WorldWideScience

Sample records for adhesive composite resin

  1. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  2. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  3. Marginal adaptation of composite resins under two adhesive techniques.

    Science.gov (United States)

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  4. Adhesion of resin composite core materials to dentin.

    Science.gov (United States)

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  5. Failure in a composite resin-dentin adhesive bond

    Energy Technology Data Exchange (ETDEWEB)

    Rezgui, B. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Abdennagi, H. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Sahtout, S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia)); Belkhir, M.S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia))

    1993-11-01

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.).

  6. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  7. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  8. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  9. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p composite resin (p composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  10. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  11. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pincompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    Science.gov (United States)

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  13. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  14. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  15. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (Pcomposite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Pcomposite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  18. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  20. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    Science.gov (United States)

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  1. Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems.

    Science.gov (United States)

    William, Vanessa; Burrow, Michael F; Palamara, Joseph E A; Messer, Louise B

    2006-01-01

    When restoring hypomineralized first permanent molars, placement of cavo-surface margins can be difficult to ascertain due to uncertainty of the bonding capability of the tooth surface. The purpose of this study was to investigate the adhesion of resin composite bonded to control and hypomineralized enamel with an all-etch single-bottle adhesive or self-etching primer adhesive. Specimens of control enamel (N=44) and hypomineralized enamel (N=45) had a 0.975-mm diameter composite rod (Filtek Supreme Universal Restorative) bonded with either 3M ESPE Single Bond or Clearfil SE Bond following manufacturers' instructions. Specimens were stressed in shear at 1 mm/min to failure (microshear bond strength). Etched enamel surfaces and enamel-adhesive interfaces were examined under scanning electron microscopy. The microshear bond strength (MPa) of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel (3M ESPE Single Bond=7.08 +/- 4.90 vs 16.27 +/- 10.04; Clearfil SE Bond=10.39 +/- 7.56 vs 19.63 +/- 7.42; P=.001). Fractures were predominantly adhesive in control enamel and cohesive in hypomineralized enamel. Scotchbond etchant produced deep interprismatic and intercrystal porosity in control enamel and shallow etch patterns with minimal intercrystal porosity in hypomineralized enamel. Control enamel appeared almost unaffected by SE Primer; hypomineralized enamel showed shallow etching. The hypomineralized enamel-adhesive interface was porous with cracks in the enamel. The control enamel-adhesive interface displayed a hybrid layer of even thickness. The microshear bond strength of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel. This was supported by differences seen in etch patterns and at the enamel-adhesive interface.

  2. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  3. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  4. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    Science.gov (United States)

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  composite resins upto 65% ( p  composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  5. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; Brown, Matthew

    2018-04-01

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite resin used had no effect on bond strength (P=.830). The etching protocol by itself also did not have a significant effect (P=.059), although a trend was present. The bonding agent, however, did have an effect (Pcomposite resins to dentin, no single etching protocol is better than another. Depending on which bonding agent is being used, one etching mode may perform better. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Three-year randomized controlled clinical study of a one step universal adhesive and a two-step self-etch adhesive in Class II resin composite restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    Purpose: To evaluate in a randomized clinical evaluation the 3-year clinical durability of a one-step universal adhesive bonding system and compare it intraindividually with a 2-step self-etch adhesive in Class II restorations. Materials and Methods: Each of 57 participants (mean age 58.3 yr......) received at least two, as similar as possible, extended Class II restorations. The cavities in each of the 60 individual pairs of cavities were randomly distributed to the 1-step universal adhesive (All Bond Universal: AU) and the control 2-step self-etch adhesive (Optibond XTR: OX). A low shrinkage resin......) success rates (p>0.05). Annual failure rates were 1.8% and 2.6%, respectively.The main reason for failure was resin composite fracture. Conclusion: Class II resin composite restorations placed with a one-step universal adhesive showed good short time effectiveness....

  7. [In vitro study of marginal microleakage of Clearfil S3 BOND adhesive systems and Majesty composite resin].

    Science.gov (United States)

    Wang, Bei; Zhu, Ya-qin

    2009-08-01

    To evaluate the microleakage of standard box-type cavity filled with Clearfil S3 BOND self-etch adhesive systems and Majesty composite resin. 40 permanent molars were randomly divided into experimental and control groups, 20 of each . The box-type cavities, 3mm in length and width and 2mm in depth, were prepared at the cemento-enamel junction on buccal surface of forty permanent extracted teeth. According to grouping, the experimental group was filled with Clearfil S(3) BOND self-adhesive systems and Majesty composite resin, and the control group was filled with 3M Adper Prompt self-adhesive and Filtek Z350 composite resin. After thermal circulation(2000 times, 5 degrees centigrade-55 degrees centigrade) and soaked for 24 hours in 2% methyl blue solution, the samples were cut through the midline of the restoration and the leakage depth was measured with vernier caliper. The microleakage degrees and microleakage depth of 2 groups were analyzed with SPSS 17.0 software package for Mann-Whitney U test and independent-samples t test. Microleakage was observed in both groups. But the microleakage degrees and microleakage depth of 2 groups had no significant difference (P>0.05). The marginal sealibility of Clearfil S(3) BOND self-adhesive systems and Majesty composite resin is as good as Adper Prompt self-adhesive and Filtek Z350 composite resin,it may be an ideal clinical restoration material.

  8. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    International Nuclear Information System (INIS)

    Mandracci, Pietro; Pirri, Candido F; Mussano, Federico; Ceruti, Paola; Carossa, Stefano

    2015-01-01

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO x thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO x coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  9. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  10. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review.

    Science.gov (United States)

    Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando

    2017-11-01

    To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  12. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2016-03-01

    Full Text Available Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P 0.05. In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003. AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05. Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite.

  13. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  14. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Clinical Effect of Dental Adhesive on Marginal Integrity in Class I And Class II Resin-Composite Restorations

    Directory of Open Access Journals (Sweden)

    Manchorova-Veleva Neshka A.

    2015-12-01

    Full Text Available BACKGROUND: Dental adhesives are believed to influence marginal adaptation and marginal discoloration when used under posterior resin-based composite restorations. Studies on the latest adhesive systems reveal that the group of the three-step etch-and-rinse adhesive (3-E&RA and the one-step self-etch adhesive (1-SEA have entirely different bonding mechanisms, as well as different bond strength and resistance to chemical, thermal and mechanical factors. STUDY OBJECTIVES: A hypothesis that a 1-SEA would result in greater enamel marginal discoloration and poorer marginal adaptation than a 3-E&RA was tested. MATERIAL AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-composite and were evaluated for marginal adaptation and marginal discoloration at baseline, and 6 months, 12 months, and 36 months postoperatively. RESULTS: The statistical analysis revealed significant differences in marginal integrity between test groups. The 1-SEA resulted in greater enamel marginal discoloration and poorer marginal adaptation than the 3-E&RA at any recall time. CONCLUSIONS: Marginal adaptation and marginal discoloration depend on the type of dentin adhesive used. The restorations with Filtek Supreme and Scotchbond MP are better than the restorations with Adper Prompt L-Pop with regard to the marginal adaptation and marginal discoloration at 6-, 12- and 36-month evaluations.

  16. Effect of Cigarette Smoke on Resin Composite Bond Strength to Enamel and Dentin Using Different Adhesive Systems.

    Science.gov (United States)

    Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb

    2016-01-01

    To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (αadhesive systems (padhesives, but no differences were noted in enamel.

  17. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters.

    Science.gov (United States)

    Stawarczyk, Bogna; Taufall, Simon; Roos, Malgorzata; Schmidlin, Patrick R; Lümkemann, Nina

    2018-03-01

    The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods. Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1  = 80/pretreatment): (i) 50 μm Al 2 O 3 (0.05 MPa); (ii) 50 μm Al 2 O 3 (0.35 MPa); (iii) 110 μm Al 2 O 3 (0.05 MPa); (iv) 110 μm Al 2 O 3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2  = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H 2 O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan-Meier survival analysis with Breslow-Gehan test and Cox-regressions. The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al 2 O 3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al 2 O 3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH. The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact. According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with

  18. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    Science.gov (United States)

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (padhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  19. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  20. Efficacy of Hydrophobic Layer On Sealing Ability of Dentin Adhesive Systems in Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleknejad

    2011-03-01

    Full Text Available Background and aims. Adhesive permeability is hindered by application of an additional layer of hydrophobic resin, which increases its concentration within the hydrophilic layer, reduces its affinity to water, and enhances its physical properties. The aim of the present study was to evaluate the effect of a hydrophobic layer on the microleakage of class V composite restorations using different adhesives. Materials and methods. The adhesives including total-etch Scotchbond MP and Single Bond, and the self-etch Clearfil SE Bond and Clearfil S3 Bond were applied to 80 class V cavities in vitro on the buccal surface in CEJ and then were followed by hydrophobic resin (Margin Bond in half of the cavities in each group (n=10. After restoration with microhybrid composite, Z100 and immersion in fuchsine, the degree of microleakage was assessed. Data were analyzed using the Kruskal-Wallis, Man-Whitney, and Wilcoxon tests. Results. The hydrophobic layer significantly reduced the microleakage of Clearfil SE Bond and Clearfil S3 Bond only in dentin (p0.05. Conclusion. Within the limitation of this study, only Clearfil S3 Bond could demonstrate the identical values of microleakage in enamel and dentinal margins.

  1. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  2. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  3. [The influence of the chemo-mechanical removal of the smear-layer and the use of a dentin adhesive on microleakage of composite resin restorations].

    Science.gov (United States)

    de la Macorra García, J C; Gómez Martínez, A; Gutiérrez Argumosa, B

    1989-02-01

    We present an "in vitro" study of microfiltration in composite resin restorations with a perimetral seal placed totally in cement. We compare the sealing capability of a dentin adhesive (ScotchBond I) used in two ways: habitual, without conditioning dentin and conditioning it by means of the Caridex system. This produced no increasing of sealing capability under the study conditions.

  4. Effectiveness of different adhesive primers on the bond strength between an indirect composite resin and a base metal alloy.

    Science.gov (United States)

    Sarafianou, Aspasia; Seimenis, Ioannis; Papadopoulos, Triantafillos

    2008-05-01

    There is a need for achieving reliable chemical bond strength between veneering composites resins and casting alloys through the use of simplified procedures. The purpose of this study was to examine the shear bond strength of an indirect composite resin to a Ni-Cr alloy, using 4 primers and 2 airborne-particle-abrasion procedures. Fifty-six Ni-Cr (Heraenium NA) discs, 10 mm in diameter and 1.5 mm in height, were fabricated. Twenty-four discs were airborne-particle abraded with 50-microm Al2O3 particles, while another 24 were airborne-particle abraded with 250-microm Al2O3 particles. The following primers were applied on 6 discs of each airborne-particle-abrasion treatment group: Solidex Metal Photo Primer (MPP50, MPP250), Metal Primer II (MPII50, MPII250), SR Link (SRL50, SRL250), and Tender Bond (TB50, TB250). The Rocatec system was used on another 6 discs, airborne-particle abraded according to the manufacturer's recommendations, which served as the control group (R). Two more discs were airborne-particle abraded with 50-microm and 250-microm Al2O3 particles, respectively, to determine the Al content on their surfaces, without any bonding procedure. The indirect composite resin used was Sinfony. Specimens were thermally cycled (5 degrees C and 55 degrees C, 30-second dwell time, 5000 cycles) and tested in shear mode in a universal testing machine. The failure mode was determined with an optical microscope, and selected specimens were subjected to energy dispersive spectroscopy (EDS). Mean bond strength values were analyzed using 2-way ANOVA followed by Tukey's multiple comparison tests (alpha=.05) and compared to the control group using 1-way ANOVA followed by Tukey's multiple comparison tests (alpha=.05). The groups abraded with 50-microm particles exhibited significantly higher bond strength compared to the groups abraded with 250-microm particles. Group MPII50 exhibited the highest mean value (17.4 +/-2 MPa). Groups MPP50, MPP250, and TB50, TB250 showed

  5. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  6. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  7. Effect of At-home and In-office Bleaching on Marginal Microleakage in Composite Resin Restorations using Two Adhesive Systems.

    Science.gov (United States)

    Klein, Celso A; da Silva, Douglas; Reston, Eduardo G; Borghetti, Diana Lb; Zimmer, Roberto

    2018-03-01

    The aim of this study is to assess marginal microleakage of cervical cavities restored with composite resins and two different adhesive techniques subjected to at-home and in-office bleaching. In this randomized, blind laboratory experiment, 60 bovine teeth recently extracted were collected and divided into six groups (n = 10 each group). The teeth received cervical cavity preparations (2 mm × 3 mm × 1 mm) with enamel margins. Two different adhesive systems were used (Single Bond 2 and Clearfil SE Bond), in addition to composite resin (Z250). Restored teeth received two different bleaching gels (Opalescence PF and Opalescence Boost). Teeth were thermo-cycled and analyzed under confocal laser scanning microscopy. No significant differences were observed (p > 0.05) in microleakage scores between the two groups not subjected to bleaching nor between the four groups that received bleaching treatment (p > 0.05), regardless of the gel and adhesive system employed. However, when comparing nonbleached with bleached teeth, those not subjected to bleaching showed statistically lower marginal microleakage scores (p bleaching agents used both at-home and in-office, regardless of the adhesive system employed (total-etch or self-etch). Both at-home and in-office bleaching agents have an influence on the adhesive interface of resin restorations, producing changes and inducing marginal leakage.

  8. Effect of Colgate Sensitive Pro-Relief paste on the strength of adhesion of composite resin in dental pieces

    International Nuclear Information System (INIS)

    Davila Rodriguez, Amanda; Sas Rosero, Cristina de

    2013-01-01

    The effect of the toothpaste Colgate Sensitive Pro-Relief on the strength of adhesion was analyzed, through in vitro studies, in dental pieces that have been previously treated with a protocol that simulates dental hypersensitivity. Several dental pieces were taken as study samples and divided into groups. The Colgate Sensitive Pro-Relief TM desensitizing paste was applied to the non-crown surfaces of the teeth, with the exception of the negative control group which remained without the application. Positive control protocols, prophylaxis with the use of fluorinated prophylactic paste, 400 grit sandpaper, phosphoric acid and negative control were applied. Subsequently, a Brilliant NG TM dentin photocurable resin crown was constructed for the groups to which the indicated protocols were applied. The greatest strength of adhesion was presented by the group Prophylaxis. It is assumed that a second application of orthophosphoric acid is able to de-blot even more the dental tubules and with this improve the adhesion. An improvement in the adhesion of resin on the tooth surface is provided when performing a dental prophylaxis using prophylactic paste and a rubber cup, before restoring a tooth. Sandpaper 400 prevents an improvement in the adhesion of resins. The results with the negative control group were unexpected and may be due to errors in the treatment process [es

  9. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA

  10. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  11. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  12. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  13. EVALUATION OF MICROLEAKAGE DEGREE IN COMPOSITE RESIN RESTORATIONS BY COMPARING TWO ADHESIVES SYSTEMS AFTER DIFFERENT AGING PERIODS

    OpenAIRE

    Falconí-Borja, Gabriela Marina; Molina-Pule, Carla Grimaneza; Velásquez-Ron, Byron Vinicio; Armas-Vega, Ana del Carmen

    2016-01-01

    ABSTRACT Introduction: the clinical success of adhesive systems is based on the use of a responsible for creating microporosity in the dental structure acid and arises assess in vitro the degree of microfiltration in direct restorations with cavities class V where two adhesive systems differently used composition and at different periods of time. Methods: in the cervical third of 60 third molars extracted by therapeutic indication performed by diamond instruments, two cavities one on the ...

  14. Interfacial adhesion improvement in carbon fiber/carbon nanotube reinforced hybrid composites by the application of a reactive hybrid resin initiated by gamma irradiation

    Science.gov (United States)

    Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.

    2018-04-01

    Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.

  15. Randomized 3-year Clinical Evaluation of Class I and II Posterior Resin Restorations Placed with a Bulk-fill Resin Composite and a One-step Self-etching Adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2015-01-01

    PURPOSE: To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations. MATERIALS AND METHODS: Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years......). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR...... in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were...

  16. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... resin composite, the fifth group – two‑stage SE adhesive applied and cavities filled with ... KEYWORDS: Adhesives, composite, evaluation, leakage ... the glass ionomers. ... systems are realized in one or two clinical step(s).[5].

  17. Does the adhesive strategy influence the post-operative sensitivity in adult patients with posterior resin composite restorations?: A systematic review and meta-analysis.

    Science.gov (United States)

    Reis, Alessandra; Dourado Loguercio, Alessandro; Schroeder, Marcos; Luque-Martinez, Issis; Masterson, Danielle; Cople Maia, Lucianne

    2015-09-01

    A systematic review and meta-analysis were performed on the risk and intensity of postoperative sensitivity (POS) in posterior resin composite restorations bonded with self-etch (SE) and etch-and-rinse (ER) adhesives. A comprehensive search was performed in the MEDLINE via PubMeb, Scopus, Web of Science, LILACS, BBO and Cochrane Library and SIGLE without restrictions. The abstracts of the annual conference of the IADR (1990-2014), unpublished and ongoing trials registry were also searched. Dissertations and theses were searched using the ProQuest Dissertations and Periodicos Capes Theses databases. We included randomized clinical trials that compared the clinical effectiveness of SE and ER used for direct resin composite restorations in permanent dentition of adult patients. The risk/intensity of POS was the primary outcome. The risk of bias tool of the Cochrane Collaboration was used. The meta-analysis was performed on the studies considered 'low' risk of bias. After duplicates removal, 2600 articles were identified but only 29 remained in the qualitative synthesis. Five were considered to be 'high' risk of bias and eleven were considered to be 'unclear' in the key domains, yielding 13 studies for meta-analysis. The overall relative risk of the spontaneous POS was 0.63 (95% CI 0.35 to 1.15), while the stimuli-induced POS was 0.99 (95% CI 0.63 to 1.56). The overall standardized mean difference was 0.08 (95%CI -0.19 to 0.35). No overall effect was revealed in the meta-analyses, meaning that no influence of the ER or SE strategy on POS. The type of adhesive strategy (ER or SE) for posterior resin composite restorations does not influence the risk and intensity of POS. CRD42014006617. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Microleakage of Composite Resin Restorations Using a Type of Fifth and Two Types of Seventh Generations of Adhesive Systems: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mitra Tabari

    2015-12-01

    Full Text Available Introduction: In recent dentin adhesive systems etching of enamel/dentin are achieved simultaneously. The objective was to evaluate the microleakage of composite restorations using Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. Methods: Class V cavities were prepared on  45 extracted intact premolars with gingival margins at the cementoenamel junction and they were randomly divided into 3 groups (n=15 based on the type of adhesives: Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. After applying the adhesives, the cavities were filled with Z250 composite resin. The occlusal and gingival microleakage was evaluated using 2% basic fuchsin staining technique. Data were analyzed using Kruskal-Wallis and Bonferroni corrected Mann-Whitney U tests. Results: The mean rank of occlusal microleakage exhibited significant differences by comparison of G Bond, Clearfil S3 Bond and Single Bond2 (21.07, 30.67 and 17.27, respectively (P=0.005. There was a significant difference in gingival microleakage of different bonding agents (34.40, 17.83 and 16.77 for G Bond, Clearfil S3 Bond and Single Bond2, respectively (P

  19. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  20. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  1. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  2. Evaluation of an Experimental Adhesive Resin for Orthodontic Bonding

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Pavithra, D.; Hashem, M. I.; Alkhudhairy, F.; Elsharawy, M.; Divakar, D. D.; Vallittu, P. K.; Matinlinna, J. P.

    2017-07-01

    The aim of this study was to evaluate in vitro the effect of an experimental adhesive resin for orthodontic bonding by measuring some the chemical and mechanical properties. The resin demonstrated increased values of nanohardness and elastic modulus, but the differences were not significant compared with those for the Transbond XT adhesives. The experimental adhesive resin could be a feasible choice or a substitute for the traditional bis-GMA-based resins used in bonding orthodontic attachments.

  3. Four-year clinical evaluation of Class II nano-hybrid resin composite restorations bonded with a one-step self-etch and a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical trial was to evaluate the 4-year clinical performance of an ormocer-based nano-hybrid resin composite (Ceram X; Dentsply/DeTrey) in Class II restorations placed with a one-step self-etch (Xeno III; Dentsply/DeTrey) and two-step etch-and-rinse adhesive (I...

  4. A Histopathological Study of Direct Pulp Capping with Adhesive Resins

    Directory of Open Access Journals (Sweden)

    J. Salhenejad

    2004-12-01

    Full Text Available Statement of Problem: Recently, it has been proposed that different adhesive materials can be used for direct pulp capping. Previous studies have demonstrated that multi steps dentin adhesives could form reparative dentin similar to calcium hydroxide (CH.Purpose: The aim of this study was to evaluate the histological pulp response of ninety mechanically exposed cat pulps to two adhesive resins (Scotch Bond MP and Single Bond 3M were compared with a calcium hydroxide cement (Dycal, Dentsply.Materials and Methods : Class V facial cavities with similar pulpal exposures were prepared in canines. In the experimental groups phosphoric acid was used to etch the enamel and dentin and pulp exposure, and after it dentin adhesives was applied. The exposure point of the control group was capped with Dycal then the remainder of the cavities was etched and a dentin adhesive (single bond was applied. All of the cavities were restored with a composite resin (Z 100 in usual manner. The animals were scarified after 7, 30 and 60 days (n=30, and the pulp evaluated histologically, statistical analysis was carried out with Kruskal- Wallis test (a=0.05.Results: The data showed that most of the cases had mild inflammation of pulp tissue.There was no significant difference in inflammatory reaction of pulp by Dycal and two adhesive systems, severe inflammatory reaction of pulp was observed only in most of the 30- day Single Bond group. Soft tissue organization of dentin bridge was less than ScotchBond and Dycal groups, the differentiation of dentin bridge was less than Scotch Bond group after 7 days.Conclusion: Slight inflammatory cell infiltration was the main reaction of exposed pulp when two commercially available adhesive resins were placed directly on the exposed pulp.There was no significant difference in inflammatory reaction of pulp between Dycal and two adhesive systems after 7 days and 60 days. After 7 days most of the specimens showed an amount of predentin

  5. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    Science.gov (United States)

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P enamel and dentin substrates (P enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  6. The effect of storage and type of adhesive resin on microleakage of ...

