four directions. Specimens were then subjected to thermocycling 1000 times. Shear bond strength was determined by a Universal testing machine. The data obtained was subjected to a one-way ANOVA test.Results: The results indicate that there is a statistically significant difference between adhesive group and the other three groups of hybrid, flowable and unfilled resin (P<0.05.Conclusion: The results from this study showed that the shear bond strength of composite resin to porcelain was significantly higher for porcelain bonded surfaces using a dentin bonding agent than that of other materials tested.

  18. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  19. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  20. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  1. Marginal behaviour of self-etch adhesive/composite and combined amalgam-composite restorations.

    Science.gov (United States)

    Kournetas, Nikos; Kakaboura, Afrodite; Giftopoulos, Dimitrios; Chakmachi, Magdad; Rahiotis, Christos; Geis-Gerstorfer, J

    2010-06-01

    The aim of this study was to compare the marginal and internal adaptation in self-etching adhesive (SEA)/composite restorations with combined amalgam-resin-based composite restorations in the proximal box with and without bonding agent beneath amalgam both before and after load-cycling. Class II restorations, were manufactured as following a) Bonding agent (Clearfil Liner Bond 2V, Kuraray) beneath amalgam (Tytin, SDS Kerr) and resin-based composite (Clearfil APX, Kuraray) with SEA, b) Amalgam without bonding agent and resin-based composite with SEA and c) Resin-based composite with SEA. Each group divided into two equal subgroups (n=8). Marginal and internal adaptation of first subgroup evaluated after 7-day water storage and of the second after load-cycling in chewing simulator for 1.2 x 10(6) cycles. Marginal and internal adaptation at cervical and amalgam-composite sites evaluated by videomicroscope and ranked as "excellent"/"non-excellent". Slices of restorations examined under optical microscope to determine the quality of bonding layer. Defects in cervical adaptation observed in the three restorative techniques examined prior loading. Amalgam-composite combination in proximal surface provided comparable marginal and internal adaptation results at cervical wall, to self-etching-composite combination. Portion (25-37.5%) of amalgam-resin-based composite interfaces in proximal box presented no perfect sealing. The application of bonding agent beneath amalgam resulted in relatively inferior cervical adaptation. Loading resulted in fewer excellent restorations in all three restorative techniques but not in a statistically significant level.

  2. Effect of Caries Removal Methods on the Shear Bond Strength of Resin and Glass IonomerAdhesives to Primary Dentin

    Directory of Open Access Journals (Sweden)

    Mohammadi N

    2015-12-01

    Full Text Available Statement of Problem: There is no enough published data about the shear bond strength of resin modified glass ionomer adhesives on caries-affected primary tooth dentin excavated using minimally invasive systems. Objectives: To evaluate the shear bond strength of 2 different adhesives (one resin modified glass ionomer and one resin using two caries removal tech- niques on healthy and caries-affected primary dentin. Materials and Methods: Two caries removal methods including mechanical (handpiece and chemomechanical (Carisolv techniques and two types of ad- hesives including one resin adhesive (Clearfil SE Bond; CSEB, Kuraray and one resin-modified glass ionomer adhesive (Riva Bond LC; RBLC, SDI were used in this study. Ten extracted healthy primary teeth were used for the control group. The teeth were sectioned bucco-lingually and mesio-distally in order to obtain four specimens from each tooth. Thirty suitable specimens were selected as the “control” and randomly divided into two groups of “sound dentin” based on the type of the adhesive used. Sixty extracted caries affected teeth were used for the carious group; sectioned as mentioned above and sixty suitable specimens were selected as the “treatment”. Then the specimens were arbitrarily divided into four groups based on caries removal techniques and the type of ad- hesive used (n = 15. After bonding with either CSEB or RBLC, the specimens were restored with a resin composite by means of PVC tubes and subjected to the shear bond strength test. The data was analyzed using ANOVA and Tukey’s test. Results: The specimens in Carisolv group bonded with CSEB (11.68 ± 3.1 showed a statistically significant higher mean bond strength followed by those in handpiece group bonded with CSEB (9.4 ± 2.7, which exhibited higher mean values than those groups with RBLC (p < 0.05. Shear bond strength values for Clearfil SE Bond was not significantly higher than Riva Bond LC when used in sound

  3. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  4. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  5. 600 Mesh Silicon Carbide Corona Protection Varnish with EPOXY/OMMT Nano-composite Adhesive

    Institute of Scientific and Technical Information of China (English)

    HU Chunxiu; ZHAO Yingnan; HOU Haibo; ZHANG Xiaohong

    2016-01-01

    A new corona protection varnish was prepared by using epoxy/montmorillonite nano-composite and pure epoxy resin as adhesives respectively. The adhesive with different amounts of organic montmorillonite (OMMT) was mixed with 1200 mesh silicon carbide (SiC) by different weight ratios. The surface states of the varnishes with various adhesives were observed by powerful optical microscope. Some properties of the varnishes were analyzed during the enduring time under 5kV/cm DC, such as the relation of change in nonlinear coefifcient, natural surface resistivity, and surface temperature variation. The results showed that the amounts of OMMT had little effect on the natural surface resistance of the varnish but had important inlfuence on the nonlinear property of the varnish. When the range of the OMMT content was 2wt% to 6wt%, the nonlinear coefifcient of all materials with epoxy/OMMT nano-composite adhesive was higher than that with pure epoxy resin adhesive. The surface temperature of the varnish with epoxy/OMMT nanocomposite adhesive was all lower than that with the pure epoxy resin adhesive under high electrical ifeld strength.

  6. Has resin-based composite replaced amalgam?

    Science.gov (United States)

    Christensen, Gordon J; Child, Paul L

    2010-02-01

    The major health organizations in the world continue to accept amalgam use, but the "amalgam war" of the 1800s is still going on. The end is not in sight. There is little disagreement that amalgam serves well and, although controversial, it appears to have minimal to no health hazards. There is a wide variation in the relative amount of amalgam placed in developed countries, and many dentists in North America do not use it. However, amalgam is still being used at least some of the time by the majority of practitioners in North America, and most of those practitioners also place resin-based composite in Class II locations. The evolution from amalgam to tooth-colored restorations has been a slow and tumultuous journey. The acceptability of resin-based composite in Class II locations continues to be a question for some dentists, while others have concluded that amalgam is "dead." It would be highly desirable if some of dentists using the alleged poisonous properties of amalgam as a "practice building" ploy would find more legitimate methods to increase their practice activity.

  7. The effect of curing time and curing method on microleakge of conservative adhesive resin restorations: an in vitro study

    Directory of Open Access Journals (Sweden)

    Alireza Heidari

    2012-01-01

    Full Text Available Background and Aims: Using the conservative adhesive resin restoration (CAR in uncooperative children lead to numerous problems because of being time consuming. The purpose of this study was to compare the microleakage of conservative adhesive resin restoration under separate curing and co-curing.Materials and Methods: In this experimental study, 120 intact premolar teeth were collected and 120 vertical grooves were prepared on them. Then the teeth were divided into four groups: group 1, separated curing of bonding agent, flowable composite and sealant; group 2, co-curing of all materials for 60 seconds; group 3,co-curing of all materials for 40 seconds and group 4, co-curing of all materials for 20 seconds. Then the specimens were thermocycled and immersed in basic fuchsin solution. The teeth were sectioned horizontally and dye penetration was evaluated with stereomicroscope. Date were analyzed using one-way ANOVA and Scheffe test.Results: Mean value of dye penetration in groups 1, 2, 3, and 4 was 1.53±0.6, 2.06±0.6, 2.5±0.7 and 3.53±0.6, respectively. There was a statistically significant difference between group 1 and the other groups (P=0.0001.Conclusion: Considering the problems caused by microleakage in conservative resin adhesive restorations, co-curing method should not be used. In the case of using co-curing method, 60 second curing time is suggested for sufficient polymerization.

  8. Indirect posterior restorations using a new chairside microhybrid resin composite system.

    Science.gov (United States)

    Tay, F R; Wei, S H

    2001-01-01

    A plethora of choices is available as potential tooth-colored restoratives for the posterior dentition. Advances in adhesive technology and esthetic chairside microhybrid composite resins have permitted clinicians to perform inlay/onlay restorations. The use of adhesive indirect procedures offers advantages such as better control of polymerization shrinkage and anatomical form, when compared to conventional, direct restorative techniques. This article describes the use of a new chairside microhybrid composite system as an indirect restorative material, using semidirect and indirect techniques that can be accomplished within the realm of a dental operatory.

  9. Effect of different mechanical and chemical surface treatments on the repaired bond strength of an indirect composite resin.

    Science.gov (United States)

    Kimyai, Soodabeh; Oskoee, Siavash Savadi; Mohammadi, Narmin; Rikhtegaran, Sahand; Bahari, Mahmoud; Oskoee, Parnian Alizadeh; Vahedpour, Hafez

    2015-02-01

    This study compared the effects of two mechanical surface preparation techniques, air abrasion and Nd:YAG laser, with the use of two adhesive systems, self-etch and etch and rinse, on the repair bond strengths of an indirect composite resin. One hundred fifty cylindrical samples of an indirect composite resin were prepared and randomly divided into six groups (n = 25). In groups 1-3, the composite resin surfaces were respectively prepared as follows: no roughening, roughening by air abrasion, and roughening by Nd:YAG laser, followed by application of an etch-and-rinse adhesive. In groups 4-6, the preparation techniques were respectively the same as those in groups 1-3, followed by application of a self-etch adhesive. Subsequently, a direct composite resin was added and repair bond strengths were measured. Data were analyzed with two-way ANOVA and post hoc Tukey's test. Mean bond strength value was significant based on the preparation technique (P composite resin with air abrasion and Nd:YAG laser resulted in a significant increase in the repair bond strength, with air abrasion being more effective. There were no significant differences in bond strength between the two adhesives.

  10. A discussion on producing agro-residue composites with isocyanate resins

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable development of composite industries in China. Based on a great deal of researches, this paper summarized and discussed some problems in using agro-residues as raw materials of composites, including raw material preparation, hot-pressing, bonding technology, preventing composite from going moldy. It is proposed that to manufacture the composite of rice straws or wheat straws, the isocayante resin is a suitable adhesive, and the appropriate technologies, bonding, and treatment measures are also needed.

  11. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    Science.gov (United States)

    do Valle, Accácio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; Só, Marcus-Vinícius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer’s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond™ FL, Kerr); G3 - a 3-step total-etch adhesive system (Adper™ Scotchbond™ Multi-Purpose, 3M ESPE); G4 - a 2-step total-etch adhesive system (Adper™ Single Bond 2, 3M ESPE); G5 - a single-step self-etching system (Bond Force, Tokuyama); and G6 - universal bonding system (Single Bond Universal, 3M ESPE). Then, cylinders made of self-adhesive resin cement with polypropylene matrix was cemented in all groups (RelyX U200, 3M ESPE). Bond strength was assessed by submitting the specimens to micro-shear test and was characterized according to the fracture pattern observed through optical microscopy. Results The results were submitted to the Kruskal-Wallis test, which indicated a statistically significant difference between the groups (p=0.04), and Tukey’s multiple comparisons, which indicated a statistically significant difference between G1 and G3 (p<0.05). The microscopic analysis revealed a high prevalence of adhesive failures, followed by mixed fractures, and cohesive failures in the dentin. Conclusions The use of a previous dentin hybridization protocol is able to increase adhesive bonding resistance of self-adhesive resin cement, especially when used Adper™ Scotchbond™ Multi-Purpose system. Key words:Bonding, self-adhesive resin cement, adhesive systems, microshear. PMID:27703609

  12. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  13. Glass Fiber Resin Composites and Components at Arctic Temperatures

    Science.gov (United States)

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC

  14. Effect of photoactivation on the reduction of composite resin contamination.

    Science.gov (United States)

    Pauletti, Natalia A; Girotto, Luiza P S; Leite, Françoise H S; Mario, Débora N

    2017-06-01

    Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination. © 2017 Eur J Oral Sci.

  15. Adhesive joint and composites modeling in SIERRA.

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  16. Use of lining materials under posterior resin composite restorations in the UK.

    Science.gov (United States)

    Blum, Igor R; Younis, Nadeem; Wilson, Nairn H F

    2017-02-01

    To investigate opinions on, and current use of lining materials prior to the placement of posterior resin composite restorations by general dental practitioners (GDPs) in the UK. A further objective was to investigate aspects of posterior resin composite restoration placement techniques employed by UK GDPs. A questionnaire was devised to gain the information sought. It was sent to 500 UK dentists, chosen at random from the register of the General Dental Council. Three hundred and fifty four replies were received, which gave a response rate of 71%. Eighty two percent of respondents reported placing lining materials in deep cavities to be restored with resin composite. Regarding moderately deep cavities, half of the respondents indicated a preference to place a lining material, whilst 44% were not sure if a lining was required. The remaining 6% did not respond to the question. Of the respondents, 39% reported that they did not place lining materials in shallow cavities. Regarding techniques for posterior resin composite placement, two-step etch and rinse systems were the most common adhesive bonding systems used (60%). The majority of respondents (80%) reported not using rubber dam when restoring posterior teeth with resin composite. There was considerable confusion about the need to place a lining prior to resin composite restorations placement in moderate depth and shallow cavities, whilst most favoured the placement of a lining in deep posterior cavities. The majority of GDPs may not routinely use rubber dam for the placement of posterior resin composite restorations. Decision making and operative techniques for cavity linings under posterior composite restorations in moderately deep and deep cavities is contentious among dentists, resulting in a need to generate more convincing, practice-relevant data on the use of lining materials to inform the dental profession. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Micromorphology of resin/dentin interfaces using 4th and 5th generation dual-curing adhesive/cement systems: a confocal laser scanning microscope analysis.

    Science.gov (United States)

    Arrais, Cesar A G; Miyake, Katsuia; Rueggeberg, Frederick A; Pashley, David H; Giannini, Marcelo

    2009-02-01

    This study evaluated the differential composition of resin/dentin interfaces of indirect restorations created by the application of 4th and 5th generation dual-curing luting systems (bonding agents/resin cements), when each material was either light cured or allowed to self-cure. Occlusal flat dentin surfaces of 60 human third molars were assigned into 12 groups (n = 5) according to curing mode and dual-curing cementing system: 4th generation All Bond2 (AB2)/Duolink (Bisco) and 5th generation (B1) Bond1/Lute-it (Pentron). Fluorescein-labeled dextran (FDx) was mixed with the bonding agents, while rhodamine-labeled dextran (RhDx) was incorporated into resin cements and Pre-Bond resin from AB2. Resin cements were applied to 2-mm-thick, precured resin composite disks (Z250, 3M ESPE), which were fixed to dentin surfaces containing adhesive resin in either cured (light cured; LC) or uncured (self-cured; SC) states. The restored teeth were light activated (XL3000, 3M ESPE) according to the manufacturers' instructions (LRC) or allowed to self-cure (SRC), were stored for 24 h, and then vertically, serially sectioned into l-mm-thick slabs, which were analyzed using confocal laser scanning microscopy. Fluorescent additives indicated where individual components of the bonding/cement systems were located. Additional specimens were prepared and analyzed using a conventional scanning electron microscope. AB2/LC and B1/LC exhibited nonuniform primer/adhesive layer thickness. AB2/SC showed adhesive resin penetration within the primed dentin, and resin cement penetration at the entrance of the dentin tubules. B1/SC/LRC demonstrated resin cement penetration within the hybrid layer and into the dentin tubules. More resin cement penetration was observed in B1/SC/SRC groups than in its LRC equivalent. The morphological features and component interactions among materials at resin/dentin interfaces are related to the activation modes of the primer/adhesive layer and of the resin cement

  18. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    Science.gov (United States)

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  19. Abrasive wear and surface roughness of contemporary dental composite resin.

    Science.gov (United States)

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  20. Posterior resin-based composite: review of the literature.

    Science.gov (United States)

    Burgess, J O; Walker, Richard; Davidson, J M

    2002-01-01

    The use of direct posterior resin-based composite has increased primarily due to patient esthetic desires and product improvements. Other factors (substantiated or not) contributing to increased use of resin-based composite are environmental and health concerns with dental amalgam. New visible light cured resin-based composite products are introduced yearly, as manufacturers continue to improve this tooth-colored restorative material. This paper will characterize current posterior resin-based composite materials (hybrid, microfill, flowable, and packable), review recent in vitro and clinical research, and recommend indications for these materials. In addition, the literature on compomers will be reviewed and recommendation made for their use. The data indicates that composite resin is a technique sensitive restorative material that can be used in large preparations if proper manipulation and isolation can be maintained. Compomers may also be used as an esthetic posterior restorative if proper isolation is provided.

  1. Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Wei; Gao, Feng [Taiyuan Univ. of Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Technology (China). Key Laboratory of Interface Science and Engineering in Advanced Materials; Li, Kai-Xi [Chinese Academy of Sciences, Taiyuan, Shanxi (China). Key Laboratory of Carbon Materials

    2013-09-15

    Three kinds of epoxy resins, i.e. tetraglycidyl diaminodiphenyl methane (AG80), difunctional diglycidyl ether of bisphenol-A (E51) and novolac type epoxy resin (F46) were selected as matrices for carbon fiber/epoxy composites. The objective of this work is to study the mechanical properties of fiber/epoxy composites by using these three kinds of epoxy resins with different physical and chemical performance. The results show that the composites fabricated with AG80 present the best stiffness and the composites prepared with E5 1have the best toughness. The stiffness and toughness of the composites prepared with F46 are middle values located between those for AG80/epoxy and E51/epoxy composites. Thus, the mixed epoxy resin is a promising approach for industrial production. (orig.)

  2. Micro-CT evaluation of internal adaptation in resin fillings with different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Han

    2014-02-01

    Full Text Available Objectives The purpose of present study was to evaluate the internal adaptation of composite restorations using different adhesive systems. Materials and Methods Typical class I cavities were prepared in 32 human third molars. The teeth were divided into the following four groups: 3-step etch-and-rinse, 2-step etch-and-rinse, 2-step self-etch and 1-step self-etch system were used. After the dentin adhesives were applied, composite resins were filled and light-cured in two layers. Then, silver nitrate solution was infiltrated, and all of the samples were scanned by micro-CT before and after thermo-mechanical load cycling. For each image, the length to which silver nitrate infiltrated, as a percentage of the whole pulpal floor length, was calculated (%SP. To evaluate the internal adaptation using conventional method, the samples were cut into 3 pieces by two sectioning at an interval of 1 mm in the middle of the cavity and they were dyed with Rhodamine-B. The cross sections of the specimens were examined by stereomicroscope. The lengths of the parts where actual leakage was shown were measured and calculated as a percentage of real leakage (%RP. The values for %SP and %RP were compared. Results After thermo-mechanical loading, all specimens showed significantly increased %SP compared to before thermo-mechanical loading and 1-step self-etch system had the highest %SP (p < 0.05. There was a tendency for %SP and %RP to show similar microleakage percentage depending on its sectioning. Conclusions After thermo-mechanical load cycling, there were differences in internal adaptation among the groups using different adhesive systems.

  3. Improvement of Mechanical Properties of Noil Hemp Fiber Reinforced Polypropylene Composites by Resin Modification and Fiber Treatment

    Directory of Open Access Journals (Sweden)

    Zili Yan

    2013-01-01

    Full Text Available The present study aims to improve the reinforcement of hemp fibre to polypropylene (PP by simple resin modification and fibre treatment. Maleic anhydride grafted polypropylene (MAPP was used as resin modifier by direct mixing with PP, and hydrophobically modified hydroxyethyl cellulose (HMHEC was used as fibre treatment reagent by immersing fibre into its aqueous solution. The influences of fibre content, resin modification, and fibre treatment on the mechanical properties (tensile, flexural, and impact strengths of composites were investigated. The change of interfacial bonding between fibre and resin in composites caused by MAPP and HMHEC was studied by scanning electron microscopy and dynamic mechanical analysis. Resin modification and fibre treatment were effective to enhance the mechanical properties of the composites. The improvement in interfacial bonding is quantitatively evaluated with adhesion factor.

  4. Study on Curing Kinetics of Heat-resistant Flexible Polyamide Modified Epoxy Resin Adhesive

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-04-01

    Full Text Available In order to study the effects of numerous variables affecting the reaction rate of heat-resistant flexible modified epoxy resin adhesive, the curing kinetics of polyamide modified epoxy resin was studied. The heat-resistant flexible modified epoxy resin adhesive cured at room-temperature was prepared with epoxy resin, polysulfide rubber and organosilicone as adhesive component, polyamide as main curing agent and addition of different modified filler and the curing agent containing benzene ring structure. The curing kinetics of polyamide modified epoxy resin was studied by Differential Scanning Calorimetry (DSC at different heating speeds and the characteristic temperatures of the curing process were analyzed and confirmed. the kinetics parameters of activation energy was calculated using Flynn-Wall-Ozawa equation and Kissinger equation, respectively, then the kinetic model of curing reaction was built as d&alpha/dt = 4.38×107 exp (-57740/RT (1-&alpha0.93, the results show that the two-parameter model is adequate to represent the curing reaction process, the model can well describe the curing reaction process of the studied resin. The DSC curves obtained using the experimental data show a good agreement with that theoretically calculated. The research results will provide theoretical basis for the choice of manufacturing process and the optimization of processing window.

  5. Repair bond strength of dual-cured resin composite core buildup materials.

    Science.gov (United States)

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  6. Microcomputed Tomography Evaluation of Polymerization Shrinkage of Class I Flowable Resin Composite Restorations.

    Science.gov (United States)

    Sampaio, C S; Chiu, K-J; Farrokhmanesh, E; Janal, M; Puppin-Rontani, R M; Giannini, M; Bonfante, E A; Coelho, P G; Hirata, R

    The present study aimed to characterize the pattern and volume of polymerization shrinkage of flowable resin composites, including one conventional, two bulk fill, and one self-adhesive. Standardized class I preparations (2.5 mm depth × 4 mm length × 4 mm wide) were performed in 24 caries-free human third molars that were randomly divided in four groups, according to the resin composite and adhesive system used: group 1 = Permaflo + Peak Universal Bond (PP); group 2 = Filtek Bulk Fill + Scotchbond Universal (FS); group 3 = Surefil SDR + XP Bond (SX); and group 4 = Vertise flow self-adhering (VE) (n=6). Each tooth was scanned three times using a microcomputed tomography (μCT) apparatus. The first scan was done after the cavity preparation, the second after cavity filling with the flowable resin composite before curing, and the third after it was cured. The μCT images were imported into three-dimensional rendering software, and volumetric polymerization shrinkage percentage was calculated for each sample. Data were submitted to one-way analysis of variance and post hoc comparisons. No significant difference was observed among PP, FS, and VE. SX bulk fill resin composite presented the lowest values of volumetric shrinkage. Shrinkage was mostly observed along the occlusal surface and part of the pulpal floor. In conclusion, polymerization shrinkage outcomes in a 2.5-mm deep class I cavity were material dependent, although most materials did not differ. The location of shrinkage was mainly at the occlusal surface.

  7. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Presin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  8. Smile makeover utilizing direct composite resin veneers.

    Science.gov (United States)

    Koczarski, Michael

    2008-12-01

    Creating a beautiful smile is more than restoring a single tooth back to its proper form. One must take into account the entire aesthetic zone, along with the mechanics of restoring the teeth to proper form and function. To make this effort even more challenging, the clinician is in full control and completely accountable for making the direct composite resin restorations from which the smile is created. Patients usually won't critique the aesthetics of a posterior direct resin, but once we move into the visible smile (along with the fact that most cosmetic procedures are patient desire- and want-driven) we must be able to deliver what the patient expects. Preplanning the case and avoiding the "prep and pray" approach to the smile-design process is the cornerstone of success. Utilizing tools for the creation of the restorations, such as a preoperative wax-up and silicone putty matrix, help the clinician break the procedure down to individual restorations that when created in harmony with the pre-operative design or wax-up, will allow a final "smile design" to emerge with predictability without getting lost in the daunting task of creating the entire smile all at once. Proper use of ideal composite materials adds the final touch on creating realistic results that even the most discerning patients demand. Layering colors, utilizing differing opacities and translucencies within the restorative process, is a must. Having a "recipe" to follow simplifies the process and gives the clinician confidence that the final result will have that realistic look. All in all, the easiest way to handle a challenging case is to break it down into smaller and more manageable increments in order to ensure a predictable outcome.

  9. SEM analysis of microstructure of adhesive interface between resin cement and dentin treated with self-etching primer.

    Science.gov (United States)

    Hirabayashi, Shigeru; Yoshida, Eiji; Hayakawa, Tohru

    2011-01-01

    The purpose of this study was to examine the microstructure of the adhesive interface between resin cement and dentin treated with a self-etching primer by SEM in order to clarify the adhesive efficiencies of four self-etch type resin cement systems, Bistite II (BII), Linkmax (LM), Panavia F2.0 (PF), and ResiCem (RC) to dentin. The fluidity and inorganic filler content of these cements were also determined to examine their influences on the adhesion. A hybrid layer with 0.5-1.5 µm thickness and many resin tags could be confirmed clearly at the interface between BII cement and dentin, but was not observed distinctly for the other resin cements. It was suggested that the hybrid layer and resin tags might contribute to the high adhesive efficiency for BII. As the fluidity of cement had been adjusted to be suitable for luting in all cements, it did not significantly influence the adhesive efficiency of cement.

  10. Novel bio-based thermoset resins based on epoxidized vegetable oils for structural adhesives

    Science.gov (United States)

    Sivasubramanian, Shivshankar

    Conventional engineered wood composites are bonded for the most part through formaldehyde-based structural adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), phenol formaldehyde (PF) and resorcinol formaldehyde (RF). Formaldehyde is a known human carcinogen; the occupational exposure and emission after manufacturing of these binders is raising more and more concern. With increasing emphasis on environmental issues, there is clear incentive to replace these hazardous conventional formaldehyde-based binders with cco-friendly resins having similar properties but derived from renewable sources, bearing in mind the economics of the structural wood composite industry. In this thesis, the curing reaction of bio-derived epoxy thermosets with inexpensive, low-toxicity precursors, including polyimines and amino acids was investigated. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO) were successfully crosslinked with both branched polyethyleneimine (PEI) and triethylenetetramine (fETA). Epoxidized castor oil (ECO) was crosslinked with polyethyleneimine (PEI), having different molecular weights. Curing conditions were optimized through solvent uptake and soluble fraction analysis. Finally, the mechanical properties of the optimized compositions of rigid bioepoxies were evaluated using dynamic mechanical rheological testing (DMRT). While not as stiff as conventional materials, optimized materials have sufficient room temperature moduli to show promise for coatings and as binders in engineered wood products.

  11. Laminated composite based on polyester geotextile fibers and polyurethane resin for coating wood structures

    Directory of Open Access Journals (Sweden)

    Yuri Andrey Olivato Assagra

    2013-01-01

    Full Text Available New environmental laws have restricted the use of hardwood trees in overhead power lines structures, such as, poles and cross-arms, leading companies to seek alternative materials. Reforested wood coated with polymeric resin has been proposed as an environmental friendly solution, with improved electrical properties and protection against external agents, e.g. moisture, ultraviolet radiation and fungi. However, the single thin layer of resin, normally applied on such structures reveal to be inefficient, due to be easily damage during handling. In this paper, we present a composite coating, based on geotextile fibers and polyurethane resin that is suitable for wooden structures. Results obtained from two different tree species (from managed and reforested areas coated with the composite reveal that the additional layer not only provided a stronger adhesion between wood and ccoating layer but also a further improvement in the electrical properties and better protection against abrasion and moisture.

  12. Color Stability of IDM Composite Resin

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2000-06-01

    Full Text Available Discoloration of composite resins is considered to be a major factor in esthetic restoration"nfailures. The aim of this study was to evaluate color stability of IDM composite (both light and self cure"nsamples namely IL and IS, and to compare it with a self-cure composite (Degufill named DS and a light"ncure ormocer composite (Definite, called DL in the Report. 60 disk shaped samples of each composite"nwere prepared, according to ISO-7491. The samples were divided into 3 groups and aged as follows:"nA- (Control 7 days in dark 37°c chamber"nB- Foil covered and kept in 100% humidity, and 37°c in xenotest chamber for 24 hours, then transferred"nto a dark 37°c chamber for 6 more days."nC- Kept in 37°c, 100% humidity under the emission of xiiion lamp of xenotest chamber for 24 hours,"nand then transferred to 37°c dark chamber for 6 more days"nThe lightness and chromaticity values of samples were measured both before and after aging using a"nspectrophotometer (Data Flash. The total color changes as well as changes in lightness and chromaticity"nvalues were measured in the CIE L * a * b * scale, and analyzed. Color change was recorded to be"nsignificant in all samples after aging. The maximum change belonged to IL, which was significantly"ndifferent from DL and DS. It seems, in order to have a durable esthetic restoration using IDM, more"nscientific and professional consideration is needed in the production process.

  13. Processing of continuous fiber composites using thermoplastic polyimide matrix resins

    Energy Technology Data Exchange (ETDEWEB)

    Kranjc, M.D.

    1993-01-01

    Composites have been produced which contain a solvent resistant polyimide matrix with favorable physical properties. The polyimide matrix resin has been designated as P12. The prepegs used to produce the composite contain a low molecular weight resin which is the polyamic acid precursor to P12. Polymerization and imidization of the precursor resin occurs in-situ during processing. Similar commercial systems are often processed in an autoclave and pressure is used at high temperatures to obtain consolidation between prepreg laminates. Pressure is generally applied after polymerization and imidization are complete and at temperatures above the melting point of the polymer. In this research a significant decrease in composite void content was obtained by applying pressure earlier in the cure. Obtaining composites with low void content with these types of systems can be difficult. This is due in part to the generation of low molecular weight reaction by products, water and methanol. High void content results in a decrease in the physical properties of the composite structure. This is especially true for fracture properties. An empirical equation was used to describe the rate of resin removal from the composite to the bleeder cloth during processing. This equation is based on Springer-Loos resin flow model. The conditions in which this model does not apply were also determined. Determining resin removal rates is helpful in producing composites with consistent fiber/resin ratios. In addition, conditions which favor void growth can be prevented.

  14. Clinical evaluation of a flowable resin composite and flowable compomer for preventive resin restorations.

    Science.gov (United States)

    Qin, Man; Liu, HongSheng

    2005-01-01

    This clinical study evaluated the retention and caries protection of a flowable resin composite (Flow Line) and a flowable compomer (Dyract Flow) used in preventive resin restorations as compared to the conventional preventive resin technique which uses a resin composite (Brilliant) and a sealant (Concise). This study observed 205 permanent molars with small carious cavities less than 1.5 mm in width, which were obtained from 165 children aged 7 to 15 years. Flowable resin composite was used to treat 75 teeth, and 71 teeth were treated with flowable compomer in both cavities and caries-free fissures. For the control group, 59 teeth were treated with resin composite in cavities and sealant in caries-free fissures. The teeth were evaluated at 3, 6, 12, 18 and 24-month intervals. After three months, all 205 treated teeth were completely intact. After six months, 66 of the 71 teeth treated with flowable resin composite and 65 of the 70 teeth treated with flowable compomer were complete, compared to 57 of the 58 teeth treated with the conventional preventive resin technique. After 12 months, 60 of the 67 teeth treated with flowable resin composite and 61 of the 67 teeth treated with flowable compomer were complete, compared to 51 of the 55 teeth treated with the conventional preventive resin technique. After 18 months, 53 of the 61 teeth treated with flowable resin composite and 54 of the 62 teeth treated with flowable compomer were complete, compared to 47 of the 53 teeth treated with the conventional preventive resin technique. After 24 months, 49 of the 58 teeth treated with flowable resin composite and 45 of the 57 teeth treated with flowable compomer were complete, compared to 42 of the 52 teeth treated with the conventional preventive resin technique. There were no statistically significant differences in retention rates among all groups after 3, 6, 12, 18 or 24-months (p>0.05). One tooth treated with flowable resin composite and one tooth treated with flowable

  15. Effects of different cavity disinfectants on shear bond strength of a silorane-based resin composite.

    Science.gov (United States)

    Arslan, Soley; Yazici, A Ruya; Gorucu, Jale; Ertan, Atilla; Pala, Kansad; Ustun, Yakup; Antonson, Sibel A; Antonson, Donald E

    2011-07-01

    This in vitro study evaluated the effect of different cavity disinfection agents on bond strength of a silorane-based resin composite. Thirty-six caries-free human third mandibular molars sectioned in mesio-distal direction were mounted in acrylic resin with their flat dentin surfaces exposed. After the dentin surfaces were wet ground with # 600 silicon carbide paper, the teeth were randomly divided into 6 groups of 12 each according to the cavity disinfection agents; chlorhexidine (CHX); sodium hypochlorite (NaOCl), propolis, ozone, Er,Cr:YSGG laser and no treatment (control). After treatment of dentin surfaces with one of these cavity disinfection agents, Filtek Silorane adhesive system was applied. The silorane-based resin composite, Filtek Silorane was condensed into a mold and polymerized. After storage at 37°C for 24 hours, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. The results were analyzed by one-way ANOVA. No statistically significant difference was observed between the groups (p>0.05). The use of the tested cavity disinfection agents, chlorhexidine, sodium hypochlorite, propolis, ozone and Er,Cr:YSGG laser did not significantly affect the dentin bond strength of a silorane-based resin composite, filtek supreme. Cavity disinfectant applications did not affect the dentin bond strength of a silorane-based resin composite.