    African Journals Online (AJOL)

    The effect of storage and type of adhesive resin on microleakage of enamel margins in class V composite restorations. SS Oskoee, AA Ajami, S Kimyai, M Bahari, S Rahimi, PA Oskoee, EJ Navimipour, SS Kahnamouii ...

  7. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  8. Leakage testing for different adhesive systems and composites to ...

    African Journals Online (AJOL)

    The teeth were randomly assigned to six groups of 14 teeth each as follows: The first group – etch‑rinse adhesive applied and cavities filled with flowable composite, the second group – etch‑rinse adhesive applied and cavities filled with bulk‑fill resin composite, the third group – one‑stage self‑etch (SE) adhesive applied ...

  9. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  10. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2018-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth...... present an aesthetic problem due to exposure of un-aesthetic crown-margins. The invasive permanent crown restorations are therefore often not suc-cessful on a long-term scale. On the other hand, a conservative direct restoration of an extensively fractured incisor crown with resin composite may......-structure and with minimal risk of pulpal complication. In addition, it offers an aesthetic solution to the patient immediately after an injury, which may bring a little comfort in a sad situation. The resin composite build-up is often changed or repaired a couple of times, before the tooth is restored with a porcelain...

  11. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin.

    Science.gov (United States)

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-05-01

    Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008-2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan's logistic regression test. In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly

  12. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  13. The Impact of Plasma Treatment of Cercon® Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties.

    Science.gov (United States)

    Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein

    2017-01-01

    Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.

  14. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-05-01

    Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.

  16. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    (13.5 %) and nine in the two-step etch-and-rinse group (13.0 %). This resulted in nonsignificant different annual failure rates of 1.69 and 1.63 %, respectively. Fracture of restoration was the main reason for failure. Conclusion: Good clinical performance was shown during the 8-year evaluation....... Results: One hundred and fifty-eight restorations were evaluated after 8 years. Three participants with five restorations (three Xeno III, two Excite) were registered as dropouts. Twenty-one failed restorations (13.3 %) were observed during the follow-up. Twelve in the one-step self-etch adhesive group...... and no significant difference in overall clinical performance between the two adhesives. Fracture was the main reason for failure. Clinical relevance: The one-step self-etch adhesive showed a good long-term clinical effectiveness in combination with the nanohybrid resin composite in Class II restorations....

  17. Resistência adesiva de resinas compostas à dentina Adhesive strength between composite resin and dentin substract

    Directory of Open Access Journals (Sweden)

    Joel BIANCHI

    1999-01-01

    Full Text Available As pesquisas relacionadas com adesão à dentina, em virtude da ampla aplicabilidade, são de grande interesse para a Odontologia. O objetivo deste estudo foi avaliar, através de ensaios de tração, a resistência adesiva ao substrato dentinário, em função de dois sistemas adesivos (3M e Kerr, dois níveis de rugosidade do substrato dentinário (lixas 220 e 600, duas áreas de colagem (3,14 mm2 - 12,56 mm2, e duas condições de armazenagem (inicial e final. A análise dos resultados evidenciou que: 1 houve diferença estatisticamente significativa entre os dois sistemas adesivos, sendo que o da Kerr apresentou os valores mais elevados de resistência adesiva; 2 diferenças significativas não ficaram evidentes na resistência da adesão entre os dois níveis de rugosidade dentinária; 3 as colagens em áreas menores apresentaram, em nível altamente significativo, maior resistência adesiva; 4 a condição de armazenagem influiu nos resultados dependendo da área e do sistema adesivo.There is a wealthy literature on bonding strength of composites to dentine. One of the reasons for the large number of studies is the continuous introduction of new bonding agents in combination with accumulated knowledge about the dentine substrate conditions. The aim of the present study was to compare the "in vitro" tensile bond strengths of two dentine bonding systems (3M and Kerr applied to different dentine roughness (220 and 600 gritand two sizes of bonding areas (3,14 mm2 and 12,56 mm2. Different storage conditions (initial and final were also considered. One hundred and sixty human teeth were randomly allocated in 4 groups. The Kerr system groups and the smallest bonding area groups showed the highest tensile strengths. The storage condition and the substrate roughness did not display a significant influence on bond strengths.

  18. Synthesis and characterization of novel halloysite-incorporated adhesive resins.

    Science.gov (United States)

    Feitosa, Sabrina A; Münchow, Eliseu A; Al-Zain, Afnan O; Kamocki, Krzysztof; Platt, Jeffrey A; Bottino, Marco C

    2015-11-01

    To investigate the effects of Halloysite® aluminosilicate clay nanotubes (HNTs) addition on selected physical, mechanical, and biological properties of experimental adhesive resins. Experimental dentin adhesive resins were prepared by mixing Bis-GMA, TEGDMA, HEMA (50/25/25wt.%), and photo-initiators. As-received HNTs were then incorporated into the resin mixture at distinct concentrations: 0 (HNT-free, control), 1, 2.5, 5, 7.5, 10, and 20wt.%. The degree of conversion (DC), radiopacity (RP), Knoop hardness (KHN), flexural strength (FS), and cytotoxicity analyses were carried out for each adhesive formulation. The adhesive resin of Adper Scotchbond Multi-Purpose (SBMP) was used as the commercially available reference for both the RP and cytotoxicity tests. Data were statistically analyzed using One-Way ANOVA and Tukey's test (p≤0.05). All adhesives exhibited similar DC (p=0.1931). The RP of adhesives was improved with the addition of up to 5wt.% of HNTs (p<0.001). Adhesives containing 5-10wt.% of HNTs led to greater KHN when compared to the control (p<0.001). The FS was reduced only when 20wt.% of HNTs was added (p≤0.001). None of the prepared adhesives was cytotoxic. The incorporation of up to 10wt.% of HNTs into the adhesive resins did not jeopardize the tested physical and biological properties. When using HNTs as carriers of drugs/bioactive compounds, the amount of the former added into adhesive resin materials should not exceed 10wt.%; otherwise, a significant reduction in physicomechanical properties may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Synthesis of adhesive radiohardenable resins of the modified polyepoxide type

    International Nuclear Information System (INIS)

    Acquacalda, J.-M.

    1972-01-01

    Eight adhesive radiohardenable resins of the modified epoxide type have been synthesized. Four were obtained from commercial resins: EPON 812, 827, 871 and ARALDITE 106. The synthesis of the four others required the development of analytical techniques to characterize of the reagents beforehand and then to identify the resins themselves. From a study of behavior under irradiation it seems that all the compounds obey a law of acrylic double bond disappearance with the logarithm of irradiation dose for which it is hard to find a detailed theoretical interpretation. The fracture of irradiated adhesive assemblies and their comparison has shown that for acceptable irradiation doses the synthesized resins, especially the product of Bisphenol A condensation on glycidyl acrylate, behave quite as well as polyepoxide resins without possessing the disadvantages inherent to the incorporation of standard chemical hardeners [fr

  20. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  1. Avaliação da interação entre resina composta e diferentes adesivos dentinários Evaluation of the interaction between composite resin and different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Luciana Lourenço RIBEIRO

    1999-01-01

    Full Text Available O objetivo deste estudo foi avaliar a resistência à tração de quatro diferentes sistemas adesivos. Scotchbond Multi Purpose Plus, 3M (Grupo 1, Prime & Bond 2.0, Dentsply (Grupo 2 ProBOND, Dentsply (Grupo 3, PAAMA 2, (Grupo 4 foram usados com a resina composta Glacier (SDI. Um grupo sem a utilização de qualquer sistema adesivo serviu como controle (Grupo 5. Cinqüenta espécimes foram divididos em cinco grupos com dez espécimes cada. Uma matriz de aço inoxidável com 6,0 mm de diâmetro e 1,0 mm de profundidade foi usada para se obterem dois discos de resina composta. A resina composta foi inserida em uma metade da matriz em pequenas porções e fotopolimerizada por 40 segundos. Os adesivos foram então aplicados na superfície dos discos de resina, seguindo a instrução dos fabricantes. A segunda parte da matriz foi colocada em posição e preenchida com a resina composta. Após uma hora, a matriz foi adaptada em um dispositivo especial na máquina de ensaios Kratos para determinar a resistência de união, a uma velocidade de 0,05 mm/min. Os resultados, expressos em kgf, foram: Grupo 1 (3,99 ± 1,47, Grupo 2 (4,24 ± 2,00, Grupo 3 (3,84 ± 0,88, Grupo 4 (4,33 ± 1,23 e Grupo 5 (4,21 ± 1,38. Os resultados foram analisados pelo teste estatístico ANOVA a um critério. Não houve diferença estatisticamente significante (p The purpose of this study was to evaluate the tensile bond strength of four different adhesive systems. Scotchbond Multi-Purpose Plus, 3M (Group 1, Prime & Bond 2.0, Dentsply (Group 2, ProBOND, Dentsply (Group 3, PAAMA 2, SDI (Group 4 were used with GLACIER (SDI composite resin. One group without any adhesive was used as control (Group 5. Fifty specimens were divided into 5 groups of 10 each. A stainless steel split matrix with 6.00 mm diameter and 1.00 mm depth was used to obtain two discs of composite resin. The composite resin was applied into one half of the matrix in small portions and light cured for 40 seconds

  2. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  3. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces.

    Science.gov (United States)

    Liu, Tianshuang; Xu, Changqi; Hong, Liang; Garcia-Godoy, Franklin; Hottel, Timothy; Babu, Jegdish; Yu, Qingsong

    2017-12-01

    Candida-associated denture stomatitis is the most common oral mucosal lesion among denture wearers. Trimethylsilane (TMS) plasma coating may inhibit the growth of Candida albicans on denture surfaces. The purpose of this in vitro study was to investigate whether TMS plasma coatings can effectively reduce C albicans adhesion on denture base acrylic resin surfaces. Sixty denture base acrylic resin disks with smooth and rough surfaces were prepared and were either left untreated (control group) or coated with TMS monomer (experimental group) by using plasma. Contact angles were measured immediately after TMS plasma coating. The morphology of C albicans adhesion was observed with scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) was used to characterize the elemental composition of the specimen surface. An adhesion test was performed by incubating the resin disk specimens in C albicans suspensions (1×10 7 cells/mL) at 37°C for 24 hours and further measuring the optical density of the C albicans by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay test. One-way ANOVA and 2-way ANOVA were followed by a post hoc test analysis (α=.05). The group with TMS coating exhibited a more hydrophobic surface than the control group. EDS analysis revealed successful TMS plasma coating. The difference in the mean contact angles between the uncoated group and the TMS-coated group was statistically significant (Pcoating than on the surfaces of the experimental group. In the adhesion test, the amount of C albicans adhering to the surface of denture base resin with the TMS coating was significantly less than that on the surfaces without TMS coating (Pcoating significantly reduced the adhesion of C albicans to the denture base resin and may reduce denture stomatitis. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  5. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine.

    Science.gov (United States)

    Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H

    2004-01-01

    To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting that reduced permeability of the adhesives resulted in improved coupling of the resin cements to dentin. Placement of an intermediate layer of a LVBR between the bonded dentine surface and the resin cements resulted in improved coupling of Panavia F to dentine.

  6. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device...

  7. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Directory of Open Access Journals (Sweden)

    Andrea Mello de Andrade

    2010-12-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350 and adhesive system [(Solobond Plus, Futurabond NR (VOCO and Adper Single Bond (3M ESPE] on the microtensile (μTBS and microshear bond strength (μSBS tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0C/24 h specimens were stressed (0.5 mm/min. Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05. RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05. For both tests only the main factor resin composite was statistically significant (p<0.05. The correlation test detected a positive (r=0.91 and significant (p=0.01 correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

  8. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  9. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  10. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  11. The addition of nanostructured hydroxyapatite to an experimental adhesive resin.

    Science.gov (United States)

    Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo; Trommer, Rafael Mello; Andrioli, Daniela Guerra; Bergmann, Carlos Pérez; Samuel, Susana Maria Werner

    2013-04-01

    Was produced nanostructured hydroxyapatite (HAnano) and evaluated the influence of its incorporation in an adhesive resin. HAnano was produced by a flame-based process and was characterized by scanning electron microscopy. The surface area, particle size, micro-Raman and cytotoxicity were evaluated. The organic phase was formulated by mixing 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. HAnano was added at seven different concentrations: 0; 0.5; 1; 2; 5; 10 and 20 wt.%. Adhesive resins with hydroxyapatite incorporation were evaluated for their radiopacity, degree of conversion, flexural strength, softening in solvent and microshear bond strength. The data were analyzed by one-way ANOVA and Tukey's post hoc test (α=0.05), except for softening in solvent (paired t-test) and cytotoxicity (two-way ANOVA and Bonferroni). HAnano presented 15.096 m(2)/g of specific surface area and a mean size of 26.7 nm. The radiopacity values were not different from those of 1-mm aluminium. The degree of conversion ranged from 52.2 to 63.8%. The incorporation of HAnano did not influence the flexural strength, which ranged from 123.3 to 143.4MPa. The percentage of reduction of the microhardness after immersion in the solvent became lower as the HAnano concentration increased. The addition of 2% nanostructured hydroxyapatite resulted in a higher value of microshear bond strength than the control group (phydroxyapatite into an adhesive resin presented the best results. The incorporation of nanostructured hydroxyapatite increases the adhesive properties and may be a promising filler for adhesive resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. 4-META opaque resin--a new resin strongly adhesive to nickel-chromium alloy.

    Science.gov (United States)

    Tanaka, T; Nagata, K; Takeyama, M; Atsuta, M; Nakabayashi, N; Masuhara, E

    1981-09-01

    1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.

  13. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment

    International Nuclear Information System (INIS)

    Carvalho, Wendell Lima de

    2003-01-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm 2 , Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm 2 ) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than others

  14. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  15. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  16. The selection of adhesive systems for resin-based luting agents.

    Science.gov (United States)

    Carville, Rebecca; Quinn, Frank

    2008-01-01

    The use of resin-based luting agents is ever expanding with the development of adhesive dentistry. A multitude of different adhesive systems are used with resin-based luting agents, and new products are introduced to the market frequently. Traditional adhesives generally required a multiple step bonding procedure prior to cementing with active resin-based luting materials; however, combined agents offer a simple application procedure. Self-etching 'all-in-one' systems claim that there is no need for the use of a separate adhesive process. The following review addresses the advantages and disadvantages of the available adhesive systems used with resin-based luting agents.

  17. Measurement of opalescence of resin composites.

    Science.gov (United States)

    Lee, Yong-Keun; Lu, Huan; Powers, John M

    2005-11-01

    Opalescence is an optical property, where there is light scattering of the shorter wavelengths of the visible spectrum, giving the material a bluish appearance under reflected light and an orange/brown appearance under transmitted light. The objective of this study was to determine the opalescence of resin composites with a color measuring spectrophotometer. Colors of A2 and enamel or translucent shades of four resin composites and of an unfilled resin measured in the reflectance and transmittance modes were compared, and the opalescence parameter (OP) was calculated as the difference in blue-yellow coordinate (Deltab*) and red-green parameter (Deltaa*) between the reflected and transmitted colors of 1-mm thick specimens. The masking effect was calculated as the color difference between the color of a black background and the color of specimen over the black background. The range of OP in resin composites was 5.7-23.7, which was higher than that of the unfilled resin. However, there were significant differences among the brands and shades of the resin composites. Opalescence varied by brand and shade of the resin composites, and contributed to the masking of background color along with translucency parameter. Some of the resin composites actually displayed opalescence.

  18. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  19. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  20. Tensile bond srength between composite resin using different adhesive systems Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2002-11-01

    Full Text Available The aim of this study was evaluate the tensile bond strength (TBS among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1, Etch & Prime 3.0 /Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/ Copalite-Cooley & Cooley (G7, Prime & Bond NT/Dentsply (G8, Scotchbond Multi Purpose Plus/3M (G9. The control group (G10 was made only with the composite resin (Z100/3M. One hundred specimens were made, 10 for each group. There were significant differences on TBS among groups. G3 showed the hightest TBS in comparison to other tested groups. G10 presented higher TBS than all groups. O objetivo desta pesquisa foi investigar in vitro a resistência de união entre uma resina composta e nove sistemas adesivos dentinários. Os adesivos estudados foram assim agrupados: Single Bond/3M (G1, Etch & Prime 3.0/ Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/Copalite (G7, Prime & Bond NT/Dentsply (G 8, Scotchbond Multi Purpose Plus/3M (G9. O Grupo controle (G10. foi confeccionado somente com a resina composta (Z100/3M. Foram confeccionados 100 espécimes, 10 para cada grupo. Houve diferenças estatísticas significantes entre os grupos. O grupo 3 foi o que mostrou a mais alta resistência em comparação aos nove testados. O grupo controle (G10 apresentou a mais alta resistência entre todos os Grupos.  

  1. Candida albicans adherence to resin-composite restorative dental material: influence of whole human saliva.

    Science.gov (United States)

    Maza, José Luis; Elguezabal, Natalia; Prado, Carlota; Ellacuría, Joseba; Soler, Iñaki; Pontón, José

    2002-11-01

    Attachment of Candida albicans to oral surfaces is believed to be a critical event in the colonization of the oral cavity and in the development of oral diseases such as Candida-associated denture stomatitis. Although there is considerable information about the adhesion of C albicans to buccal epithelial cells and prosthetic materials, there is very little information about the adhesion of C albicans to composite restorative materials. The purpose of this study was to investigate the degree of adhesion of C albicans to a resin-composite restorative material (Herculite). The adhesion of 2 strains of C albicans, a germinative and a germ tube-deficient mutant, was studied by a visual method after incubating the fungus and the resin with and without human whole saliva. In absence of saliva, the adhesion of the C albicans germinative isolate to the resin showed an increase in parallel with the germination, reaching a maximum at the end of the experiment (120 minutes). However, no significant differences were observed in the adhesion of the agerminative mutant during the period of time studied. In the presence of saliva, the adhesion of both isolates to the resin was significantly lowered. Germination and the presence of human whole saliva are important factors in the adhesion of C albicans to the resin-composite restorative material Herculite.

  2. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  3. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  4. IPS Empress inlays luted with a self-adhesive resin cement after 1 year.

    Science.gov (United States)

    Taschner, Michael; Frankenberger, Roland; García-Godoy, Franklin; Rosenbusch, Silke; Petschelt, Anselm; Krämer, Norbert

    2009-02-01

    To prospectively compare the clinical performance of two different resin composites for luting IPS Empress inlays and onlays. 83 IPS Empress restorations were placed in 30 subjects. All restorations were inserted under rubber dam. 43 inlays/onlays were luted with a self-adhesive resin cement [RelyX Unicem (RX)]. A multistep adhesive (Syntac) was used with Variolink II low viscosity (SV) and served as control (n=40). The restorations were evaluated after 2 weeks: Baseline = 1st recall (R1), after 6 months (R2) and after 1 year (R3) by two calibrated examiners using the modified USPHS criteria. From R1 to R3, one failure was noticed in the SV group (R2) due to marginal enamel chipping. After 1 year of clinical service, SV revealed significantly better results regarding color match and integrity inlay (Mann-Whitney U-test, P0.05).

  5. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  6. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (padhesives with higher concentration of CHX (padhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  7. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  8. Microshear bond strength of a flowable resin to enamel according to the different adhesive systems

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2011-01-01

    Full Text Available Objectives The purpose of this study was to compare the microshear bond strength (uSBS of two total-etch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10 by adhesives used; OS group (One-Step Plus, SB group (Single Bond, CE group (Clearfil SE Bond, TY group (Tyrian SPE/One-Step Plus, AP group (Adper Prompt L-Pop and GB group (G-Bond. After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350 was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05. 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05. 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions Although adhesives using the same step were applied the enamel sur

  9. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Science.gov (United States)

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (padhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  10. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    Science.gov (United States)

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  11. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  12. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Coulon, J.F.; Tournerie, N.; Maillard, H.

    2013-01-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m 2 to 70 mJ/m 2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  13. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  14. Understanding of the color in composite resin

    Directory of Open Access Journals (Sweden)

    Jeong-Won Park

    2011-07-01

    Full Text Available In clinic, esthetic restoration of a defective natural tooth with composite resin is challenging procedure and needs complete understanding of the color of tooth itself and materials used. The optical characteristics of the composites are different because the chemical compositions and microstructures are not same. This review provided basic knowledge of the color and the color measurement devices, and analyze the color of the natural tooth. Further, the accuracy of the shade tab, color of the composite resins before and after curing, effect of the water, food and bleaching agent, and translucency, opalescence, and fluorescence effects were evaluated.

  15. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  16. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  17. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  18. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Directory of Open Access Journals (Sweden)

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  19. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  20. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  1. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  2. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  3. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  4. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  5. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  6. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  7. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  8. Experimental etch-and-rinse adhesive systems containing MMP-inhibitors: Physicochemical characterization and resin-dentin bonding stability.

    Science.gov (United States)

    da Silva, Eduardo Moreira; de Sá Rodrigues, Carolina Ullmann Fernandes; de Oliveira Matos, Marcos Paulo; de Carvalho, Thais Rodrigues; dos Santos, Glauco Botelho; Amaral, Cristiane Mariote

    2015-12-01

    To evaluate the degree of conversion (DC%), water sorption (WS), solubility (SO) and the resin-dentin bonding stability (μTBS) of experimental (EXP) etch-and-rinse adhesive systems containing MMP-inhibitors: Galardin-GAL, Batimastat-BAT, GM1489-GM1 and chlorhexidine diacetate-CHX. DC% was measured using FT-IR spectroscopy, while WS and SO were calculated based on ISO4049. Thirty-six human molars were wet ground until the occlusal dentin was exposed. The adhesive systems were applied and resin composite buildups were incrementally constructed. After 24 h immersion in distilled water at 37 °C, the specimens were cut into resin-dentin beams with a cross-sectional area of 1 mm(2). The μTBS was evaluated after 24 h, 6 months and 12 months of water storage at 37 °C. Adper Single Bond 2 (SB2) was used as a commercial control. The data were analyzed using ANOVA and Tukey's HSD test. SB2 presented the highest DC% (p0.05). SO was found to be not significant (p>0.05). All adhesive systems maintained μTBS stability after 6 months of water storage. Only BAT, GM1 and CHX maintained μTBs stability after 12 months of water storage. The experimental adhesive systems with GM1489 and chlorhexidine diacetate presented the best physicochemical properties and preserved resin-dentin bonding stability after 12 months of water storage. GM1489 could be suitable for inclusion as an MMP-inhibitor in etch-and-rinse adhesive systems to maintain resin-dentin bonding stability over time. Copyright © 2015. Published by Elsevier Ltd.