  16. Field-emission scanning electron microscopy of resin-dentin interface morphology of seven dentin adhesive systems.

    Science.gov (United States)

    Tanumiharja, M; Burrow, M F; Tyas, M J; Carpenter, J

    2000-01-01

    The purpose of this study was to evaluate the resin-dentin interface morphology of 7 resin-based dentin adhesive systems (Solid Bond, EBS-Multi, PermaQuik, One Coat Bond, Gluma One Bond, Prime & Bond NT/NRC, and Clearfil Liner Bond 2V). Fourteen dentin disks 1.0 mm thick were obtained from superficial occlusal dentin of extracted human third molars, and finished with wet 600-grit silicon carbide paper. Two dentin disks were bonded using each of the adhesives above according to the manufacturers' instructions, and a thin layer of flowable resin composite was applied. The specimens were kept in tap water for 24 h at 37 degrees C, and then assigned to one of two observational techniques: a fracture technique and an acid-base technique. Fracture technique: shallow grooves were cut, fixed in 10% buffered formalin, and dehydrated in an ascending ethanol series up to 100%, critical-point dried, and fractured along the prepared grooves. Acid-base technique: the specimens were embedded in epoxy resin, sectioned through the center, polished with diamond paste down to 0.25-micron particle size, and treated with 10% orthophosphoric acid for 10 s and 5% sodium hypochlorite for 5 min. All the specimens were mounted on aluminum stubs, gold sputter coated, and observed using field-emission scanning electron microscopy (FE-SEM). All the dentin adhesive systems showed hybrid layer formation, but the thickness varied depending on the bonding system used. The self-etching priming systems (Prime & Bond NT/NRC and Clearfil Liner Bond 2V) showed the thinnest hybrid layer at 1 to 2 microns, whereas the "single-bottle" system (Gluma One Bond) exhibited the thickest hybrid layer at 8 to 16 microns. The ultramorphological structures of dentin bonding systems are determined by the composition of each system. Characterization of the interface of the adhesive system using the fracture technique provides additional information regarding the pattern of resin infiltration in some dentin bonding

  17. Relationship between Color and Translucency of Multishaded Dental Composite Resins.

    OpenAIRE

    Naeimi Akbar, H.; Moharamzadeh, K.; Wood, D. J.; van Noort, R

    2012-01-01

    The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N = 3) and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel ...

  18. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  19. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  20. Properties of Graphene Oxide/Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jijun Tang

    2014-01-01

    Full Text Available The graphene oxide (GO was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  1. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites.

    Science.gov (United States)

    Sideridou, Irini D; Achilias, Dimitris S; Karabela, Maria M

    2007-04-01

    In the present investigation the sorption-desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion-relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported

  2. Composite resin: a versatile, multi-purpose restorative material.

    Science.gov (United States)

    Margeas, Robert

    2012-01-01

    Introduced more than some 50 years ago, composite resin technology has simplified the manner in which clinicians practice restorative dentistry, offering greater predictability and improved physical properties. Decades of material science and laboratory development along with clinical trials in human subjects have culminated in composite resin being validated as a reliable, multifunctional restorative material. With a wide range of composite resins available today, clinicians can benefit from knowing the infrastructure of a given material in order to determine which type will work best in a particular clinical situation.

  3. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reducing marginal leakage of posterior composite resin restorations: a review of clinical techniques.

    Science.gov (United States)

    Cheung, G S

    1990-03-01

    It has been well established that composite resin restorations have leakage at the margins. The polymerization shrinkage of the material and its inadequate adhesion to the cavity walls are the primary causes. Unlike silver amalgam restorations, which are self-sealing with age, the gap at the composite-to-tooth interface tends to persist and invite postoperative sensitivity, adverse pulp reactions, and the development of recurrent caries. Many techniques or materials have been advocated to improve the clinical adaptation of this material and to reduce marginal leakage. They limit the effect of polymerization shrinkage and/or enhance the bonding of the composite material to the tooth structure. This article reviews the clinical techniques and materials that have been suggested and are presently available to improve the marginal quality of composite resins, with special reference to posterior restorations.

  5. Characterization and Process Development of Cyanate Ester Resin and Composite

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  6. The direct posterior esthetic restoration using state-of-the-art composite resin technology.

    Science.gov (United States)

    Pescatore, C

    2000-01-01

    As a result of the evolution of both materials and techniques, the direct posterior composite restoration has become a common procedure in today's dental practice. Advances in the adhesive protocol have allowed for the conservative preparation of the dentition by using the micromechanical potential of the sound tooth structure. Improvements of composite resin materials have further enabled the practitioner to re-create the natural esthetic beauty of the dentition while at the same time restoring the functional morphology. This article describes the technical protocol and materials necessary to perform the direct posterior composite restoration in the posterior dentition.

  7. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek Supre

  8. Effect of resin infiltration on enamel surface properties and Streptococcus mutans adhesion to artificial enamel lesions.

    Science.gov (United States)

    Arslan, Soley; Zorba, Yahya Orcun; Atalay, Mustafa Altay; Özcan, Suat; Demirbuga, Sezer; Pala, Kansad; Percin, Duygu; Ozer, Fusun

    2015-01-01

    The aim of this study was to evaluate and compare the effects of resin infiltration and sealant type on enamel surface properties and Streptococcus mutans adhesion to artificial enamel lesions. Artificial enamel lesions were produced on the surfaces of 120 enamel specimens, which were divided into two groups: Group A and Group B (n=60 per group). Each group was further divided into four subgroups (n=15 per subgroup) according to sealant type: Group I-Demineralized enamel (control); Group II-Enamel Pro Varnish; Group III-ExciTE F; and Group IV-Icon. In Group A, hardness and surface roughness were evaluated; in Group B, bacterial adhesion was evaluated. Icon application resulted in significantly lower surface roughness and higher hardness than the other subgroups in Group A. In Group B, Enamel Pro Varnish resulted in lowest bacterial adhesion, followed by Icon. This study showed that resin infiltration of enamel lesions could arrest lesion progress.

  9. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment; Avaliacao in vitro da microinfiltracao marginal em restauracoes de classe V com resina composta em dentes bovinos. Influencia da irradiacao laser e sistema adesivo no pre-tratamento dentinario

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Wendell Lima de

    2003-07-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm{sup 2}, Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm{sup 2}) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than

  10. Effect of the cross-linking silane concentration in a novel silane system on bonding resin-composite cement

    NARCIS (Netherlands)

    Matinlinna, Jukka; Ozcan, Mutlu; Lassila, Lippo; Kalk, Warner; Vallittu, Pekka

    2008-01-01

    Objective. Four experimental blends of an organo-functional silane monomer with a non-functional cross-linking silane monomer (a novel silane system) were evaluated as adhesion promoters in an experiment in which a resin-composite cement was bonded to silica-coated titanium. Material and Methods. 3-

  11. Relationship between Color and Translucency of Multishaded Dental Composite Resins

    Directory of Open Access Journals (Sweden)

    Homan Naeimi Akbar

    2012-01-01

    Full Text Available The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N=3 and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel shades had the highest translucency. There was a significant decrease in translucency from A2 to C2 of regular body shades and also from A4 to C4 of opaque dentine shades of Esthet.X composite resin. Grey enamel shade had a significantly higher diffuse translucency compared to clear and yellow enamel shades. There was a significant decrease in translucency from A2B to D2B and also in diffuse translucency from A4D to C6D shades of Filtek Supreme composite resin. It can be concluded that the color of the composite resins tested in this study had a significant effect on their translucency. Information on the translucency of different shades of composite resins can be very useful for the clinicians in achieving optimal esthetic restorative outcome.

  12. Cytotoxicity evaluation of methacrylate- and silorane-based composite resins

    Directory of Open Access Journals (Sweden)

    Gulsah Goktolga Akin

    2012-10-01

    Full Text Available

    Objectives: The objective of this study was to investigate and compare the cytotoxic effects of four composite resin materials with different content.

    Material and Methods: Two traditional methacrylate-based (Clearfil AP-X, RefleXions, as well as a self-adhering methacrylate-based (Vertise Flow and a silorane-based (Filtek Silorane composite resin were tested in the experiment. Ten cylindrical specimens were made of each material, using a mould (2mm. thick and 8 mm. in diameter. An agar diffusion method was employed, and cytotoxicity rankings were determined using lysis index scores. For statistical analysis, Kruskal-Wallis and Mann-Whitney U-tests were used.

    Results: Amongst the composite resins, the silorane-based composite was found to be less cytotoxic than the methacrylate-based composite resins, which all had the same cytotoxicity ranking.

    Conclusions: The silorane-based composite resin was considered more biocompatible than the methacrylate-based composite resins.

  13. Fracture strength of root filled premolar teeth restored with silorane and methacrylate-based resin composite.

    Science.gov (United States)

    Taha, N A; Maghaireh, G A; Bagheri, R; Abu Holy, A

    2015-06-01

    To compare fracture characteristics of root-filled teeth with variable cavity design restored with a low shrinkage silorane and methacrylate-based resin composite. 77 extracted maxillary premolars were divided randomly into seven groups: (Group 1) intact teeth; (Groups 2-4) MOD plus endodontic access with the buccopalatal width of the occlusal isthmus equals one third of the intercuspal width; (Groups 5-7) MOD plus endodontic access with the buccopalatal width of the occlusal isthmus equals one half of the intercuspal width. Groups 2 and 5 were left unrestored, Groups 3 and 6 were restored with a silorane-based resin composite (Filtek P90) and Groups 4 and 7 with a methacrylate-based resin composite (Z250). Teeth were loaded in a universal testing machine; load and fracture patterns were recorded and compared statistically using 2-way ANOVA and t-test for pairwise comparisons and 1-way ANOVA with Dunnett test for multiple comparisons. Unrestored teeth became progressively weaker with more extensive preparations, Group 5 (unfilled ½) showed the lowest fracture load among the groups (71±22N, Presin composite have no superior strengthening effect over the conventional methacrylate-based resin composite in restoration of root filled teeth. Both materials showed similar fracture patterns. Root filled teeth are considerably weakened via restorative and endodontic procedures. A direct adhesive restoration will aid in preserving tooth structure as far as it provides enough strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  15. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  16. Bonded composite resin crowns for primary incisors: technique update.

    Science.gov (United States)

    Croll, T P

    1990-02-01

    A technique for restoration of carious primary maxillary incisors with a hybrid visible light-curing composite resin and a dentinal bonding agent is described. Careful use of this technique and the new materials can provide a restoration that is esthetic and resistant to fracture and displacement. The technique requires careful preparation of the operative field and precise handling of the restorative materials. The method is illustrated by the placement of bonded composite resin crowns in a 3-year-old boy.

  17. Effect of finishing and polishing procedures on biofilm adhesion to composite surfaces: An ex vivo study

    Directory of Open Access Journals (Sweden)

    Nishant Vyavahare

    2014-01-01

    Full Text Available Introduction: Surface roughness allows plaque accumulation resulting in gingival inflammation, superficial staining and secondary caries. Proper surface finishing and polishing are critical clinical procedures which enhance esthetics and longevity of restorations. This study evaluated adhesion of Streptococcus mutans biofilm on the surface of composite resin discs (nanofilled, Filtek Z350, 3M ESPE, Salt Lake City, UT, USA after finishing and polishing by different techniques. Methodology: Sixty samples of nanofilled composite resin were prepared in a circular shaped disc- 6 mm × 2 mm and divided randomly in three groups (n = 20 for surface treatments. Control group: composite resin surface in contact with Mylar matrix strips with no finishing or polishing performed, Sof-Lex aluminum oxide disc technique and 30-blade tungsten carbide burs and silicon carbide brushes, Astrobrush. The samples were subjected to biofilm adhesion by inoculation in suitable media. The response variable was the mean CFU/mL present in the Streptococcus mutans biofilms formed on the composite resin surface. Data was statistically analyzed by three-way analysis of variance (ANOVA. Results: The Mean adhesion found in Mylar matrix strip group at 10 dilution was 74.7 ± 3.5, in Sof-Lex group was 147.3 ± 7.0 and in Astrobrush group was 149.4 ± 8.1. This difference in the mean values between the groups was found to be statistically significant (p < 0.01. Conclusion: Mylar matrix strips promoted the least bacterial adhesion, polishing with Sof-Lex aluminium oxide discs provided a smoother surface than Astrobrush and hence less bacterial adhesion than Astrobrush system.

  18. The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test

    DEFF Research Database (Denmark)

    Minty, Ross; Thomason, James L.; Petersen, Helga Nørgaard

    2015-01-01

    This paper focuses on an investigation into the role of the epoxy resin: curing agent ratio in composite interfacial shear strength of glass fibre composites. The procedure involved changing the percentage of curing agent (Triethylenetetramine [TETA]) used in the mixture with several different...... percentages used, ranging from 4% up to 30%, including the stoichiometric ratio. It was found by using the microbond test, that there may exist a relationship between the epoxy resin to curing agent ratio and the level of adhesion between the reinforcing fibre and the polymer matrix of the composite....

  19. [Influence Factors on Monomer Conversion of Dental Composite Resin].

    Science.gov (United States)

    Wang, Shuang; Gao, Yan; Wang, Jing; Zhang, Yan; Zhang, Yuntao; Wang, Fanghui; Wang, Qingshan

    2015-04-01

    Dental composite resin is a kind of material which has been widely used in dental restoration. Research has found that the influence of residual monomer on the material mechanical, chemical and biological properties cannot be ignored. This paper elaborates these harms of residual monomers. The effects of resin matrix, inorganic filler and initiating system, illumination, secondarily treatment on the degree of conversion were also analyzed. The paper also discusses the effective measures to increase the conversion, and offers theoretical basis for the clinical application and development of composite resin.

  20. Work of adhesion of resin on treated lithia disilicate-based ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Shen, Chiayi; Anusavice, Kenneth J

    2004-05-01

    This study is to test the hypothesis that chemical etching and silane coating of a ceramic surface will influence the work of adhesion (WA) of adhesive resin to dental ceramic. A hot-pressed lithia disilicate-based ceramic was used as a model material to investigate the influence of probing media and surface treatments on WA using a dynamic contact angle analyzer. Eighty ceramic specimens were randomly divided into eight experimental groups and treated as follows: (1 and 3) as polished; (2 and 4) etched with 9.5% hydrofluoric acid (HF) for 1 min; (5) etched with 4% acidulated phosphate fluoride (APF) for 2 min; (6) silane coated; (7) etched with HF for 1 min and silane coated; (8) etched with APF for 2 min and silane coated. Advancing and receding contact angles (theta(a) and theta(r)) were measured using high purity water (gamma = 72.6 mN/m) for groups 1 and 2, and a liquid resin (gamma = 39.7) for groups 3-8 as probing liquids. The liquid resin medium yielded a lower WA than water. Silanization produced a significantly lower WA (p < 0.001) than non-silanated surfaces. Etching alone consistently yielded a greater WA for all surface treatments (p < 0.001). The silanated ceramic surface exhibited a lower surface energy and did not enhance bonding to the liquid resin by work of adhesion.

  1. The influence of lining techniques on the marginal seal of Class II composite resin restorations.

    Science.gov (United States)

    Blixt, M; Coli, P

    1993-03-01

    Various sealing techniques using a light-curing dental adhesive (Scotchbond 2) and bulk application of a light-curing resin-bonded ceramic were examined in 203 Class II cavities. Different pretreatment procedures and lining materials were used, and in one series resin impregnation of the contraction gap was included. The presence of gaps or leakage was disclosed either by a dye or a fluorescent resin penetration technique. In many restorations, Scotchbond 2 and a light-curing glass-ionomer lining did not prevent gap formation at the cervical wall. The gap usually occurred between the liner and the dentin, with dye penetration into the dentin. Three liners, one containing polytrifluorethylene sodium fluoride and calcium fluoride, one containing polyamide resin, and one containing calcium hydroxide, did not prevent dye penetration to the dentin at all; good dentinal protection was frequently observed, however, in cavities treated with a hydrophilic shellac film prior to placement of a polystyrene liner. The best results were observed when dentinal treatment with this lining system was followed by resin impregnation of the contraction gap after the composite resin had set.

  2. [Effects of composite resin materials on gingiva and pulp].