  9. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  10. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  11. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  12. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Mohammad Joulaei

    2012-11-01

    Full Text Available Background and aims. Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS of silica- (Spectrum TPH and zirconia-filled (Filtek Z250 composite resins. Materials and methods. Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05. Results. Analysis of data showed that the effect of composite resin type was not significant (p > 0.05, but the effects of the type of surface treatment (p = 0.01 and the type of adhesive system (p = 0.01 were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05. However, the cumulative effects of the adhesive system-surface treatment (p = 0.03 and the composite type-the adhesive system-surface treatments (p = 0.002 were significant. Conclusion. Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently.

  13. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  14. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  15. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  16. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  17. Treatment planning and smile design using composite resin.

    Science.gov (United States)

    Marus, Robert

    2006-05-01

    Recent advances in dental materials and adhesive protocols have expanded the restorative procedures available to today's clinicians. Used in combination with proper treatment planning, these innovations enable dental professionals to provide enhanced aesthetic care that achieves the increasing expectations of their patients. Using a case presentation, this article will document the steps required to harmoniously integrate smile design, material selection, and patient communication that are involved in the provisional of aesthetic dental care. This article discusses the utilization of composite resin as a tool to enhance the patient's smile. Upon reading this article, the reader should: Become familiar with a smile-enhancing technique which can be completed in one office visit. Realize the benefits that intraoral composite mockups offer in terms of prototyping and confirming patient satisfaction.

  18. Impairment of resin cement application on the bond strength of indirect composite restorations

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  19. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat.

    Science.gov (United States)

    Perdigão, J; Muñoz, M A; Sezinando, A; Luque-Martinez, I V; Staichak, R; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the effect of acid etching and application of a hydrophobic resin coat on the enamel/dentin bond strengths and degree of conversion (DC) within the hybrid layer of a universal adhesive system (G-Bond Plus [GB]). A total of 60 extracted third molars were divided into four groups for bond-strength testing, according to the adhesive strategy: GB applied as a one-step self-etch adhesive (1-stepSE); GB applied as in 1-stepSE followed by one coat of the hydrophobic resin Heliobond (2-stepSE); GB applied as a two-step etch-and-rinse adhesive (2-stepER); GB applied as in 2-stepER followed by one coat of the hydrophobic resin Heliobond (3-stepER). There were 40 teeth used for enamel microshear bond strength (μSBS) and DC; and 20 teeth used for dentin microtensile bond strength (μTBS) and DC. After restorations were constructed, specimens were stored in water (37°C/24 h) and then tested at 0.5 mm/min (μTBS) or 1.0 mm/min (μSBS). Enamel-resin and dentin-resin interfaces from each group were evaluated for DC using micro-Raman spectroscopy. Data were analyzed with two-way analysis of variance for each substrate and the Tukey test (α=0.05). For enamel, the use of a hydrophobic resin coat resulted in statistically significant higher mean enamel μSBS only for the ER strategy (3-stepER vs 2-stepER, penamel etching technique, because it improves bond strengths to enamel when applied with the ER strategy and to dentin when used with the SE adhesion strategy. The application of a hydrophobic resin coat may improve DC in resin-dentin interfaces formed with either the SE or the ER strategy. On enamel, DC may benefit from the application of a hydrophobic resin coat over 1-stepSE adhesives.

  20. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P materials.

  1. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  2. Durability of a low shrinkage TEGDMA/HEMA-free resin composite system in Class II restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    with a mean age of 53 years (range 29-82). Each participant received at random two, as similar as possible, Class II restorations. In the first cavity of each pair the TEGDMA/HEMA-free resin composite system was placed with its 3-step etch-and-rinse adhesive (cmf-els). In the second cavity a 1-step HEMA......Objective: The objective of this randomized controlled prospective trial was to evaluate the durability of a low shrinkage and TEGDMA/HEMA-free resin composite system in posterior restorations in a 6-year follow up. Material and methods: 139 Class II restorations were placed in 67 patients......-free self-etch adhesive was used (AdheSe One F). The restorations were evaluated using slightly modified USPHS criteria at baseline and then yearly during 6 years. Caries risk and parafunctional habits of the participants were estimated. Results: Three molar teeth showed mild post-operative sensitivity...

  3. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  4. Versatile composite resins simplifying the practice of restorative dentistry.

    Science.gov (United States)

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  5. Method for curing alkyd resin compositions by applying ionizing radiation

    International Nuclear Information System (INIS)

    Watanabe, T.; Murata, K.; Maruyama, T.

    1975-01-01

    An alkyd resin composition is prepared by dissolving a polymerizable alkyd resin having from 10 to 50 percent of oil length into a vinyl monomer. The polymerizable alkyd resin is obtained by a half-esterification reaction of an acid anhydride having a polymerizable unsaturated group and an alkyd resin modified with conjugated unsaturated oil having at least one reactive hydroxyl group per one molecule. The alkyd resin composition thus obtained is coated on an article, and ionizing radiation is applied on the article to cure the coated film thereon. (U.S.)

  6. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  7. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  8. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  9. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  10. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  11. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  12. Micro-CT evaluation of internal adaptation in resin fillings with different dentin adhesives

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Han

    2014-02-01

    Full Text Available Objectives The purpose of present study was to evaluate the internal adaptation of composite restorations using different adhesive systems. Materials and Methods Typical class I cavities were prepared in 32 human third molars. The teeth were divided into the following four groups: 3-step etch-and-rinse, 2-step etch-and-rinse, 2-step self-etch and 1-step self-etch system were used. After the dentin adhesives were applied, composite resins were filled and light-cured in two layers. Then, silver nitrate solution was infiltrated, and all of the samples were scanned by micro-CT before and after thermo-mechanical load cycling. For each image, the length to which silver nitrate infiltrated, as a percentage of the whole pulpal floor length, was calculated (%SP. To evaluate the internal adaptation using conventional method, the samples were cut into 3 pieces by two sectioning at an interval of 1 mm in the middle of the cavity and they were dyed with Rhodamine-B. The cross sections of the specimens were examined by stereomicroscope. The lengths of the parts where actual leakage was shown were measured and calculated as a percentage of real leakage (%RP. The values for %SP and %RP were compared. Results After thermo-mechanical loading, all specimens showed significantly increased %SP compared to before thermo-mechanical loading and 1-step self-etch system had the highest %SP (p < 0.05. There was a tendency for %SP and %RP to show similar microleakage percentage depending on its sectioning. Conclusions After thermo-mechanical load cycling, there were differences in internal adaptation among the groups using different adhesive systems.

  13. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    Science.gov (United States)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  14. Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites

    International Nuclear Information System (INIS)

    Jiang, Z.X.; Huang, Y.D.; Liu, L.; Long, J.

    2007-01-01

    The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface

  15. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    Science.gov (United States)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  16. Effect of various teas on color stability of resin composites.

    Science.gov (United States)

    Dinç Ata, Gül; Gokay, Osman; Müjdeci, Arzu; Kivrak, Tugba Congara; Mokhtari Tavana, Armin

    2017-12-01

    To investigate the effect of various teas on color stability of resin composites. Two methacrylate-based (Arabesk Top, Grandio) and a silorane-based (Filtek Silorane) resin composites were used. 110 cylindrical samples of each resin composite were prepared (2 mm thickness and 8 mm diameter), polished and stored in distilled water (37°C for 24 hours). They were randomly divided into 11 groups (n= 10) and color measurements were taken. Then the samples were immersed in tap water (control), a black tea, a green tea or one of the eight herbal-fruit teas (37°C for 1 week) and subsequently subjected to the final color measurements. The color change of samples (ΔE*) was calculated, data were subjected to two-way ANOVA and Tukey's HSD tests. Teas, resin composites and their interactions were significant (P= 0.000). All the teas and control caused color changes in all three resin composites. Rosehip tea caused the most color changes, while tap water showed the least in all resin composites. Arabesk Top had the most staining potential in all the teas and control, whereas Filtek Silorane was the most stain resistant except Grandio immersed in sage tea. Color stability of all resin composites used were affected from both structure of resin materials and constituents of teas used. All resin composites were susceptible to staining by all teas especially rosehip tea. Arabesk Top composite showed the greatest color susceptibility in all teas and Filtek Silorane the least with one exception. Color of resin composites can be negatively affected from teas consumed. Clinicians should advise patients that drinking different kind of teas could intensify surface staining of resin based restorations.

  17. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  18. Color change of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  19. Effect of photoactivation on the reduction of composite resin contamination.

    Science.gov (United States)

    Pauletti, Natalia A; Girotto, Luiza P S; Leite, Françoise H S; Mario, Débora N

    2017-06-01

    Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination. © 2017 Eur J Oral Sci.

  20. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  1. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    OpenAIRE

    Pamato, Saulo; do Valle, Acc?cio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; S?, Marcus-Vin?cius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer?s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond? FL,...

  2. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    Science.gov (United States)

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  4. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Laminated composite based on polyester geotextile fibers and polyurethane resin for coating wood structures

    Directory of Open Access Journals (Sweden)

    Yuri Andrey Olivato Assagra

    2013-01-01

    Full Text Available New environmental laws have restricted the use of hardwood trees in overhead power lines structures, such as, poles and cross-arms, leading companies to seek alternative materials. Reforested wood coated with polymeric resin has been proposed as an environmental friendly solution, with improved electrical properties and protection against external agents, e.g. moisture, ultraviolet radiation and fungi. However, the single thin layer of resin, normally applied on such structures reveal to be inefficient, due to be easily damage during handling. In this paper, we present a composite coating, based on geotextile fibers and polyurethane resin that is suitable for wooden structures. Results obtained from two different tree species (from managed and reforested areas coated with the composite reveal that the additional layer not only provided a stronger adhesion between wood and ccoating layer but also a further improvement in the electrical properties and better protection against abrasion and moisture.

  6. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  7. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Pcomposite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  8. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  9. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  10. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  11. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment; Avaliacao in vitro da microinfiltracao marginal em restauracoes de classe V com resina composta em dentes bovinos. Influencia da irradiacao laser e sistema adesivo no pre-tratamento dentinario

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Wendell Lima de

    2003-07-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm{sup 2}, Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm{sup 2}) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than

  12. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    Science.gov (United States)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  13. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  14. Resin-dentin Bond Stability of Experimental 4-META-based Etch-and-rinse Adhesives Solvated by Ethanol or Acetone.

    Science.gov (United States)

    Amaral, Cristiane Mariote; Diniz, Alice Marques; Arantes, Eugênio Braz Rodrigues; Dos Santos, Glauco Botelho; Noronha-Filho, Jaime Dutra; da Silva, Eduardo Moreira

    To investigate the influence of 4-META concentration and type of solvent on the degree of conversion (DC%) and resin-dentin bond stability of experimental etch-and-rinse adhesives. Four different concentrations of 4-META (12 wt%, 20 wt%, 30 wt%, 40 wt%) were added to a model adhesive system consisting of TEG-DMA (25 wt%), UDMA (20 wt%), HEMA (30 wt%), water (4 wt%), camphorquinone (0.5 wt%), and tertiary amine (0.5 wt%) dissolved in 20% acetone (A12, A20, A30 and A40) or 20% ethanol (E12, E20, E30 and E40). DC% was evaluated by FT-IR spectroscopy. Human molars were wet ground until the occlusal dentin was exposed, the adhesive systems were applied after 37% phosphoric acid etching, and resin composite buildups were incrementally constructed. After storage in distilled water at 37°C for 24 h, the teeth were cut into resin-dentin beams (cross-sectional area 1 mm2). Microtensile bond strength (μTBS) was evaluated after 24 h, 6 months, and 1 year of water storage at 37°C. The failure mode was categorized as adhesive, mixed, or cohesive. Data were analyzed using ANOVA and Tukey's HSD test (α = 0.05). A12 presented the lowest DC% (p 0.05). All adhesive systems maintained resin-dentin bond stability after 6 months of water storage, while only A40 and E40 maintained it after 1 year. Irrespective of the type of organic solvent, the incorporation of high concentrations of 4-META (40 wt%) improved the resin-dentin bond stability of the experimental etch-and-rinse adhesive systems over a period of 1 year.

  15. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  16. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  17. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  18. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  19. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  20. Relationship between Color and Translucency of Multishaded Dental Composite Resins

    Directory of Open Access Journals (Sweden)

    Homan Naeimi Akbar

    2012-01-01

    Full Text Available The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N=3 and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel shades had the highest translucency. There was a significant decrease in translucency from A2 to C2 of regular body shades and also from A4 to C4 of opaque dentine shades of Esthet.X composite resin. Grey enamel shade had a significantly higher diffuse translucency compared to clear and yellow enamel shades. There was a significant decrease in translucency from A2B to D2B and also in diffuse translucency from A4D to C6D shades of Filtek Supreme composite resin. It can be concluded that the color of the composite resins tested in this study had a significant effect on their translucency. Information on the translucency of different shades of composite resins can be very useful for the clinicians in achieving optimal esthetic restorative outcome.

  1. Effect of composite resin placement techniques on the microleakage of two self-etching dentin-bonding agents.

    NARCIS (Netherlands)

    Santini, A.; Plasschaert, A.J.M.; Mitchell, S.M.

    2001-01-01

    PURPOSE: To evaluate microleakage of Class V resin-based composites (RBC) bonded with two self-etching dentin adhesive systems. Class V cavities were restored with either one or three increments of RBC to determine whether the restorative method affected microleakage. MATERIALS AND METHODS: 60

  2. Bond strength of resin composite to light activated bleached enamel

    African Journals Online (AJOL)

    2015-09-02

    Sep 2, 2015 ... After setting of the cement, a composite resin (Variolink II) block was .... do not completely duplicate the physical and chemical properties of the oral ... peroxide concentrations on the corrosion behavior and surface topography.

  3. Mechanism of adhesion of epoxy resin to steel surface; Tekko hyomen to epoxy jushino secchaku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, M. [Nippon Steel Corp., Tokyo (Japan)

    1994-08-01

    In the present research, an adhesion-breaking test and a molecular-scale model experiment were conducted to elucidate the adhesion mechanism of epoxy resin (R) to the cold rolled steel sheet (CR) and galvanized steel sheet (GI). As for the adhesive joint strength in the humid environment, the GI is inferior in residual strength to the CR. The GI joint fracture is an interfacial fracture between the plating and adhesive agent, while the CR joint fracture is a combination of cohesive fracture and interfacial fracture. It is attributable to the difference in adhesion mechanism of R and degradation due to humidity between the surface solely of zinc and iron-containing surface. The adhesion state of R to the zinc oxide and iron oxide was observed by temperature-programed desorption in an ultrahigh vacuum. On each of both oxides, the R chemically adsorbs through bond scission between the phenoxy oxide and carbon. If the water dissociatively adsorbs onto the surface, the bond is destroyed between the zinc oxide and R. The formation of interfacial chemical bond contributes to the adhesion of R to the CR and GI. In case of GI, this band is destroyed by the interfacial infiltration of water, while it is not done in case of CR. The CR excels the GI in adhesive durability. 20 refs., 8 figs., 3 tabs.

  4. Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Hass, Viviane; Dobrovolski, Max; Zander-Grande, Christiana; Martins, Gislaine Cristine; Gordillo, Luís Alfonso Arana; Rodrigues Accorinte, Maria de Lourdes; Gomes, Osnara Maria Mongruel; Loguercio, Alessandro Dourado; Reis, Alessandra

    2013-09-01

    The aim of this study was to correlate the degree of conversion measured inside the hybrid layer (DC) with the microtensile resin-dentin bond strength (μTBS) and silver nitrate uptake or nanoleakage (SNU) for five simplified etch-and-rinse adhesive systems. Fifty-five caries free extracted molars were used in this study. Thirty teeth were used for μTBS/SNU [n=6] and 25 teeth for DC [n=5]. The dentin surfaces were bonded with the following adhesives: Adper Single Bond 2 (SB), Ambar (AB), XP Bond (XP), Tetric N-Bond (TE) and Stae (ST) followed by composite resin build-ups. For μTBS and SNU test, bonded teeth were sectioned in order to obtain stick-shaped specimens (0.8mm(2)), which were tested under tensile stress (0.5mm/min). Three bonded sticks, from each tooth, were not tested in tensile stress and they were immersed in 50% silver nitrate, photo-developed and analyzed by scanning electron microscopy. Longitudinal 1-mm thick sections were prepared for the teeth assigned for DC measurement and evaluated by micro-Raman spectroscopy. ST showed lowest DC, μTBS, and higher SNU (p0.05), except for TE which showed an intermediate SNU level. The DC was positively correlated with μTBS and negatively correlated with SNU (p<0.05). SNU was also negatively correlated with μTBS (p<0.05). The measurement of DC inside the hybrid layer can provide some information about bonding performance of adhesive systems since this property showed a good correlation with resin-dentin bond strength and SNU values. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek

  6. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  7. Surface discoloration of composite resins: Effects of staining and bleaching.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  8. Effect of a low-viscosity adhesive resin on the adhesion of metal brackets to enamel etched with hydrochloric or phosphoric acid combined with conventional adhesives.

    Science.gov (United States)

    Yetkiner, Enver; Ozcan, Mutlu; Wegehaupt, Florian Just; Wiegand, Annette; Eden, Ece; Attin, Thomas

    2013-12-01

    This study investigated the effect of a low-viscosity adhesive resin (Icon) applied after either hydrochloric (HCl) or phosphoric acid (H3PO4) on the adhesion of metal brackets to enamel. Failure types were analyzed. The crowns of bovine incisors (N = 20) were sectioned mesio-distally and inciso-gingivally, then randomly assigned to 4 groups according to the following protocols to receive mandibular incisor brackets: 1) H3PO4 (37%)+TransbondXT (3M UNITEK); 2) H3PO4 (37%)+Icon+TransbondXT; 3) HCl (15%)+Icon (DMG)+TransbondXT 4) HCl (15%)+Icon+Heliobond (Ivoclar Vivadent)+TransbondXT. Specimens were stored in distilled water at 37°C for 24 h and thermocycled (5000x, 5°C to 55°C). The shear bond strength (SBS) test was performed using a universal testing machine (1 mm/min). Failure types were classified according to the Adhesive Remnant Index (ARI). Contact angles of adhesive resins were measured (n = 5 per adhesive) on ceramic surfaces. No significant difference in SBS was observed, implying no difference between combinations of adhesive resins and etching agents (p = 0.712; ANOVA). The Weibull distribution presented significantly lower Weibull modulus (m) of group 3 (m = 2.97) compared to other groups (m = 5.2 to 6.6) (p group 1 (45.4 ± 7.9) > group 2 (44.2 ± 10.6) > group 3 (42.6 ± 15.5). While in groups 1, 3, and 4 exclusively an ARI score of 0 (no adhesive left on tooth) was observed, in group 2, only one specimen demonstrated score 1 (less than half of adhesive left on tooth). Contact angle measurements were as follows: Icon (25.86 ± 3.81 degrees), Heliobond (31.98 ± 3.17 degrees), TransbondXT (35 ± 2.21 degrees). Icon can be safely used with the conventional adhesives tested on surfaces etched with either HCl or H3PO4.

  9. Radiation curable pressure sensitive adhesive composition

    International Nuclear Information System (INIS)

    Steuben, K.C.

    1978-01-01

    Radiation curable pressure sensitive adhesive composition comprises: a polyoxyalkylene homo- or copolymer which is either a polyoxyethylene homopolymer or a poly (oxyethylene-oxypropylene) copolymer, or mixture thereof, having a molecular weight of from 1,700 to 90,000, in which at least 40 percent by weight of the oxyalkylene units are oxyethylene units; a liquid carbamyloxy alkyl acrylate; and, optionally, a photoinitiator

  10. The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test

    DEFF Research Database (Denmark)

    Minty, Ross; Thomason, James L.; Petersen, Helga Nørgaard

    2015-01-01

    This paper focuses on an investigation into the role of the epoxy resin: curing agent ratio in composite interfacial shear strength of glass fibre composites. The procedure involved changing the percentage of curing agent (Triethylenetetramine [TETA]) used in the mixture with several different...... percentages used, ranging from 4% up to 30%, including the stoichiometric ratio. It was found by using the microbond test, that there may exist a relationship between the epoxy resin to curing agent ratio and the level of adhesion between the reinforcing fibre and the polymer matrix of the composite....

  11. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins

    Directory of Open Access Journals (Sweden)

    Rafael Torres Brum

    2017-01-01

    Full Text Available Background: This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct and nanofilled (Filtek Z350 XT composite resins. Materials and Methods: A total of 120 specimens of each material (7.5 x 4.5 x 3 mm were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment, Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds. The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair were prepared (positive control. The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEM. Results: The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. Conclusion: The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  12. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  13. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  14. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  15. Matrix resin effects in composite delamination - Mode I fracture aspects

    Science.gov (United States)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  16. Evaluation of compatibility between different types of adhesives and dual-cured resin cement.

    Science.gov (United States)

    Franco, Eduardo B; Lopes, Lawrence G; D'alpino, Paulo H P; Pereira, José C; Mondelli, Rafael F L; Navarro, Maria F L

    2002-01-01

    The objective of this in vitro study was to evaluate the bonding compatibility between different adhesives and a dual-cured resin cement, using a conventional tensile bond test. The adhesives used were: Prime & Bond (PB) (Dentsply) (PB), Scotchbond Multi Purpose (SB) (3M), and the activator Self Cure (SC) (Dentsply). The dual-curing resin cement used was Enforce (EF) (Dentsply). Six groups with five specimens in each were tested: G1: EF/PB/EF (light cured); G2: EF/SB/EF (light cured); G3: EF/PB+SC/EF (light cured); G4: EF/PB+SC/EF (only chemically cured); G5: EF/EF (light cured); G6: EF/EF (only chemically cured). The resin cement was applied in two stainless steel molds with a cone-shaped perforation measuring 4 mm in diameter and 1 mm in thickness, and the adhesive was applied between them. Ten minutes after specimens were cured, the tensile strength was measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The mean values (MPa) +/- SD obtained in each experimental group were: G1: 1.4 +/- 0.2; G2: 1.3 +/- 0.2; G3: 1.2 +/- 0.4; G4: 0.8 +/- 0.2; G5: 1.2 +/- 0.1; G6: 0.7 +/- 0.1. The results were statistically evaluated using nonparametric Kruskal-Wallis and Dunn tests (p adhesives used with dual-cured resin cement. The lowest tensile bond strength values occurred in the absence of photoactivation.

  17. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  18. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  19. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    International Nuclear Information System (INIS)

    Okamoto, Y.; Shintani, H.; Yamaki, M.

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  20. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid.   Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  1. Effect of dual-cure composite resin as restorative material on marginal adaptation of class 2 restorations.

    Science.gov (United States)

    Bortolotto, Tissiana; Melian, Karla; Krejci, Ivo

    2013-10-01

    The present study attempted to find a simple direct adhesive restorative technique for the restoration of Class 2 cavities. A self-etch adhesive system with a dual-cured core buildup composite resin (paste 1 + paste 2) was evaluated in its ability to restore proximo-occlusal cavities with margins located on enamel and dentin. The groups were: A, cavity filling (cf) with paste 1 (light-curing component) by using a layering technique; B, cf by mixing both pastes, bulk insertion, and dual curing; and C, cf by mixing both pastes, bulk insertion, and chemical curing. Two control groups (D, negative, bulk; and E, positive, layering technique) were included by restoring cavities with a classic three-step etch-and-rinse adhesive and a universal restorative composite resin. SEM margin analysis was performed before and after thermomechanical loading in a chewing simulator. Percentages (mean ± SD) of "continuous margins" were improved by applying the material in bulk and letting it self cure (54 ± 6) or dual cure (59 ± 9), and no significant differences were observed between these two groups and the positive control (44 ± 19). The present study showed that the dual-cured composite resin tested has the potential to be used as bulk filling material for Class 2 restorations. When used as filling materials, dual-cure composite resins placed in bulk can provide marginal adaptation similar to light-cured composites applied with a complex stratification technique.

  2. The effect of various primers on shear bond strength of zirconia ceramic and resin composite.

    Science.gov (United States)

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-11-01

    To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  3. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  4. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  5. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  6. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (pbracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  7. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  8. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    Science.gov (United States)

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.

  9. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    Science.gov (United States)

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  10. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  11. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet

    2016-08-01

    The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.

  12. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  13. Comparative study of etched enamel and dentin for the adhesion of composite resins with the Er:YAG 2,94 μm laser and CO2 9,6 μm laser: morphological (SEM) and tensile bond strength analysis

    International Nuclear Information System (INIS)

    Marraccini, Tarso Mugnai

    2002-01-01

    The aim of this study was to evaluate and compare the tensile bond strength of a composite resin adhered to the enamel and dentin which have received superficial irradiation with an Er:YAG laser (2.94 μm) or with CO 2 laser ( 9.6 μm) and later on etched with the phosphoric acid at 35%. After the use of the adhesive system, resin cones were made on the etched surfaces by both lasers and tensile bond strength tests were performed. All samples were observed at the SEM - there was an increase of the degree of fusion and resolidification in the irradiated enamel and dentin samples with the CO 2 laser (9.6 μm), creating a vitrified layer with tiny craters. With the Er:YAG laser (2.94 μm) there were typical morphological explosive microablation with the exposition of the tubules in the dentin.The surface acquired by the association of the CO 2 laser ( 9.6 μm) plus acid etching no longer presented the aspect of fusion being this layer completely removed. There were statistical significant differences among ali three methods of etching in the treatment of the enamel and dentin surface. The tensile bond strength test showed that etching of these enamel and dentin surfaces with acid exclusively (control group) presented great values, surpassing the values of the etching acquired with the Er:YAG laser (2.94 μ) plus acid or the CO 2 laser (9.6 μm) plus acid. With the parameters used in this experiment the Er:YAG laser (2.94 μm) showed to be more effective than the CO 2 laser (9.6 μm) for the hard dental surfaces etching procedure. (author)

  14. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  15. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  16. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  17. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  18. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  19. Preparation and characterization of UV-curable cationic composite adhesive

    International Nuclear Information System (INIS)

    Shen Yan; Yang Wenbin; Li Yintao; Xie Changqiong; Li Yingjun; Cheng Yafei; Zhou Yuanlin; Lu Zhongyuan

    2011-01-01

    UV-curable cationic composite adhesives containing TiO 2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO 2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  20. Bisphenol A Release: Survey of the Composition of Dental Composite Resins.

    Science.gov (United States)

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate "not disclosed". 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete.

  1. Effect of gingival fluid on marginal adaptation of Class II resin-based composite restorations.

    Science.gov (United States)

    Spahr, A; Schön, F; Haller, B

    2000-10-01

    To evaluate in vitro the marginal quality of Class II composite restorations at the gingival enamel margins as affected by contamination of the cavities with gingival fluid (GF) during different steps of resin bonding procedures. 70 Class II cavities were prepared in extracted human molars and restored with composite using a multi-component bonding system (OptiBond FL/Herculite XRV; OPTI) or a single-bottle adhesive (Syntac Sprint/Tetric Ceram; SYN). The cavities were contaminated with human GF: C1 after acid etching, C2 after application of the primer (OPTI) or light-curing of the primer-adhesive (SYN), and C3 after light-curing of the resin adhesive (OPTI). Uncontaminated cavities were used as the control (C0). The restored teeth were subjected to thermocycling (TC) and replicated for SEM analysis of marginal gap formation. Microleakage at the gingival margins was determined by dye penetration with basic fuchsin. non-parametric tests (Kruskal-Wallis test, Mann-Whitney test with Bonferroni correction). In both bonding systems, contamination with GF after acid etching (C1) did not impair the marginal quality; the mean percentages of continuous margin/mean depths of dye penetration were: OPTI: C0: 88.5%/0.10 mm, C1: 95.6%/0.04 mm; SYN: C0: 90.9%/0.08 mm, C1: 97.0%/0.05 mm. Marginal adaptation was adversely affected when GF contamination was performed after

  2. Marginal Gap Formation in Approximal "Bulk Fill" Resin Composite Restorations After Artificial Ageing.

    Science.gov (United States)

    Peutzfeldt, A; Mühlebach, S; Lussi, A; Flury, S

    The aim of this in vitro study was to investigate the marginal gap formation of a packable "regular" resin composite (Filtek Supreme XTE [3M ESPE]) and two flowable "bulk fill" resin composites (Filtek Bulk Fill [3M ESPE] and SDR [DENTSPLY DeTrey]) along the approximal margins of Class II restorations. In each of 39 extracted human molars (n=13 per resin composite), mesial and distal Class II cavities were prepared, placing the gingival margins below the cemento-enamel junction. The cavities were restored with the adhesive system OptiBond FL (Kerr) and one of the three resin composites. After restoration, each molar was cut in half in the oro-vestibular direction between the two restorations, resulting in two specimens per molar. Polyvinylsiloxane impressions were taken and "baseline" replicas were produced. The specimens were then divided into two groups: At the beginning of each month over the course of six months' tap water storage (37°C), one specimen per molar was subjected to mechanical toothbrushing, whereas the other was subjected to thermocycling. After artificial ageing, "final" replicas were produced. Baseline and final replicas were examined under the scanning electron microscope (SEM), and the SEM micrographs were used to determine the percentage of marginal gap formation in enamel or dentin. Paramarginal gaps were registered. The percentages of marginal gap formation were statistically analyzed with a nonparametric analysis of variance followed by Wilcoxon-Mann-Whitney tests and Wilcoxon signed rank tests, and all p-values were corrected with the Bonferroni-Holm adjustment for multiple testing (significance level: α=0.05). Paramarginal gaps were analyzed descriptively. In enamel, significantly lower marginal gap formation was found for Filtek Supreme XTE compared to Filtek Bulk Fill ( p=0.0052) and SDR ( p=0.0289), with no significant difference between Filtek Bulk Fill and SDR ( p=0.4072). In dentin, significantly lower marginal gap formation was

  3. Ultraviolet light and ultraviolet light-activated composite resins

    International Nuclear Information System (INIS)

    Murray, G.A.; Yates, J.L.; Newman, S.M.

    1981-01-01

    In a comparison of the UV light--activated composite resins, Estilux was polymerized to a significantly greater depth than the other composite resins. In general, Lee-fill polymerized the least. When comparing the UV light sources, the Lee light and the Duralux light did not significantly differ from each other, but both polymerized the materials tested to a significantly greater depth than the other light sources. Of the two time exposures, 60-second exposure provided a significantly greater depth of polymerization than 20 seconds for each light with each material

  4. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  5. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  6. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months.

    Science.gov (United States)

    Vogl, Vanessa; Hiller, Karl-Anton; Buchalla, Wolfgang; Federlin, Marianne; Schmalz, Gottfried

    2016-12-01

    A new universal adhesive with corresponding luting composite was recently marketed which can be used both, in a self-etch or in an etch-and-rinse mode. In this study, the clinical performance of partial ceramic crowns (PCCs) inserted with this adhesive and the corresponding luting material used in a self-etch or selective etch approach was compared with a self-adhesive universal luting material. Three PCCs were placed in a split-mouth design in 50 patients. Two PCCs were luted with a combination of a universal adhesive/resin cement (Scotchbond Universal/RelyX Ultimate, 3M ESPE) with (SB+E)/without (SB-E) selective enamel etching. Another PCC was luted with a self-adhesive resin cement (RelyX Unicem 2, 3M ESPE). Forty-eight patients were evaluated clinically according to FDI criteria at baseline and 6, 12 and 18 months. For statistical analyses, the chi-square test (α = 0.05) and Kaplan-Meier analysis were applied. Clinically, no statistically significant differences between groups were detected over time. Within groups, clinically significant increase for criterion "marginal staining" was detected for SB-E over 18 months. Kaplan-Meier analysis revealed significantly higher retention rates for SB+E (97.8 %) and SB-E (95.6 %) in comparison to RXU2 (75.6 %). The 18-month clinical performance of a new universal adhesive/composite combination showed no differences with respect to bonding strategy and may be recommended for luting PCCs. Longer-term evaluation is needed to confirm superiority of SB+E over SB-E. At 18 months, the new multi-mode adhesive, Scotchbond Universal, showed clinically reliable results when used for luting PCCs.

  7. Polymerization shrinkage stress of composite resins and resin cements – What do we need to know?

    Directory of Open Access Journals (Sweden)

    Carlos José SOARES

    2017-08-01

    Full Text Available Abstract Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  8. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Science.gov (United States)

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  9. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  10. High performance dental resin composites with hydrolytically stable monomers.

    Science.gov (United States)

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in

  11. Effect of Ingested Liquids on Color Change of Composite Resins.

    Science.gov (United States)

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (Pcomposite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  12. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  13. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    International Nuclear Information System (INIS)

    Liu Ping; Guan Qingbao; Gu Aijuan; Liang Guozheng; Yuan Li; Chang Jianfei

    2011-01-01

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  14. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    Science.gov (United States)

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite

  15. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  16. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  17. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  18. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  19. Composite Resin – A Versatile Restorative Tool | Koleoso | Nigerian ...

    African Journals Online (AJOL)

    ... the use of composite resin restorations as a treatment option in several situations where conventional aesthetic restorations such as porcelain veneers, crowns and cream-metal crown could otherwise be placed. Methods and Materials: Patients who presented with restoration aesthetic challenges over a six months period ...

  20. Degradation of dental resin composites during intra-oral wear

    NARCIS (Netherlands)

    Yulianto, Heribertus Dedy Kusuma

    2017-01-01

    Dental resin composites have become an integral part of modern dentistry and used worldwide to restore missing tooth structures, to modify tooth color and anatomical contour, and to enhance aesthetics and function. The dentist should be aware that, the aggressive complexity of the oral environment

  1. Repair of Defective Composite Resin Restoration: Current Trend ...

    African Journals Online (AJOL)

    Background: Repair of defective composite resins restorations is being increasingly recognized as a viable alternative to replacement. there is however no consensus yet on the treatment protocol. Objective: To determine the views and practice of specialists in Conservative Dentistry in Nigeria as regard to repair procedure ...

  2. Direct Resin Composite Restoration of Maxillary Central Incisors with Fractured Tooth Fragment Reattachment: Case Report.

    Science.gov (United States)

    Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga

    This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.

  3. Effect of Anatomical Customization of the Fiber Post on the Bond Strength of a Self-Adhesive Resin Cement.

    Science.gov (United States)

    Rocha, Adricyla Teixeira; Gonçalves, Leticia Machado; Vasconcelos, Ana Júlia de Carvalho; Matos Maia Filho, Etevaldo; Nunes Carvalho, Ceci; De Jesus Tavarez, Rudys Rodolfo

    2017-01-01

    The aim of the study was to evaluate, by means of the push-out test, the effect of the anatomical customization of the fiber post on the bond strength of a self-adhesive resin cement. Twelve endodontically treated, human, upper central incisors were randomly divided into two groups ( n = 6): control (glass fiber posts cemented with Relyx® U200) and customized (glass fiber posts anatomically customized with translucent composite resin cemented with Relyx U200). The roots were sectioned into three slices, cervical, middle, and apical, and photographed with a digital camera attached to a stereomicroscopic loupe. The images were analyzed by software, for evaluation of the cement line. The slices were subsequently submitted to the push-out test until the post had completely extruded, and the fracture mode was analyzed with a stereomicroscopic loupe. The results showed significant differences between the groups in the different root thirds in relation to the area occupied by air bubbles ( p customized group. The customized group showed greater bond resistance than the control group and a more uniform cement layer.

  4. Effect of fiber inserts on gingival margin microleakage of Class II bulk-fill composite resin restorations.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Karimi, Vahid

    2018-01-01

    This study evaluated the effect of fiber inserts combined with composite resins on enamel and dentin margin microleakage. The fiber inserts were used with high- (x-tra fil) and low-viscosity (x-tra base) bulk-fill composite resins and as well as conventional composite resins (Grandio and Grandio Flow). In 96 sound, recently extracted molars, 2 standardized Class II cavities were prepared. The teeth were randomly divided into 8 groups of 12 teeth each, based on composite resin type and presence or absence of fiber inserts: groups 1 and 2, x-tra fil with and without fiber inserts, respectively; groups 3 and 4, x-tra base with and without fiber inserts; groups 5 and 6, Grandio with and without fiber inserts; and groups 7 and 8, Grandio Flow liner (gingival floor)/Grandio (remainder of cavity) with and without fiber inserts. In all the groups, a 2-step etch-and-rinse adhesive was used. The specimens were processed in a dye penetration technique to determine microleakage percentages. Data were analyzed with analysis of variance, Tukey, and t tests. There was significantly less leakage at the enamel margins than the dentin margins. Fiber reinforcement significantly decreased enamel microleakage in all the groups, with no significant differences among the groups. Concerning dentin microleakage, there were no significant differences among the 4 groups without fiber inserts, while a significant difference was detected in groups 2 (x-tra fil plus fiber) and 8 (Grandio Flow plus fiber/Grandio). Fibers significantly improved dentin sealing in groups 2 and 8. These findings suggest that a fiber insert reinforcing bulk-fill and conventional composite resins might improve enamel sealing in shallow Class II cavi-ties. The effect of fiber reinforcement on the dentin margins of deep cavities depended on the viscosity of the composite resins; fiber reinforcement was effective for flowable bulk-fill and conventional composite resin restorations.

  5. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    Science.gov (United States)

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin restorative for class II MOD cavities resulted in reduced cuspal deflection in comparison to the two other bulk-fill composite resins tested. The silorane-based Filtek LS restorative resulted in the least cuspal deflection in

  6. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  7. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    Science.gov (United States)

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  9. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  10. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  11. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  12. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  13. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  14. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  15. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  16. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  17. Terpenoid composition and class of Tertiary resins from India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa; Mathews, Runcie Paul [Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Bertram, Norbert [LTA-Labor fuer Toxikologie und Analytik, Friedrichshoeher Str. 28, D-53639 Koenigswinter (Germany); Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemitry Centres (M090), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009 (Australia); WA - Organic and Isotope Geochemistry Centre, Curtin University of Technology, Kent St., Bentley 6102 (Australia)

    2009-10-01

    The terpenoid composition and class of Tertiary resins preserved within lignites of Cambay, Kutch and Cauvery Basins of India have been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy. Major pyrolysis products include cadalene-based C{sub 15}-bicyclic sesquiterpenoids with some C{sub 30} and C{sub 31} bicadinanes and bicadinenes typical of Class II or dammar resin. The occurrence of these terpenoids in Early Eocene sediments may extend the first appearance of Dipterocarpaceae angiosperms, the predominant source of this resin class, back to the Early Eocene epoch in India. The same terpenoid biomarkers have been detected in many SE Asian oils reflecting a close source relationship with these resins. Strong CH{sub 3} (1377 cm{sup -} {sup 1}) and other CH{sub x} (3000-2800 and 1460-1450 cm{sup -} {sup 1}) aliphatic absorptions of much larger intensity than the aromatic C = C (1560-1650 cm{sup -} {sup 1}) absorption were detected in the Indian resins by FTIR Spectroscopy, confirming the quantitative significance of the terpenoid pyrolysates. (author)

  18. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    Science.gov (United States)

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  19. Radiopacity of 28 Composite Resins for Teeth Restorations.

    Science.gov (United States)

    Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene

    2016-02-01

    Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.

  20. Does the light source affect the repairability of composite resins?

    Science.gov (United States)

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  1. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  2. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  3. Interactions between resin monomers and commercial composite resins with human saliva derived esterases.

    Science.gov (United States)

    Jaffer, F; Finer, Y; Santerre, J P

    2002-04-01

    Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.

  4. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  5. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.

    Science.gov (United States)

    Mitha, M K; Jayabalan, M

    2009-12-01

    Biodegradable hydroxyl terminated-poly(castor oil fumarate) (HT-PCF) and poly(propylene fumarate) (HT-PPF) resins were synthesized as an injectable and in situ-cross linkable polyester resins for orthopedic applications. An injectable adhesive formulation containing this resin blend, N-vinyl pyrrolidone (NVP), hydroxy apatite, free radical initiator and accelerator was developed. The Composite adhesives containing the ratio of resin blend and NVP, 2.1:1.5, 2.1:1.2 and 2.1:1.0 set fast with tolerable exothermic temperature as a three dimensionally cross linked toughened material. Crosslink density and mechanical properties of the crosslinked composite increase with increase of NVP. The present crosslinked composite has hydrophilic character and cytocompatibility with L929 fibroblast cells.

  6. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Directory of Open Access Journals (Sweden)

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  7. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  8. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  9. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

    Science.gov (United States)

    Reymus, Marcel; Roos, Malgorzata; Eichberger, Marlis; Edelhoff, Daniel; Hickel, Reinhard; Stawarczyk, Bogna

    2018-04-27

    Because of their industrially standardized process of manufacturing, CAD/CAM resin composites show a high degree of conversion, making a reliable bond difficult to achieve. The purpose of this experiment was to investigate the tensile bond strength (TBS) of luting composite to CAD/CAM resin composite materials as influenced by air abrasion and pretreatment strategies. The treatment factors of the present study were (1) brand of the CAD/CAM resin composite (Brilliant Crios [Coltene/Whaledent], Cerasmart [GC Europe], Shofu Block HC [Shofu], and Lava Ultimate [3M]); (2) air abrasion vs. no air abrasion; and (3) pretreatment using a silane primer (Clearfil Ceramic Primer, Kuraray) vs. a resin primer (One Coat 7 Universal, Coltene/Whaledent). Subsequently, luting composite (DuoCem, Coltene/Whaledent) was polymerized onto the substrate surface using a mold. For each combination of the levels of the three treatment factors (4 (materials) × 2 (air abrasion vs. no air abrasion; resin) × 2 (primer vs. silane primer)), n = 15, specimens were prepared. After 24 h of water storage at 37 °C and 5000 thermo-cycles (5/55 °C), TBS was measured and failure types were examined. The resulting data was analyzed using Kaplan-Meier estimates of the cumulative failure distribution function with Breslow-Gehan tests and non-parametric ANOVA (Kruskal-Wallis test) followed by the multiple pairwise Mann-Whitney U test with α-error adjustment using the Benjamini-Hochberg procedure and chi-square test (p CAD/CAM resin composites, the restorations should be air abraded and pretreated using a resin primer containing methyl-methacrylate to successfully bond to the luting composite. The pretreatment of the CAD/CAM resin composite using merely a silane primer results in deficient adhesion. For a reliable bond of CAD/CAM resin composites to the luting composite, air abrasion and a special pretreatment strategy are necessary in order to achieve promising long-term results.

  10. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors

    Directory of Open Access Journals (Sweden)

    Akimasa Tsujimoto

    2018-05-01

    Full Text Available Summary: The application of resin composites in dentistry has become increasingly widespread due to the increased aesthetic demands of patients, improvements in the formulation of resin composites, and the ability of these materials to bond to tooth structures, together with concerns about dental amalgam fillings. As resistance to wear is an important factor in determining the clinical success of resin composite restoratives, this review article defines what constitutes wear and describes the major underlying phenomena involved in this process. Insights are further included on both in vivo and in vitro tests used to determine the wear resistance of resin composite and the relationships between these tests. The discussion focuses on factors that contribute to the wear of resin composite. Finally, future perspectives are included on both clinical and laboratory tests and on the development of resin composite restorations. Keywords: Resin composites, Wear resistance, Wear testing

  11. Clinical acceptability of two self-etch adhesive resins for the bonding of orthodontic brackets to enamel.

    Science.gov (United States)

    Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine

    2012-12-01

    To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.

  12. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  13. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  14. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  15. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  16. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  17. Effects of polishing procedures on color stability of composite resins

    Directory of Open Access Journals (Sweden)

    Ahmet Umut Güler

    2009-04-01

    Full Text Available The purpose of this study was to investigate the effect of different polishing methods on color stability of posterior, universal and nanohybrid composite resin restorative materials upon exposure to a staining agent. Twenty-five specimens were prepared for each of 5 different composite resins (Filtek Z250, Filtek P60, Quadrant LC, Grandio and Filtek Supreme. Specimens were divided into 5 groups and different polishing procedures, including polishing discs (Pd, polishing discs then diamond polishing paste (PdP, polishing discs then a liquid polishing system (Biscover (PdB, and combinations of these (PdPB were used. Unpolished specimens served as the control (C. The specimens were stored for 48 h in a coffee solution. The color of all specimens was measured before and after exposure with a colorimeter, and total color change (DE* were calculated. The data were analyzed with a two-way ANOVA and the means were compared by Tukey HSD test (a=0.05. The lowest color difference was observed in the groups PdP and C, while the highest color difference was observed in PdPB, and PdB. When comparing the five different restorative materials, no significant difference was observed between FiltekP60 and FiltekZ250, and these materials demonstrated significantly less color change than Quadrant LC and the nanohybrid materials (Grandio, Filtek Supreme. The posterior (Filtek P60 and universal (Filtek Z250 composite resin restorative materials, which do not contain tetraethyleneglycol dimethacrylate (TEGDMA, were found to be less stainable than the nanohybrid (Grandio, Filtek Supreme and universal (Quadrant LC composite resins, which contain TEGDMA. The use of diamond polishing paste after polishing with polishing discs significantly decreased staining when compared to the groups that used polishing discs alone, for all restorative materials tested. The highest color change values were obtained for the specimens that were polished with the Biscover liquid polish

  18. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2012-01-01

    Full Text Available To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n=10. Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37∘C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth.