    Science.gov (United States)

    Yamaguchi, S; Ishikawa, I; Masunaga, H; Matsue, M; Matsue, I

    1989-09-01

    Composite resin materials are now widely used for dental therapy. The purpose of this study was to clarify the effect of composite resins on gingiva and pulp in case of application of them for temporally splint in periodontal treatment. 60 teeth in 6 female dogs ranging between 1 and 2 years of age with healty teeth and gingiva were divieded to 4 groups; (1) 12 teeth, controls; (2) 12 teeth, self-cured composite resin (Clearfil F II, CF II); (3) 18 teeth, light-cured resin (Belfel LX, BLX), curing time 20 sec. and (4) 18 teeth, BLX, 40 sec., and then 48 class V composite resins were restored supragingivally. The experimental procedure were carried out for 5 days and 30 days. Histopathological observations of 60 teeth inclusive of controls were made by applying to specimens with Hematoxylin eosin staining. For the materials and time periods in this study it was found that; 1. Light-cured composite resin was superior to self-cured composite resin on handlings. 2. There were no significant differences in periodontium between the experimentals (BLX, CF II) and controls in 5 days. At the 30 days the histologic score showed more gingivitis for the experimental teeth than for the controls (BLX-40 greater than BLX-20 greater than CF II greater than Cont.). 3. At 5 days hyperemia occurred in some cases of experimentals (both BLX and CF II). The appearance of predentin and changes of odontblastic layer were observed slightly in 30 days. But there were no significant differences between BLX and CF II. 4. The result suggested that applying to composite resin materials for temporally splint, both gingiva and pulp have to be protected.

  3. Direct composite resin layering techniques for creating lifelike CAD/CAM-fabricated composite resin veneers and crowns.

    Science.gov (United States)

    LeSage, Brian

    2014-07-01

    Direct composite resin layering techniques preserve sound tooth structure and improve function and esthetics. However, intraoral placement techniques present challenges involving isolation, contamination, individual patient characteristics, and the predictability of restorative outcomes. Computer-aided design and computer-aided manufacturing (CAD/CAM) restorations enable dentists to better handle these variables and provide durable restorations in an efficient and timely manner; however, milled restorations may appear monochromatic and lack proper esthetic characteristics. For these reasons, an uncomplicated composite resin layering restoration technique can be used to combine the benefits of minimally invasive direct restorations and the ease and precision of indirect CAD/CAM restorations. Because most dentists are familiar with and skilled at composite resin layering, the use of such a technique can provide predictable and highly esthetic results. This article describes the layered composite resin restoration technique.

  4. Fiber/matrix adhesion in graphite/PEKK composites

    Science.gov (United States)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Experiments with poly ether ketone ketone (PEKK) resin and AS-4, IM-7, and G30-500 fibers showed excellent correlation between resin/fiber contact angle and composite transverse flexural strength as measures of resin/fiber interfacial strength. Both tests indicate the strongest interface for G30-500/PEKK followed by IM-7/PEKK and AS-4/PEKK. Also discussed are fiber effects on interlaminar fracture and on the in situ crystallization of the matrix during composite fabrication.

  5. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  6. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN, U

  7. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application.

    Science.gov (United States)

    Ai, Miao; Du, Zhiyun; Zhu, Siqi; Geng, Hongjuan; Zhang, Xu; Cai, Qing; Yang, Xiaoping

    2017-01-01

    The object is to find a functional one-dimensional nanofibrous filler for composite resin, which is able to provide both efficient reinforcement and high antibacterial activity. Hydroxyapatite (HA) nanowires were synthesized via hydrothermal technique using calcium oleate as the precursor. Polydopamine (PDA)-coated HA (HA-PDA) nanowires were prepared by soaking HA nanowires in dopamine (DA) aqueous solution. Silver nanoparticles (AgNPs)-laden HA (HA-PDA-Ag) nanowires were prepared via reduction reaction by adding silver nitrate and glucose into HA-PDA suspensions in DI water. The resulted HA-PDA-Ag nanowires were then mixed into Bis-GMA/TEGDMA (50/50, w/w) at 4-10wt.%, thermal-cured, and submitted to characterizations including mechanical properties, interfacial adhesion between filler and resin matrix, distribution of HA nanowires and AgNPs, as well as silver ion release, cytotoxicity and antibacterial activity. HA-PDA-Ag nanowires were readily obtained and the loading amounts of AgNPs could be controlled by adjusting the feeding doses of silver nitrate and HA-PDA nanowires. Benefiting from the PDA surface layer, HA-PDA-Ag nanowires could disperse well in composite resin and form good interfacial adhesion with the resin matrix. In comparison with neat resin, significant increases in flexural strength and modulus of cured composites were achieved at the addition amounts of HA-PDA-Ag nanowires being 6-8wt.%. The distribution of AgNPs was homogeneous throughout the resin matrix in all designs, which endowed the composites with high antibacterial activity against streptococcus mutans. Continuous silver ion release from composites was detected, however, it was determined the composites would have insignificant cytotoxicity based on the proliferation of L929 fibroblasts in extracts of HA-PDA-Ag nanowires. The finding proved that HA-PDA-Ag nanowires could serve as functional nanofillers for composite resins, which should help much in developing materials for satisfactory

  8. YbF3/SiO2 Fillers as Radiopacifiers in a Dental Adhesive Resin

    Institute of Scientific and Technical Information of China (English)

    Neftali L V Carreno; Thiago C S Oliveira; Evandro Piva; Fernanda B Leal; Giana S Lima; Marcelo D Moncks; Cristiane W Raubach; Fabrcio A Ogliari

    2012-01-01

    The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF3/SiO2 fillers for use as radiopacifiers. Particles of YbF3/SiO2 were obtained with the high-energy mechanical milling method and characterized by both physical and chemical methods. After characterization, the particles were sieved and silanized prior to being incorporated into an adhesive resin. The stability of the particle suspension was then evaluated. After light activation, the radiopacity, degree of conversion, flexural strength and elastic modulus were determined. The dental adhesive resins with 10 and 15 wt%of filler provided satisfactory radiopacity, while flexural strength and elastic modulus were not affected. The degree of conver-sion was statistically lower than that of the control (p<0.05). The method used for incorporating the tested ytterbium fluoride/silicon dioxide particles at concentrations of 10 and 15 wt%was shown to be feasible for the development of a radiopaque dental adhesive system.

  9. Microtensile bond strength of repaired indirect resin composite.

    Science.gov (United States)

    Visuttiwattanakorn, Porntida; Suputtamongkol, Kallaya; Angkoonsit, Duangjai; Kaewthong, Sunattha; Charoonanan, Piyanan

    2017-02-01

    The objective of this study was to investigate the effect of surface treatments on microtensile bond strengths (MTBSs) of two types of indirect resin composites bonded to a conventional direct resin composite. Indirect resin composite blocks of Ceramage and SR Nexco were prepared in a plastic mold having a dimension of 10 × 10 × 4 mm. These composite blocks were divided into three groups according to their surface treatments: Group1: Sandblast (SB); Group2: Sandblast and ultrasonically clean (SB+UL); Group3: Sandblast plus silane (SB+SI). After bonding with direct resin composite, indirect-direct resin composite blocks were kept in distilled water for 24 hours at 37℃ and cut into microbars with the dimension of 1 × 1 × 8 mm. Microbar specimens (n = 40 per group) were loaded using a universal testing machine. Failure modes and compositions were evaluated by SEM. The statistical analyses of MTBS were performed by two-way ANOVA and Dunnett's test at α = .05. Surface treatments and brands had effects on the MTBS without an interaction between these two factors. For SR Nexco, the MTBSs of SB and SB+SI group were significantly higher than that of SB+UL. For Ceramage, the MTBSs of SB and SB+SI were significantly higher than that of SB+UL. The mean MTBS of the Ceramage specimens was significantly higher than that of SR Nexco for all surface treatments. Sandblasting with or without silane application could improve the bond strengths of repaired indirect resin composites to a conventional direct resin composite.

  10. Microtensile bond strength of repaired indirect resin composite

    Science.gov (United States)

    Suputtamongkol, Kallaya; Angkoonsit, Duangjai; Kaewthong, Sunattha; Charoonanan, Piyanan

    2017-01-01

    PURPOSE The objective of this study was to investigate the effect of surface treatments on microtensile bond strengths (MTBSs) of two types of indirect resin composites bonded to a conventional direct resin composite. MATERIALS AND METHODS Indirect resin composite blocks of Ceramage and SR Nexco were prepared in a plastic mold having a dimension of 10 × 10 × 4 mm. These composite blocks were divided into three groups according to their surface treatments: Group1: Sandblast (SB); Group2: Sandblast and ultrasonically clean (SB+UL); Group3: Sandblast plus silane (SB+SI). After bonding with direct resin composite, indirect-direct resin composite blocks were kept in distilled water for 24 hours at 37℃ and cut into microbars with the dimension of 1 × 1 × 8 mm. Microbar specimens (n = 40 per group) were loaded using a universal testing machine. Failure modes and compositions were evaluated by SEM. The statistical analyses of MTBS were performed by two-way ANOVA and Dunnett's test at α = .05. RESULTS Surface treatments and brands had effects on the MTBS without an interaction between these two factors. For SR Nexco, the MTBSs of SB and SB+SI group were significantly higher than that of SB+UL. For Ceramage, the MTBSs of SB and SB+SI were significantly higher than that of SB+UL. The mean MTBS of the Ceramage specimens was significantly higher than that of SR Nexco for all surface treatments. CONCLUSION Sandblasting with or without silane application could improve the bond strengths of repaired indirect resin composites to a conventional direct resin composite. PMID:28243390

  11. A temporary space maintainer using acrylic resin teeth and a composite resin.

    Science.gov (United States)

    Kochavi, D; Stern, N; Grajower, R

    1977-05-01

    A one-session technique for preparing a temporary space maintainer has been described. The technique consists of attaching an acrylic resin pontic to etched surfaces of natural adjacent teeth by means of a composite resin. The main advantages of this technique are elimination of premature tooth preparation, good esthetics, fair strength, low cost, and rapid completion of the restoration without the need of a dental laboratory.

  12. Thermal expansion characteristics of light-cured dental resins and resin composites.

    Science.gov (United States)

    Sideridou, Irini; Achilias, Dimitris S; Kyrikou, Eleni

    2004-07-01

    The thermal expansion characteristics of dental resins prepared by light-curing of Bis-GMA, TEGDMA, UDMA, Bis-EMA(4) or PCDMA dimethacrylate monomers and of commercial light-cured resin composites (Z-100 MP, Filtek Z-250, Sculpt-It and Alert), the organic matrix resin of which is based on different combinations of the above monomers, were studied by thermomechanical analysis (TMA). This study showed the existence of a glass transition temperature at around 35-47 degrees C for the resins and 40-45 degrees C for the composites; then the coefficient of linear thermal expansion (CLTE) was calculated at the temperature intervals 0-60 degrees C, 0-T(g) and T(g)-60 degrees C. The CLTE values of Bis-GMA, TEGDMA and UDMA resins are similar and lower than those of Bis-EMA (4) and PCDMA resins. The CLTE values of the composites indicated that the major factor that affects the CLTE of a composite is the filler content, but it also seems to be affected by the chemical structure of the matrix resin. TMA on water-saturated samples showed that water desorption takes place during the measurement and that the residual water acts as a plasticizer decreasing the T(g) and increasing the CLTE values. Furthermore, TMA on post-heated samples for 1, 3 or 6h showed, only for the resins, an initial decrease of CLTE and increase of the T(g) after 1h that was not significantly changed after 6h of heating.

  13. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHAILan-lan; LINGGuo-ping

    2004-01-01

    The influence of nano-A1203 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  14. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHAI Lan-lan; LING Guo-ping

    2004-01-01

    The influence of nano-Al2O3 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  15. Shear bond strengths of self-adhesive luting resins fixing dentine to different restorative materials.

    Science.gov (United States)

    Zhang, Congxiao; Degrange, Michel

    2010-01-01

    The purpose of this study was to assess the bond strengths of three self-adhesive resin cements (Rely X Unicem, Maxcem and Multilink Sprint) fixing dentine to four different restorative substrates (Ni-Cr alloy, E-Max glass-ceramic, Y-TZP Zirconia and Adoro micro-filled composite) and to compare their performances with those of two conventional dual-cured luting cements (Variolink II + Total-etch Excite DSC and Multilink Automix + Self-etching Primer A + B). Cylindric specimens (5 x 5 mm) were prepared with the four restorative materials for bonding to human dentine. Three surface treatments were performed depending on the restorative material: (i) Al2O3 50 microm sandblasting (Ni-Cr, Adoro), (ii) #800 SiC polishing (Zirconia, E-Max), (iii) hydrofluoric acid (HF)-etching (E-Max). Twenty-five groups (n = 10) were designed according to luting cements, restorative materials and surface pre-treatments. In some experimental groups, Variolink II and Multilink Automix were coupled with, respectively, a silane primer (Monobond S) and an alloy/zirconia primer (Multilink A/Z primer). Specimens were stored in distilled water at 37 degrees C for 24 h and then loaded in shear until failure. Variolink II and Multilink Automix showed the highest bond strengths, regardless of the restorative substrate, when used with dentine bonding systems and primers, while the weakest bonds were with Maxcem. The bond strength recorded with the two other self-adhesive cements depended on the nature of the restorative substrate. Increasing retention at the interfaces (i.e., HF ceramic etching) and using specific primers significantly improves the bond strength of luted restorative materials to dentine.

  16. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer.

    Science.gov (United States)

    Boroujeni, Parvin M; Mousavinasab, Sayyed M; Hasanli, Elham

    2015-05-01

    Polymerization shrinkage is one of the important factors in creation of gap between dental structure and composite resin restorations. The aim of this study was to evaluate the effect of configuration factor (C-factor) on gap formation in a hybrid composite resin, a low shrinkage composite resin and a resin modified glass ionomer restorative material. Cylindrical dentin cavities with 5.0 mm diameter and three different depths (1.0, 2.0 and 3.0 mm) were prepared on the occlusal surface of 99 human molars and the cavities assigned into three groups (each of 33). Each group contained three subgroups depend on the different depths and then cavities restored using resin modified glass ionomer (Fuji II LC Improved) and two type composite resins (Filtek P90 and Filtek Z250). Then the restorations were cut into two sections in a mesiodistal direction in the middle of restorations. Gaps were measured on mesial, distal and pulpal floor of the cavities, using a stereomicroscope. Data analyses using Kruskal-Wallist and Mann-Whitney tests. Increasing C-factor from 1.8 to 3.4 had no effect on the gap formation in two type composite resins, but Fuji II LC Improved showed significant effect of increasing C-factor on gap formation. Taken together, when C-factor increased from 1.8 up to 3.4 had no significant effect on gap formation in two tested resin composites. Although, Filtek P90 restorations showed smaller gap formation in cavities walls compared to Filtek Z250 restorations. High C-factor values generated the largest gap formation. Silorane-based composite was more efficient for cavity sealing than methacrylate-based composites and resin modified glass ionomer. © 2014 Wiley Publishing Asia Pty Ltd.

  17. Timing for composite resin placement on mineral trioxide aggregate.

    Science.gov (United States)

    Tsujimoto, Masaki; Tsujimoto, Yasuhisa; Ookubo, Atsushi; Shiraishi, Takanobu; Watanabe, Ikuya; Yamada, Shizuka; Hayashi, Yoshihiko

    2013-09-01

    The aim of this study was to investigate the proper time to restore composite resin over mineral trioxide aggregate (MTA). Thirty-five samples of MTA blocks were divided into 7 groups with 3 different times (10 minutes, 1 day, and 7 days) selected for restoring the composite resin over MTA with and without bonding resin, and a control group was included for comparison. After 21 days, the distances between MTA and the composite resin or between MTA and the bonding agent on sectioned planes along the long axis were measured using a scanning electron microscope (×2,000 magnification). The hardness of the MTA near the composite resin was presented as the Vickers microhardness. There were no gaps at the interface in the 10-minute groups, the 1-day group with a bonding agent, and the 7-day group with a bonding agent. The groups without a bonding agent at 1 and 7 days presented a separation or gap at the interface. The value of the Vickers microhardness in the 1-day groups was significantly decreased compared with those of the other groups regardless of the presence or absence of a bonding agent. These findings suggest that composite resin with a bonding agent over MTA can be restored almost immediately after MTA mixing during a single visit. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Effect of different concentrations of specific inhibitor of matrix metalloproteinases on the shear bond strength of self-adhesive resin cements to dentin

    Science.gov (United States)

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Abed-Kahnamoui, Mehdi; Hamishehkar, Hamed; Gharouni, Mahya

    2017-01-01

    Background Considering the probability of chemical and enzymatic reactions between matrix metalloproteinases (MMPs) in the dentin structure and their specific inhibitors, the aim of the present study was to evaluate the effect of different concentrations of specific inhibitor of MMPs (galardin) on the shear bond strength of self-adhesive resin cements to dentin. Material and Methods Forty-eight sound human premolars were mounted in self-cured acrylic resin after removal of the enamel on the buccal and lingual surfaces. The dentin surfaces achieved were polished and prepared with 600-grit silicon carbide paper. The samples were divided into 3 groups (n=16) based on the concentration of galardin used (with no galardin, galardin at a high concentration and galardin at a low concentration). In addition, 96 composite resin blocks, measuring 3 mm in height and diameter, were prepared. The composite resin blocks were bonded to the buccal and lingual surface dentin with Rely-X Unicem (RXC) and Speed CEM (SPC) self-adhesive resin cements, respectively, according to manufacturers’ instructions. After 24 hours of storage in distilled water at 37°C, the shear bond strength values were determined in MPa and fracture modes were evaluated under a stereomicroscope. Data were analyzed with two-way ANOVA and post-hoc Bonferroni test (α=0.05). Results The shear bond strength of galardin at high concentration was significantly higher than that in the control group and galardin at a low concentrations (PDental Bonding.