  19. The Effect of 3% Phosphate Ascorbyl Gel on Bond Strength of Composite Resin to Enamel treated with 35% Hydrogen Peroxide.

    Science.gov (United States)

    de Castro, Milena de Fátima Schalcher; Silva, Alice Carvalho; Franco, Marcela Mayana Pereira; Silva, Ana Paula Brito; Bramante, Fausto da Silva; da Silva, Monica Barros; Lima, Darlon Martins; Pereira, Adriana de Fátima Vasconcelos

    2015-05-01

    To evaluate the effect of 3% phosphate ascorbyl gel (PA) in different times onto the microshear bond strength of composite resin (CR) to bovine enamel treated with 35% hydrogen peroxide (HP). Thirty enamel blocks of bovine incisors were made and divided into 5 groups (n = 6) with three specimens per group (n = 18), according to treatment: G1= No bleaching + CR; G2 = HP + CR after 15d; G3 = HP + CR after 24 hours; G4 = HP + PA (15 min) + CR after 24 hours; G5 = HP + PA (2 hours) + CR after 24 hours. The resin cylinders were made by Tygon matrices. Microshear bond strength test was performed using universal testing machine with a 50N load at a speed of 0.5 mm/min. Fracture modes were assessed by a stereomicroscope 40 ×. Microshear bond strength values were submitted to the analysis of variance (ANOVA) one-way and Tukey test (p 0.05). Failure modes were categorized into adhesive (90%) and mixed (10%). The use of 3% phosphate ascorbyl gel for 15 minutes was able to improve bond strength of composite resin to bleached bovine enamel, but when 3% phosphate ascorbyl gel was applied during 40 minutes it negatively interfered in the adhesion of the resin to bleached bovine enamel.

  20. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  1. Initial polishing time affects gloss retention in resin composites.

    Science.gov (United States)

    Waheeb, Nehal; Silikas, Nick; Watts, David

    2012-10-01

    To determine the effect of finishing and polishing time on the surface gloss of various resin-composites before and after simulated toothbrushing. Eight representative resin-composites (Ceram X mono, Ceram X duo, Tetric EvoCeram, Venus Diamond, EsteliteSigma Quick, Esthet.X HD, Filtek Supreme XT and Spectrum TPH) were used to prepare 80 disc-shaped (12 mm x 2 mm) specimens. The two step system Venus Supra was used for polishing the specimens for 3 minutes (Group A) and 10 minutes (Group B). All specimens were subjected to 16,000 cycles of simulated toothbrushing. The surface gloss was measured after polishing and after brushing using the gloss meter. Results were evaluated using one way ANOVA, two ways ANOVA and Dennett's post hoc test (P = 0.05). Group B (10-minute polishing) resulted in higher gloss values (GV) for all specimens compared to Group A (3 minutes). Also Group B showed better gloss retention compared to Group A after simulated toothbrushing. In each group, there was a significant difference between the polished composite resins (P gloss after the simulated toothbrushing.

  2. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  3. Time-Dependent Effect of Refrigeration on Viscosity and Conversion Kinetics of Dental Adhesive Resins

    Science.gov (United States)

    Faria-e-Silva, André L; Piva, Evandro; Moraes, Rafael R

    2010-01-01

    Objectives: This study evaluated the effect of refrigeration at 4°C and post-refrigeration times (immediate, 5, 10, 15, or 20 min) on the viscosity and conversion kinetics of adhesive bonding resins. Methods: Scotchbond Dual-Cure (3M ESPE) and Clearfil SE Bond (Kuraray) were tested. Control samples were kept at 25°C for 24 h. At each post-refrigeration time, the temperature was checked with a K-type thermocouple. Viscosity measurements as a function of temperature were performed using a cone-plate viscometer. Real-time polymerization was monitored by infrared spectroscopy. Degree of conversion (DC) was calculated for each second during polymerization, and the rate of polymerization analyzed. Data were separately submitted to two-way ANOVA and Tukey’s test (P<.05). Results: Clearfil presented faster increase in temperature after exposure to room temperature than Scotchbond. A continuous decrease in viscosity (Pa.s) was observed for both Scotchbond (0.49, 0.34, 0.30, 0.26, 0.23, 0.23) and Clearfil (0.38, 0.37, 0.34, 0.25, 0.24, 0.22). For Scotchbond, higher final DC was detected for the control (62.7%) compared with the immediate (53.3%) and 5 min (54.7%) groups. For Clearfil, the control sample (81.4%) showed higher DC than all refrigerated groups (68.8–69.5%). Clearfil always showed significantly higher DC than Scotchbond. Conclusions: Refrigeration presented a significant time- and material-dependent effect on the viscosity and polymerization kinetics of the bonding resins. Under clinical conditions, adhesive agents should be removed from the refrigerator at least 20 min before being used. PMID:20396445

  4. Microleakage of IPS empress 2 inlay restorations luted with self-adhesive resin cements.

    Science.gov (United States)

    Cal, E; Celik, E U; Turkun, M

    2012-01-01

    To assess the microleakage of three self-adhesive and one etch-and-rinse resin cements when luting IPS Empress 2 (Ivoclar Vivadent, Liechtenstein) all-ceramic inlay restorations to the prepared cavities in extracted human molars. The cylindrical Class V cavities were prepared on the buccal surfaces of 40 extracted human third molars using diamond burs. The IPS Empress 2 ceramic inlays were placed with Multilink Sprint (Ivoclar Vivadent), RelyX Unicem (3M ESPE, USA), G-Cem (GC, Japan), or Variolink II (Ivoclar Vivadent) as the control group. After storage in distilled water at 37°C for 24 hours, samples were subjected to 1000 thermal cycles between baths of 5°C and 55°C, with a dwell time of 30 seconds. The microleakage scores were examined on the occlusal and gingival margins at 30× magnification after each sample was stained with 0.5% basic fuchsin and sectioned into three parts using a thin diamond blade (Isomet, Buehler, USA) (n=40). The extent of microleakage on both occlusal and gingival margins of the restorations was scored and recorded. The microleakage data were analyzed using Kruskall-Wallis and Mann-Whitney U-tests. Statistically significant differences were observed between the groups in both margins according to the Kruskall-Wallis and Mann-Whitney U-tests (p<0.05). Microleakage scores on the occlusal margins were Variolink II < RelyX Unicem < G-Cem = Multilink Sprint. Microleakage scores on the gingival margins are Variolink II = RelyX Unicem < G-Cem < Multilink Sprint. Self-adhesive resin cements displayed higher microleakage scores on the occlusal margins, whereas on the gingival margins RelyX Unicem showed comparable microleakage results with the control samples.

  5. On the improved adhesion of NiTi wires embedded in polyester and vinylester resins

    Directory of Open Access Journals (Sweden)

    Mattia Merlin

    2015-01-01

    Full Text Available This paper discusses the effect of different surface treatments on shape memory alloy wires embedded in PolyEster (PE and VinylEster (VE polymeric matrices. In particular, two types of chemical etching and a chemical bonding with a silane coupling agent have been performed on the surfaces of the wires. Pull-out tests have been carried out on samples made from a specifically designed Teflon mould. Considering the best results of the pull-out tests obtained with PE resin, the debonding induced by strain recovery of 4%, 5% and 6% pre-strained NiTi wires has been evaluated with the wires being subjected to different surface treatment conditions and then being embedded in the PE matrix. The results prove that the wires functionalised and embedded in the PE resin show the maximum pull-out forces and the highest interfacial adhesion. Finally, it has been found that debonding induced by strain recovery is strongly related to the propagation towards the radial direction of sharp cracks at the debonding region.

  6. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  7. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Improvement of the adhesion strength between copper plated layer and resin substrate using a chemically adsorbed monolayer

    Directory of Open Access Journals (Sweden)

    Tsuchiya K.

    2013-08-01

    Full Text Available With reducing the size and weight of electric devices, high-tensile, light and fine copper wire is demanded. So the production technique of a copper wire plated on a super fiber resin (Vectran film was researched for improving the adhesion strength between the copper and the resin. In this study, we used the Cu2+ or Pd2+ complex prepared with a chemically adsorbed monolayer (CAM to improve the adhesion strength between the copper plated layer and the Vectran film. As the result of scotch tape test, it was observed that the adhesion strength between the copper plated layer and Vectran film was improved by the Cu2+ or Pd2+ complex CAM.

  9. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Science.gov (United States)

    Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura

    2015-12-01

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  10. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  11. Process for curing ionizing radiation-highly sensitive resin composition

    International Nuclear Information System (INIS)

    Araki, K.; Sasaki, T.; Tabei, K.; Goto, K.

    1979-01-01

    A process is described for curing a radiation curable composition consisting essentially of (a) an amide represented by the formula R,CONR 2 R 3 and (b) an unsaturated polyester resin by irradiating the composition with an ionizing radiation. R 1 is H, an alkyl groups having from 1 to 17 carbon atoms or an alkenyl groups having from 1 to 17 carbon atoms, and R 2 and R 3 are each -H, -CH 3 , or -CH 2 OH. R 1 and R 2 taken together represent alkylene having 2 to 5 carbon atoms

  12. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  13. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Effect of Surface Treatment, Silane, and Universal Adhesive on Microshear Bond Strength of Nanofilled Composite Repairs.

    Science.gov (United States)

    Fornazari, I A; Wille, I; Meda, E M; Brum, R T; Souza, E M

     The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs.  One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al 2 O 3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)-containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05).  The variables "surface treatment" and "adhesive" showed statistically significant differences for p<0.05. The highest mean shear bond strength was found in the ACU group but was not statistically different from the means for the other air-abraded groups except AH. All the polished groups except PU showed statistically significant differences compared with the air-abraded groups. The PU group had the highest mean among the polished groups. Cohesive failure was the most frequent failure mode in the air-abraded specimens, while mixed failure was the most common

  15. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  16. Influence of bleaching regimen and time elapsed on microtensile bond strength of resin composite to enamel

    Directory of Open Access Journals (Sweden)

    Fulya Toksoy Topcu

    2017-01-01

    Full Text Available Objectives: The aim of this study was to evaluate the effects of time elapsed since bleaching and different bleaching regimens on the microtensile bond strength of resin composite to enamel. Methodology: Forty flattened buccal enamel surfaces were divided into four groups: An unbleached (control group and three bleaching groups. Control group specimens were not subjected to a bleaching regimen (Group 1, while those in the bleaching groups were bleached as follows: opalescence 10% (Group 2, whiteness perfect 16% (Group 3, and whiteness hydrogen peroxide 35% (Group 4. Thereafter, the bleached specimens were divided into three subgroups (n = 4 teeth each for restoration according to predetermined posttreatment time intervals (immediately, 1 week, and 2 weeks. Bonded specimens were then sectioned and subjected to μTBS testing. The data were analyzed using Kruskal–Wallis and Mann–Whitney U-tests at α = 0.05. Results: There was a significant difference in the μTBS of the resin composite to enamel in groups that were bonded immediately after bleaching and in the control group (P 0.05. Conclusions: Adhesive restorative procedures could not be performed immediately or after 1 week irrespective of the type or concentration of bleaching system used. Composite restorations on bleached enamel surfaces should be performed after an interval of at least 2 weeks.

  17. COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTAL ENAMEL CONDITIONED WITH PHOSPHORIC ACID OR Nd: YAG LASER

    Directory of Open Access Journals (Sweden)

    EDUARDO Carlos de Paula

    1997-01-01

    Full Text Available This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used

  18. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  19. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives.

    Science.gov (United States)

    Sezinando, Ana; Luque-Martinez, Issis; Muñoz, Miguel Angel; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2015-10-01

    To test the influence of a hydrophobic resin coating (HC) on the immediate (24h) and 6-month (6m) microtensile dentin bond strengths (μTBS) and nanoleakage (NL) of three universal adhesives applied in self-etch (SE) or in etch-and-rinse (ER) mode. Sixty caries-free extracted third molars were assigned to 12 experimental groups resulting from the combination of the factors "adhesive system" (Scotchbond Universal Adhesive [SBU], 3M ESPE; All-Bond Universal [ABU], Bisco Inc.; and G-Bond Plus [GBP], GC Corporation); "adhesive strategy" (SE or ER); "hydrophobic resin coating" [HC] (with or without Heliobond, Ivoclar Vivadent); and "storage time" (24h or 6m). Specimens were prepared for μTBS testing - (24h) half of the beams were immediately tested under tension; and (6m) the other half was stored in distilled water (37°C) for 6m prior to testing. For each tooth, two beams were randomly selected for NL evaluation for both evaluation times. Data were analyzed for each adhesive system using three-way ANOVA and Tukey's post-hoc test (α=0.05). μTBS: (24h): In SE mode, HC resulted in statistically greater mean μTBS for all adhesives. (6m): When HC was not used the mean μTBS for SBU/ER, ABU/ER, GBP/ER and SBU/SE decreased significantly. NL: (24h): SBU/ER, ABU/ER and GBP/SE resulted in a significant reduction in NL when HC was applied. (6m): No significant reduction was observed for SBU/ER or for SBU/SE regardless of the use of HC. The application of a hydrophobic resin coating improved the 24h and the 6m performances of all three adhesives systems in SE mode. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  1. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  2. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  3. Thermal stability relationships between PMR-15 resin and its composites

    Science.gov (United States)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  4. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs.

    Science.gov (United States)

    Melo, Marco Aurélio Veiga de; Moysés, Marcos Ribeiro; Santos, Saulo Galvão dos; Alcântara, Carlos Eduardo Pinto; Ribeiro, José Carlos Rabelo

    2011-01-01

    The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs) were prepared and divided into 24 groups (n = 8). Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA); phosphoric acid + adhesive (PA); diamond bur + phosphoric acid + silane + adhesive (DPSA); diamond bur + phosphoric acid + adhesive (DPA); air abrasion + phosphoric acid + silane + adhesive (APSA); and air abrasion + phosphoric acid + adhesive (APA). The repair was performed and the specimens were again aged as described above. A control group (n = 8) was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  5. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Veiga de Melo

    2011-12-01

    Full Text Available The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs were prepared and divided into 24 groups (n = 8. Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA; phosphoric acid + adhesive (PA; diamond bur + phosphoric acid + silane + adhesive (DPSA; diamond bur + phosphoric acid + adhesive (DPA; air abrasion + phosphoric acid + silane + adhesive (APSA; and air abrasion + phosphoric acid + adhesive (APA. The repair was performed and the specimens were again aged as described above. A control group (n = 8 was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p < 0.05. No statistically significant differences were found among DPSA, DPA, APSA, APA, and the control group. The aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  6. Effect of EDTA Conditioning on Microleakage of Four Adhesive Systems in Composite Restorations

    Directory of Open Access Journals (Sweden)

    F. Shafiei

    2008-12-01

    Full Text Available Objective: Evaluating the effect of dentin conditioning with EDTA on microleakage of composite resin restorations, using two etch and rinse and two self-etch adhesives.Materials and Methods: One hundred and sixty extracted molars received class V cavity preparations right under the CEJ and were randomly divided into eight groups of 20, usingfour different adhesive systems. These adhesives included Adper Scotchbond Multi-purpose (SBMP, Adper Single Bond (SB, Clearfil SE Bond (CSEB, and Adper Prompt L-Pop (PLP. In the SBMP and SB experimental groups, EDTA was applied instead of phosphoric acid. In the CSEB and PLP experimental groups, EDTA conditioning was added to the bonding process. After thermocycling, the amount of dye penetration was evaluated using stereomicroscope. The data were analyzed using the Kruskal-Wallis and Dunn tests.Results: Two etch and rinse adhesives (SBMP, SB showed a significantly lower micro-leakage than the two self-etch adhesives, CSEB and PLP, (P<0.05. No significant differ-ence was observed among the experimental groups. PLP and CSEB showed significantly less microleakage using EDTA conditioning (P<0.05. There was no significant difference for SBMP and SB when applying either phosphoric acid or EDTA.Conclusion: In the cases of SBMP and SB, EDTA conditioning is as effective as phos-phoric acid in preventing microleakage. In cases of CSEB and PLP, EDTA conditioning can significantly improve the sealing ability.

  7. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  8. Polishing and toothbrushing alters the surface roughness and gloss of composite resins.

    Science.gov (United States)

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu; Kanehira, Masafumi; Finger, Werner J

    2014-01-01

    This study aimed to investigate the surface roughness and gloss of composite resins after using two polishing systems and toothbrushing. Six composite resins (Durafill VS, Filtek Z250, Filtek Z350 XT, Kalore, Venus Diamond, and Venus Pearl) were evaluated after polishing with two polishing systems (Sof-Lex, Venus Supra) and after toothbrushing up to 40,000 cycles. Surface roughness (Ra) and gloss were determined for each composite resin group (n=6) after silicon carbide paper grinding, polishing, and toothbrushing. Two-way ANOVA indicated significant differences in both Ra and gloss between measuring stages for the composite resins tested, except Venus Pearl, which showed significant differences only in gloss. After polishing, the Filtek Z350 XT, Kalore, and Venus Diamond showed significant increases in Ra, while all composite resin groups except the Filtek Z350 XT and Durafill VS with Sof-Lex showed increases in gloss. After toothbrushing, all composite resin demonstrated increases in Ra and decreases in gloss.

  9. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  10. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    Science.gov (United States)

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and

  11. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    OpenAIRE

    Sharafeddin, F.; Jamalipour, GR.

    2010-01-01

    Objective: Bleaching agents may not be safe for dental materials. The purpose of this in-vitro study was to evaluate the effects of Opalescent Quick ?in-office bleaching gel? containing 35% carbamide peroxide on the surface roughness and hardness of microfilled (Heliomolar) and hybride (Spectrum TPH) composite resins. Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm...

  12. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  13. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root

    Directory of Open Access Journals (Sweden)

    Ehsan Mohamadian Amiri

    2017-10-01

    Full Text Available Objectives: Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root.Materials and Methods: This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ, and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA.Results: The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001.Conclusions: Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  14. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  15. Tensile bond strength between different glass ionomer cement and composite resin using three adhesive systems Avaliação da resistência de união interfacial entre diferentes cimentos de ionômero de vidro e resina composta, usando três sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2005-10-01

    Full Text Available The purpose of this study was to evaluate the tensile bond strength (TBS among a Composite Resin (Filtek Z250 and six conventional Glass Ionomer Cements, three used for lining (Bioglass F, Vidrion F and Glass Ionomer L.C. and three for restorations (Ketac Fil, Vidrion R and Glass Ionomer type II etched and non etched, using three adhesive systems (Single Bond, Bond 1 and Stae. Thirty-six groups were made, ten samples for each group, totalizing 360 specimens. There were significant differences on TBS among groups. Group 31 (Glass Ionomer Cement type II showed the highest TBS (9.65 MPa in comparison to other tested groups. Group 16 (Glass Ionomer L.C presented the lowest TBS (2.72 MPa in comparison to all the other groups. Therefore, it can be concluded that the acid etching of the Glass Ionomer Cement is not necessary. Foi avaliada, ">in vitro, a resistência de união, por tração, entre uma Resina Composta micro-híbrida (Filtek Z-250 e seis Cimentos de Ionômero de Vidro (CIV convencionais: três utilizados para base/forramento (Bioglass F, Vidrion F e Glass Ionomer Lining Cement e três para restauração (Ketac Fil, Vidrion R e Glass Ionomer Cement type II, sem e com condicionamento ácido ortofosfórico a 37%, usando três sistemas adesivos (Single Bond, Bond 1 e Stae. Foram confeccionados 36 grupos de 10 corpos-de-prova cada, totalizando 360 espécimes. Para análise estatística, foi utilizado o teste de Tukey-Kramer. Dentre os três CIV de base/forramento, os grupos 2 e 5 (Bioglass F apresentaram valores mais altos de adesividade à resina (7,24 e 6,03 MPa respectivamente. Quanto aos três CIV de restauração, todos apresentaram maior resistência de união, superior aos de base/forramento, sendo que o Glass Ionomer Cement type II (Grupo 31 e Vidrion R apresentaram maior força de adesão (9,65 e 7,47 MPa à resina composta. O grupo 16 (Glass Ionomer L.C. mostrou menor adesividade à resina (2,72 MPa. Houve diferenças significantes

  16. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  17. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Directory of Open Access Journals (Sweden)

    Renata Andreza Talaveira da Silva

    2011-08-01

    Full Text Available During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. OBJECTIVE: this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C, medium (M and apical (A thirds of the root. MATERIAL AND METHODS: Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group: group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37°C for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. RESULTS: Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05. Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3% than in AC (C=85.9%, M=81.8% and A=76.0%, ARC (C=83.8%, M=82.4% and A=75.0% and U100 (C=84.1%, M=82.4% and A=77.3% (Kruskal-Wallis test, p<0.05. CONCLUSIONS: Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity.

  18. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Science.gov (United States)

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  19. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic.

    Science.gov (United States)

    Stawarczyk, Bogna; Krawczuk, Andreas; Ilie, Nicoleta

    2015-03-01

    This study was conducted in order to assess the pretreatment method (air abrasion, both wet and dry, and Al2O3 grinder), the conditioning method (comprised of different adhesive systems), the repair resin composite (low and high modulus of elasticity), the contamination of CoJet air-abraded surfaces with water, and the effect phosphoric acid on the macrotensile bond strength (TBS) to aged CAD/CAM resin nanoceramic (RNC). Aged RNC substrates (LAVA Ultimate, 3M ESPE; N = 900; 10,000 cycles, 5 °C/55 °C) were air-abraded (CoJet 3M ESPE) with and without water contamination or treated with an Al2O3 grinder (Cimara, Voco). Immediately after pretreatment, half of the specimens were additionally cleaned with phosphoric acid, while the rest were only rinsed with water. Four intermediate agents (Futurabond U/VOCO, Scotchbond Universal/3M ESPE, One Coat Bond/Coltène Whaledent, visio.link/bredent) were selected for conditioning the surface, while no conditioned specimens acted as control groups. Specimens were thereafter repaired using two direct resin composites (Arabesk Top and GrandioSo, VOCO), stored for 24 h at 37 °C in H2O, and thermally aged for 10,000 cycles (5 °C/55 °C; n = 15/subgroup). TBS and failure types were determined and evaluated with four- and one-way ANOVA and χ (2) test (p universal adhesives proved to be effective intermediate agents for repairing aged CAD/CAM RNC, while visio.link and Scotchbond Universal performed slightly better than Futurabond U. Phosphoric acid or water contamination of the air-abraded surface does not affect the repair bond strength.

  20. Effectiveness of bleaching agent on composite resin discoloration

    Directory of Open Access Journals (Sweden)

    Galih Sampoerno

    2012-03-01

    Full Text Available Background: The discoloration of teeth, especially anterior teeth, is one of aesthetic problems. The use of tooth bleaching agents for discolored natural teeth is becoming increasingly popular. Many dentists, however, get many problems when they conduct bleaching process since there is much composite filling on patient’s anterior teeth. Although many research have focused on the discoloration of composite resin after bleaching process, the problem still becomes debatable. Purpose: The purpose of this study was to investigate the difference of the discoloration between hybrid composite and nano composite before and after the application of tooth bleaching agent, 38% hydrogen peroxide. Methods: Eighteen disk-shaped specimens (5 mm of each of two composite resins, hybrid and nano filler, were prepared. The each group was treated 3 times and the specimens were divided into two groups consisted of 9 specimens for each, and then immersed in black tea solutions for 72 hours. Next, after having staining and bleaching processes, the color of the specimens was measured with a optic spectrophotometer by using photo with type BPY-47 and digital microvolt. The differences of the light intensity among three measurements were then calculated. Afterwards, GLM MANOVA Repeated Measure and parametric analysis (Independent t-test and Paired t-test were then used to analyze the data. Results: After staining process, it is then known that the nano composite had more discoloration and more affected by the black tea solution than the hybrid one. Conclusion: After bleaching, the discoloration was finally removed completely from both hybride and nano filler composite resins and became brighter from the baseline color.Latar belakang: Salah satu problem estetik adalah adanya perubahan warna pada gigi anterior. Peningkatan pemakaian bahan bleaching semakin popular. Banyak dokter gigi mempunyai problem ketika mereka akan melakukan proses bleaching dan ditemukan banyak

  1. Flowable Resin Composites: A Systematic Review and Clinical Considerations

    Science.gov (United States)

    Rodrigues, Jean C.

    2015-01-01

    Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238

  2. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins.

    Science.gov (United States)

    Dede, Doğu Ömür; Şahin, Onur; Koroglu, Aysegül; Yilmaz, Burak

    2016-07-01

    The effect of sealant agents on the surface roughness and color stability of nanohybrid composite resins is unknown. The purpose of this in vitro study was to evaluate the effect of sealant agents on the surface roughness and color stability of 4 nanohybrid composite resin materials. Forty disks (10×2 mm) were fabricated for each nanohybrid composite resin material (Z-550, Tetric EvoCeram, Clearfill Majesty, Ice) (N=160) and divided into 4 surface treatment groups: 1 conventional polishing (control) and 3 different sealant agent (Palaseal, Optiglaze, BisCover) coupling groups (n=10). The specimens were thermocycled, and surface roughness (Ra) values were obtained with a profilometer. Scanning electron microscope images were also recorded. CIELab color parameters of each specimen were measured with a spectrophotometer before and after 7 days of storage in a coffee solution. Color differences were calculated by the CIEDE 2000 (ΔE00) formula. The data were statistically analyzed by 2-way ANOVA and by the Tukey HSD test (α=.05). The surface treatment technique significantly affected the Ra values of the composite resins tested (Pcomposite resin material was also significant for ΔE00 values (Pcomposite resin groups, significant decreases in Ra were observed only for the Palaseal agent coupled composite resin groups (except Ice) compared with the control groups (Pcomposite resin group, except for BisCover applied Clearfill Majesty (Pcomposite resin groups, significant differences were observed between the color change seen with BisCover and other sealants for Clearfill Majesty composite resin (Pcomposite resins except for Ice produced smoother surfaces. All surface sealant agents provided less discoloration of nanohybrid composite resins after coffee staining compared with conventional polishing except for BisCover applied Clearfill Majesty composite resin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  3. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.

    Science.gov (United States)

    Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-06-01

    To evaluate the influence of zinc oxide quantum dots (ZnO QDs ) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. ZnO QDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnO QDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnO QDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ZnO QDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnO QDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. ZnO QDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  5. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Directory of Open Access Journals (Sweden)

    Priscilla Cristoforides Pereira

    2010-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. MATERIAL AND METHODS: One three-step etch-and-rinse (All-bond 2, Bisco and another one-step self-etch (Xeno III, Dentsply adhesive systems were applied on 20 (n=10 crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (FRC Postec, Ivoclar was cemented using a dual cure resin cement (Duo-Link, Bisco. Three transverse sections (3 mm were obtained, being one from each study region (cervical, middle and apical. The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (% were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05. RESULTS: For both groups, the degree of conversion means (% (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno III cervical = 68.7; Xeno IIImiddle = 68.8; Xeno III apical = 54.3 were not significantly different along the post space regions (p<0.05. CONCLUSION: Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.

  6. Characterization of adhesive from oysters: A structural and compositional study

    Science.gov (United States)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  7. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Chen Xiaodong; Wang Guiqin; Duan Yuping; Liu Shunhua

    2007-01-01

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  8. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins.

    Science.gov (United States)

    Yu, Bin; Lee, Young-Keun

    2013-01-01

    To evaluate translucency, fluorescence and opalescence stabilities of direct and indirect composite resins after aging. One direct (16 shades) and two indirect composite resins (16 and 26 shades) were investigated. Resins were filled in a mold (1 mm thick) and light cured; post-curings were performed for indirect resins. Color was measured before and after 5,000 cycles of thermocycling on a reflection spectrophotometer in reflectance and transmittance modes to calculate parameters for translucency (TP), fluorescence (FL) and opalescence (OP). Differences in the changes of TP, FL and OP after aging by the type of resin were determined by t test, and those were also determined by one-way ANOVA with the factor of the brand or the shade group (P resins; and were -2.0 to 1.8, -0.9 to 0.4 and -2.9 to 3.7, respectively, for indirect resins. Changes in TP were not significantly different by the type of resin, but those in FL and OP were different (P = 0.05). Changes in optical parameters were influenced by the brand or the shade group of the resins (P resins varied depending on type, brand or shade group. Aging significantly affected fluorescence and opalescence, but not translucency, of indirect resins compared to those of direct resins.

  9. Application of Some Synthesized Polymeric Composite Resins for Removal of Some Metal Ions

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The ion-exchange and sorption characteristic of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins shows high uptake for Co(II) and Eu(III) ions in aqueous solutions in wide range of ph. The selectivity of the resins to Co (II) or Eu (III) species in the presence of some competing ions and complexing agents (as Na + , Fe 3+ , EDTA Na 2 , etc.) was compared. Various factors that could affect the sorption behaviors of metal ions (Co (II) and Eu (III)) on the prepared polymeric composite resins were studied such as ionic strength, Contact time, volume mass ratio

  10. Differential scanning calorimetry of the effects of temperature and humidity on phenol-formaldehyde resin cure

    Science.gov (United States)

    X.-M. Wang; B. Riedl; A.W. Christiansen; R.L. Geimer

    1994-01-01

    Phenol-formaldehyde (PF) resin is a widely used adhesive in the manufacture of wood composites. However, curing behaviour of the resin under various environmental conditions is not well known. A differential scanning calorimeter was employed to characterize the degree of resin cure in this study. Resin-impregnated glass cloth samples with varied moisture contents (0,31...

  11. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    International Nuclear Information System (INIS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N.R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  12. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    Science.gov (United States)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  13. Fluorine analysis of human dentin surrounding resin composite after fluoride application by {mu}-PIGE/PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Katsushi, E-mail: katsu@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan) and School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Komatsu, Hisanori [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan); Yamamoto, Hiroko [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Osaka, Suita 565-0871 (Japan); Pereira, Patricia N.R. [School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Bedran-Russo, Ana K. [University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S. Paulina St., Chicago, IL 60612 (United States); Nomachi, Masaharu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043 (Japan); Sato, Takahiro [TARRI, JAEA, Advanced Radiation Technology, 1233 Watanuki-machi, Gunma, Takasaki 370-1292 (Japan); Sano, Hidehiko [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan)

    2011-10-15

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission ({mu}-PIXE) and micro proton-induced gamma-ray emission ({mu}-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by {mu}-PIGE and {mu}-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F

  14. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  15. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  16. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  17. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    Science.gov (United States)

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile

  18. In vitro enamel remineralization capacity of composite resins containing sodium trimetaphosphate and fluoride.

    Science.gov (United States)

    Tiveron, Adelisa Rodolfo Ferreira; Delbem, Alberto Carlos Botazzo; Gaban, Gabriel; Sassaki, Kikue Takebayashi; Pedrini, Denise

    2015-11-01

    This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control—no sodium fluoride (NaF) or TMP), resin F (with 1.6% NaF), resin TMP (with 14.1% TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p resin TMP/F presented the lowest area of lesion (p resins (p = 0.042), but higher than in the other resins (p composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

  19. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    International Nuclear Information System (INIS)

    Susila Anand, V.; Balasubramanian, Venkatesh

    2014-01-01

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm 2 with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal–Wallis, Mann

  20. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Susila Anand, V. [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Chennai 600077 (India); Balasubramanian, Venkatesh, E-mail: chanakya@iitm.ac.in [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-15

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm{sup 2} with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal

  1. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  2. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  3. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Science.gov (United States)

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  5. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  6. Influence of salivary enzymes and alkaline pH environment on fatigue behavior of resin composites

    NARCIS (Netherlands)

    Mirmohammadi, H.; Kleverlaan, C.J.; Aboushelib, M.N.; Feilzer, A.J.

    2011-01-01

    Purpose: To evaluate the effect of enzymatic activity and alkaline medium on flexural strength and rotary fatigue resistance of direct and indirect resin composite restorative materials. Methods: Three direct resin composite materials Filtek Z100, Filtek Z250 and Filtek Silorane (3M ESPE), and two

  7. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  8. [Effect of bleaching agents on the color of indirect and direct composite resins].

    Science.gov (United States)

    Xing, Wenzhong; Jiang, Tao; Chen, Xiaodong; Wang, Yining

    2014-09-01

    To evaluate the effect of bleaching agents on the color of indirect and direct composite resins. Five resin composite materials were tested in this in vitro study. The five composites were as follow: two indirect composite resins (Adoro SR, Ceramage) and three direct composite resins (Filtek Z350, Clearfil Majesty Esthetic, and Gradia Direct Anterior). For each material, twenty disk-shaped specimens were prepared and randomly divided into five groups according to the color parameters of specimens before bleaching treatment. The composite resin specimens were treated by one of five sample solutions which were at-home bleaching agents (10% and 15% carbarmide peroxide), in- office bleaching agents (38% H(2)O(2) and 35%H(2)O(2)) and deionized water (control group). The color parameters of specimens were measured by spectrophotometer at baseline and after bleaching treatments. The color differences (ΔE values) between baseline and post-treatments were calculated. The data of color differences were evaluated statistically using two-way analysis with a significance level of 0.05. The color changes of the resin composites were less than 2.0 after bleaching agent treatment, therefore were not perceptible. Slight increase of L(*) values and decrease of C(*)ab values in color parameters of specimens were observed. There were statistically significant differences in ΔE values for different bleaching treatments and resin materials (P = 0.001). The bleaching agents did not affect the color of indirect and direct composite resins tested.

  9. Longevity of posterior resin composite restorations in permanent teeth in Public Dental Health Service

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan W V; Halken, Jette

    2013-01-01

    To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service.......To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service....

  10. The effectiveness of different polymerization protocols for class II composite resin restorations.

    NARCIS (Netherlands)

    Jong, L.C.G. de; Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, F.J.M.; Wolke, J.G.C.; Geitenbeek, B.

    2007-01-01

    OBJECTIVES: To investigate the effect of reduced light exposure times on Vickers hardness (VH) of class II composite resin restorations. METHODS: Class II restorations were made in vitro in three 2mm thick increments in a human molar. Two composite resins (Clearfil AP-X; Esthet-X) were polymerized

  11. The effect of proximal contour on marginal ridge fracture of Class II composite resin restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Roeters, F.J.M.; Opdam, N.J.M.; Kuijs, R.H.

    2008-01-01

    OBJECTIVES: To compare the marginal ridge fracture strength of Class II composite resin restorations placed with a straight or contoured matrix band using composite resins with different modulus of elasticity. METHODS: In 60 artificial first molars standardized MO-preparations were ground. Two

  12. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Han Ki Lee

    2016-01-01

    Full Text Available Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL, of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.

  13. Effect of in-office bleaching agents on physical properties of dental composite resins.

    Science.gov (United States)

    Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria

    2013-04-01

    The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P composite resin altered after the bleaching procedure (P composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.

  14. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    Science.gov (United States)

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  15. Effect of post space treatment with adhesives on the push-out bond strength of fiber posts luted with self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Tufan Can Okay

    2017-01-01

    Full Text Available Objective: The aim of this study was to evaluate the push-out bond strength of fiber posts used in the restoration of endodontically-treated teeth with extreme material loss, luted with two different self-adhesive resin cements alone or with the combination of an adhesive. Materials and Method: The post spaces of 80 extracted mandibular first premolar roots were prepared and divided into 4 experimental groups according to fiber post (RelyX Fiber Post luting material. Group 1 was luted with RelyX Unicem, Group 2 was luted with RelyX Unicem + Adper Easy One, Group 3 was luted with Clearfil SA Cement, and Group 4 was luted with Clearfil SA Cement + S3 Bond. After 24 h and 1 month, horizontal sections of 1 mm thickness were made from the coronal, middle and apical root parts of the fiber posts, and push-out tests were performed. Groups were compared by using one way analysis of variance (ANOVA and Tukey’s HSD post hoc tests and storage periods were compared by using independent samples t-test (α=0.05. Results: For both evaluation time periods, RelyX Unicem + Adper Easy One showed the highest bond strength. Regarding the 24 h period, the lowest bond strength values were found for the apical sections followed by middle and coronal sections. One month results revealed similar bond strength values for the middle and apical sections (p>0.05 which were significantly lower than the values found for the coronal sections (p<0.05. RelyX Unicem + Adper Easy One exhibited greater push-out bonding strength compared to other groups in the middle and apical sections (p<0.05. Conclusion: According to the results of this in vitro study it can be concluded that, using an adhesive system in combination with a self-adhesive resin cement during post cementation may improve the bond strength.

  16. Nanosilica Modification of Elastomer-Modified VARTM Epoxy Resins for Improved Resin and Composite Toughness

    National Research Council Canada - National Science Library

    Robinette, Jason; Bujanda, Andres; DeSchepper, Daniel; Dibelka, Jessica; Costanzo, Philip; Jensen, Robert; McKnight, Steven

    2007-01-01

    Recent publications have reported a synergy between rubber and silica in modified epoxy resins that results in significantly improved fracture toughness without reductions in other material properties...

  17. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  18. GRAPHENE-PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES

    Science.gov (United States)

    2017-09-15

    Technical Report ARWSB-TR-17024 GRAPHENE-PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES Proceedings of the Composites and Advanced...findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or...decision, unless so designated by other documentation. The citation in this report of the names of commercial firms or commercially available

  19. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  20. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  1. Vickers microhardness comparison of 4 composite resins with different types of filler.

    Directory of Open Access Journals (Sweden)

    René García-Contreras

    2015-10-01

    Full Text Available Composite resins are the material of choice to restore minimal invasive cavities; conversely, it is important to explore the mechanical properties of commercially available dental materials. Objective: To compare the Vickers microhardness (VHN of four available commercial composite resins using standardized samples and methods. Methodology: Composite cylinders were manufactured in a Teflon mould. We used the follow composite resins (n=4/gp: Microhybrid resins [Feeling Lux (Viarden and Amelogen Plus (Ultradent], Hybrid resin [Te-Econom Plus (Ivoclar] and Nanohybrid resin [Filtek Z350 (3M ESPE]. All samples were incubated in distilled water at 37ºC for five days. The test was carried out with microhardness indenter at 10 N, and a dwelling time of 10 s for 9 indentations across the specimens resulting in a total of 36 indentations for each group. Data were subjected to Kolmogorov-Smirnov normality test and ANOVA (post-hoc Tukey test. Results: The VHN mean values ranged from harder to softer as follows: Filtek Z350 (71.96±6.44 (p Amelogen Plus (59.90±4.40 (p Feeling lux (53.52±5.72> Te-Econom Plus (53.26±5.19. Conclusion: According to our results, the microhardness of the evaluated conventional composite resins can withstand the masticatory forces; however nanohybrid composite resins showed better Vickers microhardness and therefore are a more clinically suitable option for minimal invasion treatments.

  2. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  3. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  4. Improved Materials for Composite and Adhesive Joints.

    Science.gov (United States)

    1984-07-01

    Analysis of Thick Composites," 28th National Society for Advancement of Material and Process Engineering Symposium, Disneyland Hotel, Anaheim... Grant , "Deconvolution as an Aid to Quantification in Electron Spectroscopy Studies of Surfaces and Thin Films," IX International Vacuum Congress, V...International Conference on Solid Surfaces, Madrid, Spain, Sept. 26-Oct. 1, 1983. 8. M. F. Koenig and J. T. Grant , "Direct Comparison of Deconvoluted

  5. CHEMICAL COMPOSITIONS OF PINE RESIN, ROSIN AND TURPENTINE OIL FROM WEST JAVA

    OpenAIRE

    Wiyono Bambang; Tachibana Sanro; Djaban Tinambunan

    2006-01-01

    This study was conducted to identify chemical composition of merkus pine resin, rosin and turpentine oil. Initially, pine resin was separated into neutral and acidic fractions with an aqueous 4% sodium hydroxide solution. After methylation, the fraction containing turpentine oil and rosin were analyzed by gas chromatography (GC), and gas chromatograph mass spectrometry (GC-MS), respectively. The neutral fraction of pine resin and turpentine oil mainly consisted of a-pinene, D-3-carene and b-p...

  6. Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers' instructions of the cements only

    NARCIS (Netherlands)

    Ozcan, Mutlu; Kerkdijk, Sandra; Valandro, Luiz Felipe

    The objectives of this study were (1) to evaluate the bond strength of four resin materials with various chemical compositions following the manufacturers' instructions only and (2) to test their durability in dry and thermal aged conditions when they were bonded to zirconia ceramic. Four types of

  7. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: tbur@icmpp.ro [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  8. Synthesis of a magnetic composite resin and its cobalt removal characteristics in aqueous solution

    International Nuclear Information System (INIS)

    Kim, Young Kyun; Lee, Kun Jai

    2001-01-01

    A series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenolsulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. The ion exchange and sorption characteristics of the composite resin prepared by the above method at various conditions were experimentally disclosed. The composite resin prepared shows stably high removal efficiency to Co(II) species in aqueous solution in a wide range of solution pH. The overall isotherm is qualitatively explained by the generalized adsorption isotherm concept proposed by McKinley. The standard enthalpy change derived from van't Hoff equation conforms to the typical range for chemisorption or ion exchange. The selectivity of the PSF-F (phenolsulphonic formaldehyde-iron ferrite) composite resin to Co(II) species and other competing chemicals (i.e. Na 2 EDTA, Ca(II) and Na) was compared. It is anticipated that the composite resin can also be used for column-operation with process-control by applying external magnetic field, since the rigid bead-type composite resin shows magnetic-susceptibility due to its paramagnetic inorganic constituent (i.e. iron ferrite). (author)

  9. Adherence of Streptococcus Mutans to Microhybrid and Nanohybrid Resin Composites and Dental Amalgam: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Fariba Motevasselian

    2017-12-01

    Full Text Available Objectives: Streptococcus mutans (S. mutans is a cariogenic microorganism. The restorative materials which harbor a biofilm with high levels of S. mutans can accelerate the occurrence of dental caries. The purpose of this study was to evaluate the influence of different restorative materials on S. mutans colonization in a simple in-vitro biofilm formation model.Materials and Methods: Thirteen discs of each material (nanohybrid resin composite, microhybrid resin composite, and amalgam were prepared, polished, and sterilized in a gamma radiation chamber. The saliva-free specimens were exposed to the S. mutans bacterial suspension (0.5 McFarland and were incubated for 4 hours. Afterwards, the specimens were rinsed and sonicated in normal saline. 10µl of the obtained suspension was cultured in a sterile blood agar medium. After 24 hours, the number of colony forming units (CFU of S. mutans was counted. A sterility test control was considered for each group of materials. The data were analyzed by one-way ANOVA at 5% significance level.Results: The means and standard deviations of the logarithmic values of the colonies on the surfaces of amalgam, microhybrid, and nanohybrid resin composites were equal to 3.76±0.64, 3.91±0.52 and 3.34±0.74, respectively.Conclusions: There were no significant differences between the restorative materials in terms of S. mutans adhesion rate. The evaluated resin composites showed comparable numbers of CFUs, which could imply the importance of the polishing procedures.

  10. Ultrasonic measurement of the effects of light irradiation and presence of water on the polymerization of self-adhesive resin cement.

    Science.gov (United States)

    Takenaka, Hirotaka; Ouchi, Hajime; Sai, Keiichi; Kawamoto, Ryo; Murayama, Ryosuke; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2015-08-14

    Self-adhesive resin cements are useful in restorations because they reduce the number of clinical steps involved in the restoration process. This study evaluated, using ultrasonic measurements, the influence of light irradiation and the presence of water on the polymerization behavior and elastic modulus of a self-adhesive resin cement. A self-adhesive resin cement (RelyX Unicem 2 Automix) or a resin cement (RelyX ARC) was inserted into a transparent mold on a sample stage, and the presence of water and effect of light-irradiation were evaluated. The transit time of a sonic wave through the cement disk was divided by the specimen thickness to obtain the sonic velocity, and longitudinal and shear waves were used to determine the elastic modulus. When the resin cements were light-irradiated, the sonic velocity rapidly increased and plateaued at 2,500-2,700 m s -1 . When the cements were not irradiated, the rates of increase in the sonic velocity were reduced. When water was applied to the sample stage, the sonic velocity was reduced. The elastic modulus values of the specimens ranged from 9.9 to 15.9 GPa after 24 h. The polymerization behavior of self-adhesive resin cements is affected by the polymerization mode and the presence of water. © 2015 Eur J Oral Sci.

  11. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  12. The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study.