  19. Composite resin bond strength to caries-affected dentin contaminated with 3 different hemostatic agents.

    Science.gov (United States)

    Khoroushi, Maryam; Hosseini-Shirazi, Moeen; Farahbod, Foroozan; Keshani, Fatemeh

    2016-01-01

    Bonding of composite resins to sound and caries-affected dentin in cervical areas may necessitate the use of hemostatic agents to control sulcular fluid and hemorrhage. The aim of this in vitro study was to evaluate the bond strengths of a self-etching adhesive system to sound and caries-affected dentin after the use of 3 different hemostatic agents. Composite resin cylinders were bonded to 48 caries-affected and 48 sound dentin surfaces in 8 groups. Groups 1-4 utilized caries-affected dentin: group 1, uncontaminated control; 2, ViscoStat; 3, ViscoStat Clear; and 4, trichloroacetic acid (TCA). Groups 5-8 utilized sound dentin: group 5, uncontaminated control; 6, ViscoStat; 7, ViscoStat Clear; and 8, TCA. The hemostatic agents were applied for 2 minutes and rinsed. After 500 rounds of thermocycling, shear bond strength tests were carried out. Data were analyzed with 1- and 2-way analyses of variance, t test, and post hoc Tukey tests at a significance level of P composite resin to caries-affected dentin was significantly reduced compared to that with sound dentin. Among the studied hemostatic agents, ViscoStat resulted in a greater decrease in dentin bond strength. Contamination of both sound and caries-affected dentin with hemostatic agents decreased composite resin bond strength. Of the 3 hemostatic agents used, ViscoStat Clear appeared to have the least detrimental effect on bond strength.

  20. The Effect of Different Disinfecting Agents on Bond Strength of Resin Composites

    Directory of Open Access Journals (Sweden)

    Ahmed Mohammed Hassan

    2014-01-01

    Full Text Available Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials. Methods. A total of 80 sound posterior teeth were used. They were divided into four groups (n=20 according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%. Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one. Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram. Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed by t-test and one-way ANOVA followed by Tukey’s post hoc test. Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength. Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.

  1. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    .4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52...... as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the ormocer-based nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly...

  2. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite.......The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  3. Adhesion of composite luting cement to Er:YAG-laser-treated dentin.

    Science.gov (United States)

    Carrieri, Teresa C D; de Freitas, Patricia M; Navarro, Ricardo S; Eduardo, Carlos de P; Mori, Matsuyoshi

    2007-09-01

    Although some studies claim to the increase of composite resin adhesion to Er:YAG-laser-treated dentin, there are still no reports on the adhesion of composite resin cements to the irradiated surface. This in vitro study evaluated the tensile bond strength (TBS) of a composite resin cement to dentin treated with the Er:YAG laser. Sixty human dentin samples were divided into four groups (n = 15): G1 (Control)-no treatment; G2-Er:YAG laser 60 mJ, 2 Hz, with water cooling, non-contact (19 J/cm(2)); G3-Er:YAG laser 60 mJ, 10 Hz, 50/10 fiber, contact, without water cooling (40 J/cm(2)); G4-Er:YAG laser 60 mJ, 10 Hz, 50/10 fiber, contact, with water cooling (40 J/cm(2)). After the surface treatment, each sample was submitted to bonding procedures. The analysis of variance (ANOVA) and Tukey tests revealed no statistical significant difference on TBS values for groups G1 (13.73 +/- 3.05 MPa), G2 (12.60 +/- 2.09 MPa) and G4 (11.17 +/- 4.04 MPa). G4 was not statistically different from G3 (8.64 +/- 2.06 MPa). Er:YAG laser irradiation with different settings can constitute an alternative tool to the use of composite resin-luting cements.

  4. Pressure sensitive adhesive using light color, low softening point petroleum hydrocarbon resins

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, M.E.

    1987-07-28

    This patent describes an adhesive composition comprising from about 20% to about 80% by weight of a copolymer and, correspondingly, from about 80% to about 20% by weight of a tackifying petroleum hydrocarbon resin having a softening point of from 0/sup 0/C to about 40/sup 0/C. It has a number average molecular weight of from about 100 to about 600, and a Gardner color less than about 7 prepared by the aluminum chloride catalyzed Friedel Crafts polymerization of a hydrocarbon feed comprising: (a) from about 5% to about 75% by weight of C/sub 8/ to C/sub 10/ vinyl aromatic hydrocarbon stream; (b) from about 10% to about 35% by weight of a piperylene concentrate; and (c) from about 25% to about 70% by weight of a C/sub 4/ to C/sub 8/ monoolefin chain transfer agent of the formula RR'C=CHR'' where R and R' are C/sub 1/ to C/sub 5/ alkyl, and R'' is H or C/sub 1/ to C/sub 4/ alkyl group.

  5. [An in vitro study of wear and marginal fracture of posterior composite resins].

    Science.gov (United States)

    Futatsuki, M; Nakata, M

    1990-01-01

    The collision-and-abrasion test was performed to reproduce the change of the surface structures of posterior composite resins by the stress of mastication and occlusion. Also the effect of the stress on wear and marginal fracture of composites was estimated qualitatively and quantitatively between the cavities with round bevel, straight bevel and butt joint. Extracted human posterior teeth were used as materials, and round or straight bevels were prepared along the margin of the standardized cavities using the bevel-preparing burs which had been designed by us. Light cured posterior composite resin (Occlusin/ICI Co.) was used as the restoration material. Also the surface structures were examined before and after the collision-and-abrasion test with the scanning electron microscope and laser measuring device for the surface morphology. The following results were obtained. 1. The collision-and-abrasion test with use of the slurry of polymethyl methacrylate (PMMA) powder as abrasive showed better reproducing ability of the in vivo change of the posterior composite restorations. 2. The collision stress was found to be one of the main causes for the wear and marginal fracture of composites. 3. It was found that the measurement for wear and marginal fracture of restorations could be performed three-dimensionally with high precision and in shorter time by using a laser device. 4. Marginal fracture resistance of composite resins is influenced by the adhesion with tooth structure and the marginal thickness. Therefore, the best marginal shape for posterior composite restoration is the round bevel.

  6. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid. Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  7. Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study.

    Science.gov (United States)

    van Dijken, Jan W V; Pallesen, Ulla

    2016-08-01

    To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly modified USPHS criteria at baseline and then yearly during 5 years. Caries risk and bruxing habits of the participants were estimated. No post-operative sensitivity was reported. At 5-year 183, 68 Class I and 115 Class II, restorations were evaluated. Ten restorations failed (5.5%), all Class II, 4 SDR-CeramX mono+ and 6 CeramX mono+-only restorations. The main reasons for failure were tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1.3% (p=0.12). For the Class II restorations, the AFR was 1.4% and 2.1%, respectively. The stress decreasing flowable bulk-fill resin composite technique showed good durability during the 5-year follow-up. The use of a 4mm incremental technique with the flowable bulk-fill resin composite showed during the 5-year follow up slightly better, but not statistical significant, durability compared to the conventional 2mm layering technique in posterior resin composite restorations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  9. Intraoral environment conditions and their influence on marginal leakage in composite resin restorations.

    Science.gov (United States)

    Mathias, Paula; Rocha, Viviane; Saraiva, Letícia; Cavalcanti, Andrea N; Azevedo, Juliana F; Paulillo, Luís Alexandre M S

    2010-01-01

    Color matching in the anterior superior incisor region (ASIR) is very difficult when using a rubber dam during restorative procedures. This study measured temperature/relative humidity parameters in the ASIR and evaluated the influence of the inhalation/downtime/exhalation mouth-breathing cycle on microleakage in composite resin restorations performed in the region, using three different adhesive systems. Sixty bovine incisors were randomly assigned to six groups (n=10) according to environmental conditions (laboratory environment or intraoral conditions) and the three adhesive systems being tested (Prime & Bond NT (PB), Single Bond (SB) and Clearfil SE Bond (CL)). The composite resin restored specimens were thermocycled (800 cycles, 5-55 degrees C), immersed in a 2% methylene blue-buffered solution and sectioned longitudinally The dye penetration on the margin of the restoration was evaluated and non-parametric statistical analyses were performed. The temperature and humidity parameters in the ASIR showed significant differences when compared to the laboratory environment. Restorations performed in the ASIR environment showed no increases in microleakage. As it was shown that temperature/humidity in ASIR do not affect marginal sealing in direct composite resin restorations negatively, better color matching can be safely achieved without the use of a rubber dam.

  10. [Is amalgam stained dentin a proper substrate for bonding resin composite?].

    Science.gov (United States)

    Scholtanus, J D

    2016-06-01

    After the removal of amalgam restorations, black staining of dentin is often observed, which is attributed to the penetration of corrosion products from amalgam. A study was carried out to determine whether this amalgam stained dentin is a proper substrate for bonding resin composites. A literature study and an in vitro study showed that Sn and Zn in particular are found in amalgam stained dentin, and this was the case only in demineralised dentin. In vitro, demineralised dentin acted as porte d'entrÈe for amalgam corrosion products. Bond strength tests with 5 adhesive strategies showed no differences between bond strengths to amalgam stained and to sound dentin, but did show different failure types. A clinical study showed good survival of extensive cusp replacing resin composite restorations. No failures were attributed to inadequate adhesion. It is concluded that staining of dentin by amalgam corrosion products has no negative effect upon bond strength of resin composite. It is suggested that Sn and Zn may have a beneficial effect upon dentin, thus compensating the effects of previous carious attacks, preparation trauma and physico-chemical challenges during clinical lifetime.

  11. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    Directory of Open Access Journals (Sweden)

    Sasiwimol Sanohkan

    2013-01-01

    Full Text Available Aims: To determine the in vitro shear bond strengths (SBS of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental specimens (10 mm in diameter and 2 mm thick were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10. Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE, AP (Alloy Primer, Kuraray Medical, and MP (Monobond Plus, Ivoclar Vivadent AG. One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa were analyzed with one-way analysis of variance (ANOVA and the Tukey′s Honestly Significant Difference (HSD test (α = 0.05. Results: Group AP yielded the highest mean and standard deviation (SD value of SBS (16.8 ± 2.5 MPa and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa. The SBS did not differ significantly among the groups (P = 0.079. Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  12. 光固化复合树脂前体与超级粘接剂结合治疗乳牙洞型的临床疗效研究%Research on Light Curing Composite Resin Precursor Combined with Super Adhesive for Primary Cavity

    Institute of Scientific and Technical Information of China (English)

    辜赵娜

    2016-01-01

    Objective: To observe the clinical efficacy of super-BondC&B bonding light-cured compos-ite combined with light curing composite resin precursor on treatment of primary cavity and super adhesive. Method: 150 deciduous molar teeth caries after preparing into Ⅱ type complex surface hole type were ran-domly divided into two groups, the control group and observation group, 75 teeth in each group, both groups used light-curing resin inlay fill, the control group used ordinary adhesive, observation group used super-BondC&B. Results: Within the same time the bonding degree of observation group was better than the control group. According to the indicators re-checked 1 year later, the success rate control group observation group was 41.33% and 86.67%, which was higher observation group than the control group. The difference of the two groups data has statistical significance (P<0.05). Patients’ satisfaction survey of observation group was better than the control group. Conclusion: Using super-BondC&B bonding of light-cured composite resin in-lay in the repair teeth class Ⅱ when facing hole type success rate high, the effect is good. It should be the ma-terial of choice for he bonding light-cured composite resin inlay.%目的::观察超级粘结剂(super-BondC&B)粘结光固化复合树脂嵌体在修复乳牙Ⅱ类复面洞型的疗效。方法:150颗乳磨牙龋齿经过去龋备成Ⅱ类复面洞型后随机分为两组,对照组和观察组各75颗,两组都使用光固化树脂嵌体填充,对照组使用普通粘接剂,观察组使用 super-BondC&B。结果:相同时间内粘接程度观察组好于对照组。1年后复查时,对照组成功率为41.33%,观察组成功率为86.67%,观察组高于对照组,两组数据比较差异具有统计学意义(P <0.05)。在患者满意度调查中观察组的评价也好于对照组。结论:使用超级粘结剂( super-BondC&B)粘接的光固化复合树脂嵌体在修复乳牙Ⅱ

  13. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  14. Effect of a low-viscosity adhesive resin on the adhesion of metal brackets to enamel etched with hydrochloric or phosphoric acid combined with conventional adhesives.

    Science.gov (United States)

    Yetkiner, Enver; Ozcan, Mutlu; Wegehaupt, Florian Just; Wiegand, Annette; Eden, Ece; Attin, Thomas

    2013-12-01

    This study investigated the effect of a low-viscosity adhesive resin (Icon) applied after either hydrochloric (HCl) or phosphoric acid (H3PO4) on the adhesion of metal brackets to enamel. Failure types were analyzed. The crowns of bovine incisors (N = 20) were sectioned mesio-distally and inciso-gingivally, then randomly assigned to 4 groups according to the following protocols to receive mandibular incisor brackets: 1) H3PO4 (37%)+TransbondXT (3M UNITEK); 2) H3PO4 (37%)+Icon+TransbondXT; 3) HCl (15%)+Icon (DMG)+TransbondXT 4) HCl (15%)+Icon+Heliobond (Ivoclar Vivadent)+TransbondXT. Specimens were stored in distilled water at 37°C for 24 h and thermocycled (5000x, 5°C to 55°C). The shear bond strength (SBS) test was performed using a universal testing machine (1 mm/min). Failure types were classified according to the Adhesive Remnant Index (ARI). Contact angles of adhesive resins were measured (n = 5 per adhesive) on ceramic surfaces. No significant difference in SBS was observed, implying no difference between combinations of adhesive resins and etching agents (p = 0.712; ANOVA). The Weibull distribution presented significantly lower Weibull modulus (m) of group 3 (m = 2.97) compared to other groups (m = 5.2 to 6.6) (p group 1 (45.4 ± 7.9) > group 2 (44.2 ± 10.6) > group 3 (42.6 ± 15.5). While in groups 1, 3, and 4 exclusively an ARI score of 0 (no adhesive left on tooth) was observed, in group 2, only one specimen demonstrated score 1 (less than half of adhesive left on tooth). Contact angle measurements were as follows: Icon (25.86 ± 3.81 degrees), Heliobond (31.98 ± 3.17 degrees), TransbondXT (35 ± 2.21 degrees). Icon can be safely used with the conventional adhesives tested on surfaces etched with either HCl or H3PO4.

  15. Polymerization kinetics of dual-curing adhesive systems when used solely or in conjunction with chemically-cured resin cement.

    Science.gov (United States)

    Kim, Young Kyung; Chun, Ju-Na; Kwon, Pyung Cheol; Kim, Kyo-Han; Kwon, Tae-Yub

    2013-10-01

    To investigate the chemical polymerization kinetics of commercial dual-curing adhesive systems when used solely or in conjunction with chemically-curing resin cement. Four adhesive systems comprising simplified-step adhesives and activators (Prime&Bond NT with Self Cure Activator, Excite DSC, AQ Bond Plus, All-Bond SE) were used. The pH values of the adhesives and adhesive/activator blends were measured. Differential scanning calorimetry (DSC) was used to investigate the extent of the chemical polymerization of the adhesives when used alone or directly intermixed with a chemically-cured resin cement (C&B Cement) for 60 min (n = 5). The data derived from the DSC analysis were statistically compared using one-way ANOVA and the Games-Howell post-hoc test (α = 0.05). All the adhesives were highly acidic; when they were blended with the respective activators, their pH values increased. Neither the adhesive/activator blends nor the adhesive alone/cement mixtures showed any detectable heat generation. The Prime&Bond NT/activator showed delayed heat generation only when intermixed with the catalyst/base paste. The other three adhesive systems produced similar exotherms when intermixed with the catalyst paste alone or with the catalyst/base paste (p > 0.05), but at significantly different maximum rates of polymerization (p adhesive system/resin cement interface appears highly dependent on the adhesive system used and may be considerably delayed.

  16. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  17. Resin-dentin bond strength of 10 contemporary etch-and-rinse adhesive systems after one year of water storage.