    Science.gov (United States)

    Rodrigues, Raphaela F; Ramos, Carla M; Francisconi, Paulo A S; Borges, Ana Flávia S

    2015-03-01

    Clinicians continue to search for ways to simplify bonding procedures without compromising clinical efficacy. The purpose of this study was to evaluate the shear strength of self-adhesive cements RelyX U100 and RelyX U200, and conventional resin cement RelyX ARC to enamel and dentin after different surface treatments. The crowns of 120 bovine incisor teeth were separated from the roots and embedded in epoxy resin in polyvinyl chloride tubes. In each tooth, the area to be cemented was delimited with central holed adhesive tape. The teeth were distributed into 12 groups (n=10) according to the substrate; etched or not with 37% phosphoric acid; and cement type of enamel-U100, enamel-phosphoric acid-U100, enamel-U200, enamel-phosphoric acid-U200, enamel-ARC, enamel-phosphoric acid-ARC, dentin-U100, dentin-phosphoric acid-U100, dentin-U200, dentin-phosphoric acid-U200, dentin-ARC, and dentin-phosphoric acid-ARC. After 7 days of storage in artificial saliva, shear strength tests were performed by using a universal testing machine (0.5 mm/min). The data were analyzed with 3-way ANOVA and the Tukey test (α=.05). Fracture analysis was performed with a light microscope. Two specimens from each group were analyzed with a scanning electron microscope. In enamel, ARC (9.96 MPa) had higher shear strength (P=.038) than U100 (5.14 MPa); however, after surface etching, U100 (17.81 MPa) and U200 (17.52 MPa) had higher shear strength (Padhesive type. U200 self-adhesive cement had similar bond strength to the ARC in enamel, but the combination with phosphoric acid had the best bond strength. For dentin, self-adhesive resin cements are equally effective alternatives to conventional resin cement. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  14. Salivary bisphenol A levels and their association with composite resin restoration.

    Science.gov (United States)

    Lee, Jung-Ha; Yi, Seung-Kyoo; Kim, Se-Yeon; Kim, Ji-Soo; Son, Sung-Ae; Jeong, Seung-Hwa; Kim, Jin-Bom

    2017-04-01

    Composite resin has been increasingly used in an effort to remove minimal amount of tooth structure and are used for restoring not just carious cavities but also cervical abrasion. To synthesize composite resin, bisphenol A (BPA) is used. The aim of the study was to measure the changes in salivary BPA level related with composite resin restoration. ELISA was used to examine the BPA levels in the saliva collected from 30 volunteers whose teeth were filled with composite resin. Salivary samples were collected immediately before filling and 5 min and 7 d after filling. Wilcoxon signed-ranks test and linear regression were performed to test the significant differences of the changes in BPA levels in saliva. Before a new composite resin filling, there was no significant difference between with and without existing filling of composite resin and BPA level in the saliva was not correlated to the number of filled surfaces with composite resin. However, BPA level in the saliva increased to average 3.64 μg/L from average 0.15 μg/L after filling 5 min. BPA level increased in proportion with the number of filled surfaces. BPA level decreased to average 0.59 after filling 7 d. However it was higher than the BPA level before a new composite resin filling. Considering 50 μg/kg/day as the Tolerable Daily Intake of BPA suggested by European Food Safety Authority, the amount of BPA eluted in saliva after the composite resin filling is considered a safe level that is not a hazard to health at all. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of resin variables on the creep behavior of high density hardwood composite panels

    Science.gov (United States)

    R.C. Tang; Jianhua Pu; C.Y Hse

    1993-01-01

    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  16. Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite

    Science.gov (United States)

    Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo

    2018-05-01

    The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.

  17. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2010-03-01

    Full Text Available Objective: Bleaching agents may not be safe for dental materials. The purpose of this invitro study was to evaluate the effects of Opalescent Quick "in-office bleaching gel" containing 35% carbamide peroxide on the surface roughness and hardness of microfilled(Heliomolar and hybride (Spectrum TPH composite resins.Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm thickness and light cured, then their surfaces were polished. Specimens of each composite resin were divided into two equal groups. Ten specimens of each type of composite were stored in water at 37°C as the control groups and 35% carbamide peroxide gel (Opalescence Quick as the other group for 30 minutes a week for 3 weeks. Then the specimens were subject to roughness and hardness tests.Results: This study revealed that using 35% carbamide peroxide bleaching gels had no significant effect on the surface roughness of Spectrum TPH "hybrid" and Heliomolar "microfilled" composite resins. The surface hardness of Spectrum TPH composite treated with the subject gel significantly increased compared to heliomolar, which had no significant change after treatment with this bleaching gel.Conclusion: If tooth color matching of the composite had been satisfactory after office bleaching with 35% carbamide peroxide gel, this material would have been acceptable because it has no adverse effect on Heliomolar and Spectrum TPH composite resins.

  18. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  19. Effects of toothbrush hardness on in vitro wear and roughness of composite resins.

    Science.gov (United States)

    Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi

    2013-11-01

    To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.

  20. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    LI Bintai

    2016-06-01

    Full Text Available Applications and research progress in advanced aeronautical resin matrix composites by National Key Laboratory of Advanced Composites (LAC were summarized. A novel interlaminar toughening technology employing ultra-thin TP non-woven fabric was developed in LAC, which significantly improved the compression after impact (CAI performances of composite laminates.Newly designed multilayer sandwich stealth composite structures exhibited a good broadband radar absorbing properties at 1-18 GHz.There were remarkable developments in high toughness and high temperature resin matrix composites, covering major composite processing technologies such as prepreg-autoclave procedure, liquid composite molding and automation manufacture, etc. Finally, numerical simulation and optimization methods were deliberately utilized in the study of composites curing behavior, resin flow and curing deformation. A composite material database was also established.In conclusion, LAC has been a great support for the development of aeronautical equipment, playing such roles as innovation leading, system dominating, foundation supporting and application ensuring of aerocomposites.

  1. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  2. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  3. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Chhabra

    2017-01-01

    Full Text Available Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Materials and Methods: Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Results: Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Conclusions: Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  4. Marginal Leakage of Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2018-01-01

    Full Text Available >Introduction: Marginal leakage is one of the significant causes of restoration failure. This in-vitro study was conducted to compare cone beam computed tomography (CBCT and dye-penetration methods for determining marginal leakage at gingival surface of class V resin composite restorations.Materials and Methods: Class V cavities were prepared on the buccal surfaces of nineteen caries-free extracted human molar teeth. Cavities were conditioned and filled. The teeth were immersed in a 50% w/w aqueous silver nitrate solution for 24 h and were taken out and rinsed with distilled water. Then, they were put into a developing solution. Whole specimens were first viewed with CBCT and were then sectioned and evaluated by stereomicroscope.Results: Measurement of agreement between CBCT and stereomicroscope revealed that 15 (78.9% teeth had score 0, 1 (5.3% tooth had score 1, and 1 (5.3% tooth had score 2 in both techniques. Measurement of agreement between CBCT and stereomicroscope techniques, in the detection of marginal leakage, was 89.5% (Kappa coefficient = 0.627, P = 0.00. The Wilcoxon paired rank test revealed no significant difference between the results of CBCT and stereomicroscope in measuring the leakage at gingival margin (P = 0.157.Conclusion: Considering the limitations of the study, there was no significant difference between the results of CBCT and stereomicroscope in measuring the leakage at gingival margin of class V composite restorations. CBCT can be used noninvasively to detect the marginal leakage of gingival wall of class V composite restorations using aqueous silver nitrate solution as a tracer.

  5. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication.

    Science.gov (United States)

    Dejak, Beata; Młotkowski, Andrzej

    2015-03-01

    Polymerization shrinkage of composites is one of the main causes of leakage around dental restorations. Despite the large numbers of studies there is no consensus, what kind of teeth reconstruction--direct or indirect composite restorations are the most beneficial and the most durable. The aim was to compare equivalent stresses and contact adhesive stresses in molar teeth with class II MOD cavities, which were restored with inlays and direct restorations (taking into account polymerization shrinkage of composite resin) during simulated mastication. The study was conducted using the finite elements method with the application of contact elements. Three 3D models of first molars were created: model A was an intact tooth; model B--a tooth with a composite inlay, and model C--a tooth with a direct composite restoration. Polymerization linear shrinkage 0.7% of a direct composite restoration and resin luting cement was simulated (load 1). A computer simulation of mastication was performed (load 2). In these 2 situations, equivalent stresses according to the modified von Mises criterion (mvM) in the materials of mandibular first molar models with different restorations were calculated and compared. Contact stresses in the luting cement-tooth tissue adhesive interface around the restorations were also assessed and analyzed. Equivalent stresses in a tooth with a direct composite restoration (the entire volume of which was affected by polymerization shrinkage) were many times higher than in the tooth restored with a composite inlay (where shrinkage was present only in a thin layer of the luting cement). In dentin and enamel the stress values were 8-14 times higher, and were 13 times higher in the direct restoration than in the inlay. Likewise, contact stresses in the adhesive bond around the direct restoration were 6.5-7.7 times higher compared to an extraorally cured restoration. In the masticatory simulation, shear contact stresses in the adhesive bond around the direct

  6. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    International Nuclear Information System (INIS)

    Khan, Nazrul Islam; Halder, Sudipta; Goyat, M.S.

    2016-01-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  7. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazrul Islam [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Halder, Sudipta, E-mail: shalder@nits.ac.in [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Goyat, M.S. [Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007 (India)

    2016-03-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  8. Effect of Metallic Additives to Polymer Matrix on Properties of Composite Adhesives Dedicated for Light Metal Joining

    Directory of Open Access Journals (Sweden)

    Mamala A.

    2017-12-01

    Full Text Available The most recent and promising trends in development of renewable sources of energy are Combined Heat and Power (CHP systems. The newest solutions from this field are hybrid compact solar panels. The correct operation of both systems, i.e. the photovoltaic panel and the heat exchanger requires an effective connection between the two. The adhesives utilized to interconnect above elements should provide a stable and hermetic joint able to withstand mechanical and thermal impacts of the surrounding environment factors. The paper presents the research results over the impact of the type and the amount of reinforcing phase on the physical and mechanical properties of epoxy resin matrix composites reinforced with particles of non-ferrous metals (Ag, Cu, W, Al, dedicated as adhesives for connections between photovoltaic panels and heat exchangers. Based on the experimental findings the usefulness of classical analytic models for valuation of polymer-metal composites properties was validated.

  9. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin

    Directory of Open Access Journals (Sweden)

    Ji-Sun Kim

    2013-02-01

    Full Text Available Objectives This study evaluated the antibacterial effect and mechanical properties of composite resins (LCR, MCR, HCR incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High. Materials and Methods Streptococcus (S. mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at OD660 to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA and Scheffe test, statistical analysis was done with 95% significance level. Results All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, MCR showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins HCR and LCR. Conclusions LCR and HCR would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

  10. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  11. Perlekatan koloni Streptococcus mutans pada permukaan resin komposit sinar tampak (The adherence of Streptococcus mutans colony to surface visible light composite resins

    Directory of Open Access Journals (Sweden)

    Ajeng Anggraeni

    2005-03-01

    Full Text Available Visible light composite resins was used to restore anterior and posterior teeth, and it is always covered by saliva pellicle. S. mutans can adhere to all of the surface of oral cavity and visible light composite resins. The aim of this study was to know the amount of S. mutans colony adherence to visible light composite resins surface. The sample of 5 mm diameter and 3 mm in thickness was immersed in saliva for one hour, than the samples were put into bacteria suspension, incubated for 24 hours at 37° C. The amount of S. mutans was determined by direct count using microscope. The data were statistically analyzed by using t test. The result showed a significance difference of S. mutans colony between hybrid and micro fill visible light composite resins. The conclusion was that the amount of S. mutans adherence on the surface of hybrid was higher than the micro fill visible light composite resins.

  12. [Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites].

    Science.gov (United States)

    Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng

    2017-12-01

    This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (Pglass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (Pglass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (Pglass ceramics treated with 4

  13. Marginal microleakage of class V resin-based composite restorations bonded with six one-step self-etch systems

    Directory of Open Access Journals (Sweden)

    Alfonso Sánchez-Ayala

    2013-06-01

    Full Text Available This study compared the microleakage of class V restorations bonded with various one-step self-etching adhesives. Seventy class V resin-based composite restorations were prepared on the buccal and lingual surfaces of 35 premolars, by using: Clearfil S 3 Bond, G-Bond, iBond, One Coat 7.0, OptiBond All-In-One, or Xeno IV. The Adper Single Bond etch-and-rinse two-step adhesive was employed as a control. Specimens were thermocycled for 500 cycles in separate water baths at 5°C and 55°C and loaded under 40 to 70 N for 50,000 cycles. Marginal microleakage was measured based on the penetration of a tracer agent. Although the control showed no microleakage at the enamel margins, there were no differences between groups (p = 0.06. None of the adhesives avoided microleakage at the dentin margins, and they displayed similar performances (p = 0.76. When both margins were compared, iBond® presented higher microleakage (p < 0.05 at the enamel margins (median, 1.00; Q3–Q1, 1.25–0.00 compared to the dentin margins (median, 0.00; Q3–Q1, 0.25–0.00. The study adhesives showed similar abilities to seal the margins of class V restorations, except for iBond®, which presented lower performance at the enamel margin.

  14. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  15. Synthesis of iodine-containing cyclophosphazenes for using as radiopacifiers in dental composite resin

    International Nuclear Information System (INIS)

    Zhao, Yuchen; Lan, Jinle; Wang, Xiaoyan; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    In this study, a strategy of using iodine-containing cyclophosphazenes as radiopacifiers for dental composite resin was evaluated. It was hypothesized that cyclophosphazenes bearing both iodine and acrylate group swere able to endow composite resins radiopacity without compromising mechanical properties. The cyclophosphazene compounds were synthesized by subsequently nucleophilic substitution of hexachlorocyclotriphosphazene with hydroxyethyl methacrylate (HEMA) and 4-iodoaniline. Cyclotriphosphazenes containing two different molar ratios of HEMA to 4-iodoaniline (1:5 and 2:4) were obtained, and were identified with 1 H NMR, FT-IR, UV and mass spectroscopy. The iodine-containing cyclophosphazenes were able to dissolve well in bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) resin, and were added at two contents (10 or 15%wt. of the resin). The resins were photo-cured and post-thermal treated before characterizations. The resulting composite resins demonstrated the ability of blocking X-ray. And the addition of HEMA-co-iodoaniline substituted cyclotriphosphazenes caused minor adverse effect on the mechanical properties of the resins because the cyclotriphosphazenes could mix well and react with the resins. The presence of rigid phosphazene rings between resin backbones displayed an effective function of decreasing polymerization shrinkage. In summary, soluble and reactive iodine-containing cyclotriphosphazenes demonstrated advantages over traditional heavy metals or metal oxides in being used as additives for producing radiopaque dental resins. - Highlights: • Iodine-containing cyclotriphosphazenes were prepared via nucleophilic substitution. • The cyclotriphosphazenes endowed Bis-GMA/TEGDMA resins radiopacity. • The cyclotriphosphazenes caused a minor adverse effect on mechanical properties

  16. Computerized mathematical model for prediction of resin/fiber composite properties

    International Nuclear Information System (INIS)

    Lowe, K.A.

    1985-01-01

    A mathematical model has been developed for the design and optimization of resin formulations. The behavior of a fiber-reinforced cured resin matrix can be predicted from constituent properties of the formulation and fiber when component interaction is taken into account. A computer implementation of the mathematical model has been coded to simulate resin/fiber response and generate expected values for any definable properties of the composite. The algorithm is based on multistage regression techniques and the manipulation of n-order matrices. Excellent correlation between actual test values and predicted values has been observed for physical, mechanical, and qualitative properties of resin/fiber composites. Both experimental and commercial resin systems with various fiber reinforcements have been successfully characterized by the model. 6 references, 3 figures, 2 tables

  17. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  18. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (Pconversion (P

  19. Initial Development of Composite Repair Resins With Low Hazardous Air Pollutant Contents

    National Research Council Canada - National Science Library

    LaScala, John J; Bingham, Scott; Andrews, Kevin S; Sands, James M; Palmese, Guiseppe R

    2008-01-01

    Unsaturated polyester-based repair resins, such a Bondo, are widely used for automotive repair, marine repair, sporting equipment repair, and household repair of metal, composites, plastics, and wood...

  20. Leaching of iodine from composites based on epoxy resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    The scope for using solid composites obtained by incorporating dry powdery lead iodide and its aqueous suspension into epoxy resin for prolonged immobilization of iodine-129 under monitorable storage conditions has been assessed by a study of leaching of iodine

  1. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  2. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  3. Influence of method and period of storage on the microtensile bond strength of indirect composite resin restorations to dentine

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro Santana

    2008-12-01

    Full Text Available This study evaluated the influence of the method and period of storage on the adhesive bond strength of indirect composite resin to bovine dentin. Ninety bovine incisors were stored in three different solutions: 0.2% thymol, 10% formalin, and 0.2% sodium azide, during 3 periods of storage: 7 days, 30 days and 6 months, resulting in 9 groups (n = 10. The roots were cut off and the buccal surface was ground with #600-grit silicon carbide paper. The surface was conditioned with 37% phosphoric acid for 15 s and a composite resin restoration (TPH Spectrum was fixed using a one-bottle adhesive system (Adper Single Bond and a dual-cured resinous cement (Rely X ARC under a load of 500 g for 5 minutes. The samples were serially cut perpendicular to the bonded interface to obtain slices of 1.2 mm in thickness. Each slab was trimmed with a cylindrical diamond bur resulting in an hourglass shape with a cross-sectional area of approximately 1 mm². The microtensile bond strength (μTBS testing was performed in a testing machine (EMIC 2000 DL at a 0.5 mm/minute crosshead-speed until failure. After fracture, the specimens were examined under SEM to analyze the mode of fracture. μTBS Means were expressed in MPa and the data were analyzed by two-way ANOVA (3X3 and the Tukey test (α = 0.05. The storage times of 7 and 30 days produced no significant difference irrespective of the solution type. The formalin and thymol solutions, however, did have a negative influence on bond strength when the teeth were stored for 6 months.

  4. Pembuatan Adhesive Bridge dengan Fiber Reinforced Composite untuk Perawatan Kehilangan dan Kegoyahan Gigi Anterior Rahang Bawah

    Directory of Open Access Journals (Sweden)

    Demmy Wijaya

    2014-06-01

    Full Text Available Salah satu perawatan kehilangan gigi anterior untuk tujuan estetis adalah dengan adhesive bridge. Fiber Reinforced Composite (FRC adalah bahan struktural yang terdiri dari 2 konstituen yang berbeda. Komponen penguat (fiber memberikan kekuatan dan kekakuan, sedangkan matriks (resin komposit mendukung penguatan. Bahan FRC dapat digunakan untuk pembuatan adhesive bridge dan juga dapat digunakan sebagai stabilisasi gigi yang mengalami kegoyahan. Adanya gigi pendukung yang sehat juga sangat membantu keberhasilan perawatan ini. Laporan kasus ini bertujuan untuk memberikan informasi tentang penatalaksanaan perawatan kehilangan dan kegoyahan gigi anterior rahang bawah menggunakan FRC. Seorang pasien laki-laki berusia 33 tahun datang ke klinik Prostodonsia RSGM Prof. Soedomo ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 31, gigi 32, gigi 41 dan mengalami kegoyahan derajat 2 disertai resesi gingiva. Kondisi tersebut akibat pasca pembuatan gigi tiruan di tukang gigi. Pasien tidak ingin giginya yang goyah dilakukan pencabutan. Tatalaksana kasus: pencetakan rahang untuk model diagnostik, pembuatan mock-up pontik gigi 31 pada model diagnostik, pembuatan index dengan mencetak bagian lingual dan 1/3 incisal menggunakan putty, preparasi gigi penyangga (gigi 32, 33, 41, 42, 43, pemasangan fiber dengan bantuan index putty, pembentukan bagian labial pontik dengan komposit, finishing dan polishing. Kesimpulan: Fiber reinforced composite dapat dipakai untuk pengelolaan pasien yang mengalami kehilangan dan kegoyahan gigi anterior rahang bawah. Adhesive Bridge of Fiber Reinforced Composite to Treat Tooth Missing and Luxation of Lower Anterior Teeth. One of the anterior tooth loss treatments for esthetic purposes is the adhesive bridge. Fiber Reinforced Composite (FRC is a structural material that consists of two different constituencies. Amplifier components (fiber provide strength and stiffness, while matrix (resin composite support reinforcement. FRC materials

  5. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  6. Manufacturing of kevlar/polyester composite by resin transfer moulding using conventional and microwave heating

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    Microwave heating was incorporated into the resin transfer moulding technique. Polytetrafluoroethylene (PTFE) mould was used to cure the composite panel. Through the use of microwave heating, the mechanical and physical properties of produced Kevlar fibre/polyester composites were compared to those manufactured by conventional resin transfer moulding. The flexural modulus and flexural strength of 6-ply conventionally cured composites was 45% and 9% higher than the flexural modulus and flexural strength of 6-ply microwaved cured composites, respectively. However, 19% increase in interlaminar shear strength (ILSS) and 2% increase in compressive strength was observed in 6-ply microwave cured composites. This enhancement in ILSS and compressive strength is attributed to the better interfacial bonding of polyester resin with Kevlar fibres in microwaved cured composite, which was also confirmed via electron microscopy scanning. Furthermore, the microwave cured composite yielded maximum void contents (3%). (author)

  7. Effect of different light curing units on Knoop hardness and temperature of resin composite

    OpenAIRE

    Guiraldo Ricardo; Consani Simonides; Xediek Consani Rafael; Mendes Wilson; Lympius Thais; Coelho Sinhoreti Mario

    2009-01-01

    Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk ...

  8. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations.......Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  9. Influence of Bleaching Agents on Color and Translucency of Aged Resin Composites.