    Science.gov (United States)

    Fontes, Silvia Terra; Cubas, Gloria Beatriz de Azevedo; Flores, Josiane Barcelos; Montemezzo, Murieli Leonor; Pinto, Marcia Bueno; Piva, Evandro

    2010-01-01

    To compare the resin-dentin bond degradation of 10 contemporary etch-and-rinse adhesive systems after one year of water storage, 100 bovine incisors were randomly separated into 10 groups and their superficial coronal dentin was exposed. According to manufacturers' instructions, dentin surfaces were bonded with one of seven two-step etch-and-rinse adhesives or one of three three-step etch-and-rinse adhesives. Composite buildups were constructed incrementally. Restored teeth were sectioned to obtain sticks (0.5 mm²). The specimens were subjected to a microtensile bond strength test after storage in distilled water (at 37°C) for one year. Data (MPa) were analyzed using Kruskal-Wallis and Tukey's tests at α = 0.05. Of the adhesives tested, One Step, All Bond 2, and Optibond FL attained the highest bond strength to dentin after one year in water storage, while Magic Bond DE and Master Bond presented a high number of premature debonded flaws.

  18. Long-term durability of one-step adhesive-composite systems to enamel and dentin.

    Science.gov (United States)

    Foxton, Richard M; Melo, Luciana; Stone, David G; Pilecki, Peter; Sherriff, Martin; Watson, Timothy F

    2008-01-01

    This study evaluated the long-term durability of three one-step adhesive-composite systems to ground enamel and dentin. Twenty-seven teeth were randomly divided into three groups of nine. The first group had its crowns sectioned to expose superficial dentin, which was then ground with 600 grit SiC paper. One of three one-step adhesives: a trial bonding agent, OBF-2; i Bond or Adper Prompt L-Pop was applied to the dentin of three teeth and built-up with the corresponding resin composite (Estelite sigma, Venus or Filtek Supreme). The second group of nine teeth had their enamel approximal surfaces ground with wet 600-grit SiC paper, then one of the three one-step adhesives was applied and built-up with resin composite. The bonded specimens were sliced into 0.7 mm-thick slabs. After 24 hours and one year of water storage at 37 degrees C, the slabs were sectioned into beams for the microtensile bond strength test. Failure modes were observed using optical and electron scanning microscopy. The third group of nine teeth had approximal wedge-shaped cavities prepared above the CEJ into dentin. Two-to-three grains of rhodamine B were added to each of the three adhesives prior to restoring the cavities with resin composite. After 24 hours storage, the teeth were sectioned and their interfaces examined with a laser scanning confocal microscope. The bond strengths of the three adhesive-composite systems to both enamel and dentin significantly lessened after one year of water storage, however, there was no significant difference between the materials.

  19. Bond strength of self-adhesive resin cements to tooth structure

    OpenAIRE

    Susan Hattar; Hatamleh, Muhanad M.; Faleh Sawair; Mohammad Al-Rabab’ah

    2015-01-01

    Objectives: The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods: Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results w...

  20. Effect of desensitizer application on shear bond strength of composite resin to bleached enamel

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Objective: Tooth sensitivity is common after vital tooth bleaching. The aim of this study is to evaluate the effect of a desensitizing agent on shear bond strength of composite resin to bleached enamel; and determine whether a delay of one or two weeks in bonding procedure is sufficient subsequent to bleaching/desensitizer regimen. Materials and Methods: Buccal enamel surfaces of ninety-six human sound molars were prepared and divided into eight groups. The surfaces of specimens in Group 1 as negative control group were bonded by composite resin using the single bond adhesive. Specimens in Groups 2-4 were bleached with an at-home bleaching agent (Daywhite ACP. Relief ACP desensitizing gel alone was applied in Group 5. In Groups 6-8, specimens were bleached same as in Group 2 and relief ACP desensitizing gel was applied same as inGroup 5 subsequent to each bleaching session. Composite cylinders were bonded after 24 h, 7 days and 14 days in Groups 2-4, respectively, and also in Groups 6-8, respectively. The shear bond strengths of the cylinders were tested and data was analyzed using two-way ANOVA and Tukey test (α = 0.05. Results: The results showed that bleaching and bleaching/desensitizer regimens significantly reduced the bond strength of composite resin to enamel. However, desensitizer alone did not reduce bond strength. No statistically significant differences were found between bleaching and bleaching/desensitizer regarding bond strength. Conclusion: Bleaching or bleaching/desensitizer treatment significantly decreases bond strength of composite resin to enamel. In both regimens, adhesive bonding is recommended after two weeks.

  1. Characterization and Process Development of Cyanate Ester Resin Composites

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-05-23

    Cyanate ester resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption, and radiation resistance. This paper describes the results of a processing study to develop a high-strength hoop-wound composite by the wet-filament winding method using Toray TI 000G carbon fiber and YLA RS- 14A cyanate ester resin as the constituent materials. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to and during cure is also crucial as it affects the glass transition temperature of the resin and composite. Composite cylinders wound and cured with these methods yielded excellent ring tensile strengths both at room and elevated temperature. A summary of the measured mechanical and thermal property data for these composites is presented. Potential applications for these materials include flywheeI energy storage systems for space and satellite structures.

  2. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  3. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    Science.gov (United States)

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.

  4. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L. (UIC)

    2008-11-03

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  5. Degradation, fatigue, and failure of resin dental composite materials.

    Science.gov (United States)

    Drummond, J L

    2008-08-01

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  6. High elastic modulus nanopowder reinforced resin composites for dental applications

    Science.gov (United States)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the

  7. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    Science.gov (United States)

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  8. A Study on Effect of Surface Treatments on the Shear Bond Strength between Composite Resin and Acrylic Resin Denture Teeth.

    Science.gov (United States)

    Chatterjee, Nirmalya; Gupta, Tapas K; Banerjee, Ardhendu

    2011-03-01

    Visible light-cured composite resins have become popular in prosthetic dentistry for the replacement of fractured/debonded denture teeth, making composite denture teeth on partial denture metal frameworks, esthetic modification of denture teeth to harmonize with the characteristics of adjacent natural teeth, remodelling of worn occlusal surfaces of posterior denture teeth etc. However, the researches published on the bond strength between VLC composite resins and acrylic resin denture teeth is very limited. The purpose of this study is to investigate the effect of five different methods of surface treatments on acrylic resin teeth on the shear bond strength between light activated composite resin and acrylic resin denture teeth. Ninety cylindrical sticks of acrylic resin with denture teeth mounted atop were prepared. Various treatments were done upon the acrylic resin teeth surfaces. The samples were divided into six groups, containing 15 samples each. Over all the treated and untreated surfaces of all groups, light-cured composite resin was applied. The shear strengths were measured in a Universal Testing Machine using a knife-edge shear test. Data were analyzed using one way analysis of variance (ANOVA) and mean values were compared by the F test. Application of bonding agent with prior treatment of methyl methacrylate on the acrylic resin denture teeth resulted in maximum bond strength with composite resin.

  9. The surface finish of light-cured composite resin materials.

    Science.gov (United States)

    Sidhu, S K; Henderson, L J

    1993-01-01

    A necessity for any dental restorative material is its ability to take and maintain a smooth surface finish. Composite resin restorative materials with fillers and matrix of differing hardness are difficult to finish and polish. The use of aluminum trioxide discs is a popular and acceptable method of finishing composite restorative materials where the material is accessible. Burs and stones are used for finishing and polishing inaccessible areas. This study was undertaken to compare the surface finish of composite resin restorative material when finished with white stones, superfine diamond burs and aluminum trioxide discs. The finished surface was measured with a profilometer and the roughness average value used to compare the surfaces. The aluminum trioxide discs gave the best and most consistent results. It was possible to attain similar results with the superfine diamond bur. However, the results were highly variable. None of the methods used achieved the smoothness of composite resin cured against a transparent matrix.

  10. Resin characterization in cured graphite fiber reinforced composites using diffuse reflectance-FTIR. [Fourier transform infrared spectroscopy

    Science.gov (United States)

    Young, P. R.; Stein, B. A.; Chang, A. C.

    1983-01-01

    The feasibility of using diffuse reflectance in combination with Fourier transform infrared spectroscopy to obtain information on cured graphite fiber reinforced polymeric matrix resin composites was investigated. Several graphite/epoxy, polysulfone, and polyimide composites exposed to thermal or radiation environments were examined. An experimental polyimide-sulfone adhesive tape was also studied during processing. In each case, significant changes in resin molecular structure was observed due to environmental exposure. These changes in molecular structure were correlated with previously observed changes in material properties providing new insights into material behavior.

  11. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study.

    Science.gov (United States)

    Verma, Geeta; Trehan, Mridula; Sharma, Sunil

    2013-09-01

    To measure and compare the shear bond strength and adhesive remnant index of light-cure composite. (Enlight, Ormco.) and dual-cure composite (Phase II dual cure, Reliance Ortho). Sixty extracted human premolar teeth were divided into two groups: group I (blue): conventional light cure composite resin. (Enlight, Ormco.) and group II (green): dual cure composite resin. (Phase II dual cure, Reliance Ortho.) with 30 teeth in each group. These samples were tested on the universal testing machine to measure the shear bond strength. Student t-test showed that the mean shear bond strength of the conventional light cure group (8.54 MPa - 10.42 MPa) was significantly lower than dual cure group (10.45 MPa -12.17 MPa). These findings indicate that the shear bond strength of dual-cure composite resin (Phase II dual cure, Reliance Ortho) is comparatively higher than conventional light-cure composite resin (Enlight, Ormco). In the majority of the samples, adhesive remnant index (ARI) scores were 4 and 5 in both the groups whereas score 1 is attained by the least number of samples in both the groups. How to cite this article: Verma G, Trehan M, Sharma S. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study. Int J Clin Pediatr Dent 2013;6(3):166-170.

  12. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  13. Effect of thermal shock loadings on stability of dentin-composite polymer material adhesive interfaces

    Science.gov (United States)

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Gribov, Andrey N.

    2015-03-01

    In the past several decades the problem of longevity and durability of adhesive interfaces between hard tooth tissues and composite resin-based materials are of great interest among dental researchers and clinicians. These parameters are partially determined by adhesive system mechanical properties. In the present research project nanoindentation has been examined to test hardness of dental adhesive systems. A series of laboratory experiments was performed to study the effect of light curing time and oxygen inhibition phenomenon on light-cured adhesive material hardness. An adhesive system AdperTM Single Bond (3M ESPE) was selected as a material for testing. The analysis of experimental data revealed that the maximum values of hardness were observed after the material had been light-cured for 20 seconds, as outlined in guidelines for polymerization time of the adhesive system. The experimental studies of oxygen inhibition influence on adhesive system hardness pointed out to the fact that the dispersive layer removal led to increase in adhesive system hardness. A long - time exposure of polymerized material of adhesive system at open air at room temperature resulted in no changes in its hardness, which was likely to be determined by the mutual effect of rival processes of air oxygen inhibition and directed light curing.

  14. Preparation and properties of lignin-epoxy resin composite

    Directory of Open Access Journals (Sweden)

    Quanfu Yin

    2012-11-01

    Full Text Available A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

  15. Effect of Distance on Light Transmission Through Polymerized Resin Composite.

    Science.gov (United States)

    Aromaa, M K; Lassila, L V J; Vallittu, P K

    2017-09-01

    Light transmittance of dental composites varies between products and shades, but also light curing units differ to each other in their irradiance and fiber optic structure of curing tip. The aim of this study was to investigate whether there is linear relationship between the distance of the curing tip to the resin composite and irradiance at lower surface of the resin composite. Disks of 1 mm thickness (6mm diameter) were fabricated. Light transmittance (intensity) through the disk was measured at distance of 0, 2, 4, 6, 8, 10 mm from the light tip with two light curing units Elipar S10 (3M-ESPE) and Silverlight (GC). Irradiance ratio (irradiance on the sensor surface without the composite disk / with the composite disk) was calculated and plotted against the distance of the light curing tip. Statistical analysis was carried out using analysis of covariance (ANCOVA, Tukey's, α =0.05). Irradiance ratio varied between 18% to 24% with Silverlight and 21% to 26% with Elipar S10 light curing units. There were statistically significant differences between the ratios with different distances of the light curing tip (p⟨0.05). Interestingly, the highest irradiance ratio for Elipar S10 unit was found with 4 mm distance of the tip, whereas Silverlight unit had the highest ratio with 6 mm distance. Out of two tested resin composites, the flowable composite showed higher irradiance ratio than regular packable resin composite. Increase of distance of the light curing tip from the composite surface decreased the absolute irradiance underneath of composite, as expected. However, there seemed to be device dependent optimal distance of 4-6 mm to reach the most efficient irradiance ratio through the composite resin keeping in mind that most efficient transmission of light through the material is reached by having light curing tip in contact to the material. Copyright© 2017 Dennis Barber Ltd.

  16. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars.

    Science.gov (United States)

    Magne, Pascal; Knezevic, Alena

    2009-02-01

    To assess the influence of material selection (porcelain versus composite resin) for overlay-type restoration of endodontically treated molars and its effect on the in vitro fatigue resistance and failure mode. A standardized tooth preparation was applied to 30 extracted molars, including root canal treatment, 3-mm coverage of all cusps, a mesial box 1.5 mm below the cementoenamel junction (CEJ), a distal box in enamel, a glass-ionomer base, and immediately sealed dentin. Using the Cerec machine (Sirona), all teeth were restored with an overlay of standardized thickness and occlusal anatomy. Fifteen restorations were milled in the ceramic Vita MKII block (Vident) and the other 15 using the composite resin Paradigm MZ100 block (3M ESPE). The intaglio surfaces of the ceramic restorations were etched and silanated. The intaglio surfaces of the composite resin overlays were airborne-particle abraded and silanated. Preparations were airborne-particle abraded and etched before restoration insertion. All restorations were adhesively luted with an adhesive resin (Optibond FL, Kerr) and a light-curing composite resin (Filtek Z100, 3M ESPE). Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5,000 cycles), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. MKII overlays fractured at a mean load of 1,147 N, and none of them withstood all 185,000 loading cycles (survival = 0%); with MZ100, the survival rate was 73%. With MKII, 40% of the fractures ended below the CEJ; with MZ100, only 25% did. Composite resin MZ100 increased the fatigue resistance of overlay-type restorations in endodontically treated molars when compared to porcelain MKII. The efficiency of the bond strategy (immediate dentin sealing) was demonstrated by the absence of adhesive failures.

  17. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  18. Properties of hybrid resin composite systems containing prepolymerized filler particles.

    Science.gov (United States)

    Blackham, Jason T; Vandewalle, Kraig S; Lien, Wen

    2009-01-01

    This study compared the properties of newer hybrid resin composites with prepolymerized-filler particles to traditional hybrids and a microfill composite. The following properties were examined per composite: diametral tensile strength, flexural strength/modulus, Knoop microhardness and polymerization shrinkage. Physical properties were determined for each Jason T Blackham, DMD, USAF, General Dentistry, Tyndall composite group (n = 8), showing significant differences between groups per property (p hybrid composites (Z250, Esthet-X) had higher strength, composites containing pre-polymerized fillers (Gradia Direct Posterior, Premise) performed more moderately and the microfill composite (Durafill VS) had lower strength. Premise and Durafill VS had the lowest polymerization shrinkage.

  19. Effect of temporary filling materials on repair bond strengths of composite resins.

    Science.gov (United States)

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema

    2008-08-01

    Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.

  20. The effect of flowable and dual-cure resin composite liners on gingival microleakage of posterior resin composites

    Directory of Open Access Journals (Sweden)

    Shirani F.

    2008-11-01

    Full Text Available "nBackground and Aim: Microleakage has been always a major concern in restorative dentistry. The curing contraction of composites still presents a problem with controlling microleakage and postoperative sensitivity. The aim of this study was to investigate the effect of flowable and dual-cure resin composite liners on gingival microleakage of packable resin composite restorations. "nMaterials and Methods: Sixty Class II cavities with cervical margins 1 mm below the CEJ were prepared in 30 extracted human molars. The teeth were randomly divided into five groups of 12 each. In control group, each tooth was restored incrementally with Tetric Ceram composite without applying any liner. In the second and forth groups, flowable materials- Tetric Flow and dual-cure composite resin cement Relay X ARC were placed respectively as a 1-mm thick gingival increment and cured before the resin composite restoration, whereas, in the third and fifth groups liners were cured with the first increment of packable composite.The restored teeth were stored for one week in distilled water at 370C, and thermocycled between 50C and 550C, sealed with nail varnish except the tooth - composite interface in cervical restoration margins and immersed in 2% basic fuchsin for 24 hours. Dye penetration was evaluated using a stereomicroscope with 28x magnification. The data were analyzed by Kruskal-Wallis and Mann-Whitney U-tests with p<0.05 as the level of significance. "nResults: The results of this study indicated that there were significant statistical differences between control - cured flowable liner, control-flowable liner without separately curing, control-cured dual cure composite resin cement groups.However there were no significant differences between dual-cure composite resin cement without separately curing-control,cured flowable liner-cured dual cure composite resin cement, flowable liner without separately curing-dual cure composite resin cement without separately

  1. Preservation of resin-dentin interfaces treated with benzalkonium chloride adhesive blends.

    Science.gov (United States)

    Sabatini, Camila; Ortiz, Pilar A; Pashley, David H

    2015-04-01

    Reducing collagen degradation within hybrid layers may contribute to the preservation of adhesive interfaces. This study evaluated the stability of resin-dentin interfaces treated with benzalkonium chloride (BAC)-modified adhesive blends and assessed collagen degradation in dentin matrices treated with BAC. The etch-and-rinse adhesive, Adper Single Bond Plus, modified with 0.5% and 1.0% BAC, was evaluated for microtensile bond strength (μTBS) and nanoleakage (NL) after 24 h and 1 yr. Thirty completely demineralized dentin beams from human molars were dipped for 60 s in deionized water (DW; control), or in 0.5% or 1.0% BAC, and then incubated in simulated body fluid (SBF). Collagen degradation was assessed by quantification of the dry mass loss and the amount of hydroxyproline (HYP) released from hydrolyzed specimens after 1 or 4 wk. Although all groups demonstrated a significant increase in NL after 1 yr, adhesive modified with 0.5% BAC showed stable bond strength after 1 yr (9% decrease) relative to the control (44% decrease). Significantly less HYP release and dry mass loss were observed for both 0.5% and 1.0% BAC relative to the control. This in vitro study demonstrates that BAC contributes to the preservation of resin-dentin bonds for up to 1 yr by reducing collagen degradation.