    Science.gov (United States)

    Lago, Maristela; Mozzaquatro, Lisandra R; Rodrigues, Camila; Kaizer, Marina R; Mallmann, André; Jacques, Letícia B

    2017-09-01

    Evaluate the influence of two bleaching agents (16% carbamide peroxide-CP and 35% hydrogen peroxide-HP) on color and translucency of one resin composite (Filtek Z350 XT) in two opacities (enamel and dentin) previously aged in deionized water or red wine. Sixty specimens of each material were divided in two groups (n = 30): aged in water or red wine for 14 days. Then the specimens were divided in three subgroups (n = 10): control/no treatment, treated with 16% carbamide peroxide (Mix Night), treated with 35% hydrogen peroxide (Mix One). Color readings were performed 24 hours after polishing (baseline); after the 14 days of aging; and after bleaching treatment. Color coordinates CIE L*a*b* were measured using a spectrophotometer (SP60 X-Rite). Color change (CIEDE2000) and translucency parameter were calculated. Data were analyzed with repeated measures two-way ANOVA, and Student-Newman-Keuls tests (5%). Bleaching decreased color change in stained resin composites (aged in red wine), whereas increased it in non-stained enamel resin composites (aged in water). CP had better bleaching results with stained resin composites than HP. Translucency of non-stained dentin resin composite decreased with aging, but did not change with bleaching. For stained resin composites, aging caused reduced translucency, whereas bleaching increased it. Effective bleaching of discolored resin composites aged in an acidic and alcoholic media rich in staining agents was achieved, improving color and translucency. Carbamide peroxide showed better performance than hydrogen peroxide for the bleaching of stained resin composites. (J Esthet Restor Dent 29:368-377, 2017). © 2016 Wiley Periodicals, Inc.

  10. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass.

    Science.gov (United States)

    Korkut, Emre; Torlak, Emrah; Altunsoy, Mustafa

    2016-07-26

    The aim of this study was to evaluate the antimicrobial efficacy and mechanical properties of dental resin composites containing different amounts of microparticulate bioactive glass (BAG). Experimental resin composites were prepared by mixing resin matrix (70% BisGMA and 30% TEGDMA) and inorganic filler with various fractions of BAG to achieve final BAG concentrations of 5, 10 and 30 wt%. Antimicrobial efficacy was assessed in aqueous suspension against Escherichia coli, Staphylococcus aureus and Streptococcus mutans and in biofilm against S. mutans. The effect of incorporation of BAG on the mechanical properties of resin composite was evaluated by measuring the surface roughness, compressive strength and flexural strength. Under the dynamic contact condition, viable counts of E. coli, S. aureus and S. mutans in suspensions were reduced up to 78%, 57% and 50%, respectively, after 90 minutes of exposure to disc-shaped composite specimens, depending on the BAG contents. In 2-day-old S. mutans biofilm, incorporation of BAG into composite at ratios of 10% and 30% resulted in 0.8 and 1.4 log reductions in the viable cell counts compared with the BAG-free composite, respectively. The surface roughness values of composite specimens did not show any significant difference (p>0.05) at any concentration of BAG. However, compressive and flexural strengths of composite were decreased significantly with addition of 30% BAG (p<0.05). The results demonstrated the successful utilization of BAG as a promising biomaterial in resin composites to provide antimicrobial function.

  11. Effect of bench time polymerization on depth of cure of dental composite resin

    Science.gov (United States)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  12. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  13. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Microleakage after Thermocycling of Three Self-Etch Adhesives under Resin-Modified Glass-Ionomer Cement Restorations

    Directory of Open Access Journals (Sweden)

    Sabine O. Geerts

    2010-01-01

    Full Text Available This study was designed to evaluate microleakage that appeared on Resin-Modified Glass-Ionomer Cement (RMGIC restorations. Sixty class V cavities (h×w×l=2mm×2mm×3mm were cut on thirty extracted third molars, which were randomly allocated to three experimental groups. All the buccal cavities were pretreated with polyacrylic acid, whereas the lingual cavities were treated with three one-step Self-Etch adhesives, respectively, Xeno III (Dentsply Detrey GmbH, Konstanz, Germany, iBond exp (Heraeus Kulzer gmbH & Co. KG, Hanau, Germany, and Adper Prompt-L-Pop (3M ESPE AG, Dental products Seefeld, Germany. All cavities were completely filled with RMGIC, teeth were thermocycled for 800 cycles, and leakage was evaluated. Results were expressed as means ± standard deviations (SDs. Microleakage scores were analysed by means of generalized linear mixed models (GLMMs assuming an ordinal logistic link function. All results were considered to be significant at the 5% critical level (<.05. The results showed that bonding RMGIC to dentin with a Self-Etch adhesive rather than using polyacrylic acid did not influence microleakage scores (=.091, except for one tested Self-Etch adhesive, namely, Xeno III (<.0001. Nevertheless, our results did not show any significant difference between the three tested Self-Etch adhesive systems. In conclusion, the pretreatment of dentin with Self-Etch adhesive system, before RMGIC filling, seems to be an alternative to the conventional Dentin Conditioner for the clinicians as suggested by our results (thermocycling and others (microtensile tests.

  15. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  16. Marginal integrity of resin composite restorations restored with PPD initiatorcontaining resin composite cured by QTH, monowave and polywave LED units.

    Science.gov (United States)

    Bortolotto, Tissiana; Betancourt, Francisco; Krejci, Ivo

    2016-12-01

    This study evaluated the influence of curing devices on marginal adaptation of cavities restored with self-etching adhesive containing CQ and PPD initiators and hybrid composite. Twenty-four class V (3 groups, n=8) with margins located on enamel and dentin were restored with Clearfil S3 Bond and Clearfil APX PLT, light-cured with a monowave LED, multiwave LED and halogen light-curing unit (LCU). Marginal adaptation was evaluated with SEM before/after thermo-mechanical loading (TML). On enamel, significantly lower % continuous margins (74.5±12.6) were found in group cured by multiwave LED when compared to monowave LED (87.6±9.5) and halogen LCU (94.4±9.1). The presence of enamel and composite fractures was significantly higher in the group light-cured with multiwave LED, probably due to an increased materials' friability resulted from an improved degree of cure. The clinician should aware that due to a distinct activation of both initiators, marginal quality may be influenced on the long-term.

  17. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  18. Modeling and mechanical performance of carbon nanotube/epoxy resin composites

    International Nuclear Information System (INIS)

    Srivastava, Vijay Kumar

    2012-01-01

    Highlights: ► The MWCNT fillers are uniformly dispersed in the epoxy resin, which improved the mechanical properties of epoxy resin. ► Modified Halpin–Tsai model is useful to calculate the Young’s modulus of MWCNT/epoxy resin composite. ► The experimental moduli are within the variation of 27% with the theoretical values. -- Abstract: The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.

  19. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  20. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    Science.gov (United States)

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, Presins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  1. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. ... Impact fatigue; static fatigue; residual stress; E-glass fibre; vinylester resin. 1. ... The present work ..... American Society for Testing and Materials) 497 p. 311.

  2. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  3. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  4. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  5. The Effect of Titanium Tetrafluoride and Sodium Hypochlorite on the Shear Bond Strength of Methacrylate and Silorane Based Composite Resins: an In-Vitro Study.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Koohpeima, Fatemeh; Razazan, Nader

    2017-06-01

    The bond strength of composites with different adhesive systems with dentin is an important factor in long term durability of composite restorations. The effect of titanium tetrafluoride (TiF 4 ) as anti caries agent and sodium hypochlorite (NaOCl) as disinfectant on the shear bond of nanofilled and silorane based composite resins have not been investigated in previous studies. This study was conducted to determine bond strength between dentin and two composite systems, by means of shear bond test using TiF 4 and NaOCl. Middle dentin of 60 intact extracted maxillary premolar teeth were exposed by sectioning the crowns at a depth of 2mm from central groove and parallel to the occlusal surface. Standardized smear layer was created using a 600-grit silicon carbide paper and then samples were embedded in acrylic resin blocks. Then the samples were randomly divided into 6 \\groups summarized as Group I: Z350, Group II: Z350+ NaOCl, Group III: Z350+ TiF 4 , Group IV: P90, Group V: P90+ NaOCl, Group VI: P90+ TiF 4 according to manufacturer's instruction. Then samples were subjected to shear bond strength (SBS) test using universal testing machine and data were analyzed using ANOVA and Tukey tests ( p composite resin ( p = 0.004), and also silorane based composite resin ( p = 0.006). Application of 4% TiF 4 caused a significant increase in SBS of silorane based composite resin ( p = 0.001). The effect of TiF 4 on nanofilled composite was not statistically significant. Using TiF 4 has a positive effect on increasing the shear bond while NaOCl has negative effect on bond strength.

  6. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    Science.gov (United States)

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  7. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  8. Novel matrix resins for composites for aircraft primary structures, phase 1

    Science.gov (United States)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  9. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    Science.gov (United States)

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles.

  10. Scanning electron microscopy analysis of marginal adaptation of composite resines to enamel after using of standard and gradual photopolimerization

    Directory of Open Access Journals (Sweden)

    Dačić Stefan

    2014-01-01

    Full Text Available Introduction. Bonding between composite and hard dental tissue is most commonly assessed by measuring bonding strength or absence of marginal gap along the restoration interface. Marginal index (MI is a significant indicator of the efficiency of the bond between material and dental tissue because it also shows the values of width and length of marginal gap. Objective. The aim of this investigation was to estimate quantitative and qualitative features of the bond between composite resin and enamel and to determine the values of MI in enamel after application of two techniques of photopolymerization with two composite systems. Methods. Forty Class V cavities on extracted teeth were prepared and restored for scanning electron microscope (SEM analysis of composite bonding to enamel. Adhesion to enamel was achieved by Adper Single Bond 2 - ASB (3M ESPE, or by Adper Easy One - AEO (3M ESPE. Photopolymerization of Filtek Ultimate - FU (3M ESPE was performed using constant halogen light (HIP or soft start program (SOF. Results. Quantitative and qualitative analysis, showed better mikromorphological bonding with SOF photopolymerization and ASB/FU composite system. Differences in MI between different photopolymerization techniques (HIP: 0.6707; SOF: 0.2395 were statistically significant (p<0.001, as well as differences between the composite systems (ASB/FU: 0.0470; AEO/ FU: 0.8651 (p<0.001 by two-way ANOVA test. Conclusion. Better marginal adaptation of composite to enamel was obtained with SOF photopolymerization in both composite systems.

  11. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion.

    Science.gov (United States)

    Lee, Jung-Hwan; Jo, Jeong-Ki; Kim, Dong-Ae; Patel, Kapil Dev; Kim, Hae-Won; Lee, Hae-Hyoung

    2018-04-01

    Although polymethyl methacrylate (PMMA) is widely used as a dental material, a major challenge of using this substance is its poor antimicrobial (anti-adhesion) effects, which increase oral infections. Here, graphene-oxide nanosheets (nGO) were incorporated into PMMA to introduce sustained antimicrobial-adhesive effects by increasing the hydrophilicity of PMMA. After characterizing nGO and nGO-incorporated PMMA (up to 2wt%) in terms of morphology and surface characteristics, 3-point flexural strength and hardness were evaluated. The anti-adhesive effects were determined for 4 different microbial species with experimental specimens and the underlying anti-adhesive mechanism was investigated by a non-thermal oxygen plasma treatment. Sustained antimicrobial-adhesive effects were characterized with incubation in artificial saliva for up to 28 days. The typical nanosheet morphology was observed for nGO. Incorporating nGO into PMMA roughened its surface and increased its hydrophilicity without compromising flexural strength or surface hardness. An anti-adhesive effect after 1h of exposure to microbial species in artificial saliva was observed in nGO-incorporated specimens, which accelerated with increasing levels of nGO without significant cytotoxicity to oral keratinocytes. Plasma treatment of native PMMA demonstrated that the antimicrobial-adhesive effects of nGO incorporation were at least partially due to increased hydrophilicity, not changes in the surface roughness. A sustained antimicrobial-adhesive property against Candida albicans was observed in 2% nGO for up to 28 days. The presence of sustained anti-adhesion properties in nGO-incorporated PMMA without loading any antimicrobial drugs suggests the potential usefulness of this compound as a promising antimicrobial dental material for dentures, orthodontic devices and provisional restorative materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Flexural and diametral tensile strength of composite resins

    Directory of Open Access Journals (Sweden)

    Álvaro Della Bona

    2008-03-01

    Full Text Available This study evaluated the flexural strength (sf and the diametral tensile strength (st of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk, following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm specimens (n = 10 were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10 were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000 recording the fracture load (N. Strength values (MPa were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05. The mean and standard deviation values (MPa were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05, which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

  13. Approach of Surgeons Dentists in Relation to Lightcuring Composite Resins

    Directory of Open Access Journals (Sweden)

    Raquel Cristine Scariot

    2017-08-01

    Full Text Available Apparatus and methods for polymerization of composite resins have been seeking to improve the restorations properties. This study aimed to assess the knowledge of dentists before the use of light curing units. Data collection was done through a questionnaire, administered to 34 dentists from course IMED Restorative Dentistry Specialization in the years 2015 and 2016. The results showed that 34 of the dentists interviewed , 35.30% used Gnatus brand, 23.53% RadiCall, and 20.58% Schuster. As for the year 35.3% had photopolymerizer the year 2015, 17.64% year 2010 and 11.77% year 2014. Regarding the type of lamp used, 91.14% used Led, 5,38% halogen and 2 94% Led and halogen. Regarding the consequences of polymerization shrinkage, 23.52% of dentists related postoperative sensitivity, marginal leakage, recurrent decay and enamel crack as consequences, 20.58% considered the microleakage the only consequence and 23, 52% only postoperative sensitivity. Of the total sample 29.4% said to reduce the stress of polymerization shrinkage used other curing techniques, 17.64% ramp type, 20.58% step type. It can be observed that 70.56% of respondents reported that less than half of the cases occurred sensitivity incidences after the restorative treatment, 20.58% never observed postoperative sensitivity, and 8.82% just in half of the cases. It was possible to observe the most types and brands of equipment used by professionals, and it was noted still a lack in the knowledge from professionals about the polymerization shrinkage consequences.

  14. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  15. The effect of surface sealants with different filler content on microleakage of Class V resin composite restorations.

    Science.gov (United States)

    Hepdeniz, Ozge Kam; Temel, Ugur Burak; Ugurlu, Muhittin; Koskan, Ozgur

    2016-01-01

    Microleakage is still one of the most cited reasons for failure of resin composite restorations. Alternative methods to prevent microleakage have been investigated increasingly. The aim of this study is to evaluate the microleakage in Class V resin composite restorations with or without application of surface sealants with different filler content. Ninety-six cavities were prepared on the buccal and lingual surfaces with the coronal margins located in enamel and the cervical margins located in dentin. The cavities restored with an adhesive system (Clearfil SE Bond, Kuraray, Tokyo, Japan) and resin composite (Clearfil Majesty ES-2, Kuraray, Tokyo, Japan). Teeth were stored in distilled water for 24 h and separated into four groups according to the surface sealants (Control, Fortify, Fortify Plus, and G-Coat Plus). The teeth were thermocycled (500 cycles, 5-55° C), immersed in basic fuchsine, sectioned, and analyzed for dye penetration using stereomicroscope. The data were submitted to statistical analysis by Kruskal-Wallis and Bonferroni-Dunn test. The results of the study indicated that there was minimum leakage at the enamel margins of all groups. Bonferroni-Dunn tests revealed that Fortify and GC-Coat groups showed significantly less leakage than the Control group and the Fortify Plus group at dentin margins in lingual surfaces (P < 0.05). The all surface sealants used in this study eliminated microleakage at enamel margins. Moreover, unfilled or nanofilled surface sealants were the most effective in decreasing the degree of marginal microleakage at dentin margins. However, viscosity and penetrability of the sealants could be considered for sealing ability besides composition.

  16. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  17. In vitro marginal adaptation of high-viscosity resin composite restorations bonded to dentin cavities.

    Science.gov (United States)

    Rahiotis, Christos; Tzoutzas, John; Kakaboura, Afrodite

    2004-01-01

    The aim of this study was to evaluate the marginal adaptation of high-viscosity resin composite restoratives bonded to dentin in a cylindrical cavity model. The buccal enamel of 64 human premolars was removed and cylindrical cavities 3 mm in diameter and 1.3 mm in depth were prepared on each dentin surface. The cavities were divided into 8 groups of 8 cavities each and restored according to the manufacturers' instructions with the following adhesive/composite systems: Bond 1/Alert, Stae/Glacier, OptiBond Solo/Prodigy Condensable, One-Step/Pyramid, Solidbond/Solitaire, Prime&Bond NT/Surefil, One Coat Bond/Synergy, and Scotchbond 1/Z250. The composite surfaces were pressed against mylar strips, covered with cover slips, and photopolymerized in a single increment for 40 s. The restorations were polished with wet SiC papers of 320 to 1000 grit size to expose dentin margins. The marginal adaptation was evaluated immediately after photopolymerization and again after 1 week of storage in water at 37 +/- 1 degrees C. Evaluation was performed under a metallographic microscope at 200X magnification by recording the frequency of gap-free restorations (GF), the percentage length of the debonded margins relative to the cavity periphery (DM), the width of the maximum marginal gap (MG), and the marginal index (MI = MG x DM / 100). The results were statistically analyzed with one-way ANOVA and the Mann-Whitney U-test at alpha = 0.05. No incidence of gaps was found in 62.5% of One Coat Bond/Synergy and 37.5% of OptiBond Solo/Prodigy Condensable restorations. All the other restorative systems exhibited restorations with gaps. One Coat Bond/Synergy, Scotchbond 1/Z250, and OptiBond Solo/Prodigy Condensable were the groups with the lowest DM values, while Stae/Glacier showed the highest DM values. One Coat Bond/Synergy and OptiBond Solo/Prodigy Condensable revealed the lowest MI values and Stae/Glacier the highest. No statistically significant differences were recorded between

  18. The effect of storage and type of adhesive resin on microleakage of ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Dentin adhesive showed a better durability of the bond to enamel when compared to enamel ... been introduced to improve the bond strength, facilitate and simplify bonding ..... are usually alkenoic acid. This chemical agent.

  19. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  20. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  1. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin

    International Nuclear Information System (INIS)

    Wu, Mingliang; Yuan, Xi; Luo, Hang; Chen, Haiyan; Chen, Chao; Zhou, Kechao; Zhang, Dou

    2017-01-01

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr 1−x Ti x )O 3 (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO 3 (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO 3 nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO 3 nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  2. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO{sub 3} nanoparticles in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yuan, Xi [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Luo, Hang, E-mail: xtluohang@163.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Haiyan; Chen, Chao; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2017-05-18

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO{sub 3} (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO{sub 3} nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO{sub 3} nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  3. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces.

    Science.gov (United States)

    Gutiérrez, Mario F; Malaquias, Pamela; Hass, Viviane; Matos, Thalita P; Lourenço, Lucas; Reis, Alessandra; Loguercio, Alessandro D; Farago, Paulo Vitor

    2017-06-01

    To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm 2 ), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Nordlund, Dennis; Vandewal, Koen; Dauskardt, Reinhold H.

    2014-01-01

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. NEXAFS spectroscopy is used to precisely quantify the interfacial composition and P3HT chain orientation at the weak P3HT:PCBM/PEDOT:PSS interface. An increase of P3HT:PCBM and PEDOT:PSS interdiffusion with post electrode deposition annealing time and temperature is found to be the underlying mechanism for effectively improving the interlayer adhesion, which is essential for the commercial realization of organic photovoltaic devices.

  5. Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells

    KAUST Repository

    Dupont, Stephanie R.

    2014-07-10

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. NEXAFS spectroscopy is used to precisely quantify the interfacial composition and P3HT chain orientation at the weak P3HT:PCBM/PEDOT:PSS interface. An increase of P3HT:PCBM and PEDOT:PSS interdiffusion with post electrode deposition annealing time and temperature is found to be the underlying mechanism for effectively improving the interlayer adhesion, which is essential for the commercial realization of organic photovoltaic devices.

  6. Improvement in char formability of phenolic resin for development of Carbon/Carbon composites

    International Nuclear Information System (INIS)

    Hajhosseini, M.; Payami, A.; Ghaffarian, S. R.; Rezadoust, A. M.

    2008-01-01

    In the processing of carbon/carbon composites using polymer resin as the matrix precursor, it is inevitable that a porous structure was formed after carbonization. As a result, densification by liquid phase impregnation followed by recarbonization is required to obtain a densified composite. Consequently, the char formability of resin is an important factor in reducing the number of densification cycles and hence the processing cost. In this study, a novel approach is adopted to improve the densification of carbon/carbon composites by using a new phenolic resin modified by pitch. For this purpose, soluble part of pitch was extracted and dispersed in resol type phenolic resin. The polymerization reaction was performed in presence of para-formaldehyde and a resol-pitch compound was obtained. The second compound was prepared by mixing novolac-furfural in 55:45 weight ratio containing 9% by weight hexamethylene tetramine. This compound was added to resol-pitch compound in 10,20,50 and 80 w %. The microstructure of carbonized resin was investigated by X-ray diffraction and char yield, and the linear and volumetric shrinkage were obtained. Results show that in 80:20 ratio of resol-pitch to novolac-furfural , the char yield would be maximized by 71% and volumetric shrinkage would be minimized at 16.4%. At the same time, XRD results indicate that the resin has a strong ability to graphitize carbon/carbon composites matrix as a necessary step for its processing

  7. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Efficacy of polishing kits on the surface roughness and color stability of different composite resins.

    Science.gov (United States)

    Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H

    2017-05-01

    Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.

  9. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays.

    Science.gov (United States)

    Batalha-Silva, Silvana; de Andrada, Mauro Amaral Caldeira; Maia, Hamilton Pires; Magne, Pascal

    2013-03-01

    To assess the influence of material/technique selection (direct vs. CAD/CAM inlays) for large MOD composite adhesive restorations and its effect on the crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slot-type tooth preparation was applied to 32 extracted maxillary molars (5mm depth and 5mm bucco-palatal width) including immediately sealed dentin for the inlay group. Fifteen teeth were restored with direct composite resin restoration (Miris2) and 17 teeth received milled inlays using Paradigm MZ100 block in the CEREC machine. All inlays were adhesively luted with a light curing composite resin (Filtek Z100). Enamel shrinkage-induced cracks were tracked with photography and transillumination. Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5000 cycles), followed by stages of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. Teeth restored with the direct technique fractured at an average load of 1213 N and two of them withstood all loading cycles (survival=13%); with inlays, the survival rate was 100%. Most failures with Miris2 occurred above the CEJ and were re-restorable (67%), but generated more shrinkage-induced cracks (47% of the specimen vs. 7% for inlays). CAD/CAM MZ100 inlays increased the accelerated fatigue resistance and decreased the crack propensity of large MOD restorations when compared to direct restorations. While both restorative techniques yielded excellent fatigue results at physiological masticatory loads, CAD/CAM inlays seem more indicated for high-load patients. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Fracture strength testing of crowns made of CAD/CAM composite resins.

    Science.gov (United States)

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017