  2. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  3. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.

  4. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Science.gov (United States)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-02-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  5. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  6. Therapeutic polymers for dental adhesives: loading resins with bio-active components.

    Science.gov (United States)

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H K

    2014-01-01

    Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are "bio-active" could contribute to better prognosis of restorative treatments. This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Fatty Acid Composition of Tobacco Seed Oil and Synthesis of Alkyd Resin

    Institute of Scientific and Technical Information of China (English)

    MUKHTAR,Azam; ULLAH,Habib; MUKHTAR,Hamid

    2007-01-01

    The fatty acid composition of tobacco seed oil revealed that the oil is rich in unsaturated fatty acids, having linoleic acid (71.63%), oleic acid (13.46%) and palmitic acid (8.72%) as the most abundant unsaturated and saturated fatty acids respectively. So the tobacco oil was characterized as semi-drying type on the basis of fatty acid composition. The synthesis of alkyd resin was carried out by alcoholysis or monoglyceride process using an alkali refined tobacco seed oil, pentaerythritol, cis-1,2,3,6-tetrahydrophthalic anhydride along with lithium hydroxide as catalyst.The alkyd resin so prepared was found to be bright and of low color with high gloss. The drying and hardness properties and adhesion of the tobacco seed oil derived alkyd resin were also found a bit superior to those of other alkyd resins of the same oil length. In addition, the water and acid resistance of the said alkyd was also found comparable to the other alkyds.

  8. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins.

    Science.gov (United States)

    Jeong, Tae-Sung; Kang, Ho-Seung; Kim, Sung-Ki; Kim, Shin; Kim, Hyung-Il; Kwon, Yong Hoon

    2009-07-01

    The present study sought to evaluate the effect of resin shades on the degree of the polymerization. To this end, response variables affected by the degree of polymerization were examined in this study - namely, microhardness, polymerization shrinkage, and color change. Two commercial composite resins of four different shades were employed in this study: shades A3, A3.5, B3, and C3 of Z250 (Z2) and shades A3, A3.5, B3, and B4 of Solitaire 2 (S2). After light curing, the reflectance/absorbance, microhardness, polymerization shrinkage, and color change of the specimens were measured. On reflectance and absorbance, Z2 and S2 showed similar distribution curves regardless of the resin shade, with shade A3.5 of Z2 and shade A3 of S2 exhibiting the lowest/highest distributions. Similarly for attenuation coefficient and microhardness, the lowest/highest values were exhibited by shade A3.5 of Z2 and shade A3 of S2. On polymerization shrinkage, no statistically significant differences were observed among the different shades of Z2. Similarly for color change, Z2 specimens exhibited only a slight (DeltaE*=0.5-0.9) color change after immersion in distilled water for 10 days, except for shades A3 and A3.5. Taken together, results of the present study suggested that the degree of polymerization of the tested composite resins was minimally affected by resin shade.

  9. Shear bond strength of a self-etched resin cement to an indirect composite: effect of different surface treatments.

    Science.gov (United States)

    Harorli, O T; Barutcugil, C; Kirmali, O; Kapdan, A

    2015-01-01

    The aim of this study was to compare the shear bond strength of resin cement (Rely X-U200) bonded to differently conditioned indirect composite samples. Sixty-six composite resin specimens (5 mm in diameter and 3 mm in thickness) were prepared with an indirect composite resin (Grandia) and randomly divided into six groups. Surfaces of the samples were treated with one of the following treatments; %37 phosphoric acid etching, sandblasting, 1,5 W, 2 W and 3 W erbium, chromium: Yttrium-scandium-gallium-garnet laser application. An untreated group was used as a control. In each group surface of the sample was analyzed with scanning electron microscopy. The remaining samples (n = 60) were built up with a self-adhesive resin cement (Rely X-U200) 3 mm in diameter and 2 mm height. After 24 h water storage at 37°C, the prepared specimens were submitted to shear bond strength test. One-way analysis of variance was used to analyze the bond strength values of different groups. Highest shear bond strength values were observed in sandblasting group however there were not statistical difference among the tested surface treatment methods. In Shear bond strength of resin, cement was independent of the surface conditioning methods applied on tested indirect resin composite.

  10. Effect of Ingested Liquids on Color Change of Composite Resins

    Directory of Open Access Journals (Sweden)

    Beheshteh Malek Afzali

    2016-04-01

    Full Text Available Objectives: Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise and a flowable composite resin (Premise flowable following simulated consumption of tea, cola, iron drops and multivitamin syrup.Materials and Methods: Forty disk-shaped specimens (7 mm in diameter and 2 mm thick were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control. The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE* were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey’s test (P< 0.05.Results: There was no significant difference in ΔE* values between the two types of composite resins (P>0.05. In both composite materials, the difference among the solutions was not significant (P>0.05. Conclusion: Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  11. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    Science.gov (United States)

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could meet the clinical requirements.

  12. A Study on the Structure and Adhesive Properties of Epoxy-Silicate Composites

    Science.gov (United States)

    Brantseva, T. V.; Ilyin, S. O.; Gorbunova, I. Yu.; Antonov, S. V.; Kerber, M. L.

    2014-11-01

    Compositions based on an ED-20 resin with three types of modifiers: natural montmorillonite (MMT) Cloisite Na +, organomodified MMT Cloisite 30B, and halloysite, were investigated. An optimum regime was chosen for preparation of the epoxy/modifier systems by employing the ultrasonic mixing. The rheological characteristics of suspensions were used to estimate the distribution of modifier in the epoxy oligomer. According to rheological data, the best dispersion of MMT in the epoxy oligomer after ultrasonic stirring was observed for the organomodified MMT Cloisite 30B. The maximum shear adhesion strength was also observed for the epoxy resin+Cloisite 30B systems. For the systems with 2 wt. % of Cloisite 30B, the increase in the adhesion strength was up to 65% as compared with that of the pristine epoxy oligomer.

  13. Phosphogypsum Utilization Part III: as Adhesive Filler and Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aim of this work is to make use of phosphogypsum (PG) waste material, which is produced in phosphoric acid and phosphate fertilizer manufactures. A number of wood adhesive formulations based on polyvinyl acetate (PVAc) polymer and phosphogypsum as a filler have been prepared, using different percentages of phusphogypsum, ranging between 5~20 wt pct. The prepared formulations wore tested for adhesion strength and compared with both natural and pure gypsum fillers. The results indicate that PG improves the adhesion strenth when 5 wt pct added, and that may be due to filling the porous surface of wood with the fine particles of PG, as well as coating the particles of the filler (PG) with PVAc units. Also, a number of formulations based on urea-formaldehyde polymer have been prepared using phosphogypsum as an active filler in the ratio of 40~75 wt pct to prepare composite materials used for some decoration purposes and construction. Mechanical, physical, and thermal properties of these formulations were studied. Also, the activation energy was calculated. The results indicate that PG without acid hardener can be used for preparation of composite materials based on urea-formaldehyde between 40~63.64 wt pct for construction purposes in the humid atmosphere, while between 63.64~75 wt pct for decoration purposes. The improvement of the physical, mechanical and thermal properties of the composite material may be attributed to the simultaneous hydration hardening action of phosphogypsum and the presence of 0.8% P2O5. These effects act as an active hardener for urea-formaldehyde resin and accelerate the cross-linking and network formation reinforced by the fine dusty inorganic particles of PG. The advantage of this method is to prepare composite material gypsum-urea-formaldehyde, which achieves the utilization of large amount of PG, reducing the price of the main product phosphate, minimizing the pollution and producing new materials which possess high thermal

  14. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  15. Bond Strength of Composite Resin to Enamel: Assessment of Two Ethanol Wet-Bonding Techniques

    Science.gov (United States)

    Khoroushi, Maryam; Rafizadeh, Mojgan; Samimi, Pouran

    2014-01-01

    Objective Ethanol wet-bonding (EWB) technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength. Materials and Methods: Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL) adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control);Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher’s exact test (α=0.05). Results: There were no significant differences in bond strength between the groups (P=0.73). However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3. Conclusion: In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel. PMID:24910690

  16. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2015-01-01

    This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems.

  17. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (phybrid composite resin surfaces.

  18. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    Science.gov (United States)

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  19. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    OpenAIRE

    Turp, Volkan; Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etc...

  20. Paired observation on light-cured composite resin and nano-composite resin in dental caries repair.

    Science.gov (United States)

    Xiaoling, Tao; Ashraf, Muhammad Aqeel; Yanyan, Zhao

    2016-11-01

    To compare the value of light-cured composite resin with that of nano-composite resin in dental caries repair. 88 patients taking dental caries repair in our hospital from May 2014 to April 2015 were selected, and divided into observation group and control group by coin method with 44 patients in each group. Nano-composite resin was used in observation group, while light-cured composite resin in control group. Then, the occurrence rates of odontohyperesthesia, aesthetic satisfaction with dental caries repair and complications were compared between two groups by visual analogue scale (VAS). The occurrence rate of odontohyperesthesia in observation group is significantly lower than that in control group (9.09% (4/44) vs 31.82% (14/44), 6.82% (3/44) vs 22.73% (10/44), 2.27% (1/44) vs 13.64% (6/44)) with difference of statistical significance (Pcomposite resin can lower the occurrence rate of odontohyperesthesia in dental caries repair, reduce the pain of patients, and improve the satisfaction of patients with tooth appearance.

  1. Microbiological characterization and effect of resin composites in cervical lesions

    Science.gov (United States)

    Carlo, Bonfanti; Piccinelli, Giorgio; Faus-Matoses, Vicente; Cerutti, Antonio

    2017-01-01

    Background Non carious cervical lesions associated to muscle hyperfunctions are increasing. Microhybrid resin composites are used to restore cervical abfractions. The purpose of this study was to investigate if resin composites modify tooth plaque, inducing an increment of cariogenic microflora and evaluate their effect, in vivo and in vitro, against S. mutans. Material and Methods Eight abfractions were restored with two microhybrid resin composites (Venus, Heraeus-Kulzer® and Esthet-X, Dentsply®), after gnatological therapy, in three patients with muscle hyperfunctions. For each abfraction three samples of plaque were taken from the cervical perimeter: before the restoration, one week and three months after restoration. The samples were evaluated both by traditional microbiological methods and by Polymerase Chain Reaction (PCR). In vitro, disk-shaped specimens of the two composites were prepared to estimate the effects against pre-cultured S. mutans, after incubation at 37°C for 24h and assessed by a turbidimetric technique. Results In vivo no differences were found in plaque growth, for all samples, before and after restoration with both composites; in vitro, instead, a significant reduction of S. mutans growth was found between specimens of two composites (Mann-Whitney U-test p>0,06). Conclusions In this study a relevant consideration was elicited: composite materials, in vivo, do not modify plaque composition of non carious cervical lesions to a potential cariogenic plaque. Key words:Abfraction, restoration, S. mutans, composite, class V. PMID:28149461

  2. Fatigue resistance of CAD/CAM resin composite molar crowns.

    Science.gov (United States)

    Shembish, Fatma A; Tong, Hui; Kaizer, Marina; Janal, Malvin N; Thompson, Van P; Opdam, Niek J; Zhang, Yu

    2016-04-01

    To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. [Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic].

    Science.gov (United States)

    Łagodzińska, Paulina; Bociong, Kinga; Dejak, Beata

    2014-01-01

    Resin cements establish a strong durable bond between zirconia ceramic and hard tissues of teeth. It is essential to use primers with proper chemical composition before cementation. The aim of this study was to assess the influence of primer's chemical composition on the shear bond strength of zirconia ceramic to resin cements. 132 zirconia specimens were randomly assigned to four groups. There were four resin systems used. They included resin cement and respective primer, dedicated to zirconia: Clearfil Ceramic Primer/Panavia F2.0, Monobond Plus/Multilink Automix, AZ - Primer/ResiCem, Z - Prime Plus/Duo-Link. In each group the protocol of cementation was as follows: application of primer to the zirconia surface and application of the respective resin cement in cylindric mold (dimensions: 3.0 mm height and 3.0 mm diameter). Then, the shear bond strength was evaluated and the failure type was assessed in lupes (×2.5 magnification), also random specimens under SEM. The Wilcoxon test was used to analyze the data, the level of significance was α = 0.05. Finally, the known chemical composition of each primer was analysed in reference to probable chemical bonds, which may occure between primers and zirconia. The mean shear bond strength between resin cements and zirconia was the highest for Z-Prime Plus/Duo-Link (8.24 ± 3,21 MPa) and lowest for Clearfil Ceramic Primer/Panavia F 2.0 (4.60 ± 2.21 MPa). The analysis revealed significant difference between all groups, except pair Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem. The failure type in groups of Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem was mainly adhesive, in groups Monobond Plus/ /Multilink Automix and Z-Prime Plus/Duo-Link mainly mixed. The chemical composition of primers affects different bond mechanisms between resin cements and zirconia. The highest shear bond strength of resin cement to zirconia can be obtained for the primer composed of 10-Methacryloyloxydecyl dihydrogen

  4. Initial adhesion of glass-fiber-reinforced composite to the surface of porcine calvarial bone.

    Science.gov (United States)

    Tuusa, S M R; Lassila, L V J; Matinlinna, J P; Peltola, M J; Vallittu, P K

    2005-11-01

    The aim of this preliminary study was to compare the initial bond strength of the glass-fiber-reinforced composite veil to the surface of the porcine calvarial compact bone using different adhesives. Fiber-reinforced composite (FRC) made of E-glass fiber veil with the BisGMA-PMMA resin system was used in the study. For the shear bond strength test, porcine calvarial bone cubes were mounted into resin matrix. FRC-veil discs were bonded to compact bone with different types of adhesives: (A) BisGMA-HEMA based (3M-ESPE Scotchbond Multi-Purpose Adhesive), (B) 4-META/UDMA/BisGMA based (Unifil Bond Bonding Agent) and MDP based (Clearfil Se Bond adhesive), (C) UDMA/BisGMA/PMMA-based experimental adhesive, and (D) silane-based (APS, ICS, MPS) experimental adhesives. The surface of the bone was mechanically roughened and was either used as such, treated with dental primers (Unifil Bond Self-etching Primer, Clearfil Se Bond Primer), or treated with an experimental silane mixture (APS, ICS, MPS), or with a mixture of the experimental silane liquid and Clearfil Se Bond Primer. The 3M-ESPE Scotchbond Multi-Purpose Adhesive and UDMA/BisGMA/PMMA experimental adhesive gave poor results in the shear bond test (0.58 and 0.40 MPa, respectively). Unifil Bond Bonding Agent and Clearfil Se Bond adhesive with respective primers markedly improved the shear bond strength; with Unifil the result was 3.40 MPa, and with Clearfil it was 6.19 MPa. When the bone surface was primed with a mixture of Clearfil Se Bond Primer and Clearfil Porcelain Bond Activator, the Clearfil Se Bond adhesive-impregnated FRC veil gave the best adhesion to the bone surface in this test: 9.50 MPa. The addition of bioactive glass granules between the veil and the bone lowered the shear bond strength in the test system described above to 6.72 MPa. The test systems with the silane mixture were also promising. In the SEM study, it was found that the mechanical treatment reveals the pores of the bone surface. Chemical

  5. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  6. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Science.gov (United States)

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa).

  7. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  8. Influence of Different Bonding Agents and Composite Resins on Fracture Resistance of Reattached Incisal Tooth Fragment

    Directory of Open Access Journals (Sweden)

    Davari AR.

    2014-03-01

    Full Text Available Statement of Problem: Reattachment of the fractured tooth fragment should be considered as a conservative treatment and valid alternative to a composite restoration. Purpose: This in vitro study was to evaluate the influence of different adhesives and composite resins on fracture resistance of dental fragment reattached to sectioned incisal edges. Materials and Method: 120 sound human maxillary central incisors were selected under standard conditions and randomly divided into 3 groups, 12 sound teeth were used as a control group and the remaining teeth were assigned to 3 groups (n=36 and each group into three subgroups (n=12. The incisal third of samples was sectioned using a diamond disk and the respective fragments were then reattached utilizing different intermediate restorative materials, namely: i adhesive materials alone (OptiBond S or OptiBond XTR or OptiBond All-in-One; ii Premise flowable composite and iii Point 4 composite in the one of mentioned adhesive interface. After storage for two weeks at 37°C and 100% humidity and then thermocycling; shear bond strength (SBS was recorded in kilogram force (kgf by applying a load in the middle incisal third with a Zwick Universal Testing Machine at a cross-head speed of 1 mm/min. Data was analyzed with one-way ANOVA and Tukey HSD (p< 0.05. Results: The control group had a significantly higher SBS than other groups (p= 0.001; the highest SBS values was obtained using the premise flowable composite and OptiBond S adhesive (112.44±30.46 Mpa; and the lowest with OptiBond All-in-One alone (33.97± 15.63 Mpa. Conclusion: Although, none of the tested materials provided fracture resistance similar to that found with the intact maxillary central incisors; utilizing the premise flowable composite and OptiBond S adhesive improved the SBS of the reattached fragment than other materials.

  9. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    Science.gov (United States)

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite

  10. Epoxy Resin and Polyurethane Compositions from Glycolized Poly (ethylene terephthalate Wastes

    Directory of Open Access Journals (Sweden)

    Gintaras MACIJAUSKAS

    2013-09-01

    Full Text Available The possibility to use poly(ethylene terephthalate (PET bottles production waste as raw material for compositions with high adhesion ability has been investigated. PET waste was glycolyzed with polypropylene glycol and three kinds of oligoesters were formed after depolymerization reaction. The polydispersity of product formed was 1.05. The possibilities to use PET glycolysis products – oligoesters for epoxy resin and polyurethanes were studied. Two-step reaction of oligoesters with epichlorohydrin was chosen for epoxy resin synthesis, while glycolyzed PET reaction with aliphatic isocyanate was used for polyurethane synthesis. The structure and properties of the obtained polymers were investigated. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5237

  11. Epoxy Resin and Polyurethane Compositions from Glycolized Poly (ethylene terephthalate Wastes

    Directory of Open Access Journals (Sweden)

    Gintaras MACIJAUSKAS

    2013-09-01

    Full Text Available The possibility to use poly(ethylene terephthalate (PET bottles production waste as raw material for compositions with high adhesion ability has been investigated. PET waste was glycolyzed with polypropylene glycol and three kinds of oligoesters were formed after depolymerization reaction. The polydispersity of product formed was 1.05. The possibilities to use PET glycolysis products – oligoesters for epoxy resin and polyurethanes were studied. Two-step reaction of oligoesters with epichlorohydrin was chosen for epoxy resin synthesis, while glycolyzed PET reaction with aliphatic isocyanate was used for polyurethane synthesis. The structure and properties of the obtained polymers were investigated. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5237

  12. Physical Properties of a New Sonically Placed Composite Resin Restorative Material

    Science.gov (United States)

    2013-06-06

    resins . Packable composite resins were first introduced as an alternative to amalgam .10 They are characterized by a high filler load and a filler...clearance: -"_Paper _Article _ Book _ Poster _ Presentation _Other 6. Title: Physical Properties of a New Sonically Placed Composite Resin Restorative...Properties of a New Sonically Placed Composite Resin Restorative Material ABSTRACT A new nanohybrid composite activated by sonic energy (SonicFill

  13. The application of nanotechnology in the improvement of dental composite resins

    Institute of Scientific and Technical Information of China (English)

    Xia Yang; Xie Haifeng; Zhang Feimin; Gu Ning

    2012-01-01

    In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the back- ground of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.

  14. The Basic Ply Properties of a Kevlar 49/Epoxy Resin Composite System,

    Science.gov (United States)

    1983-11-01

    Fibre 4 2.3 Composite 4 3 Results 7 3.1 Resin Properties 7 3.2 Composite Properties 9 4 Discussion 14 4.1 Resin System 14 4.2 Composite System 15 5...of the fibre creels before and after fabrication and from the weight of the composite. 3 RESULTS 3.1 Resin Properties TABLE I Resin Tensile Properties

  15. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio.

    Science.gov (United States)

    Vidotti, Hugo A; Manso, Adriana P; Leung, Victor; do Valle, Accácio L; Ko, Frank; Carvalho, Ricardo M

    2015-09-01

    To evaluate the influence of different resin blends concentrations and nanofibers mass ratio on flexural properties of experimental Poliacrylonitrile (PAN) nanofibers reinforced composites. Poliacrylonitrile (PAN) nanofibers mats were produced by electrospinning and characterized by tensile testing and scanning electron microscopy (SEM). Experimental resin-fiber composite beams were manufactured by infiltrating PAN nanofiber mats with varied concentrations of BisGMA-TEGDMA resin blends (BisGMA/TEGDMA: 30/70, 50/50 and 70/30weight%). The mass ratio of fiber to resin varied from 0% to 8%. Beams were cured and stored in water at 37°C. Flexural strength (FS), flexural modulus (FM) and work of fracture (WF) were evaluated by three-point bending test after 24h storage. The tensile properties of the PAN nanofibers indicated an anisotropic behavior being always higher when tested in a direction perpendicular to the rotation of the collector drum. Except for WF, the other flexural properties (FS and FM) were always higher as the ratio of BisGMA to TEGDMA increased in the neat resin beams. The addition of different ratios of PAN fibers did not affect FS and FM of the composite beams as compared to neat resin beams (p>0.05). However, the addition of fibers significantly increased the WF of the composite beams, and this was more evident for the blends with higher TEGDMA ratios (presin blends did not negatively affect the properties of the composite and resulted in an increase in toughness that is a desirable property for a candidate material for prosthodontics application. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  17. Microleakage of composite resin restoration in cavities prepared by Er:YAG laser irradiation in primary teeth.

    Science.gov (United States)

    Yamada, Y; Hossain, M; Nakamura, Y; Murakami, Y; Matsumoto, K

    2002-03-01

    AIM: The purposes of this study were to investigate the surface morphology of cavities prepared by Er:YAG laser irradiation and to compare the microleakage degree after composite resin restoration with etched bur cavities in primary teeth, in vitro. MATERIALS AND METHODS: On the buccal (facial) and lingual (palatal) surfaces of 25 primary teeth, a round cavity was prepared with the Er:YAG laser system and with a high-speed diamond bur, respectively. Five cavities from each group were investigated by scanning electron microscopy (SEM). The remaining cavities were filled with a composite resin and subjected to a microleakage test (0.6% rodamine B solution) under thermocycling. Only bur cavities were acid-etched before filling. Statistical analysis was performed using the Mann-Whitney's U test; a value of p adhesion between the restorative material and dental hard tissues; there was also no gap at the interface. DISCUSSION: The highly irregular surface or the removal of the debris-like smear layer after laser irradiation may facilitate good adhesion of composite resin with enamel or dentine, and these surfaces might play a major role in decreasing microleakage of laser cavities. CONCLUSION: It can be concluded that cavities prepared by Er:YAG laser are capable of decreasing microleakage of composite resin restorations in primary teeth, and the efficiency is similar to etched bur cavities.

  18. Composite resin fillings and inlays. An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, Ulla; Qvist, Vibeke

    2003-01-01

    The purpose of this randomized, clinical study was to evaluate the clinical performance of composite resin materials used for fillings and indirect inlays. Twenty-eight sets of five class II restorations (two fillings, three inlays) were placed in 88 premolars and 52 molars in 28 adults. Brillian...

  19. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    2006-01-01

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  20. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  1. The effects of restorative composite resins on the cytotoxicity of dentine bonding agents.

    Science.gov (United States)

    Kim, Kyunghwan; Son, Kyung Mi; Kwon, Ji Hyun; Lim, Bum-Soon; Yang, Hyeong-Cheol

    2013-01-01

    During restoration of damaged teeth in dental clinics, dentin bonding agents are usually overlaid with restorative resin composites. The purpose of this study was to investigate the effects of restorative resin composites on cytotoxicity of dentin bonding agents. Dentin bonding agents were placed on glass discs, pre-cured and uncured resin composite discs. Bonding agents on the glass discs and composite resins discs were light cured and used for agar overlay cytotoxicity testing. Dentin bonding agents on composite resin discs exhibited far less cytotoxicity than that on glass discs. The polymerization of resin composite increased the surface hardness and decreased the cytotoxicity of bonding agents. In conclusion, composite resins in dental restorations are expected to enhance the polymerization of dentin bonding agents and reduce the elution of resin monomers, resulting in the decrease of cytotoxicity.

  2. Investigation of modified cottonseed protein adhesives for wood composites

    Science.gov (United States)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  3. A clinical evaluation on adhesive posts in extensive composite restorations

    Directory of Open Access Journals (Sweden)

    Ghavamnasiri M. Associate Professor

    2003-06-01

    Full Text Available Problem: A few studies have been conducted about bioglass posts."nAim: The aim of this study was to compare bioglass posts with prefabricated metallic posts in clinical performance of extensive composite restorations for anterior endodontically treated teeth. Materials and Methods: Sixty endodontocally maxillary anterior teeth, with horizontally or vertically destruction, were selected. Teeth were divided into two groups based on the kind of post: Metallic prefabricated parapost and bioglass post. Each group was divided into three subgroups based on anterior bite: normal, deep bite and edge to edge. Gutta-percha was removed from 2/3 of canal length for parapost and 1/3 for bioglass post. After etching with phosphoric-acid (37% and applying dentine bonding syntac, Duo cement was used for the adhesion of bioglass post and a self cured composite (Degufil for parapost. Restoration was done with a hybrid composite (Heliomolar. Follow up studies, radio-graphically and clinically, were done every three months for a 1.5-year period. Exact Fisher and Pearson tests were used for data analysis."nResults: Apical lesion was not observed in any of the radiographs. Post seal was increased by resin cement and dentin bonding agent. Post type did not significantly affect on the clinical success rate of the restorations. The retention of restoration, for both posts, was the same. Crown destruction had no significant effect on success rate. The type of anterior bite had a significant effect on success rate, as the total 6.6% failure rate was related to the patients with anterior deep bite."nConclusion: It is suggested to use metallic paraposts and bioglass posts, in extensive composite restorations for patients with deep-bite, more conservatively.

  4. Cavity Adaptation of Water-Based Restoratives Placed as Liners under a Resin Composite

    Directory of Open Access Journals (Sweden)

    Sheela B. Abraham

    2017-01-01

    Full Text Available Purpose. To investigate the cavity adaptation of mineral trioxide (ProRoot MTA/MT, tricalcium silicate (Biodentine/BD, and glass ionomer (Equia Fil/EF cements used as liners and the interfacial integrity between those liners and a composite resin placed as the main restorative material. Materials and Methods. Standardized class I cavities (n: 8 per group were prepared in upper premolars. Cavities were lined with a 1 mm thick layer of each of the tested materials and restored with Optibond FL adhesive and Herculite Precis composite resin. Cavity adaptation of the restorations was investigated by computerized X-ray microtomography. The regions of interest (ROI were set at the cavity-liner (CL interface and the liner-resin (LR interface. The percentage void volume fraction (%VVF in the ROI was calculated. The specimens were then sectioned and the interfaces were evaluated by reflection optical microscopy, to measure the % length (%LD of the interfacial gaps. Selected samples were further evaluated by scanning electron microscopy. Statistical analysis was performed by two-way ANOVA and Student-Newman-Keuls multiple comparison test (a=0.05. Results. MT showed significantly higher %VVF and %LD values in CL interfaces than BD and EF (p<0.05. No significant differences were found among the materials for the same values at the LR interfaces. Conclusions. When used as a composite liner, ProRoot MTA showed inferior cavity adaptation at dentin/liner interface when compared to Biodentine and Equia Fil.

  5. Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites

    Science.gov (United States)

    Zhang, Xiwen; Zhao, Dongyu; Luan, Dongxue; Bi, Changlong

    2016-12-01

    Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanotubes/nanonickel (EP/MWCNTs/Ni) composite materials. Additionally, the observed strong interfacial interaction between MWCNTs and the epoxy resin matrix is responsible for the enhanced mechanical properties based on the analysis from scanning electron microscope. Experimental results based on the analysis from dynamic mechanical analysis (DMA) indicate a significant improvement in the glass transition temperature (Tg) by around 20 °C upon the addition of 1.5 wt% MWCNTs/Ni to the epoxy matrix. The tensile strength and the impact strength of the composites can improve around 64.8 and 176.7% compared with that of cured pure epoxy and improve with increasing MWCNTs/Ni content up to 1.3 wt%. Finally, the excellent mechanics capability of EP/MWCNTs/Ni nanocomposites will provide enormous opportunities for aerospace applications where conductive adhesive or high-performance polymer materials are necessary.

  6. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  7. Test method to assess interface adhesion in composite bonding

    OpenAIRE

    2015-01-01

    This paper introduces a new type of peel tests dedicated to composite bonding: Composite Peel Tests. This test is inspired on the standard floating roller peel test widely used for metal bonding. The aim of this study is to investigate the potential of the Composite Peel Test to assess interface adhesion in composite bonded structures. To this end, peel tests were performed with nine different types of adhesives and at two environmental temperatures, room temperature and +80°C. The results we...

  8. The effect of resin thickness on polymerization characteristics of silorane-based composite resin

    Directory of Open Access Journals (Sweden)

    Sung-Ae Son

    2014-11-01

    Full Text Available Objectives This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. Materials and Methods One silorane-based (Filtek P90, 3M ESPE and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm specimens. The microhardness of the top and bottom surfaces was measured (n = 15 using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC of the specimens was determined using Fourier transform infrared spectroscopy (FTIR. Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. Results The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05. P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05. Conclusions DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.

  9. Depth of Cure of New Flowable Composite Resins

    Science.gov (United States)

    2012-03-30

    Flowable composites were introduced to the dental community in the late 1990’s (Ikeda, 2009; Bayne , 1998). The advantage of flowable composite-based...allowing the increased resin to reduce the viscous nature of the material (Ikeda, 2009; Bayne 1998). They also exhibit low wear resistance (Ikeda...Oper Dent 2008; 33:31-6. Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable

  10. Resin-based composite as a direct esthetic restorative material.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala; Acharya, Shashirashmi

    2011-06-01

    The search for an ideal esthetic material for tooth restoration has resulted in significant improvements in both materials and the techniques for using them. Various resin-based composite (RBC) materials have recently been introduced into the market that offer improved esthetic and physical properties. This article reviews RBCs, including their compositions, advantages, and disadvantages, that are contemporary to today's clinical practice as well as those that are under research consideration and/ or in clinical trial phase.

  11. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  12. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  13. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  14. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  15. Effect of adhesive resin application on the progression of cavitated and non-cavitated incipient carious lesions.

    Science.gov (United States)

    El-Kalla, Ibrahim H; Saudi, Hussein I A; El-Agamy, Rizk A I

    2012-06-01

    To evaluate the penetration of two different adhesive resin systems into cavitated and non-cavitated artificial carious lesions and the behavior of treated carious lesions under further acid attack. Artificial caries-like lesions were created on the proximal surface of 100 human primary molars by a demineralizing gel. The teeth were assigned to three groups according to the adhesive resin used. Group 1 (G1) was for Single Bond adhesive resin, Group 2 (G2) for Xeno V adhesive resin, and Group 3 (G3) was without any adhesive application. Each group was randomly and equally subdivided into subgroups a and b. In subgroup a, the teeth were kept with intact artificial caries-like lesion surfaces while in the subgroup b, a minute cavity was made at the center of artificial caries-like lesions using a sharp explorer. Each tooth was sectioned occluso-cervically into two halves through the center of the lesion; the sectioned surface was polished and examined under a reflected light microscope for estimating the depth of the carious lesion or penetration of the adhesive resin. All tooth halves were coated at the sectioned surface with two layers of acid resistant nail varnish and returned again to the demineralizing solution to assess the progression or arrest of the carious lesion after the second acid attack. The penetration depth of adhesive resins did not differ significantly between subgroups (P>0.05). After the second acid attack, the infiltrated carious lesions showed no lesion progression while the non-infiltrated lesions showed advanced caries progression.

  16. Light induced polymerization of resin composite restorative materials

    Directory of Open Access Journals (Sweden)

    Blažić Larisa

    2004-01-01

    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  17. Microwave absorption properties of graphite flakes-phenolic resin composite

    Science.gov (United States)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigatio