WorldWideScience

Sample records for adhesion molecule-modified biomaterials

  1. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2014-06-01

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  2. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces

    International Nuclear Information System (INIS)

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  3. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Chen, Yangxi; de Vries, Joop; Ren, Yijin

    2009-01-01

    Bacterial adhesion to biomaterial surfaces constituting the bracket-adhesive-enamel junction represents a growing problem in orthodontics, because bacteria can adversely affect treatment by causing demineralization of the enamel surface around the brackets. It is important to know the forces with wh

  4. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a w

  5. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  6. Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite.

    Science.gov (United States)

    White, Jane S; Walker, Graeme M

    2011-02-01

    The influence of the physicochemical properties of biomaterials on microbial cell adhesion is well known, with the extent of adhesion depending on hydrophobicity, surface charge, specific functional groups and acid-base properties. Regarding yeasts, the effect of cell surfaces is often overlooked, despite the fact that generalisations may not be made between closely related strains. The current investigation compared adhesion of three industrially relevant strains of Saccharomyces cerevisiae (M-type, NCYC 1681 and ALY, strains used in production of Scotch whisky, ale and lager, respectively) to the biomaterial hydroxylapatite (HAP). Adhesion of the whisky yeast was greatest, followed by the ale strain, while adhesion of the lager strain was approximately 10-times less. According to microbial adhesion to solvents (MATS) analysis, the ale strain was hydrophobic while the whisky and lager strains were moderately hydrophilic. This contrasted with analyses of water contact angles where all strains were characterised as hydrophilic. All yeast strains were electron donating, with low electron accepting potential, as indicated by both surface energy and MATS analysis. Overall, there was a linear correlation between adhesion to HAP and the overall surface free energy of the yeasts. This is the first time that the relationship between yeast cell surface energy and adherence to a biomaterial has been described.

  7. Mechanisms of Staphylococcus epidermidis adhesion to model biomaterial surfaces: Establising a link between thrombosis and infection

    Science.gov (United States)

    Higashi, Julie Miyo

    Infections involving Staphylococcus epidermidis remain a life threatening complication associated with the use of polymer based cardiovascular devices. One of the critical steps in infection pathogenesis is the adhesion of the bacteria to the device surface. Currently, mechanisms of S. epidermidis adhesion are incompletely understood, but are thought to involve interactions between bacteria, device surface, and host blood elements in the form of adsorbed plasma proteins and surface adherent platelets. Our central hypothesis is that elements participating in thrombosis also promote S. epidermidis adhesion by specifically binding to the bacterial surface. The adhesion kinetics of S. epidermidis RP62A to host modified model biomaterial surface octadecyltrichlorosilane (OTS) under hydrodynamic shear conditions were characterized. Steady state adhesion to adsorbed proteins and surface adherent platelets was achieved at 90-120 minutes and 60-90 minutes, respectively. A dose response curve of S. epidermidis adhesion in the concentration range of 10sp7{-}10sp9 bac/mL resembled a multilayer adsorption isotherm. Increasing shear stress was found to LTA, and other LTA blocking agents significantly decreased S. epidermidis adhesion to the fibrin-platelet clots, suggesting that this interaction between S. epidermidis and fibrin-platelet clots is specific. Studies evaluated the adhesion of S. epidermidis to polymer immobilized heparin report conflicting results. Paulsson et al., showed that coagulase negative staphylococci adhered in comparable numbers to both immobilized heparin and nonheparinized surfaces, while exhibiting significantly greater adhesion to both surfaces than S. aureus. Preadsorption of the surfaces with specific heparin binding plasma proteins vitronectin, fibronectin, laminin, and collagen significantly increased adhesion. It was postulated that immobilized heparin contained binding sites for the plasma proteins, exposing bacteria binding domains of the

  8. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  9. UV- Killed Staphylococcus aureus Enhances Adhesion and Differentiation of Osteoblasts on Bone-associated Biomaterials

    OpenAIRE

    Somayaji, Shankari N.; Huet, Yvette M.; Gruber, Helen E.; Hudson, Michael C

    2010-01-01

    Titanium alloys (Ti) are the preferred material for orthopaedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix. Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermo...

  10. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials.

    Science.gov (United States)

    Lombello, C B; Santos, A R; Malmonge, S M; Barbanti, S H; Wada, M L F; Duek, E A R

    2002-09-01

    Cell adhesion is influenced by the physical and chemical characteristics of the materials used as substrate for cell culturing. In this work, we evaluated the influence of the morphological and chemical characteristics of different polymeric substrates on the adhesion and morphology of fibroblastic cells. Cell growth on poly (L-lactic acid) [PLLA] membranes and poly(2-hydroxy ethyl methacrylate) [polyHEMA], poly(2-hydroxy ethyl methacrylate)-cellulose acetate [polyHEMA-CA] and poly(2-hydroxy ethyl methacrylate)-poly(methyl methacrylate-co-acrylic acid) [polyHEMA-poly(MMA-co-AA)] hydrogels of different densities and pore diameters was examined. Cells adhered preferentially to more negatively charged substrates, with polyHEMA hydrogels being more adhesive than the other substractes. The pores present in PLLA membranes did not interfere with adhesion, but the cells showed a distinctive morphology on each membrane.

  11. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA bas

  12. Adhesion of resin composites to biomaterials in dentistry: an evaluation of surface conditioning methods

    OpenAIRE

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to glass ceramics, glass infiltrated alumina, glass infiltrated ZrO2 reinforced alumina. The three conditioning methods assesed were: (1) HF acid etching, (2) Air-borne particle ab...

  13. Adhesión bacteriana a biomateriales Bacterial adhesion to biomaterials

    Directory of Open Access Journals (Sweden)

    C Ábalos

    2005-02-01

    Full Text Available En términos generales, para la adhesión bacteriana, influyen cuatro elementos: Material, Microorganismos, antimicrobianos y mecanismos de defensa. La influencia del material es más importante en los estadios iniciales de la adhesión, pudiendo influir el mismo material, su rugosidad o su energía superficial., si es que existe una influencia del material en la adhesión bacteriana, esta reside en las caracteristicas de la película adquirida y en la especificidad de las proteinas adsorbidas salivares (receptores, que puedan ser condicionadas por la composición del material o por las características de superficie de este.In general terms, there are four elements which influence on bacterial adhesion: the material, the micro organisms, antimicrobials and defence mechanisms. The influence of the material is more relevant at the initial states of adhesion where the proper material, its roughness or its superficial energy can have some influence. If there is some influence of the material in the bacterial adhesion, it relies on the features of the acquired film and on the specificity of the adsorved salivary proteins (receptors, which can be influenced by the composition of the material or the characteristics of its surface.

  14. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types.

    Science.gov (United States)

    Hansen, Tyler D; Koepsel, Justin T; Le, Ngoc Nhi; Nguyen, Eric H; Zorn, Stefan; Parlato, Matthew; Loveland, Samuel G; Schwartz, Michael P; Murphy, William L

    2014-05-01

    Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.

  15. Adhesion

    Science.gov (United States)

    As the body moves, tissues or organs inside are normally able to shift around each other. This is because these tissues have ... occur if the adhesions cause an organ or body part to: Twist Pull ... unable to move normally The risk of forming adhesions is high ...

  16. [Cardiovascular biomaterials].

    Science.gov (United States)

    Loisance, D

    1995-03-01

    Hemocompatible biomaterials, i.e. materials to be used in a biological environment, are of various origins (biological, synthetic). The great variety of physical and chemical characteristics has allowed design of various prosthesis and artificial organs. Use of biomaterials and artificial organs has made possible the development of substitutive therapies, a growing component of medical care. None of the biomaterials presently used is ideal. Everyone of them is responsible for a local and general reaction: foreign body reaction, coagulation, whole body inflammatory response. For years, these reactions have been poorly understood and development was of a very empirical nature. Progress in cellular and molecular biology permits today a better understanding of the mechanisms involved in these reactions. Use of biomaterials is facing to day a difficult problem; liability concerns threaten further developments and leads to market withdrawal of major basic materials.

  17. Supramolecular biomaterials

    Science.gov (United States)

    Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert

    2016-01-01

    Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms with tunable mechanical, chemical and biological properties. Indeed, the reversible nature of supramolecular interactions gives rise to biomaterials that can sense and respond to physiological cues, or that mimic the structural and functional aspects of biological signalling. In this Review, we discuss the properties of several supramolecular biomaterials, as well as their applications in drug delivery, tissue engineering, regenerative medicine and immunology. We envision that supramolecular biomaterials will contribute to the development of new therapies that combine highly functional materials with unmatched patient- and application-specific tailoring of both material and biological properties.

  18. Bacterial adhesion to titanium-oxy-nitride (TiNOX) coatings with different resistivities : a novel approach for the development of biomaterials

    NARCIS (Netherlands)

    Koerner, RJ; Butterworth, LA; Mayer, [No Value; Dasbach, R; Busscher, HJ

    2002-01-01

    In this study the quantitative adhesion of a strain of Staphylococcus epidermidis, Streptococcus mutans and Pseudomonas aeruginosa to and the ease of removal from different TiNOX coatings was investigated by means of a parallel plate flow chamber and in situ image analysis. Quality of adhesion was d

  19. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  20. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  1. Modulating macrophage response to biomaterials

    Science.gov (United States)

    Zaveri, Toral

    Macrophages recruited to the site of biomaterial implantation are the primary mediators of the chronic foreign body response to implanted materials. Since foreign body response limits performance and functional life of numerous implanted biomaterials/medical devices, various approaches have been investigated to modulate macrophage interactions with biomaterial surfaces to mitigate this response. In this work we have explored two independent approaches to modulate the macrophage inflammatory response to biomaterials. The first approach targets surface integrins, cell surface receptors that mediate cell adhesion to biomaterials through adhesive proteins spontaneously adsorbed on biomaterial surfaces. The second approach involves surface modification of biomaterials using nanotopographic features since nanotopography has been reported to modulate cell adhesion and viability in a cell type-dependent manner. More specifically, Zinc Oxide (ZnO) nanorod surface was investigated for its role in modulating macrophage adhesion and survival in vitro and foreign body response in vivo. For the first approach, we have investigated the role of integrin Mac-1 and RGD-binding integrins in the in-vivo osteolysis response and macrophage inflammatory processes of phagocytosis as well as inflammatory cytokine secretion in response to particulate biomaterials. We have also investigated the in vivo foreign body response (FBR) to subcutaneously implanted biomaterials by evaluating the thickness of fibrous capsule formed around the implants after 2 weeks of implantation. The role of Mac-1 integrin was isolated using a Mac-1 KO mouse and comparing it to a WT control. The role of RGD binding integrins in FBR was investigated by coating the implanted biomaterial with ELVAX(TM) polymer loaded with Echistatin which contains the RGD sequence. For the in-vivo osteolysis study and to study the in-vitro macrophage response to particulate biomaterials, we used the RGD peptide encapsulated in ELVAX

  2. Biomaterials for repair and prevention of acute tendon injury and adhesion%人工生物材料修复肌腱急性损伤及预防粘连

    Institute of Scientific and Technical Information of China (English)

    王军红

    2012-01-01

    BACKGROUND: Treatment measures for tendon injury experience a long process from traditional physical therapy, drug therapy to modern tissue engineering artificial ligament reconstruction. OBJECTIVE: To review the role of biological materials as artificial intervention in the treatment of tendon adhesion, and to explore the action mechanism. METHODS: VIP database, Wanfang database, and PubMed (1990-01/2011-04) were searched for articles related to tendon rehabilitation measures and biomaterials using the keywords of “tendon, treatment, materials, adhesive” in Chinese and English. Articles related to materials for tendon treatment were retrieved, and those published recently or in authorized journals were preferred. Totally 287 articles were checked, and according to inclusion criteria 21 articles were reviewed. RESULTS AND CONCLUSION: Artificial ligament reconstruction and regeneration provides a chance and security for the treatment and rehabilitation of severe tendon injury. But the ideal artificial ligament material selection and development becomes the key. Synthetic materials can avoid the single material performance deficiencies, which provide a broad space for material development. At present, gene therapy technology development for tendon tissue engineering provides a new research direction. In addition, tendon adhesion often occurs during the treatment, and seriously affects the therapeutic effect. Tendon adhesion and healing has important relationship with the physiology and pathology of the tendon. Biomaterials as an adhesion prevention barrier have the vast developmental foreground.%背景:肌腱损伤后的治疗措施经历了传统物理疗法、药物疗法以及现代组织工程学人工韧带的重建等漫长过程.目的:综述人工生物材料干预治疗肌腱粘连的措施,并探讨肌腱治疗过程中粘连的发生机制.方法:应用计算机检索万方、维普数据库和PubMed数据库中1990-01/2011-04与肌腱康复措施及

  3. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    Science.gov (United States)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  4. [Orthopedic biomaterials].

    Science.gov (United States)

    Sedel, L; Nizard, R; Meunier, A

    1995-03-01

    It is very challenging to insure long term security and effectiveness for joint arthroplasties, artificial ligaments, extensive bone replacement and some other orthopaedic biomaterials. How can we predict the long term security and efficacy of such an implant? Only an interdisciplinary approach can provide a satisfactory answer. The surgeon must define the needs, he must find the appropriate surgical techniques and conduct the clinical trial. The material scientist must elaborate safe and secure materials with regards to their biotolerance and mechanical resistance. This has to be performed in close connection with the biomechanics lab. Biomechanic Science must predict the expected stresses. It has to design special simulator to quantify in vitro material toughness, wear characteristics, lubrication, behaviour and surface deformation. Biological and mechanical standardized tests have to be carried on. Then it is possible to conduct a clinical trial, prospectively in comparison to another already developed material. Clinical studies could serve to measure efficacy and radiological modification. After failure, it is possible to analyse retrieved specimen, to measure the material degradation in real environment, to perform biological studies on retrieved tissues i.e. : macrophagic activities, tissue response, bone ingrowth, inflammatory or immunological reaction. For more than twenty years we worked on alumina against alumina total hips. The idea was to develop a low debris system to enhance long term longevity of the prosthesis. The Charnley design has proven its effectiveness for more than fifteen years, but polyethylene wear is responsible for late failures. This is specially crucial for young patients, male sex and high activity level patients. At the beginning, biological studies and mechanical tests were performed, it appeared that the biological tolerance of alumina ceramic was excellent, the fracture toughness was adequate, but there were some problems related

  5. Transfer of bacteria between biomaterials surfaces in the operating room - An experimental study

    NARCIS (Netherlands)

    Knobben, Bas A. S.; van der Mei, Henny C.; van Horn, Jim R.; Busscher, Henk J.

    2007-01-01

    Bacterial adhesion to and transfer between surfaces is a complicated process. With regard to the success of biomaterials implants, studies on bacterial adhesion and transfer should not be confined to biomaterials surfaces in the human body, but also encompass surfaces in the operating room, where th

  6. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    OpenAIRE

    Dirk Henrich; René Verboket; Alexander Schaible; Kerstin Kontradowitz; Elsie Oppermann; Brune, Jan C; Christoph Nau; Simon Meier; Halvard Bonig; Ingo Marzi; Caroline Seebach

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or ...

  7. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing, E-mail: liqingdswu@163.com

    2015-10-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF.

  8. Anti-adhesion effect of absorbable biomaterials during tendon reconstruction%可吸收生物材料在肌腱损伤重建中的防粘连作用

    Institute of Scientific and Technical Information of China (English)

    康冬

    2016-01-01

    背景:运动性肌腱损伤后,重建肌腱粘连是肌腱损伤修复失败的主要原因,理想的防止肌腱粘连材料对肌腱损伤重建有重要作用。  目的:分析可吸收医用防粘连材料在抑制运动性肌腱损伤重建后粘连的临床效果及性能特点。  方法:应用计算机检索CNKI和PubMed数据库1988至2015年有关半月板损伤修复和组织工程技术应用方面的文献,中文检索关键词为“肌腱修复、肌腱粘连、可吸收生物材料”,英文检索关键词为“tendon Repair,tendon adhesion,absorbable biomaterials”。  结果与结论:可吸收医用防粘连材料研究和临床应用均已取得显著成果。目前临床上可吸收医用防粘连材料主要有透明质酸、聚乳酸、胶原蛋白、纤维蛋白胶等,具有良好的生物相容性,能够在体内降解吸收,临床实施操作简单,能完全覆盖创伤表面,其作用机制主要有降低胶原纤维的产生、屏障隔离、加速止血、抗菌消炎等,可有效减少肌腱损伤重建后粘连,促进肌腱愈合。但他们又有各自的局限性,透明质酸在体内作用时间短,而且有免疫原性;聚乳酸最终分解物为乳酸小分子,可引起无菌性炎症;胶原蛋白、纤维蛋白胶的生物相容性、活性都存在着很多不足。%BACKGROUND:After sports tendon injury, tendon adhesion is the main reason for the failure to repair tendon injury. So, an ideal anti-adhesion material plays an important role in the tendon reconstruction. OBGECTIVE:To analyze the clinical effect and features of absorbable medical biomaterials in inhibiting tendon adhesion after repair of sports tendon injury. METHODS:CNKI and Pub Med database were retrieved by the first author using computer to search relevant articles about meniscal repair and tissue engineering technology published from 1988 to 2015. The key words were “tendon repair, tendon adhesion

  9. Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

    Directory of Open Access Journals (Sweden)

    Kroiča Juta

    2016-08-01

    Full Text Available Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

  10. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  11. Voltammetry of Medical Biomaterials

    OpenAIRE

    Gulaboski, Rubin; Markovski, Velo

    2015-01-01

    The use of biomaterials in the medicine, dentistry and pharmacy represents probably a major breakthrough in tackling many diseases or disabilities in the last 50 years. We refer to varios techniques that are used for the characterization of the structure and the composition of the biomaterials. Voltammetry is an electrochemical technique that helps mainly in understanding the redox properties of various biomaterials containing some suitable redox centers in their structure. We give in this le...

  12. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  13. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  14. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    Science.gov (United States)

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  15. Grand challenge in Biomaterials-wound healing

    OpenAIRE

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by R...

  16. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    Science.gov (United States)

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-01

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  17. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  18. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  19. 几种高分子生物材料屏障作用预防肌腱粘连的系统评价%Barrier effects of various high polymer biomaterials on prevention of tendon adhesionA systemic evaluation

    Institute of Scientific and Technical Information of China (English)

    胡金萍

    2009-01-01

    OBJECTIVE:To evaluate the safety of various high polymer biomaterials to prevent tendon adhesion,and analyze whether the improvement of injured degree,toxic and side effects,and slipping function of tendon can influence tendon healing.METHODS:A computer-based online search of CNKI was undertaken to identify randomized controlled articles about the effect of various high polymer biomaterials on tendon adhesion with the keywords of "tendon adhesion,biomaterials,and barrier" from 1990 to 2005.Retrieval data were then extracted and analyzed.RESULTS:Among 11 tests,there were 571 patients with tendon injury and 7 animal models with tendon injury,according to inclusion criteria.After surgery,high polymer biomaterials were used to prevent from adhesion and reduce exogenous adhesion incidence.Following-up results demonstrated that high polymer biomaterials which affected endogenous and exogenous healing of tendon might prevent from tendon adhesion,provide foundation for early controlling passive activity,reduce exogenous adhesion occurrence,improve moving function of tendon,and promote tendon healing.CONCLUSION:Barrier effect of high polymer biomaterials can well prevent from tendon adhesion in clinic,especially intrathecal injection or local injection of sodium hyaluronate has both trophic and lubricant actions in preventing from tendon adhesion.However,other effective indicators and safety need to be further studied due to less including tests and weak evidences.%目的:评价不同高分子生物材料预防肌腱粘连的安全性,分析不同高分子生物材料在预防肌腱粘连中对组织的损伤程度、毒副作用、对肌腱滑移功能的改善,是否影响肌腱愈合等方面的优缺点.方法:以计算机检索方法在检索中国期刊全文数据库中(CNKI:1990/2005)检索关于不同高分子材料预防肌腱粘连的临床研究与实验研究的随机对照实验,检索词为"肌腱粘连、生物材料、屏障".检索后对每项研究的资

  20. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model

    NARCIS (Netherlands)

    Fisher, J.P.; Lalani, Z.; Bossano, C.M.; Brey, E.M.; Demian, N.; Johnston, C.M.; Dean, D.; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2004-01-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion.

  1. Mechanistic investigation of a hemostatic keratin biomaterial

    Science.gov (United States)

    Rahmany, Maria Bahawdory

    Traumatic injury leads to more productive years lost than heart disease, cancer and stroke combined. Trauma is often accompanied and complicated by uncontrolled bleeding. Human hair keratin biomaterials have demonstrated efficacy in controlling hemorrhage in both small and large animal models; however little is known about the mechanism by which these proteins aid in blood clotting. Inspection of the amino acid sequence of known keratins shows the presence of several cellular binding motifs, suggesting a possible mechanism and potentially eliminating the need to functionalize the material's surface for cellular interaction. In addition to small animal studies, the hemostatic activity of keratin hydrogels was explored through porcine hemorrhage models representing both a high flow and low flow bleed. In both studies, keratin hydrogels appeared to lead to a significant reduction in blood loss. The promising results from these in vivo studies provided the motivation for this project. The objective of this dissertation work was to assess the mechanism of action of a hemostatic keratin biomaterial, and more broadly assess the biomaterial-cellular interaction(s). It is our hypothesis that keratin biomaterials have the capacity to specifically interact with cells and lead to propagation of intracellular signaling pathway, specifically contributing to hemostasis. Through application of biochemical and molecular tools, we demonstrate here that keratin biomaterials contribute to hemostasis through two probable mechanisms; integrin mediated platelet adhesion and increased fibrin polymerization. Platelets are the major cell type involved in coagulation both by acting as a catalytic surface for the clotting cascade and adhering to extracellular matrix (ECM) proteins providing a soft platelet plug. Because keratin biomaterials have structural and biochemical characteristics similar to ECM proteins, we utilized several adhesion assays to investigate platelet adhesion to keratin

  2. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.

    Science.gov (United States)

    Sengupta, Debanti; Heilshorn, Sarah C

    2010-06-01

    A common goal in tissue engineering is to attain the ability to tailor specific cell-scaffold interactions and thereby gain control over cell behavior. The tunable nature of protein-engineered biomaterials enables independent tailoring of a range of biomaterial properties, creating an attractive alternative to synthetic polymeric scaffolds or harvested natural scaffolds. Protein-engineered biomaterials are comprised of modular peptide domains with various functionalities that are encoded into a DNA plasmid, transfected into an organism of choice, and expressed and purified to yield a biopolymer with exact molecular-level sequence specification. Because of the modular design strategy of protein-engineered biomaterials, these scaffolds can be easily modified to enable optimization for specific tissue engineering applications. By including multiple peptide domains with different functionalities in a single, modular biomaterial, the scaffolds can be designed to mimic the diverse properties of the natural extracellular matrix, including cell adhesion, cell signaling, elasticity, and biodegradability. Recently, the field of protein-engineered biomaterials has expanded to include functional modules that are not normally present in the extracellular matrix, thus expanding the scope and functionality of these materials. For example, these modules can include noncanonical amino acids, inorganic-binding domains, and DNA-binding sequences. The modularity, tunability, and sequence specificity of protein-engineered biomaterials make them attractive candidates for use as substrates for a variety of tissue engineering applications. PMID:20141386

  3. Regenerative biomaterials: a review.

    Science.gov (United States)

    Banyard, Derek A; Bourgeois, Jenna Martin; Widgerow, Alan D; Evans, Gregory R D

    2015-06-01

    The authors present a review of biomaterials, substances traditionally derived from human or animal tissue or, more recently, biodegradable synthetics modeled after naturally occurring resources. These constructs differ from purely synthetic materials in that they are degraded or incorporated into a host's tissue. These biomaterials include a diverse array of medical products, such as acellular dermal matrix, bone substitutes, and injectables. In this review, the authors examine various clinical applications, including burn reconstruction and wound healing, breast surgery, complex abdominal wall reconstruction, craniofacial repair, and cosmetic surgery. Biomaterials such as acellular dermal matrix have proven beneficial in difficult-to-treat applications; however, more prospective data are needed to determine their true efficacy and cost-effectiveness. PMID:26017603

  4. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  5. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  6. Characterizing biomaterial complexity

    Directory of Open Access Journals (Sweden)

    L.A. Clifton

    2009-07-01

    Full Text Available Biomaterials research will always require a range of techniques to examine structure and function on a range of length scales and in a range of settings. Neutron scattering provides a unique way of disentangling the molecular and structural complexity of biomaterials through study of the constituent components. We examine how the technique has been used to study surface immobilized proteins and lipid films, floating lipid bilayers as mimics of in vitro planar membranes, and formation of fibres from solution by insects and spiders.

  7. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    D Bahadur; Jyotsnendu Giri

    2003-06-01

    Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is biocompatible and therefore is one of the most extensively used biomaterials for different applications ranging from cell separation and drug delivery to hyperthermia. Other than this, a large number of magnetic materials in bulk as well as in the form of nano particles have been exploited for a variety of medical applications. In this review, we summarize the salient features of clinical applications, where magnetic biomaterials are used. Magnetic intracellular hyperthermia for cancer therapy is discussed in detail.

  8. Biomaterial Selection for Tooth Regeneration

    OpenAIRE

    Yuan, Zhenglin; Nie, Hemin; Shuang WANG; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong; Chen, Lili; Mao, Jeremy J.

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or s...

  9. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  10. Biomaterials engineered for integration

    Directory of Open Access Journals (Sweden)

    Lorenzo Moroni

    2008-05-01

    Full Text Available As tissue engineering and regenerative medicine are staged to enter the medical care setting, the integration of these newly formed tissues with themselves and the surrounding natural environment of the treated patients is of paramount importance. Although cells alone have undoubtedly obtained a certain success as therapies for a number of different diseases, it is still unclear whether they form new tissues or they stimulate the local cells to restore tissue continuity. In both cases, the resulting outcome is often poorly connected with the surrounding environment and functionality is impaired after few months. True integration can be achieved by designing smart templates made of biomaterials that not only act as scaffolds for cells to adhere and form new tissue, but also provide cues and signals to promote functional tissue connections. Criteria to engineer biomaterials for integration and methodologies used to assess effective connection with host tissues are reviewed.

  11. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  12. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  13. Biomaterials for periodontal regeneration

    OpenAIRE

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials inclu...

  14. Plasma-treated polystyrene surfaces : model surfaces for studying cell-biomaterial interactions

    NARCIS (Netherlands)

    van Kooten, TG; Spijker, HT; Busscher, HJ

    2004-01-01

    Biocompatibility of biomaterials relates, amongst others, to the absence of adverse cellular reactions and modulation of cell adhesion and subsequent responses. With respect to tissue-engineering applications, most materials need to evoke cell adhesion and spreading, while potentially displaying dif

  15. Biomaterials in tissue engineering.

    Science.gov (United States)

    Hubbell, J A

    1995-06-01

    Biomaterials play a pivotal role in field of tissue engineering. Biomimetic synthetic polymers have been created to elicit specific cellular functions and to direct cell-cell interactions both in implants that are initially cell-free, which may serve as matrices to conduct tissue regeneration, and in implants to support cell transplantation. Biomimetic approaches have been based on polymers endowed with bioadhesive receptor-binding peptides and mono- and oligosaccharides. These materials have been patterned in two- and three-dimensions to generate model multicellular tissue architectures, and this approach may be useful in future efforts to generate complex organizations of multiple cell types. Natural polymers have also played an important role in these efforts, and recombinant polymers that combine the beneficial aspects of natural polymers with many of the desirable features of synthetic polymers have been designed and produced. Biomaterials have been employed to conduct and accelerate otherwise naturally occurring phenomena, such as tissue regeneration in wound healing in the otherwise healthy subject; to induce cellular responses that might not be normally present, such as healing in a diseased subject or the generation of a new vascular bed to receive a subsequent cell transplant; and to block natural phenomena, such as the immune rejection of cell transplants from other species or the transmission of growth factor signals that stimulate scar formation. This review introduces the biomaterials and describes their application in the engineering of new tissues and the manipulation of tissue responses. PMID:9634795

  16. Biomaterials for craniofacial reconstruction

    Directory of Open Access Journals (Sweden)

    Neumann, Andreas

    2009-01-01

    Full Text Available Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformation, trauma or tumor resections. Other applications concern functional augmentations for dental implants or aesthetic augmentations in the facial region.For ostheosynthesis, mini- and microplates made from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removing asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products when the material remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull.The huge variety of biomaterials for the reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e.g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc. does not exist. The different material types are (autogenic bone and many alloplastics such as metals (mainly titanium, ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially regarding surface interactions. To date, tissue engineered bone is far from routine clinical application.

  17. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a custom

  18. Grand challenge in Biomaterials-wound healing.

    Science.gov (United States)

    Salamone, Joseph C; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E

    2016-06-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  19. Grand challenge in Biomaterials-wound healing

    Science.gov (United States)

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  20. Sugared biomaterial binding lectins: achievements and perspectives.

    Science.gov (United States)

    Bojarová, P; Křen, V

    2016-07-19

    Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants. PMID:27075026

  1. Integrated Biomaterials in Tissue Engineering

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi; Haikel, Youssef

    2012-01-01

    "Integrated Biomaterials in Tissue Engineering" features all aspects from fundamental principles to current technological advances in biomaterials at the macro/micro/nano/molecular scales suitable for tissue engineering and regenerative medicine. The book is unique as it provides all important aspects dealing with the basic science involved in structure and properties, techniques and technological innovations in material processing and characterizations, and applications of biomaterials in tissue engineering and regenerative medicine.

  2. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  3. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  4. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  5. Special Issue "Biomaterials and Bioprinting".

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2016-01-01

    The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area. PMID:27649121

  6. Self-healing biomaterials(3)

    OpenAIRE

    Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.

    2010-01-01

    The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be ...

  7. Microgel mechanics in biomaterial design.

    Science.gov (United States)

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  8. Abdominal Adhesions

    Science.gov (United States)

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  9. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  10. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  11. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  12. Biomaterial selection for tooth regeneration.

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y; Zhou, Hong; Chen, Lili; Mao, Jeremy J

    2011-10-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.

  13. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  14. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  15. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  16. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  17. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  18. Self-healing biomaterials(3)

    Science.gov (United States)

    Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.

    2010-01-01

    The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168

  19. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  20. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study

    Directory of Open Access Journals (Sweden)

    Shida T

    2013-10-01

    Full Text Available Takayuki Shida,1 Hironobu Koseki,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Hideyuki Sakoda,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, Nagasaki, Japan; 2Division of Medical Devices, National Institute of Health Sciences, Tokyo, JapanAbstract: Bacterial adhesion to the surface of biomaterials is an essential step in the pathogenesis of implant-related infections. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis to adhere to the surface of solid biomaterials, including oxidized zirconium-niobium alloy (Oxinium, cobalt-chromium-molybdenum alloy, titanium alloy, commercially pure titanium, and stainless steel, and performed a biomaterial-to-biomaterial comparison. The test specimens were physically analyzed to quantitatively determine the viable adherent density of the S. epidermidis strain RP62A (American Type Culture Collection [ATCC] 35984. Field emission scanning electron microscope and laser microscope examination revealed a featureless, smooth surface in all specimens (average roughness <10 nm. The amounts of S. epidermidis that adhered to the biomaterial were significantly lower for Oxinium and the cobalt-chromium-molybdenum alloy than for commercially pure titanium. These results suggest that Oxinium and cobalt-chromium-molybdenum alloy are less susceptible to bacterial adherence and are less inclined to infection than other materials of a similar degree of smoothness.Keyword: bacterial adhesion, implant, infection, surface character

  1. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Bressan Eriberto

    2012-01-01

    Full Text Available Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.

  2. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  3. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  4. Physical approaches to biomaterial design

    OpenAIRE

    Mitragotri, Samir; Lahann, Joerg

    2009-01-01

    The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the...

  5. Dynamic biomaterials: toward engineering autonomous feedback.

    Science.gov (United States)

    Morris, Eliza; Chavez, Michael; Tan, Cheemeng

    2016-06-01

    Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli. PMID:26974245

  6. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  7. Biomaterials & scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2011-03-01

    Full Text Available Every day thousands of surgical procedures are performed to replace or repair tissue that has been damaged through disease or trauma. The developing field of tissue engineering (TE aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates for tissue regeneration, to guide the growth of new tissue. This article describes the functional requirements, and types, of materials used in developing state of the art of scaffolds for tissue engineering applications. Furthermore, it describes the challenges and where future research and direction is required in this rapidly advancing field.

  8. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    2007-01-01

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  9. Current requirements for polymeric biomaterials in otolaryngology

    Directory of Open Access Journals (Sweden)

    Sternberg, Katrin

    2009-01-01

    Full Text Available In recent years otolaryngology was strongly influenced by newly developed implants which are based on both, innovative biomaterials and novel implant technologies. Since the biomaterials are integrated into biological systems they have to fulfill all technical requirements and accommodate biological interactions. Technical functionality relating to implant specific mechanical properties, a sufficiently high stability in terms of physiological conditions, and good biocompatibility are the demands with regard to suitability of biomaterials. The goal in applying biomaterials for implants is to maintain biofunctionality over extended periods of time. These general demands to biomaterials are equally valid for use in otolaryngology. Different classes of materials can be utilized as biomaterials. Metals belong to the oldest biomaterials. In addition, alloys, ceramics, inorganic glasses and composites have been tested successfully. Furthermore, natural and synthetic polymers are widely used materials, which will be in the focus of the current article with regard to their properties and usage as cochlear implants, osteosynthesis implants, stents, and matrices for tissue engineering. Due to their application as permanent or temporary implants materials are differentiated into biostable and biodegradable polymers. The here identified general and up to date requirements for biomaterials and the illustrated applications in otolaryngology emphasize ongoing research efforts in this area and at the same time demonstrate the high significance of interdisciplinary cooperation between natural sciences, engineering, and medical sciences.

  10. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Science.gov (United States)

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  11. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  12. Recombinant Exon-Encoded Resilins for Elastomeric Biomaterials

    Science.gov (United States)

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Arinus, Shira B.; Dgany, Or; Shoseyov, Oded; Kaplan, David L.

    2011-01-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediateed dityrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative dityrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in-vivo applications of resilin biomaterials. PMID:21963157

  13. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction.

    Science.gov (United States)

    Nayyer, Leila; Jell, Gavin; Esmaeili, Ali; Birchall, Martin; Seifalian, Alexander M

    2016-05-01

    Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P NS1 (12 weeks postimplantation). The lack of chronic inflammatory response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants. PMID:26992039

  14. Tribological applications of biomaterials: an overview

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tribological research is the study of lubrication, friction, and wear. Tribology of biomate-rials is to study how the materials work and fail. This will help us to produce better biomaterials.Tribology plays a very important role in improving the design and making successful biomaterialsfor medical purposes. Joints of human body, such as hip, knee, jaw, dental parts etc., all need toconsider the wear and lubrication problem. In this paper, we give a general introduction of bioma-terial research in tribological applications. Materials, the synthetic characterization, and their failureare introduced.

  15. Biomaterials and Stem Cells in Regenerative Medicine

    CERN Document Server

    Ramalingam, Murugan; Best, Serena

    2012-01-01

    Work in the area of biomaterials and stem cell therapy has revealed great potential for many applications, from the treatment of localized defects and diseases to the repair and replacement of whole organs. Researchers have also begun to develop a better understanding of the cellular environment needed for optimal tissue repair and regeneration. Biomaterials and Stem Cells in Regenerative Medicine explores a range of applications for biomaterials and stem cell therapy and describes recent research on suitable cell scaffolds and substrates for tissue repair and reconstruction. Featuring contrib

  16. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  17. Engineering bio-adhesive functions in an antimicrobial polymer multilayer

    International Nuclear Information System (INIS)

    Functionalization of a biomaterial surface with adhesive ligands is an effective way to promote specific cell adhesion. Ideally, biomaterial for applications in biomedical implants should simultaneously promote host cell adhesion and inhibit bacterial adhesion. Currently, little attention has been paid to the design of antimicrobial biomaterial with selective adhesiveness towards only targeted cells or tissues. In this study, the role of two typical adhesive ligands on the bioadhesion functions of a model antimicrobial film was elucidated. First, an adhesive ligand including an RGD peptide or collagen (CL) was chemically coupled to an antimicrobial polymeric multilayer composed of dextran sulfate (DS) and chitosan (CS). It was demonstrated that the density of RGD and CL immobilized on the DS/CS multilayer ranges between 4 to 137 ng cm−2 and 100 to 1000 ng cm−2, respectively. Then the effect of immobilized RGD or CL on both bacterial and fibroblast adhesion was investigated. By determining the density and morphology of adherent fibroblast on a DS/CS multilayer with or without an adhesive ligand, it was shown that RGD or CL effectively promoted fibroblast adhesion and proliferation in a concentration-dependent manner. Interestingly, the type of adhesive ligands imposed distinct effects in bacterial adhesion. Immobilized RGD did not enhance Staphylococcus aureus and Escherichia coli adhesion on DS/CS multilayers under all concentrations. In contrast, CL triggered significant S. aureus adhesion on DS/CS multilayers even at low surface concentration and when fibroblast adhesion was absent. Moreover, the detachment forces of individual S. aureus on CL coated DS/CS multilayers probed by atomic force microscopy (AFM) was 3 times and 20 times higher than that on the control substrate and on unmodified DS/CS multilayers, respectively. Interestingly, the lowest detachment force of E. coli was found on the CL coated DS/CS multilayers. This study demonstrated the

  18. Applications of Biomaterials to Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Kengo Sakaguchi

    2013-04-01

    Full Text Available Nowadays, chemically synthesized proteins and peptides are attractive building blocks and have potential in many important applications as biomaterials. In this review, applications of biomaterials to thermotropic liquid crystals are discussed. The review covers the improvement of the performance of liquid crystal displays using liquid crystal physical gels consisting of a liquid crystal and amino acid-based gelators, and also new functionalization of liquid crystals. Moreover, the influence of DNA, which is one of the more attractive biomaterials, dispersed in thermotropic liquid crystals and its potential use in the liquid crystal industry is described. In addition, we found interesting results during electrooptical measurements of liquid crystals doped with DNA, and explain them from the point of view of biological applications. These recent approaches suggest that these biomaterials may be applicable in the electronic device industry and should be considered as an interesting material with their physical properties having the potential to create or refine an industrial product.

  19. Ceramics as biomaterials for dental restoration.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Watzke, Ronny; Peschke, Arnd; Kappert, Heinrich

    2008-11-01

    Sintered ceramics and glass-ceramics are widely used as biomaterials for dental restoration, especially as dental inlays, onlays, veneers, crowns or bridges. Biomaterials were developed either to veneer metal frameworks or to produce metal-free dental restorations. Different types of glass-ceramics and ceramics are available and necessary today to fulfill customers' needs (patients, dentists and dental technicians) regarding the properties of the biomaterials and the processing of the products. All of these different types of biomaterials already cover the entire range of indications of dental restorations. Today, patients are increasingly interested in metal-free restoration. Glass-ceramics are particularly suitable for fabricating inlays, crowns and small bridges, as these materials achieve very strong, esthetic results. High-strength ceramics are preferred in situations where the material is exposed to high masticatory forces.

  20. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  1. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  2. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  3. Electrospun Synthetic Polypeptide Nanofibrous Biomaterials

    Science.gov (United States)

    Khadka, Dhan; Haynie, Donald

    2011-03-01

    Water-insoluble nanofiber mats of synthetic polypeptides of defined composition have been prepared from fibers electrospun from aqueous solution in the absence of organic co-solvents. 20-50 kDa poly(L-glutamate, L-tyrosine) 4:1 (PLGY) but not 15-50 kDa or 50-100 kDa poly(L-glutamate) was spinnable at 20-55% (w/v) polymer in water. Applied voltage and needle-collector distance were crucial for spinnability. Attractive fibers were obtained at 50% polymer. Fiber diameter and mat morphology have been characterized by electron microscopy. Exposure of spun fiber mats to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), which reacts with carboxylate, decreased fiber solubility. Fluorescein-conjugated poly(L-lysine) (FITC-PLL) but not the fluorophore alone was able bind PLGY fiber mats electrostatically, judging by fluorescence microscopy. Key advances of this work are the avoidance of an animal source of peptides and of an inorganic co-solvent to achieve polypeptide spinnability. Polypeptide fiber mats are a promising type of nano-structured biomaterial for applications in biomedicine and biotechnology.

  4. Sorption of paracetamol onto biomaterials.

    Science.gov (United States)

    Ferchichi, Maroua; Dhaouadi, Hatem

    2016-01-01

    Pharmaceutical residues released into the environment are posing more and more public health problems. It is worthwhile to study the retention of pharmaceuticals residues by adsorption on solid supports. Batch sorption experiments are intended to identify the adsorption isotherms of the pharmaceutically active ingredient on the biomaterials. The results obtained in this study have shown that the retention possibilities of these compounds by bio-adsorbents (clay and sand) are not significant. The negligible sorption for these media is explained by the low hydrophobicity of paracetamol (Log K(ow) = 0.46). The retention of paracetamol on the dehydrated sewage sludge and on Posidonia oceanica showed a relatively significant adsorption with a maximal quantity of 0.956 mg g(-1) and 1.638 mg g(-1) for the dehydrate sludge and P. oceanica, respectively. On the other hand, the study of paracetamol retention on the powdered activated carbon showed a high adsorption capacity of about 515.27 mg g(-1). Isotherm data show a good fit with Langmuir's model. An infrared analysis is carried out. It shows identical bands before and after adsorption, with some modifications. PMID:27387007

  5. Biomaterials in tooth tissue engineering: a review.

    Science.gov (United States)

    Sharma, Sarang; Srivastava, Dhirendra; Grover, Shibani; Sharma, Vivek

    2014-01-01

    Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration.

  6. Adsorption behavior of heavy metals on biomaterials.

    Science.gov (United States)

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples. PMID:15373400

  7. Engineering ECM signals into biomaterials

    Directory of Open Access Journals (Sweden)

    Ryan J. Wade

    2012-10-01

    Full Text Available Historically, tissue engineering focused primarily on the delivery of soluble factors within relatively static scaffolds; yet, increasing evidence indicates that the native, dynamic three-dimensional microenvironment is important in guiding cellular behavior. Consequently, there has been a recent emphasis on increasing the biocomplexity of scaffolds to better mimic the natural extracellular matrix (ECM, including the incorporation of adhesion, degradation, and three-dimensional structures. This review aims to describe important features of the natural ECM and highlight how these features are now being incorporated into synthetic materials to control cellular behavior and tissue evolution towards the development of next generation tissue engineering strategies.

  8. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo [Department of Mechanical Engineering, POSTECH (Korea, Republic of); Kim, Jong Young, E-mail: dwcho@postech.ac.kr [Department of Mechanical Engineering, Andong National University (Korea, Republic of)

    2011-09-15

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  9. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today. PMID:25905922

  10. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  11. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  12. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  13. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  14. Biomaterials-Based Organic Electronic Devices

    Science.gov (United States)

    Bettinger, Christopher J.; Bao, Zhenan

    2010-01-01

    Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics, and biotechnology. The traditional interface of organic electronics with biology, biotechnology, and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to realize a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. PMID:20607127

  15. Smart self-assembled hybrid hydrogel biomaterials.

    Science.gov (United States)

    Kopeček, Jindřich; Yang, Jiyuan

    2012-07-23

    Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.

  16. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures. PMID:25280036

  17. Imaging challenges in biomaterials and tissue engineering.

    Science.gov (United States)

    Appel, Alyssa A; Anastasio, Mark A; Larson, Jeffery C; Brey, Eric M

    2013-09-01

    Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.

  18. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  19. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  20. Biomaterials for tissue engineering of skin

    Directory of Open Access Journals (Sweden)

    Sheila MacNeil

    2008-05-01

    Full Text Available Tissue-engineered skin has been in clinical use for 25 years and has developed greatly during this time. This review looks at the role biomaterials need to play in providing for epidermal cover, dermal replacement, and epidermal/dermal replacement, and describes the major problems that remain. The majority of biomaterials in clinical use are based on natural or extracted collagen. The clinical challenges in using these materials are highlighted throughout – specifically safety issues, improving the take of cultured cells on wound beds, improving the rate of neovascularization of tissue-engineered skin, and developing scaffolds that resist contraction and fibrosis.

  1. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  2. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-01

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts. PMID:26023741

  3. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  4. Biomaterials supported CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Balu, Alina M. [Institute of Physical Chemistry ' Ilie Murgulescu' , Spl. Independentei 202, 060021 Bucharest (Romania); Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Campelo, Juan M. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Luque, Rafael, E-mail: q62alsor@uco.es [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Rajabi, Fatemeh [Department of Science, Payame Noor University, PO Box 878, Qazvin (Iran, Islamic Republic of); Romero, Antonio A. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain)

    2010-11-01

    CdS quantum dot materials were prepared through a simple room temperature deposition of CdS nanocrystals on biomaterials including starch and chitosan. Materials obtained were found to contain differently distributed CdS nanocrystals on the surface of the biopolymers, making them potentially interesting for biomedical applications as contrast agents and/or in photocatalysis.

  5. Biomaterials for the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Hadavi, Darya; Poot, André A

    2016-01-01

    Alzheimer's disease (AD) as a progressive and fatal neurodegenerative disease represents a huge unmet need for treatment. The low efficacy of current treatment methods is not only due to low drug potency but also due to the presence of various obstacles in the delivery routes. One of the main barriers is the blood-brain barrier. The increasing prevalence of AD and the low efficacy of current therapies have increased the amount of research on unraveling of disease pathways and development of treatment strategies. One of the interesting areas for the latter subject is biomaterials and their applications. This interest originates from the fact that biomaterials are very useful for the delivery of therapeutic agents, such as drugs, proteins, and/or cells, in order to treat diseases and regenerate tissues. Recently, manufacturing of nano-sized delivery systems has increased the efficacy and delivery potential of biomaterials. In this article, we review the latest developments with regard to the use of biomaterials for the treatment of AD, including nanoparticles and liposomes for delivery of therapeutic compounds and scaffolds for cell delivery strategies. PMID:27379232

  6. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  7. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  8. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model.

    Science.gov (United States)

    Fisher, John P; Lalani, Zahid; Bossano, Carla M; Brey, Eric M; Demian, Nagi; Johnston, Carol M; Dean, David; Jansen, John A; Wong, Mark E K; Mikos, Antonios G

    2004-03-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion. To test this hypothesis, healing bone was investigated within a rabbit incisor extraction socket, a subcritical size bone defect that resists significant soft tissue invasion by virtue of its conformity. After removal of the incisor teeth, one tooth socket was left as an empty control, one was filled with crosslinked polymer networks formed from the hydrophobic polymer poly(propylene fumarate) (PPF), and one was filled with a hydrogel formed from the hydrophilic oligomer oligo(poly(ethylene glycol) fumarate) (OPF). At five different times (4 days as well as 1, 2, 4, and 8 weeks), jaw bone specimens containing the tooth sockets were removed. We analyzed bone healing by histomorphometrical analysis of hematoxylin and eosin stained sections as well as immunohistochemically stained sections. The proposed hypothesis, that a hydrophilic material would hinder bone healing, was supported by the histomorphometrical results. In addition, the immunohistochemical results reflect molecular signaling indicative of the early invasion of platelets, the vascularization of wound-healing tissue, the differentiation of migrating progenitor cells, and the formation and remodeling of bone tissue. Finally, the results emphasize the need to consider biomaterial properties and their differing effects upon endogenous growth factors, and thus bone healing, during the development of tissue engineering devices. PMID:14762922

  9. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model.

    Science.gov (United States)

    Fisher, John P; Lalani, Zahid; Bossano, Carla M; Brey, Eric M; Demian, Nagi; Johnston, Carol M; Dean, David; Jansen, John A; Wong, Mark E K; Mikos, Antonios G

    2004-03-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion. To test this hypothesis, healing bone was investigated within a rabbit incisor extraction socket, a subcritical size bone defect that resists significant soft tissue invasion by virtue of its conformity. After removal of the incisor teeth, one tooth socket was left as an empty control, one was filled with crosslinked polymer networks formed from the hydrophobic polymer poly(propylene fumarate) (PPF), and one was filled with a hydrogel formed from the hydrophilic oligomer oligo(poly(ethylene glycol) fumarate) (OPF). At five different times (4 days as well as 1, 2, 4, and 8 weeks), jaw bone specimens containing the tooth sockets were removed. We analyzed bone healing by histomorphometrical analysis of hematoxylin and eosin stained sections as well as immunohistochemically stained sections. The proposed hypothesis, that a hydrophilic material would hinder bone healing, was supported by the histomorphometrical results. In addition, the immunohistochemical results reflect molecular signaling indicative of the early invasion of platelets, the vascularization of wound-healing tissue, the differentiation of migrating progenitor cells, and the formation and remodeling of bone tissue. Finally, the results emphasize the need to consider biomaterial properties and their differing effects upon endogenous growth factors, and thus bone healing, during the development of tissue engineering devices.

  10. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.

    Science.gov (United States)

    Lee, Jin Woo; Soman, Pranav; Park, Jeong Hun; Chen, Shaochen; Cho, Dong-Woo

    2016-01-01

    Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR). NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene) glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts. PMID:27232181

  11. Atmospheric Microplasma Application for Surface Modification of Biomaterials

    Science.gov (United States)

    Shimizu, Kazuo; Fukunaga, Hodaka; Tatematsu, Shigeki; Blajan, Marius

    2012-11-01

    Atmospheric microplasma has been intensively studied for applications in various fields, since in this technology the generated field is only 1 kV (approx) under atmospheric pressure and a dielectric barrier discharge gap of 10 to 100 µm. A low discharge voltage atmospheric plasma process is an economical and effective solution for various applications such as indoor air control including sterilization, odor removal, and surface treatment, and would be suitable for medical applications in the field of plasma life sciences. In this paper, we present the application of microplasma for the surface treatment of materials used in medical fields. Moreover, a biomaterial composed of L-lactic acid is used in experiments, which can be biodecomposed in the human body after medical operations. The surface modification process was carried out with active species generated between the microplasma electrodes, which were observed by emission spectrometry. Microplasma treatment of a polymer sheet using Ar as the process gas decreased the contact angle of a water droplet at the surface of the polymer from 78.3 to 45.6° in 10 s, indicating improved surface adhesive characteristics.

  12. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR. NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.

  13. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry......The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... and biomedical materials and concepts. In addition, the thiol–ene ‘click’ reaction is addressed in the same manner, and the possibility of using both click reactions orthogonally is highlighted. A strategy for the preparation of novel intriguing poly(ε‐caprolactone)‐based nanobiomaterials by orthogonal click...

  14. New nanostructured biomaterials for regenerative medicine

    OpenAIRE

    A. Sgambato

    2016-01-01

    Innovative approaches in tissue engineering and regenerative medicine based on decellularized extracellular matrix (ECM) scaffolds and tissues are quickly growing. ECM proteins are particularly adequate toward tissue regeneration applications, since they are natural biomaterials that can be bio-activated with signalling molecules able to influence cell fate, driving cell responses and tissue regeneration. Indeed, it is well recognized that cells perceive and respond to their microenvironment;...

  15. Improving biocompatibility by controlling protein adsorption: Modification and design of biomaterials using poly(ethylene glycol) microgels and microspheres

    Science.gov (United States)

    Scott, Evan Alexander

    2009-12-01

    Guided by the clinical needs of patients and developments in biology and materials science, the primary focus of the biomaterials field remains at the solid/liquid interface between biomaterial surfaces and biological fluids. For blood-contacting devices, biological responses are initially elicited and directed by proteins that adsorb from this multicomponent solution to form thin films on their surfaces. The identity, conformation, and quantity of adsorbed proteins are related to the properties of a material's surface. For example, hydrophobic surfaces tend to be thrombotic via interactions between platelets and adsorbed fibrinogen, while surface-activation of specific enzymes initiates the coagulation cascade on hydrophilic surfaces. The objective of this thesis is to improve the design of biomaterials through the analysis and control of adsorbing protein layers. This goal is approached through three separate strategies. First, a proteomics-based methodology is presented for the assessment of protein conformation at the residue level after adsorption to biomaterial surfaces. A quantitative mass spectrometric technique is additionally suggested for the identification and quantification of proteins within adsorbed protein layers. Second, a method is described for the covalent attachment of poly(ethylene glycol) (PEG)-based hydrogel coatings onto biomaterials surfaces for the minimization of protein adsorption. The coatings are applied using partially crosslinked PEG solutions containing polymer and protein oligomers and microgels that can be designed to control cell adhesion. Finally, a modular strategy is proposed for the assembly of bioactive PEG-based hydrogel scaffolds. This was accomplished using novel PEG microspheres with diverse characteristics that individually contribute to the ability of the scaffold to direct cellular infiltration. The methodologies proposed by this thesis contribute to the recent shift in biomaterials and tissue engineering strategies

  16. Reconstituted Keratin Biomaterial with Enhanced Ductility

    Directory of Open Access Journals (Sweden)

    Halleh Atri

    2015-11-01

    Full Text Available Nowadays the waste from protein fibres represents an important renewable source for a new generation of biomaterials and promising competitors for carbohydrate based biomaterials. Regenerated keratin biomaterials are biodegradable in vivo and in vitro, biocompatible, and support cell attachment and proliferation; however, their major drawback has been their weak mechanical properties such as ductility. The following study was conducted in an attempt to improve the ductility of reconstituted keratin films obtained from Australian merino wool fibres. Keratin was extracted from wool fibres according to an established protocol proposed by Yamauchi, and then dialyzed and desalted by multiple diafiltration wash cycles. The resulting keratin film was transparent, biodegradable, and, opposite to its predecessors, mechanically durable, possessing a Young modulus about 12.5 MPa with 35% extensibility. The polypeptide chains were found to rearrange themselves in the β-sheet state in this keratin film, which was shown to be semi-crystalline. This film, unlike its predecessors, did not support human cell proliferation. These properties of the diafiltered keratin film have led us to think that diafiltration resulted in producing a totally new keratin film, which is envisaged to find applications in various areas.

  17. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  18. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics

    NARCIS (Netherlands)

    Muszanska, L.H.; Nejadnik, M.R.; Chen, Y.; Heuvel, van den E.R.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  19. Dot assay for determining adhesive interactions between yeasts and bacteria under controlled hydrodynamic conditions

    NARCIS (Netherlands)

    Millsap, KW; Van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    2000-01-01

    Candida belongs to the normal human microflora and are found adhering to a number of human body tissues as well as to a variety of biomaterials implants. Often, yeasts adhere in association with bacteria, but to date there is no definitive assay to investigate adhesive interactions between yeasts an

  20. Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics

    NARCIS (Netherlands)

    Muszanska, Agnieszka K.; Nejadnik, M. Reza; Chen, Yun; van den Heuvel, Edwin R.; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  1. Analysis of the strengthening and toughening of a biomaterial interface

    Institute of Scientific and Technical Information of China (English)

    SONG; Fan

    2001-01-01

    [1]Currey, J. D., Mechanical properties of mother of pearl in tension, Proc. R. Soc. Lond. B, 1977, 196: 443—463.[2]Jackson, A. P., Vincent, J. F. V., Turner, R. M., The mechanical design of nacre, Proc. R. Soc. Lond. B., 1988, 234: 415—440.[3]Wang, R. Z., Wen, H. B., Cui, F. Z. et al., Observations of damage morphologies in nacre during deformation and fracture, J. Mater. Sci., 1995, 30: 2299—2304.[4]Smith, B. L., Schaffer, T. E., Viani, M. et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature, 1999, 399: 761—763.[5]Addadi, L., Weiner, S., A pavement of pearl, Nature, 1997, 389: 912—915.[6]Schaffer,T. E., Ionescu-Zantti, C., Fritz, M. et al., Does abalone nacre form by heteroepiaxial nucleation or by growth through mineral bridges? Chem. Mater., 1997, 9: 1731—1740.[7]Vincent, J. F. V., Structural Biomaterials, New York; The Macmillan Press Ltd, 1982.[8]Song, F., Bai, Y. L., Effects of mineral bridges on the mechanical properties of nacre, Acta Mechanica Solida Sinica (in Chinese), 2000, 21(Special Issue): 171—176.[9]Szuromi, P., Microstructural engineering of materials, Science, 1997, 277: 1183—1183.[10]Heuer, A. H., Fink, D. J., Laraia, J. L. et al., Innovative materials processing strategies: a biomimetic approach, Science, 1992, 255: 1098—1105.[11]Stupp, S. I., Braun, P. V., Molecular manipulation of microstructure: biomaterials, ceramics, and semiconductors, Science, 1997, 277: 1242—1248.[12]Watabe, N., Crystal growth of calcium carbonate in the invertebrates, Prog. Crystal Growth Charact., 1981, 4: 99—147.[13]Clegg, W. J., Kendall, K., Alford, N. M. et al., A simple way to make tough ceramics, Nature, 1990, 347: 455—457.[14]Jackson, A. P., Vincent, J. F. V., Briggs, D. et al., Application of surface analytical techniques to the study fracture surface of mother-of pearl, J. Mater. Science Letters, 1986, 5: 975—980.[15

  2. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  3. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  4. Optical approach in characterizing dental biomaterials

    Science.gov (United States)

    Demoli, Nazif; Vučić, Zlatko; Milat, Ognjen; Gladić, Jadranko; Lovrić, Davorin; Pandurić, Vlatko; Marović, Danijela; Moguš-Milanković, Andrea; Ristić, Mira; Čalogović, Marina; Tarle, Zrinka

    2013-04-01

    The purpose of this paper is to present the current activities of a research collaborative program between three institutions from Zagreb (School of Dental Medicine, Institute of Physics, and Institute Ruđer Bo\\vsković). Within the scope of this program, it is planned to investigate and find guidelines for the refinement of the properties of dental biomaterials (DBs) and of procedures in restorative dental medicine. It is also planned to identify and model the dominant mechanisms which control polymerization of DBs. The materials to be investigated include methacrylate based composite resins, new composite materials with amorphous calcium phosphate, silorane based composite resins, glass-ionomer cements, and giomer.

  5. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  6. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    D F Williams

    2003-06-01

    This paper provides an account of the rationale for the development of implantable medical devices over the last half-century and explains the criteria that have controlled the selection of biomaterials for these critical applications. In spite of some good successes and excellent materials, there are still serious limitations to the performance of implants today, and the paper explains these limitations and develops this theme in order to describe the recent innovations in tissue engineering, which involves a different approach to reconstruction of the body.

  7. Atomic layer deposition of nanoporous biomaterials

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-03-01

    Full Text Available Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  8. Engineering biomolecular microenvironments for cell instructive biomaterials.

    Science.gov (United States)

    Custódio, Catarina A; Reis, Rui L; Mano, João F

    2014-06-01

    Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.

  9. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine. PMID:25476164

  10. Graphite Oxide to Graphene. Biomaterials to Bionics.

    Science.gov (United States)

    Thompson, Brianna C; Murray, Eoin; Wallace, Gordon G

    2015-12-01

    The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinson's disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed.

  11. Novel nanostructured biomaterials: implications for coronary stent thrombosis

    Directory of Open Access Journals (Sweden)

    Karagkiozaki V

    2012-12-01

    Full Text Available Varvara Karagkiozaki,1,2 Panagiotis G Karagiannidis,1 Nikolaos Kalfagiannis,1 Paraskevi Kavatzikidou,1 Panagiotis Patsalas,3 Despoina Georgiou,1 Stergios Logothetidis11Lab for Thin Films – Nanosystems and Nanometrology (LTFN, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 2AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, 3Department of Materials Science and Engineering, University of Ioannina, Ioannina, Epirus, GreeceBackground: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell–material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN, titanium diboride, and carbon nanotube (CNT thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored.Objective and methods: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line.Results: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control

  12. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Directory of Open Access Journals (Sweden)

    Susan N. Christo

    2015-01-01

    Full Text Available Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  13. The influence of biomaterials on inflammatory responses to cardiopulmonary bypass.

    Science.gov (United States)

    Courtney, J M; Matata, B M; Yin, H Q; Esposito, A; Mahiout, A; Taggart, D P; Lowe, G D

    1996-05-01

    The nature of cardiopulmonary bypass and the complexity of the inflammatory response make the detection and interpretation of a biomaterial influence difficult. However, if mediation of the inflammatory response is considered to be an appropriate clinical goal, alteration to the biomaterial influence merits further investigation.

  14. Repairing Femoral Fractures: A Model Lesson in Biomaterial Science

    Science.gov (United States)

    Sakakeeny, Jarred

    2006-01-01

    Biomaterial science is a rapidly growing field that has scientists and doctors searching for new ways to repair the body. A merger between medicine and engineering, biomaterials can be complex subject matter, and it can certainly capture the minds of middle school students. In the lesson described in this article, seventh graders generally learn…

  15. A hydrophobic perfluoropolyether elastomer as a patternable biomaterial for cell culture and tissue engineering.

    Science.gov (United States)

    Schulte, Vera A; Hu, Yibing; Diez, Mar; Bünger, Daniel; Möller, Martin; Lensen, Marga C

    2010-11-01

    We present a systematic study of a perfluoropolyether (PFPE)-based elastomer as a new biomaterial. Besides its excellent long-term stability and inertness, PFPE can be decorated with topographical surface structures by replica molding. Micrometer-sized pillar structures led to considerably different cell morphology of fibroblasts. Although PFPE is a very hydrophobic material we could show that PFPE substrates allow cell adhesion and spreading of primary human fibroblasts (HDF) very similar to that observed on standard cell culture substrates. Less advanced cell spreading was observed for L929 (murine fibroblast cell line) cells during the first 5 h in culture which was accompanied by retarded recruitment of α(v)β(3)-integrin into focal adhesions (FAs). After 24 h distinct FAs were evident also in L929 cells on PFPE. Furthermore, organization of soluble FN into a fibrillar ECM network was shown for hdF and L929 cells. Based on these results PFPE is believed to be a suitable substrate for several biological applications. On the one hand it is an ideal cell culture substrate for fundamental research of substrate-independent adhesion signaling due to its different characteristics (e.g. wettability, elasticity) compared to glass or TCPS. On the other hand it could be a promising implant material, especially due to its straightforward patternability, which is a tool to direct cell growth and differentiation. PMID:20708794

  16. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  17. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  18. What future for zirconia as a biomaterial?

    Science.gov (United States)

    Chevalier, Jérôme

    2006-02-01

    The failure events of Prozyr femoral heads in 2001-2002 have opened a strong, controversial issue on the future of zirconia as a biomaterial. The aim of this paper is to review and analyze the current knowledge on ageing process and on its effect on the long term performance of implants in order to distinguish between scientific facts and speculation. Current state of the art shows the strong variability of zirconia to in vivo degradation, as a consequence of the strong influence of processing on ageing process. As different zirconia from different vendors have different process related microstructure, there is a need to assess their ageing sensitivity with advanced and accurate techniques, and ISO standards should be modified, especially to gain confidence from clinicians. There is a trend today to develop alumina-zirconia composites as an alternative to monolithic alumina and zirconia: the issue of ageing is also discussed for these composites. PMID:16143387

  19. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon.

    Science.gov (United States)

    Levon, Jaakko; Myllymaa, Katja; Kouri, Vesa-Petteri; Rautemaa, Riina; Kinnari, Teemu; Myllymaa, Sami; Konttinen, Yrjö T; Lappalainen, Reijo

    2010-03-15

    Staphylococcus aureus device-related infection is a common complication in implantology. Bacterial adhesion on implant surfaces is the initial step in the infective process. The aim was to develop a method suitable for quantitative bacterial adherence studies and to test a new diamond-like carbon (DLC) coating against commonly used metallic biomaterials with regards to Staphylococcus aureus adhesion. Patterned silicon chips with spots of tantalum, titanium, chromium, and DLC were produced using ultraviolet lithography and physical vapor deposition. These patterned chips were used as such or glued to array plates, pretreated with serum and exposed to S. aureus (S-15981) for 90 min, followed by acridine orange staining and fluorescence microscopy. An adhesion index showed that the ranking order of the biomaterials was titanium, tantalum, chromium, and DLC, with the DLC being clearly most resistant against colonization with S. aureus. Micropatterned surfaces are useful for quantitative comparison of bacterial adherence on different biomaterials. In the presence of serum, DLC is superior in its ability to resist adhesion and colonization by S. aureus compared with the commonly used biomaterial metals tantalum, titanium, and chromium. PMID:19437436

  20. Adhesion of blood platelets under flow to wettability gradient polyethylene surfaces made in a shielded gas plasma

    NARCIS (Netherlands)

    Spijker, HT; Busscher, HJ; Graaff, R; van Oeveren, W; Bos, R.R.M.

    2002-01-01

    Adhesion and activation of platelets are important steps in the thrombosis of blood after contact with a biomaterial surface and are governed, in part, by the wettability of the surface. Since most implanted devices are in contact with blood under flow conditions, it is important to study the effect

  1. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  2. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  3. New frontiers in biomaterials research for tissue repair and regeneration

    Institute of Scientific and Technical Information of China (English)

    Huiling Liu; Haoran Liu; Aaron Clasky; Huilin Yang; Lei Yang

    2016-01-01

    The field of biomaterials has recently emerged to augment or replace lost or damaged tissues and organs due to the human body’s limited ability to self-heal large defects. Historically, metallic components, polymers, ceramics, and composite materials were utilized as synthetic materials along with natural materials to assist in therapy. Various novel biomaterials were developed to respond to a significant amount of new medical challenges in the past decade. Therefore, there is a need to review these newly developed biomaterials and their potential to improve tissue repair and regeneration in a variety of applications. Here, we briefly review the different strategies and attempts to use novel biomaterials, including self-assembled and macromolecular biomaterials, hydrogels, metamaterials, decellularized tissues, and biomaterials obtained via synthetic biology, used either for tissue repair and regeneration or for therapeutic use by exploiting other mechanisms of healing. All these methods aim to create functional materials, devices, systems, and/or organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. This review details the various methods and introduces the applications of these biomaterials in tissue repair and regeneration, especially for bone, nerve, and skin applications.

  4. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Science.gov (United States)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  5. The Promotion of Human Neural Stem Cells Adhesion Using Bioinspired Poly(norepinephrine Nanoscale Coating

    Directory of Open Access Journals (Sweden)

    Minah Park

    2014-01-01

    Full Text Available The establishment of versatile biomaterial interfaces that can facilitate cellular adhesion is crucial for elucidating the cellular processes that occur on biomaterial surfaces. Furthermore, biomaterial interfaces can provide physical or chemical cues that are capable of stimulating cellular behaviors by regulating intracellular signaling cascades. Herein, a method of creating a biomimetic functional biointerface was introduced to enhance human neural stem cell (hNSC adhesion. The hNSC-compatible biointerface was prepared by the oxidative polymerization of the neurotransmitter norepinephrine, which generates a nanoscale organic thin layer, termed poly(norepinephrine (pNE. Due to its adhesive property, pNE resulted in an adherent layer on various substrates, and pNE-coated biointerfaces provided a highly favorable microenvironment for hNSCs, with no observed cytotoxicity. Only a 2-hour incubation of hNSCs was required to firmly attach the stem cells, regardless of the type of substrate. Importantly, the adhesive properties of pNE interfaces led to micropatterns of cellular attachment, thereby demonstrating the ability of the interface to organize the stem cells. This highly facile surface-modification method using a biomimetic pNE thin layer can be applied to a number of suitable materials that were previously not compatible with hNSC technology.

  6. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  7. XPS - an essential tool in biomaterial research

    International Nuclear Information System (INIS)

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be 'biocompatible', such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving 'biocompatibility' is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a 'foreign' material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the 'bulk' chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  8. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    Science.gov (United States)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  9. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-12-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology that act as a scaffold to support the structure of biomaterials science, are still essential for the research and education of biomaterials, other subjects, such as mechanical engineering, mechanics, computer science, automatic science, nanotechnology, and Bio-MEMS, are playing more and more important roles in the modern biomaterials science development. Thus, the research and education of modern biomaterials science should require a logical integration of the interdisciplinary science and technology, which not only concerns medical science, materials science and biology, but also includes other subjects that have been stated above. This article focuses on multidisciplinary nature of biomaterials, the awareness of which is currently lacking in the education at undergraduate stage. In order to meet this educational challenge, we presented a multidisciplinary course that referred to not only traditional sciences, but also frontier sciences and lasted for a whole academic year for senior biomaterials undergraduate students with principles of a better understanding of the modern biomaterials science and meeting the requirements of the future development in this area. The course has been shown to gain the recognition of the participants by questionaries and specific "before and after" comments and has also gained high recognition and persistent supports from our university. The idea of this course might be also fit for the education and construction of some other disciplines.

  10. Characterization of Biomaterials by Soft X-Ray Spectromicroscopy

    OpenAIRE

    Hitchcock, Adam P.; Leung, Bonnie O.; Brash, John L.

    2010-01-01

    Synchrotron-based soft X-ray spectromicroscopy techniques are emerging as useful tools to characterize potentially biocompatible materials and to probe protein interactions with model biomaterial surfaces. Simultaneous quantitative chemical analysis of the near surface region of the candidate biomaterial, and adsorbed proteins, peptides or other biological species can be obtained at high spatial resolution via scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron micr...

  11. Numerical Simulation of thePorous Structure of Biomaterials

    Institute of Scientific and Technical Information of China (English)

    WANGHui-min; YANYu-hua; LIShi-pu

    2004-01-01

    Porous biomaterials are widely used as bone replacement materials because of thers high biocompatibility and osteoconductivity property. Understanding of their porous structure (i. e. geometrical and topological characteristic) and studying how to the body fluid flow through them are essential to investigate thed egradation behaviour at the surface-liquid interface. This research develops a numerical model to simulate the porous structure of biomaterials based on the stochastic approach in pore size distribution and interconnectivity.

  12. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  13. Advancing the field of 3D biomaterial printing.

    Science.gov (United States)

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  14. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  15. Electro-dry-adhesion.

    Science.gov (United States)

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  16. Inhibition of postsurgical adhesions by methylene blue-loaded nanofibers versus cast film matrices.

    Science.gov (United States)

    El-Sayed, Nesma; Galal, Sally; El-Gowelli, Hanan; El-Khordagui, Labiba

    2016-07-01

    In the quest for barrier membranes for the prevention of post-surgical tissue adhesions, polymer matrices may provide a platform of biomaterials with versatile properties. However, the relationship between the anti-adhesion effects of different polymer matrices and their physicochemical and structural properties is not yet adequately understood. In a preclinical study using a rat cecum model, we directly compared the anti-adhesion potential of polyhydroxybutyrate (PHB) electrospun nanofibrous versus cast film matrices loaded with methylene blue (MB) as antioxidant adhesion inhibitor. PHB retained MB presumably forming MB-bioactivated matrices. In the preclinical study, quantitative morphologic assessment in addition to histopathologic and SEM examinations 14 days post-surgery indicated that plain PHB NFs and MB-PHB NFs, moderately enhanced cecal wall healing and inhibited adhesion formation. In contrast, reshaping PHB as cast films, significantly enhanced healing, reduced adhesion bands and prevented inter-visceral adhesions. Cast films also inhibited tissue attachment to the matrix recovered 14 days post-surgery. Both PHB matrix types reduced tissue inflammation. Despite tissue anti-adhesion potential of individual matrix components, modulation of the micro-architectural properties generated polymer barriers with varying tissue anti-adhesion and healing potentials, the MB-loaded cast film achieving the best outcome. PMID:27093975

  17. Preparing polymeric biomaterials using "click" chemistry techniques

    Science.gov (United States)

    Lin, Fei

    Significant efforts have been focused on preparing degradable polymeric biomaterials with controllable properties, which have the potential to stimulate specific cellular responses at the molecular level. Click reactions provide a universal tool box to achieve that goal through molecular level design and modification. This dissertation demonstrates multiple methodologies and techniques to develop advanced biomaterials through combining degradable polymers and click chemistry. In my initial work, a novel class of amino acid-based poly(ester urea)s (PEU) materials was designed and prepared for potential applications in bone defect treatment. PEUs were synthesized via interfacial polycondensation, and showed degradability in vivo and possessed mechanical strength superior to conventionally used polyesters. Further mechanical enhancement was achieved after covalent crosslinking with a short peptide crosslinker derived from osteogenic growth peptide (OGP). The in vitro and in an in vivo subcutaneous rat model demonstrated that the OGP-based crosslinkers promoted proliferative activity of cells and accelerated degradation properties of PEUs. As a continuous study, extra efforts were focused on the development of PEUs with functional pendant groups, including alkyne, azide, alkene, tyrosine phenol, and ketone groups. PEUs with Mw exceeding to 100K Da were obtained via interfacial polycondensation, and the concentration of pendent groups was varied using a copolymerization strategy. Electrospinning was used to fabricate PEU nanofiber matrices with mechanical strengths suitable for tissue engineering. A series of biomolecules were conjugated to nanofiber surface following electrospinning using click reactions in aqueous media. The ability to derivatize PEUs with biological motifs using high efficient chemical reactions will significantly expand their use in vitro and in vivo. Based on similar principles, a series of mono- and multifunctionalized polycaprolactone (PCL

  18. Proteins at the Biomaterial Electrolyte Interface

    Science.gov (United States)

    Tengvall, Pentti

    2005-03-01

    Proteins adsorb rapidly onto solid and polymeric surfaces because the association process is in the vast majority of cases energetically favourable, i.e. exothermic. The most common exceptions to this rule are hydrophilic interfaces with low net charge and high mobility, e.g. immobilized PEGs. Current research in the research area tries to understand and control unwanted and wanted adsorption by studying the adsorption kinetics, protein surface binding specificity, protein exchange at interfaces, and surface protein repulsion mechanisms. In blood plasma model systems humoral cascade reactions such as surface mediated coagulation and immune complement raise considerable interest due to the immediate association to blood compatibility, and in tissue applications the binding between surfaces and membrane receptors in cells and tissues. Thus, the understanding of interfacial events at the protein level is of large importance in applications such as blood and tissue contacting biomaterials, in vitro medical and biological diagnostics, food industry and in marine anti-fouling technology. Well described consequences of adsorption are a lowered system energy, increased system entropy, irreversible binding, conformational changes, specific surface/protein interactions, and in biomedical materials applications surface opsonization followed by cell-surface interactions and a host tissue response. This lecture will deal with some mechanisms known to be of importance for the adsorption processes, such as the influence of surface chemistry and surface energy, the composition of the protein solution, the Vroman effect, and residence time. Examples will be shown from ellipsometric experiments using different model surfaces in single/few protein solutions, and specific attention be given to blood serum and plasma experiments on coagulation and immune complement at interfaces.

  19. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces

    Directory of Open Access Journals (Sweden)

    Monica Thukkaram

    2014-01-01

    Full Text Available Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.

  20. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera) for cell attachment

    OpenAIRE

    Zhang Mingjun; Lenaghan Scott C; Xia Lijin; Dong Lixin; He Wei; Henson William R; Fan Xudong

    2010-01-01

    Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM) conducted on the adh...

  1. Tissue adhesives in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Schneider, Gerlind

    2009-01-01

    Full Text Available The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones. But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use.

  2. Influence of the nano-micro structure of the surface on bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Carolina Díaz

    2007-03-01

    Full Text Available Biomaterials failures are frequently associated to the formation of bacterial biofilms on the surface. The aim of this work is to study the adhesion of non motile bacteria streptococci consortium and motile Pseudomonas fluorescens. Substrates with micro and nanopatterned topography were used. The influence of surface characteristics on bacterial adhesion was investigated using optical and epifluorescence microscopy, scanning electron microscopy (SEM and atomic force microscopy (AFM. Results showed an important influence of the substratum nature. On microrough surfaces, initial bacterial adhesion was less significant than on smooth surfaces. In contrast, nanopatterned samples showed more bacterial attachment than the smooth control. It was also noted a remarkable difference in morphology, orientation and distribution of bacteria between the smooth and the nanostructured substrate. The results show the important effect of substratum nature and topography on bacterial adhesion which depended on the relation between roughness characteristics dimensions and bacterial size.

  3. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.

    Science.gov (United States)

    Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang

    2016-10-01

    Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. PMID:27451366

  4. Non-Metallic Biomaterials for Tooth Repair and Replacement. By Pekka Vallittu, Woodhead Publishing, 2013; 406 pages. Price £145.00/US$245.00/€175.00 ISBN 978-0-85709-244-1

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-01-01

    Full Text Available 1. Discusses the properties of enamel and dentin and their role in adhesive dental restoration;2. Chapters also examine the wear properties of dental ceramics, glasses and bioactive glass ceramics for tooth repair and replacement;3. Dental composites and antibacterial restorative materials are also considered;4. Provides a concise overview of non-metallic biomaterials for dental clinicians, materials scientists and academic researchers alike.As the demand for healthy, attractive teeth increases, the methods and materials employed in restorative dentistry have become progressively more advanced. Non-metallic biomaterials for tooth repair and replacement focuses on the use of biomaterials for a range of applications in tooth repair and, in particular, dental restoration.

  5. 生物材料表面性能调控干细胞分化的研究进展%Advances in the study of regulation of stem cell differentiation by surface properties of biomaterials

    Institute of Scientific and Technical Information of China (English)

    邓晨; 李学拥

    2014-01-01

    The differentiation of stem cells into target cells in a particular region is an important prerequisite for the organ construction and tissue engineering.The processes are multi-directionally regulated by the surface properties of biomaterials,and among them the influences of mechanical rigidity and surface morphology of biomaterials on morphological characteristics,focal adhesion assemblies,and cytoskeletal structure of cells are considered to be the most important factors in regulating the differentiation of stem cells into specific cell lineages.This review summarizes the progresses on this topic in the past few years,which may provide a reference to the design of the biomaterials in regenerative medicine and tissue engineering.

  6. Methodology of citrate-based biomaterial development and application

    Science.gov (United States)

    Tran, M. Richard

    Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field. This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture. To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to

  7. Characterization of Biomaterials by Soft X-Ray Spectromicroscopy

    Directory of Open Access Journals (Sweden)

    Adam P. Hitchcock

    2010-07-01

    Full Text Available Synchrotron-based soft X-ray spectromicroscopy techniques are emerging as useful tools to characterize potentially biocompatible materials and to probe protein interactions with model biomaterial surfaces. Simultaneous quantitative chemical analysis of the near surface region of the candidate biomaterial, and adsorbed proteins, peptides or other biological species can be obtained at high spatial resolution via scanning transmission X-ray microscopy (STXM and X-ray photoemission electron microscopy (X-PEEM. Both techniques use near-edge X-ray absorption fine structure (NEXAFS spectral contrast for chemical identification and quantitation. The capabilities of STXM and X-PEEM for the analysis of biomaterials are reviewed and illustrated by three recent studies: (1 characterization of hydrophobic surfaces, including adsorption of fibrinogen (Fg or human serum albumin (HSA to hydrophobic polymeric thin films, (2 studies of HSA adsorption to biodegradable or potentially biocompatible polymers, and (3 studies of biomaterials under fully hydrated conditions. Other recent applications of STXM and X-PEEM to biomaterials are also reviewed.

  8. A novel animal model for skin flap prelamination with biomaterials

    Science.gov (United States)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-01-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible. PMID:27659066

  9. Biomaterial systems for orthopedic tissue engineering

    Science.gov (United States)

    Spoerke, Erik David

    2003-06-01

    The World Health Organization has estimated that one out of seven Americans suffers from a musculoskeletal impairment, annually incurring 28.6 million musculoskeletal injuries---more than half of all injuries. Bone tissue engineering has evolved rapidly to address this continued health concern. In the last decade, the focus of orthopedic biomaterials design has shifted from the use of common engineering metals and plastics to smart materials designed to mimic nature and elicit favorable bioresponse. Working within this new paradigm, this thesis explores unique chemical and materials systems for orthopedic tissue engineering. Improving on current titanium implant technologies, porous titanium scaffolds were utilized to better approximate the mechanical and structural properties of natural bone. These foam scaffolds were enhanced with bioactive coatings, designed to enhance osteoblastic implant colonization. The biopolymer poly(L-lysine) was incorporated into both hydroxypatite and octacalcium phosphate mineral phases to create modified organoapatite and pLys-CP coatings respectively. These coatings were synthesized and characterized on titanium surfaces, including porous structures such as titanium mesh and titanium foam. In addition, in vitro osteoblastic cell culture experiments probed the biological influences of these coatings. Organoapatite (OA) accelerated preosteoblastic colonization of titanium mesh and improved cellular ingrowth into titanium foam. Alternatively, the thin, uniform pLys-CP coating demonstrated significant potential as a substrate for chemically binding biological molecules and supramolecular assemblies. Biologically, pLys-CP demonstrated enhanced cellular attachment over titanium and inorganic calcium phosphate controls. Supramolecular self-assembled nanofiber assemblies were also explored both as stand-alone tissue engineering gels and as titanium coatings. Self-supporting nanofiber gels induced accelerated, biomimetic mineralization

  10. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  11. Handbook of adhesion

    CERN Document Server

    Packham, D E

    2006-01-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require.This second edition includ

  12. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  13. Lactobacillus Adhesion to Mucus

    Directory of Open Access Journals (Sweden)

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  14. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    2010-01-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the ami

  15. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  16. Lithotripter shock wave interaction with a bubble near various biomaterials

    Science.gov (United States)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  17. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.

    Science.gov (United States)

    Stoppel, Whitney L; Hu, Dongjian; Domian, Ibrahim J; Kaplan, David L; Black, Lauren D

    2015-06-01

    Cardiac malformations and disease are the leading causes of death in the United States in live-born infants and adults, respectively. In both of these cases, a decrease in the number of functional cardiomyocytes often results in improper growth of heart tissue, wound healing complications, and poor tissue repair. The field of cardiac tissue engineering seeks to address these concerns by developing cardiac patches created from a variety of biomaterial scaffolds to be used in surgical repair of the heart. These scaffolds should be fully degradable biomaterial systems with tunable properties such that the materials can be altered to meet the needs of both in vitro culture (e.g. disease modeling) and in vivo application (e.g. cardiac patch). Current platforms do not utilize both structural anisotropy and proper cell-matrix contacts to promote functional cardiac phenotypes and thus there is still a need for critically sized scaffolds that mimic both the structural and adhesive properties of native tissue. To address this need, we have developed a silk-based scaffold platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM composite scaffolds have tunable architectures, degradation rates, and mechanical properties. Subcutaneous implantation in rats demonstrated that addition of the cECM to aligned silk scaffold led to 99% endogenous cell infiltration and promoted vascularization of a critically sized scaffold (10 × 5 × 2.5 mm) after 4 weeks in vivo. In vitro, silk-cECM scaffolds maintained the HL-1 atrial cardiomyocytes and human embryonic stem cell-derived cardiomyocytes and promoted a more functional phenotype in both cell types. This class of hybrid silk-cECM anisotropic scaffolds offers new opportunities for developing more physiologically relevant tissues for cardiac repair and disease modeling. PMID:25826196

  18. Teeth and bones: applications of surface science to dental materials and related biomaterials

    Science.gov (United States)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  19. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    Science.gov (United States)

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2015-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: The biomaterials used demonstrated biocompatibility and osteoconductive capacity that was capable of stimulating osteogenesis, even in bones with secondary mechanical and morphological functions such as the fibula of rats. PMID:27047813

  20. Development of Nano-biomaterials for Bone Repair

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new kind of nano-biomaterials of nano apatite ( NA ) and polyamide8063 ( PA ) composite was prepared by direct using NA slurry. The experimental results showed that the NA content in the composite was similar to that of natural bone. Interface chemical bonding was formed between NA and PA. The NA keeps the original morphological structure with a crystal size of 10- 30 nm in width by 50- 90 nm in length with a ratio of~ 2.5 and distributed uniformly in the polymer. The synthetic nano-biomaterials could be one of the best bioactive materials for load-bearing bone repair or substitution materials.

  1. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  2. Management of adhesive capsulitis

    OpenAIRE

    Neviaser, Andrew

    2015-01-01

    Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive cri...

  3. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  4. Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material

    NARCIS (Netherlands)

    Lin, Y. M.; Nierop, K.G.J.; Girbal-Neuhauser, E.; Adriaanse, M.; van Loosdrecht, M. C M

    2015-01-01

    To evaluate the possibility of utilizing polysaccharide-based biomaterial recovered from aerobic granular sludge as a coating material, the morphology, molecular weight distribution and chemical composition of the recovered biomaterial were investigated by atomic force microscopy, size exclusion chr

  5. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  6. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    International Nuclear Information System (INIS)

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially

  7. A comparison of seven methods to analyze heparin in biomaterials: quantification, location, and anticoagulant activity

    NARCIS (Netherlands)

    Lammers, G.; Westerlo, E.M.A. van de; Versteeg, E.M.M.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.

    2011-01-01

    Glycosaminoglycans, like heparin, are frequently incorporated in biomaterials because of their capacity to bind and store growth factors and because of their hydrating properties. Heparin is also often used in biomaterials for its anticoagulant activity. Analysis of biomaterial-bound heparin is chal

  8. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  9. Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties

    Directory of Open Access Journals (Sweden)

    Todorka G. Vladkova

    2010-01-01

    Full Text Available We present many examples of surface engineered polymeric biomaterials with nanosize modified layers, controlled protein adsorption, and cellular interactions potentially applicable for tissue and/or blood contacting devices, scaffolds for cell culture and tissue engineering, biosensors, biological microchips as well as approaches to their preparation.

  10. In vitro biocompatibility testing of biomaterials and medical devices.

    Science.gov (United States)

    Müller, U

    2008-01-01

    Biomaterials used for medical devices must be thoroughly tested according to ISO 10993 before their introduction so that any negative effects on the body are known about and prevented. By using in vitro laboratory tests, dangers for patients and unnecessary animal experiments can be avoided. Here, in vitro tests for cell compatibility (cytotoxicity) and blood compatibility (haemocompatibility) are described. PMID:18605289

  11. Current and future biocompatibility aspects of biomaterials for hip prosthesis

    Directory of Open Access Journals (Sweden)

    Amit Aherwar

    2015-12-01

    Full Text Available The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

  12. Fundamental monomeric biomaterial diagnostics by radio frequency signal analysis.

    Science.gov (United States)

    Ji, Jae-Hoon; Shin, Kyeong-Sik; Kang, Shinill; Lee, Soo Hyun; Kang, Ji Yoon; Kim, Sinyoung; Jun, Seong Chan

    2016-08-15

    We present a new diagnostic technique of fundamental monomeric biomaterials that do not rely on any enzyme or chemical reaction. Instead, it only uses radio frequency (RF) signal analysis. The detection and classification of basic biomaterials, such as glucose and albumin, were demonstrated. The device was designed to generate a strong resonance response with glucose solution and fabricated by simple photolithography with PDMS (Polydimethylsiloxane) well. It even was used to detect the level of glucose in mixtures of glucose and albumin and in human serum, and it operated properly and identified the glucose concentration precisely. It has a detection limit about 100μM (1.8mg/dl), and a sensitivity about 58MHz per 1mM of glucose and exhibited a good linearity in human blood glucose level. In addition, the intrinsic electrical properties of biomaterials can be investigated by a de-embedding technique and an equivalent circuit analysis. The capacitance of glucose containing samples exhibited bell-shaped Gaussian dispersion spectra around 2.4GHz. The Albumin solution did not represent a clear dispersion spectra compared to glucose, and the magnitude of resistance and inductance of albumin was higher than that of other samples. Other parameters also represented distinguishable patterns to classify those biomaterials. It leads us to expect future usage of our technique as a pattern-recognizing biosensor. PMID:27111728

  13. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

    NARCIS (Netherlands)

    Habibovic, P.; Valk, van der C.M.; Blitterswijk, van C.A.; Groot, de K.

    2004-01-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT–PBT) copoly

  14. Biomaterials for the Treatment of Alzheimer’s Disease

    Science.gov (United States)

    Hadavi, Darya; Poot, André A.

    2016-01-01

    Alzheimer’s disease (AD) as a progressive and fatal neurodegenerative disease represents a huge unmet need for treatment. The low efficacy of current treatment methods is not only due to low drug potency but also due to the presence of various obstacles in the delivery routes. One of the main barriers is the blood–brain barrier. The increasing prevalence of AD and the low efficacy of current therapies have increased the amount of research on unraveling of disease pathways and development of treatment strategies. One of the interesting areas for the latter subject is biomaterials and their applications. This interest originates from the fact that biomaterials are very useful for the delivery of therapeutic agents, such as drugs, proteins, and/or cells, in order to treat diseases and regenerate tissues. Recently, manufacturing of nano-sized delivery systems has increased the efficacy and delivery potential of biomaterials. In this article, we review the latest developments with regard to the use of biomaterials for the treatment of AD, including nanoparticles and liposomes for delivery of therapeutic compounds and scaffolds for cell delivery strategies. PMID:27379232

  15. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  16. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  17. Adhesion in hydrogel contacts

    Science.gov (United States)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  18. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  19. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg

    OpenAIRE

    Cataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; SANCILIO, SILVIA

    2016-01-01

    Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new mat...

  20. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    OpenAIRE

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structur...

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  3. A Tubular Biomaterial Construct Exhibiting a Negative Poisson’s Ratio

    Science.gov (United States)

    Lee, Jin Woo; Soman, Pranav; Park, Jeong Hun; Chen, Shaochen; Cho, Dong-Woo

    2016-01-01

    Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson’s ratio νxy (NPR). NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene) glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson’s ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts. PMID:27232181

  4. Adhesive B-doped DLC films on biomedical alloys used for bone fixation

    Indian Academy of Sciences (India)

    A A Ahmad; A M Alsaad

    2007-08-01

    The long-term failure of the total hip and knee prostheses is attributed to the production of wear particles at the articulating interface between the metals, ceramics and polymers used for surgical implants and bone-fixtures. Therefore, finding an adhesive and inert coating material that has low frictional coefficient should dramatically reduce the production of wear particles and hence, prolong the life time of the surgical implants. The novel properties of the non-toxic diamond-like carbon (DLC) coatings have proven to be excellent candidates for biomedical applications. However, they have poor adhesion strength to the alloys and biomaterials. The addition of a thin interfacial layer such as Si, Ti, TiN, Mo and Cu/Cr and/or adding additives such as Si, F, N, O, W, V, Co, Mo, Ti or their combinations to the DLC films has been found to increase the adhesion strength substantially. In our study, grade 316L stainless steel and grade 5 titanium alloy (Ti–6Al–4V) were used as biomaterial substrates. They were coated with DLC films containing boron additives at various levels using various Si interfacial layer thicknesses. The best film adhesion was achieved at 8% and 20% on DLC coated Ti–6Al–4V and grade 316L substrates, respectively. It has been demonstrated that doping the DLC with boron increases their adhesion strength to both substrates even without silicon interfacial layer and increases it substantially with optimum silicon layer thickness. The adhesion strength is also correlated with the hydrogen contents in the B-DLC films. It is found to reach its maximum value of 700 kg/cm2 and 390 kg/cm2 at 2/7 and 3/6 for CH4/Ar partial pressures (in mTorr ratio) for Ti–6Al–4V and 316L substrates, respectively.

  5. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Directory of Open Access Journals (Sweden)

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  6. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  7. CHARACTERISATION OF CASSAVA FIBRE FOR USE AS A BIOMATERIAL

    Directory of Open Access Journals (Sweden)

    Lois Larbie

    2012-07-01

    Full Text Available In this study we investigate the cytotoxicity of de-starched cassava fibre granules and fine powder using human peripheral blood mononuclear cells (PBMC and examine changes in the composition of Simulated Body Fluid (SBF resulting from immersion of cassava fibre samples. The purpose of the study was to characterise cassavafibre for possible biomaterial applications. Preliminary results indicate insignificant cytotoxic effects on PBMCs with cassava sample concentrations of 0.1g/ml, 0.025g/ml and 0.00625g/ml. Additionally there was little or no significant change in Na, K, Mg, Cl, Ca, Mn, and Cu concentrations upon immersion in SBF as observed over a one week period at a temperature of 37°C. These initial results suggest cassava fibre may be considered for biomaterial applications following more extensive characterisation.

  8. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  9. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  10. Collagen-Based Biomaterials for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    François Berthod

    2010-03-01

    Full Text Available Collagen is the most widely distributed class of proteins in the human body. The use of collagen-based biomaterials in the field of tissue engineering applications has been intensively growing over the past decades. Multiple cross-linking methods were investigated and different combinations with other biopolymers were explored in order to improve tissue function. Collagen possesses a major advantage in being biodegradable, biocompatible, easily available and highly versatile. However, since collagen is a protein, it remains difficult to sterilize without alterations to its structure. This review presents a comprehensive overview of the various applications of collagen-based biomaterials developed for tissue engineering, aimed at providing a functional material for use in regenerative medicine from the laboratory bench to the patient bedside.

  11. Modelling the regenerative niche: a major challenge in biomaterials research.

    Science.gov (United States)

    Kirkpatrick, C James

    2015-12-01

    By definition, biomaterials are developed for clinical application. In the field of regenerative medicine their principal function is to play a significant, and, if possible, an instructive role in tissue healing. In the last analysis the latter involves targeting the 'regenerative niche'. The present paper will address the problem of simulating this niche in the laboratory and adopts a life science approach involving the harnessing of heterotypic cellular communication to achieve this, that is, the ability of cells of different types to mutually influence cellular functions. Thus, co-culture systems using human cells are the methodological focus and will concern four exemplary fields of regeneration, namely, bone, soft tissue, lower respiratory tract and airway regeneration. The working hypothesis underlying this approach is that in vitro models of higher complexity will be more clinically relevant than simple monolayer cultures of transformed cell lines in testing innovative strategies with biomaterials for regeneration. PMID:26816650

  12. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial.

    Science.gov (United States)

    Mironi-Harpaz, Iris; Berdichevski, Alexandra; Seliktar, Dror

    2014-01-01

    Hydrogels are one of the most versatile biomaterials in use for tissue engineering and regenerative medicine. They are assembled from either natural or synthetic polymers, and their high water content gives these materials practical advantages in numerous biomedical applications. Semisynthetic hydrogels, such as those that combine synthetic and biological building blocks, have the added advantage of controlled bioactivity and material properties. In myocardial regeneration, injectable hydrogels premised on a semisynthetic design are advantageous both as bioactive bulking agents and as a delivery vehicle for controlled release of bioactive factors and/or cardiomyocytes. A new semisynthetic hydrogel based on PEGylated fibrinogen has been developed to address the many requirements of an injectable biomaterial in cardiac restoration. This chapter highlights the fundamental aspects of making this biomimetic hydrogel matrix for cardiac applications. PMID:25070327

  13. Nanoindentation Studies of TNZ and Ti2448 Biomaterials After Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Hryniewicz T.

    2014-10-01

    Full Text Available This work presents the nanoindentation results of two newly developed titanium alloy biomaterials, TNZ and Ti2448, after different surface treatments. The investigations were performed on the samples, AR – as received, MP – after abrasive polishing, EP – after a standard electropolshing, and MEP – after magnetoelectropolishing. The electropolishing processes, both EP and MEP, were conducted in the same proprietary electrolyte based on concentrated sulfuric acid. The mechanical properties of the titanium alloys biomaterials demonstrated an evident dependence on the surface treatment method, with MEP samples revealing extremely different behaviour and mechanical properties. Such a different mechanical behaviour may mean completely different composition and thickness of the surface film formed on the studied samples after MEP

  14. Towards practical soft X-ray spectromicroscopy of biomaterials.

    Science.gov (United States)

    Hitchcock, A P; Morin, C; Heng, Y M; Cornelius, R M; Brash, J L

    2002-01-01

    Scanning transmission X-ray microscopy (STXM) is being developed as a new tool to study the surface chemical morphology and biointeractions of candidate biomaterials with emphasis on blood compatible polymers. STXM is a synchrotron based technique which provides quantitative chemical mapping at a spatial resolution of 50 nm. Chemical speciation is provided by the near edge X-ray absorption spectral (NEXAFS) signal. We show that STXM can detect proteins on soft X-ray transparent polymer thin films with monolayer sensitivity. Of great significance is the fact that measurements can be made in situ, i.e. in the presence of an overlayer of the protein solution. The strengths, limitations and future potential of STXM for studies of biomaterials are discussed.

  15. All-biomaterial supercapacitor derived from bacterial cellulose

    Science.gov (United States)

    Wang, Xiangjun; Kong, Debin; Zhang, Yunbo; Wang, Bin; Li, Xianglong; Qiu, Tengfei; Song, Qi; Ning, Jing; Song, Yan; Zhi, Linjie

    2016-04-01

    An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm-2 and an improved solution resistance of 7 Ω.An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm-2 and an improved solution resistance of 7 Ω. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01485b

  16. Scanning Probe Microscopy as a Tool for Investigation of Biomaterials

    OpenAIRE

    Veronika Novotna; Alexandr Knapek; Pavel Tomanek; Sarka Safarova

    2012-01-01

    Super-microscopic techniques like scanning tunnelling microscopy, atomic force microscopy or scanning near-field optical microscopy allows investigate micro- and/or nano-scale surfaces and structures. In this paper, both Environmental scanning electron microscope (ESEM) and Scanning near field optical microscope (SNOM) have been applied to more closely study of biomaterials. The results of visualization of human osteo-sarcoma cell line (U2OS) are compared. SNOM and ESEM yield different, howev...

  17. Advantages of RGD peptides for directing cell association with biomaterials

    OpenAIRE

    Bellis, Susan L.

    2011-01-01

    Despite many years of in vitro research confirming the effectiveness of RGD in promoting cell attachment to a wide variety of biomaterials, animal studies evaluating tissue responses to implanted RGD-functionalized substrates have yielded more variable results The goals of this report are to present some of the reasons why cell culture studies may not always reliably predict in vivo responses, and more importantly, to highlight potential applications that may benefit from the use of RGD pepti...

  18. All-biomaterial laser using vitamin and biopolymers.

    Science.gov (United States)

    Nizamoglu, Sedat; Gather, Malte C; Yun, Seok Hyun

    2013-11-01

    Lasers based on biomaterials known as Generally-Recognized-As-Safe (GRAS) substances approved by the U.S. Food and Drug Administration (FDA) are demonstrated. Vitamin B2-doped microdroplet lasers are generated and trapped on a super-hydrophobic poly-L-lactic acid substrate. The spheres support whispering gallery mode lasing at optical pump energies as low as 15 nJ per pulse (≈1 kW/mm2).

  19. Musculoskeletal Regenerative Engineering: Biomaterials, Structures, and Small Molecules

    OpenAIRE

    Roshan James; Laurencin, Cato T.

    2014-01-01

    Musculoskeletal tissues are critical to the normal functioning of an individual and following damage or degeneration they show extremely limited endogenous regenerative capacity. The future of regenerative medicine is the combination of advanced biomaterials, structures, and cues to re-engineer/guide stem cells to yield the desired organ cells and tissues. Tissue engineering strategies were ideally suited to repair damaged tissues; however, the substitution and regeneration of large tissue vo...

  20. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    OpenAIRE

    Véronique Coma

    2013-01-01

    Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antiox...

  1. APPLICATION OF CHITOSAN-BASED BIOMATERIALS IN BIOARTIFICIAL LIVE

    Institute of Scientific and Technical Information of China (English)

    BAO Zhiming; PAN Jilun; LI Li; YU Yaoting

    2006-01-01

    Bioartificial liver support system (BALS) has the potential to provide temporary support for patients with fulminant hepatic failure and consist of viable hepatocytes and scaffolding materials for hepatocytes attachment. Various scaffolding materials are used in BALS, including chitosan,which is easily obtained by deacetylation of chitin and widely applied in biomedical applications. In this paper, we introduce and discuses chitosan-based biomaterials for BALS application.

  2. Bioactive Titania Layer Fabricated on Metallic Biomaterials by Electrodeposition

    OpenAIRE

    Miyazaki, T.; Otsuyama, T.; Ishida, E.

    2009-01-01

    Improvement of bone integration ability of metallic biomaterials is needed for long-term stable fIxation to bone tissues. Essential prerequisite for materials to show bone-integrating bioactivity is formation of apatite layer on their surfaces in body environments. Several functional groups have potential to trigger the apatite nucleation. In the present study, we attempted fabrication of bioactive titania layer which provides Ti-OH groups effective for the apatite formation on bioinert metal...

  3. Structural changes in sheep tibia bone undergoing biomaterial scaffold implant

    OpenAIRE

    Maxwell, Craig, 1984-

    2012-01-01

    Bone fracture is a common occurrence with most people having, or knowing someone who has experienced it. This thesis displays quantitative results on the growth and strength of new material formed in a fracture gap by analysing the density and volume of the implanted biomaterial scaffold and the new material formed alongside gait and Finite Element Analysis (FEA) of external factors which can have an effect on the remodeling process. The main goal of this thesis is to present methods to provi...

  4. Pathogenesis of postoperative adhesion formation

    NARCIS (Netherlands)

    Hellebrekers, B.W.J.; Kooistra, T.

    2011-01-01

    Background: Current views on the pathogenesis of adhesion formation are based on the "classical concept of adhesion formation", namely that a reduction in peritoneal fibrinolytic activity following peritoneal trauma is of key importance in adhesion development. Methods: A non-systematic literature s

  5. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  6. Biomaterials in Cardiovascular Research: Applications and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Saravana Kumar Jaganathan

    2014-01-01

    Full Text Available Cardiovascular biomaterials (CB dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs, is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.

  7. Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Villaverde, Antonio; Roher, Nerea

    2016-01-01

    The control of infectious diseases is a major current challenge in intensive aquaculture. Most commercial vaccines are based on live attenuated or inactivated pathogens that are usually combined with adjuvants, oil emulsions being as the most widely used for vaccination in aquaculture. Although effective, the use of these oil emulsions is plagued with important side effects. Thus, the development of alternative safer and cost-effective immunostimulants and adjuvants is highly desirable. Here we have explored the capacity of inclusion bodies produced in bacteria to immunostimulate and protect fish against bacterial infections. Bacterial inclusion bodies are highly stable, non-toxic protein-based biomaterials produced through fully scalable and low-cost bio-production processes. The present study shows that the composition and structured organization of inclusion body components (protein, lipopolysaccharide, peptidoglycan, DNA and RNA) make these protein biomaterials excellent immunomodulators able to generically protect fish against otherwise lethal bacterial challenges. The results obtained in this work provide evidence that their inherent nature makes bacterial inclusion bodies exceptionally attractive as immunostimulants and this opens the door to the future exploration of this biomaterial as an alternative adjuvant for vaccination purposes in veterinary. PMID:27716780

  8. Deformation analysis in biomaterials using digital speckle interferometry

    Science.gov (United States)

    Salvador, R.; González-Peña, R.; Cibrián, R.; Buend­ía, M.; Mínguez, F.; Micó, V.; Carrión, J. A.; Esteve-Taboada, J. J.; Molina-Jiménez, T.; Simón, S.; Pérez, E.

    2007-06-01

    One of the most interesting points when evaluating the response of an implanted prosthesis is the knowledge of how biomaterials behave under a certain deforming stress. Obviously, the greater the stress on a particular moment, the higher possibility of the failure implant. But in many cases, the most important fact regarding the implant failure is due to a lesser stress that is continuously applied. Therefore it is helpful to know how biomaterials respond to this lesser stress. Digital speckle interferometry (DSPI) is suitable for this type of determination because of it is a highly sensitive and non-invasive optical technique. The aim of the presented work is determining the elasticity of biomaterials such as osseous structures and implants used to replace bones and to fix fractures between them. In particular, preliminary results were obtained applied to macerated human radius and a titanium screw used to treat the fractures of this bone. The analysis shows high correlation ratios in determining Young's modulus via DSPI technique in comparison with than that obtained by creation of the bone computer aided design (CAD) model using finite element method (FEM) in ANSYS software. The high degree of concordance between the results of both methods makes it possible to continue studying osseous samples with a fixed implant, and also other implants made of different alloys.

  9. Scattering Anisotropy Measurements in Dental Tissues and Biomaterials

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Perez, M. M.

    2012-05-01

    Understanding the behaviour of light propagation in biological materials is essential for biomedical engineering and applications, and even more so when dealing with incoming biomaterials. Many methods for determining optical parameters from biological media assume that scattered light is isotropically distributed over all angles. However, an angular dependence of light scattering may exist and affect the optical behaviour of biological media. The present work seeks to experimentally analyze the scattering anisotropy in different dental tissues (enamel and dentine) and their potential substitute biomaterials (hybrid dental-resin, nano-filled composite, and zirconia ceramic) and comparatively study them. Goniometric measurements were made for four wavelengths in the visible range, allowing a spectral characterization of the materials studied. Previously, for each material, measurements were made with two different sample thicknesses at the same wavelength, checking the behaviour of the angular scattering profile. The asymmetry of experimental phase functions was considered in the recovery of the scattering anisotropy factor. The results demonstrate that the thicker sample yielded a less forward-directed scattering profile than did the thinner sample. The biomaterials analysed show angular scattering comparable to those of the tissues that they may replace. Comparisons can be made by virtue of the low uncertainties found.

  10. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.;

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new su...... summarizes ways in which Surface-MALDI-MS methods have been applied to the study of a range of issues in biomaterials surfaces research. (C) 2004 Elsevier Ltd. All rights reserved....... surface analysis method with unique capabilities that complement established biomaterial surface analysis methods such as XPS and ToF-SSIMS. These new MALDI variant methods, which we shall collectively summarize as Surface-MALDI-MS, are capable of desorbing adsorbed macromolecules from biomaterial...... biochemical techniques such as SDS-PAGE, and can in some circumstances be used for the quantitative analysis of adsorbed protein amounts. At this early stage of development, however, limitations exist: in some cases proteins are not detectable, which appears to be related to tight surface binding. This review...

  11. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials.

    Science.gov (United States)

    Habibovic, P; van der Valk, C M; van Blitterswijk, C A; De Groot, K; Meijer, G

    2004-04-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT-PBT) copolymer, all uncoated and coated with biomimetically produced OCP, were implanted in back muscles of 10 goats for 6 and 12 weeks. Uncoated Ti6Al4Vand HA did not show any bone formation after intramuscular implantation. All OCP coated implants, except PEGT-PBT, did induce bone in the soft tissue. The reason for the non-inductive behaviour of the copolymer is probably its softness, that makes it impossible to maintain its porous shape after implantation. Both uncoated and OCP coated BCP induced bone. However, the amount of animals in which the bone was induced was higher in the coated BCP implants in comparison to the uncoated ones. Osteoinductive potential of biomaterials is influenced by various material characteristics, such as chemical composition, crystallinity, macro- and microstructure. OCP coating has a positive effect on osteoinductivity of the biomaterials. The combination of the advantages of biomimetic coating method above traditional methods, and a good osteoinductivity of OCP coating that is produced by using this method, opens new possibilities for designing more advanced orthopaedic implants. PMID:15332602

  12. Novel biomaterials: plasma-enabled nanostructures and functions

    Science.gov (United States)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  13. DMPD: The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedmacrophage function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16978691 The interrelated role of fibronectin and interleukin-1 in biomaterial-modu...latedmacrophage function. Schmidt DR, Kao WJ. Biomaterials. 2007 Jan;28(3):371-82. Epub 2006 Sep 15. (.png) ...(.svg) (.html) (.csml) Show The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedm...and interleukin-1 in biomaterial-modulatedmacrophage function. Authors Schmidt DR, Kao WJ. Publication Biomaterial...acrophage function. PubmedID 16978691 Title The interrelated role of fibronectin

  14. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  15. Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions.

    Science.gov (United States)

    Natale, Carlo F; Ventre, Maurizio; Netti, Paolo A

    2014-03-01

    Material features proved to exert a potent influence on cell behaviour in terms of adhesion, migration and differentiation. In particular, biophysical and biochemical signals on material surfaces are able to affect focal adhesion distribution and cytoskeletal assemblies, which are known to regulate signalling pathways that ultimately influence cell fate and functions. However, a general, unifying model that correlates cytoskeletal-generated forces with genetic events has yet to be developed. Therefore, it is crucial to gain a better insight into the material-cytoskeleton crosstalk in order to design and fabricate biomaterials able to govern cell fate more accurately. In this work, we demonstrate that confining focal adhesion distribution and growth dramatically alters the cytoskeleton's structures and dynamics, which in turn dictate cellular and nuclear shape and polarization. MC3T3 preosteoblasts were cultivated on nanograted polydimethylsiloxane substrates and a thorough quantification - in static and dynamic modes - of the morphological and structural features of focal adhesions and cytoskeleton was performed. Nanoengineered surfaces provided well-defined zones for focal adhesions to form and grow. Unique cytoskeletal structures spontaneously assembled when focal adhesions were confined and, in fact, they proved to be very effective in deforming the nuclei. The results here presented provide elements to engineer surfaces apt to guide and control cell behaviour through the material-cytoskeleton-nucleus axis. PMID:24388800

  16. Biomaterial based modulation of macrophage polarization: a review and suggested design principles

    Directory of Open Access Journals (Sweden)

    Rukmani Sridharan

    2015-07-01

    Full Text Available Macrophages have long been known for their phagocytic capabilities and immune defence; however, their role in healing is being increasingly recognized in recent years due to their ability to polarize into pro-inflammatory and anti-inflammatory phenotypes. Historically, biomaterials were designed to be inert to minimize the host response. More recently, the emergence of tissue engineering and regenerative medicine has led to the design of biomaterials that interact with the host through tailored mechanical, chemical and temporal characteristics. Due to such advances in biomaterial functionality and an improved understanding of macrophage responses to implanted materials, it is now possible to identify biomaterial design characteristics that dictate the host response and contribute to successful tissue integration. Herein, we begin by briefly reviewing macrophage cell origin and the key cytokine/chemokine markers of macrophage polarization and then describe which responses are favorable for both replacement and regenerative biomaterials. The body of the review focuses on macrophage polarization in response to inherent cues directly provided by biomaterials and the consequent cues that result from events related to biomaterial implantation. To conclude, a section on potential design principles for both replacement and regenerative biomaterials is presented. An in depth understanding of biomaterial cues to selectively polarize macrophages may prove beneficial in the design of a new generation of ‘immuno-informed’ biomaterials that can positively interact with the immune system to dictate a favorable macrophage response following implantation.

  17. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  18. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.

    Science.gov (United States)

    Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik

    2015-05-01

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  19. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  20. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  1. Freezing-induced deformation of biomaterials in cryomedicine

    Science.gov (United States)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  2. Interactions between biomaterials and the sclera: Implications on myopia progression

    Science.gov (United States)

    Su, James

    Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon's skills and the patient's myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue-inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. Second, poly(vinyl-pyrrolidone) as injectable gels and poly(2-hydroxyethyl methacrylate) as solid strips were implanted in chicks to demonstrate the concept of posterior pole scleral reinforcements. This second study found that placing appropriate biomaterials at the posterior pole of the eye could directly influence scleral remodeling by interacting with the host cells. Both studies advanced the idea that scleral tissue remodeling could be potentially controlled by well-designed biomaterials. These findings led to the exploration of biomimetic hydrogels comprising enzymatically-degradable semi-interpenetrating polymer networks (edsIPNs) to determine their biocompatibility and effects on the chick posterior eye wall. This third study demonstrated the feasibility of stimulating scleral growth by applying biomimetic

  3. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  4. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  5. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating.

    Science.gov (United States)

    Joung, Yoon Ki; You, Seung Soo; Park, Kyung Min; Go, Dong Hyun; Park, Ki Dong

    2012-11-01

    Durable and blood-compatible coating of metallic biomaterials remains a major issue in biomedical fields despite its long history of development. In this study, in situ forming, metal-adhesive heparin hydrogels were developed to coat metallic substrates to enhance blood compatibility. The hydrogels are composed of metal-adhesive and enzyme-reactive amphiphilic block copolymer (Tetronic-tyramine/dopamine; TTD) and enzyme-reactive heparin derivatives (heparin-tyramine or heparin-polyethylene glycol-tyramine), which are cross-linkable in situ via an enzyme reaction. The combinations of heparin and Tetronic formed hydrogels with relatively high mechanical strengths of 300-5000 Pa within several tens of seconds; this was also confirmed by observing a dried porous structure as coated on a metal surface. The introduction of dopamine to the hydrogel network enhanced the durability of the hydrogel layers coated on metal, such that more than 60% heparin remained for 7 days. Compared to bare metal surfaces, hydrogel-coated metal surfaces exhibited significantly enhanced blood compatibility. Reduced fibrinogen adsorption and platelet adhesion showed that blood compatibility was 3-5-fold-enhanced on coated hydrogel layers than on the bare metal surface. In conclusion, hydrogels containing heparin and dopamine prepared by enzyme reaction have the potential to be an alternative coating method for enhancing blood compatibility of metallic biomaterials. PMID:22100384

  6. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  7. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  8. Can cells and biomaterials in therapeutic medicine be shielded off from innate immune recognition?

    OpenAIRE

    Nilsson, Bo; Korsgren, Olle; Lambris, John D.; Ekdahl, Kristina Nilsson

    2010-01-01

    Biomaterials (e.g. polymers, metals, or ceramics), cell, and cell cluster (e.g. pancreatic islets) transplantation are beginning to offer novel treatment modalities for some otherwise intractable diseases. The innate immune system is involved in incompatibility reactions that occur when biomaterials or cells are introduced into the blood circulation. In particular the complement, coagulation, and contact systems are involved in the recognition of biomaterials and cells, eliciting activation o...

  9. The challenge to improve the response of biomaterials to the physiological environment

    OpenAIRE

    Peppas, Nicholas A.; Clegg, John R.

    2016-01-01

    New applications of biomaterials often require advanced structures containing synthetic and natural components that are tuned to provide properties unique to a specific application. We discuss how structural characteristics of biomaterials, especially hydrophilic ones, can be used in conjunction with non-ideal thermodynamics to develop advanced medical systems. We show a number of examples of biocompatible, intelligent biomaterials that can be used for organ replacement, biosensors, precise d...

  10. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering.

    Science.gov (United States)

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J

    2011-08-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  11. Novel biomaterials decontamination of toxic metals from wastewater

    CERN Document Server

    Srivastava, Shalini

    2010-01-01

    Current research revolves around trends to bring technology into harmony with the natural environment and in order to protect the ecosystem. Bioremediation involves processes which reduce the overall treatment costs by using agricultural residues. Regeneration of the biosorbent further increases the cost effectiveness of the process, thus warranting its future success in solving water quality problems. Special emphasis is paid to chemical modifications resulting in tailored novel biomaterials which improve its sorption efficiency and environmental stability. In this way it can be used commerci

  12. Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation

    Institute of Scientific and Technical Information of China (English)

    Ji-yu Sun; Jin Tong

    2007-01-01

    The fracture toughness of hard biomaterials,such as nacre,bovine hoof wall and beetle cuticle,is associated with fibrous or lamellar structures that deflect or stop growing cracks.Their hardness and reduced modulus were measured by using a nanoindenter in this paper.Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip.Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent.It was found that the fracture toughness(Kc)of bovine hoof wall is the maximum,the second is nacre,and the elytra cuticle of dung beetle is the least one.

  13. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  14. Measurement of single-cell adhesion strength using a microfluidic assay.

    Science.gov (United States)

    Christ, Kevin V; Williamson, Kyle B; Masters, Kristyn S; Turner, Kevin T

    2010-06-01

    Despite the importance of cell adhesion in numerous physiological, pathological, and biomaterial-related responses, our understanding of adhesion strength at the cell-substrate interface and its relationship to cell function remains incomplete. One reason for this deficit is a lack of accessible experimental approaches that quantify adhesion strength at the single-cell level and facilitate large numbers of tests. The current work describes the design, fabrication, and use of a microfluidic-based method for single-cell adhesion strength measurements. By applying a monotonically increasing flow rate in a microfluidic channel in combination with video microscopy, the adhesion strength of individual NIH3T3 fibroblasts cultured for 24 h on various surfaces was measured. The small height of the channel allows high shear stresses to be generated under laminar conditions, allowing strength measurements on well-spread, strongly adhered cells that cannot be characterized in most conventional assays. This assay was used to quantify the relationship between morphological characteristics and adhesion strength for individual well-spread cells. Cell adhesion strength was found to be positively correlated with both cell area and circularity. Computational fluid dynamics (CFD) analysis was performed to examine the role of cell geometry in determining the actual stress applied to the cell. Use of this method to examine adhesion at the single-cell level allows the detachment of strongly-adhered cells under a highly-controllable, uniform loading to be directly observed and will enable the characterization of biological events and relationships that cannot currently be achieved using existing methods.

  15. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations.......Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful...

  16. [Adhesive cutaneous pharmaceutical forms].

    Science.gov (United States)

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  17. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  18. Adhesion properties of gecko setae

    Science.gov (United States)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  19. Puerperal endometritis and intrauterine adhesions.

    Science.gov (United States)

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  20. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  1. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  2. The staying power of adhesion-associated antioxidant activity in Mytilus californianus.

    Science.gov (United States)

    Miller, Dusty R; Spahn, Jamie E; Waite, J Herbert

    2015-10-01

    The California mussel, Mytilus californianus, adheres in the highly oxidizing intertidal zone with a fibrous holdfast called the byssus using 3, 4-dihydroxyphenyl-l-alanine (DOPA)-containing adhesive proteins. DOPA is susceptible to oxidation in seawater and, upon oxidation, loses adhesion. Successful mussel adhesion thus depends critically on controlling oxidation and reduction. To explore how mussels regulate redox during their functional adhesive lifetime, we tracked extractable protein concentration, DOPA content and antioxidant activity in byssal plaques over time. In seawater, DOPA content and antioxidant activity in the byssus persisted much longer than expected-50% of extractable DOPA and 30% of extractable antioxidant activity remained after 20 days. Antioxidant activity was located at the plaque-substrate interface, demonstrating that antioxidant activity keeps DOPA reduced for durable and dynamic adhesion. We also correlated antioxidant activity to cysteine and DOPA side chains of mussel foot proteins (mfps), suggesting that mussels use both cysteine and DOPA redox reservoirs for controlling interfacial chemistry. These data are discussed in the context of the biomaterial structure and properties of the marine mussel byssus.

  3. Biomaterials for periodontal regeneration: a review of ceramics and polymers.

    Science.gov (United States)

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect.

  4. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  5. Synthesis and characterization of zirconium-doped calcium phosphate biomaterial

    International Nuclear Information System (INIS)

    A new synthesis route for the production of calcium phosphate biomaterial was developed by using organic di-(2-ethylhexyl) phosphoric acid (DEHPA) mixed with calcium hydroxide slurry. Unlike the conventional involving chemical precipitation process this new method involves a sol-gel process. Another advantage of this method is the starting material DEHPA can form strong bonding with many elements including zirconium and rare earths. This makes it suitable to be used as drug delivery material especially those involving bone related disease. It also improves the biomaterial strength with the presence of zirconium oxide phase. From XRD analysis, the result shows the present of HA, α-TCP and β-TCP. The addition of different rare elements on to the calcium phosphate will varies the amount of these three phases. SEM analysis was also performed to study the morphology of the calcium phosphate material. The presence of the rare earths on to the calcium phosphate was established by using the EDS technique. (Author)

  6. Teaching technological innovation and entrepreneurship in polymeric biomaterials.

    Science.gov (United States)

    Washburn, Newell R

    2011-01-01

    A model for incorporating an entrepreneurship module has been developed in an upper-division and graduate-level engineering elective on Polymeric Biomaterials (27-311/42-311/27-711/42-711) at Carnegie Mellon University. A combination of lectures, assignments, and a team-based project were used to provide students with a framework for applying their technical skills in the development of new technologies and a basic understanding of the issues related to translational research and technology commercialization. The specific approach to the project established in the course, which represented 20% of the students' grades, and the grading rubric for each of the milestones are described along with suggestions for generalizing this approach to different applications of biomaterials or other engineering electives. Incorporating this model of entrepreneurship into electives teaches students course content within the framework of technological innovation and many of the concepts and tools need to practice it. For students with situational or individual interest in the project, it would also serve to deepen their understanding of the traditional course components as well as provide a foundation for integrating technological innovation and lifelong learning.

  7. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.

  8. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  9. Complement inhibition in biomaterial- and biosurface-induced thromboinflammation.

    Science.gov (United States)

    Ekdahl, Kristina N; Huang, Shan; Nilsson, Bo; Teramura, Yuji

    2016-06-01

    Therapeutic medicine today includes a vast number of procedures involving the use of biomaterials, transplantation of therapeutic cells or cell clusters, as well as of solid organs. These treatment modalities are obviously of great benefit to the patient, but also present a great challenge to the innate immune system, since they involve direct exposure of non-biological materials, cells of non-hematological origin as well as endothelial cells, damaged by ischemia-perfusion in solid organs to proteins and cells in the blood. The result of such an exposure may be an inappropriate activation of the complement and contact/kallikrein systems, which produce mediators capable of triggering the platelets and PMNs and monocytes, which can ultimately result in thrombotic and inflammatory (i.e., a thrombo-inflammatory) response to the treatment modality. In this concept review, we give an overview of the mechanisms of recognition within the innate immunity system, with the aim to identify suitable points for intervention. Finally, we discuss emerging and promising techniques for surface modification of biomaterials and cells with specific inhibitors in order to diminish thromboinflammation and improve clinical outcome.

  10. Improving the clinical impact of biomaterials in cancer immunotherapy.

    Science.gov (United States)

    Gammon, Joshua M; Dold, Neil M; Jewell, Christopher M

    2016-03-29

    Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials - such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices - offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.

  11. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    Science.gov (United States)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  12. Pressure sensitive adhesives from renewable resources

    OpenAIRE

    Maaßen, Wiebke

    2015-01-01

    Pressure-sensitive adhesives (PSAs) represent an important segment of the adhesives market. In this work, novel insights into the adhesive performance of bio-based pressure sensitive adhesives are presented. Three different homopolymers based on fatty acids derived from native vegetable oils as renewable feedstock were characterized in terms of their mechanical and adhesive properties.

  13. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review.

    Science.gov (United States)

    Desmet, Tim; Morent, Rino; De Geyter, Nathalie; Leys, Christophe; Schacht, Etienne; Dubruel, Peter

    2009-09-14

    In modern technology, there is a constant need to solve very complex problems and to fine-tune existing solutions. This is definitely the case in modern medicine with emerging fields such as regenerative medicine and tissue engineering. The problems, which are studied in these fields, set very high demands on the applied materials. In most cases, it is impossible to find a single material that meets all demands such as biocompatibility, mechanical strength, biodegradability (if required), and promotion of cell-adhesion, proliferation, and differentiation. A common strategy to circumvent this problem is the application of composite materials, which combine the properties of the different constituents. Another possible strategy is to selectively modify the surface of a material using different modification techniques. In the past decade, the use of nonthermal plasmas for selective surface modification has been a rapidly growing research field. This will be the highlight of this review. In a first part of this paper, a general introduction in the field of surface engineering will be given. Thereafter, we will focus on plasma-based strategies for surface modification. The purpose of the present review is twofold. First, we wish to provide a tutorial-type review that allows a fast introduction for researchers into the field. Second, we aim to give a comprehensive overview of recent work on surface modification of polymeric biomaterials, with a focus on plasma-based strategies. Some recent trends will be exemplified. On the basis of this literature study, we will conclude with some future trends for research.

  14. Development of Fe-based bulk metallic glasses as potential biomaterials.

    Science.gov (United States)

    Li, Shidan; Wei, Qin; Li, Qiang; Jiang, Bingliang; Chen, You; Sun, Yanfei

    2015-01-01

    A new series of Fe80-x-yCrxMoyP13C7 (x = 10, y = 10; x = 20, y = 5; x = 2 0, y = 10, all in at.%) bulk metallic glasses (BMGs) with the maximum diameter of 6mm have been developed for biomedical implant application by the combination method of fluxing treatment and J-quenching technique. The corrosion performance of the present Fe-based BMGs is investigated in both Hank's solution (pH = 7.4) and artificial saliva solution (pH = 6.3) at 37 °C by electrochemical measurements. The result indicates that the corrosion resistance of the present Fe-based BMGs in the above two simulated body solutions is much better than that of biomedical 316 L stainless steel (316 L SS), and approaching that of Ti6Al4V biomedical alloy (TC4). The concentrations of Fe, Ni and Cr ions released into the Hank's solution and artificial saliva solution from the present Fe-based BMGs after potentiodynamic polarization are significant lower than that released from 316 L SS. The biocompatibility of the present Fe-based BMGs is evaluated through the in vitro test of NIH3T3 cells culture in the present Fe-based BMG extraction media for 1, 3 and 5 days. The result indicates that the present Fe-based BMGs exhibit no cytotoxicity to NIH3T3 cells. And the test result of the cell adhesion and growth on the surface of the samples indicates that the present Fe-based BMGs exhibit the better cell viability compared with 316 L SS and TC4 biomedical alloys. The present Fe-based BMGs, especially Fe55Cr20Mo5P13C7 BMG, exhibit good glass formation ability, the high corrosion resistance and excellent biocompatibility, suggesting their promising potential as biomaterials. PMID:25953563

  15. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  16. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  17. Stretchable, adhesion-tunable dry adhesive by surface wrinkling.

    Science.gov (United States)

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  18. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  19. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  20. Preparation of biomaterials on the basis of a water-soluble cellulose acetate

    Science.gov (United States)

    Akmalova, G. Yu.; Gulyamova, N. S.; Zainutdinov, U. N.; Rakhmanberdiev, G. R.; Negmatova, K. S.; Negmatova, M. I.

    2012-07-01

    Biomaterials were obtained on the basis of water-soluble cellulose acetate and diterpenoids group of plants Lagohulusa intoxicating having hemostatic properties. It is established that these biomaterials on the basis of water-soluble cellulose acetate and lagohilina (or lagohirzina) had increased hemostatic activity and reduce parenchymal hemorrhage 5-6 times compared to control.

  1. The foreign body reaction to a biodegradable biomaterial differs between rats and mice

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; Molema, G; Plantinga, JA; de Leij, LFMH; van Luyn, MJA

    2000-01-01

    Before a biomaterial can be applied in the clinic, biocompatibility must be tested in in vivo models, by monitoring the foreign body reaction. In this study, we compared the foreign body reaction (EBR) to the biodegradable biomaterial hexamethylenediisocyanate crosslinked dermal sheep collagen (HDSC

  2. Tissue response to a new type of biomaterial implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene Feldskov;

    2011-01-01

    A new type of resorbable biomaterial intended for pelvic reconstruction was tested with respect to tissue regeneration and biocompatibility in rats. The biomaterial consisted of methoxypolyethyleneglycol-poly (lactic-co-glycolic acid) (MPEG-PLGA). Implants were pure, enriched with extra...

  3. Cleaning properties of dry adhesives

    Institute of Scientific and Technical Information of China (English)

    J.; P.; DíAZ; TéLLEZ; D.; SAMEOTO; C.; MENON

    2010-01-01

    In this paper we present a study into the cleaning properties of synthetic dry adhesives. We have manufactured the adhesive micro-fibres through a low-cost, high yield fabrication method using Sylgard 184 Polydimethylsiloxane (PDMS) as the structural material. We deliberately contaminated the adhesive samples with different sized particles in the micro and macro scales and tested different cleaning methods for their efficacy with respect to each particle size. We investigated different cleaning methods, which included the use of wax moulding, vibration and pressure sensitive adhesives. For adhesion testing we used a custom system with a linear stage and a force sensor indenting a hemispherical probe into the adhesive surface and measuring the pull-off force. To characterize the cleaning efficacy we visually inspected each sample in a microscope and weighed the samples with a microgram-accuracy analytical balance. Results showed that the moulding method induced adhesion recovery in a greater percentage than the other cleaning methods and even helped with the recovery of collapsed posts in some cases. On the other hand pressure sensitive adhesives seem to have the upper hand with regards to certain particle sizes that can potentially pose problems with the moulding method.

  4. [Retention of adhesive bridges].

    Science.gov (United States)

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  5. Hyaluronan-mediated cellular adhesion

    Science.gov (United States)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  6. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  7. Antimicrobial Biomaterials based on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Aslan, Seyma

    Biomaterials that inactivate bacteria are needed to eliminate medical device infections. We investigate the antimicrobial nature of single-walled carbon nanotubes (SWNT) incorporated within biomedical polymers. In the first part, we focus on SWNT dispersed in the common biomedical polymer poly(lactic-co-glycolic acid) (PLGA) as a potential antimicrobial biomaterial. We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration. Up to 98 % of bacteria die within one hour of SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNT are found to be more toxic, possibly due to an increased density of open tube ends. In the second part, we investigate the antimicrobial activity of SWNT layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). The dispersibility of SWNT in aqueous solution is significantly improved via the biocompatible nonionic surfactant polyoxyethylene(20)sorbitan monolaurate (Tween 20) and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Bacterial inactivation rates are significantly higher (up to 90%) upon 24 hour incubation with SWNT containing films, compared to control films (ca. 20%). In the third part, we study the influence of bundling on the LbL assembly of SWNT with charged polymers, and on the antimicrobial properties of the assembled film. QCMD measurements show the bundled SWNT system to adsorb in an unusually strong fashion—to an extent three times greater than that

  8. MOLECULAR ENGINEERING STUDIES ON NONTHROMBOGENIC BIOMATERIALS--A NOVEL CLASS OF NONTHROMBOGENIC BIOMATERIALS WITH ZWITTERIONIC STRUCTURE OF CARBOXYBETAINES

    Institute of Scientific and Technical Information of China (English)

    Jun Zhou; Yong-zhi Qiu; Xiao-peng Zang; Chang-wang Pan; Qiang Chen; Jian Shen; Si-cong Lin

    2005-01-01

    N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium (DMMCA) was graft-copolymerized onto the surface of segmented poly(ether urethane) (SPEU) and PE film. The carboxybetaine structure on SPEU and PE film surfaces was confirmed by ATR-FTIR, XPS and water contact angle measurements. Through the experiments with platelet adhesion and protein adhesion assay in vitro, the two materials studied, including poly-DMMCA gel, all show excellent nonthrombogenicity. This confirms once again that the zwitterionic molecular structure on the surfaces of materials is essential for improving their nonthrombogenicity and biocompatibility.

  9. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion.

    Science.gov (United States)

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol

    2016-09-01

    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work. PMID:27315331

  10. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-04-01

    Full Text Available Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs. BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.

  11. Gold nanoparticle-coated biomaterial as SERS micro-probes

    Indian Academy of Sciences (India)

    G V Pavan Kumar

    2011-06-01

    We report for the first time, on the utility of plant-based biomaterial as enhanced-Raman scattering probes. The bio-substrate used in this study are commonly found in plant extracts, and are cost-effective, mechanically robust, flexible and easily transportable. The probe was fabricated by coating the plant extract with gold nanoparticles and characterized. By employing a ‘single-touch contact’ method, we reveal the ability of these probes to detect routinely used Raman markers such as 2-napthalenethiol and rhodamine B, at nano-molar concentrations, in dry and liquid forms, respectively. Reproducibility of the signals with variation <5%, and the ability to detect biomolecules are demonstrated herein. We envision these bio-probes as potential candidates for enhanced Raman sensing in chemical, environmental, and archaeological applications. By further engineering the shape, morphology, and surface chemistry of these micro-probes, we foresee their utility as miniaturized, natural SERS substrates.

  12. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  13. Double site-bond percolation model for biomaterial implants

    CERN Document Server

    Mely, H

    2011-01-01

    We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones and, on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the implant and its evolution, and separate their biological or chemical origin from their physical one. We classify the various phenomena in the two regimes, percolating or non-percolating, of the networks. We present first numerical results in two dimensions.

  14. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  15. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  16. Clinical study on orofacial photonic hydration using phototherapy and biomaterials

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Grandi, Natália D. P.; Florez, Fernando L. E.; Grecco, Clovis; Lopes, Luciana A.

    2015-06-01

    Skin hydration is important to prevent aging and dysfunction of orofacial system. Nowadays, it is known that cutaneous system is linked to muscle system, then every dentist need to treat healthy facial skin, as lips, keeping orofacial functions healthy. Thirty-two patients were treated using laser and led therapy single or associated to biomaterials (dermo-cosmetics) searching for the best protocol to promote skin hydration. Using a peace of equipment to measure electric impedance, percentage of water and oil from skin, before and after different treatments were analyzed. Statistic tests using 5% and 0.1% of significance were applied and results showed that light could improve hydration of epidermis layer of facial skin. Considering just light effect, using infrared laser followed by blue led system is more effective to hydration than just blue led system application. Considering dermo-cosmetic and light, the association between both presented the best result.

  17. Biomaterials and Implants in Cardiac and Vascular Surgery - Review

    Directory of Open Access Journals (Sweden)

    Stanisławska A.

    2014-10-01

    Full Text Available Currently, on prosthesis in cardiac blood vessels and heart valves are used materials of animal or synthetic origin. For animal materials include, among others pericardial sac in which is the heart. Materials such as this (natural are characterized by a remarkable biocompatibility within the human body, but their main disadvantage is the relatively low durability. In turn, synthetic materials, which include the austenitic chromium-nickel-molybdenum steels, alloys with a shape memory (nickel-titanium, or polymeric materials, such as lactic acid, are characterized by high stability in an environment of bodily fluids, wherein the insufficiently high biocompatibility with the organism human requires from patients using after implantation, anticoagulants which prevent anti-platelet deposition on the surface of the prosthesis. The present work is a review of biomaterials using in implantology and implants using in cardiac and vascular surgery.

  18. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  19. Patterning Biomaterials for the Spatiotemporal Delivery of Bioactive Molecules.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Pandolfi, Laura; Tasciotti, Ennio

    2016-01-01

    The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors (GFs), and stem cells has been the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Toward this aim, the combination of scaffolds and GFs is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications. PMID:27313997

  20. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4).

  1. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial.

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Devi, Dipali; Kalita, Dhaneswar; Kalita, Kasturi; Dash, Suvakanta; Kotoky, Jibon

    2016-05-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  2. Gloss measurements and rugometric inspection in dental biomaterials

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.

  3. ADHESION AND SURFACE GROWTH OF STAPHYLOCOCCUS AUREUS AND LACTOBACILLUS PLANTARUM ON VARIOUS METALS

    Directory of Open Access Journals (Sweden)

    Tsveteslava V. Ignatova-Ivanova

    2015-06-01

    Full Text Available Background: One of the major drawbacks in the use of biomedical materials is the occurrence of biomaterial-centered infections. Adhesion of microorganisms to an implant is mediated by their physico-chemical surface properties and the properties of the biomaterial surface itself. Subsequent surface growth of the microorganisms will lead to a mature biofilm and infection, which is difficult to eradicate by antibiotics. Objective: The purpose of this research is to examine the adhesion in the combined cultivation of Staphylococcus aureus and the Lactobacillus plantarum probiotic bacterium on the surface of different metals (copper, aluminium, low-carbon steel, and zinc. Methods: The precise weighing (with an allowance of 0,0001 g of the metal plates before and after the treatment found a minimum negative change in their weight, which may be caused by reduction resulting from corrosion processes, on one hand, or growth because of the forming of a biofilm, on the other. The structure of the layer over the metal plates was analysed by SEM (scanning electron microscopy JSM 5510. Results: The thinnest biofilm for both bacteria was registered on the surface of the copper plate. When a combined culture is used on the surface of the aluminium and the steel plates, the pathogenic bacterium is adhered predominantly. On the zinc plate it is only the probiotic bacterium that adheres. Conclusion: This is an initial research on this problem of significance for the doctors and it is about to be further examined

  4. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  5. Focal Adhesion Kinases in Adhesion Structures and Disease

    Directory of Open Access Journals (Sweden)

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  6. Focal adhesion kinases in adhesion structures and disease.

    Science.gov (United States)

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  7. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  8. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  9. Focal Adhesion Kinases in Adhesion Structures and Disease

    OpenAIRE

    Pierre P. Eleniste; Angela Bruzzaniti

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organiza...

  10. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P coating without increasing the risk of implant-related infections. PMID:21243516

  11. Three-dimensional matrix stiffness and adhesive ligands affect cancer cell response to toxins.

    Science.gov (United States)

    Zustiak, Silviya Petrova; Dadhwal, Smritee; Medina, Carlos; Steczina, Sonette; Chehreghanianzabi, Yasaman; Ashraf, Anisa; Asuri, Prashanth

    2016-02-01

    There is an immediate need to develop highly predictive in vitro cell-based assays that provide reliable information on cancer drug efficacy and toxicity. Development of biomaterial-based three-dimensional (3D) cell culture models as drug screening platforms has recently gained much scientific interest as 3D cultures of cancer cells have been shown to more adequately mimic the in vivo tumor conditions. Moreover, it has been recognized that the biophysical and biochemical properties of the 3D microenvironment can play key roles in regulating various cancer cell fates, including their response to chemicals. In this study, we employed alginate-based scaffolds of varying mechanical stiffness and adhesive ligand presentation to further explore the role of 3D microenvironmental cues on glioblastoma cell response to cytotoxic compounds. Our experiments suggested the ability of both matrix stiffness and cell-matrix adhesions to strongly influence cell responses to toxins. Cells were found to be more susceptible to the toxins when cultured in softer matrices that emulated the stiffness of brain tissue. Furthermore, the effect of matrix stiffness on differential cell responses to toxins was negated by the presence of the adhesive ligand RGD, but regained when integrin-based cell-matrix interactions were inhibited. This study therefore indicates that both 3D matrix stiffness and cell-matrix adhesions are important parameters in the design of more predictive in vitro platforms for drug development and toxicity screening.

  12. A High-Adhesive Lysine-Cyclic RGD Peptide Designed for Selective Cell Retention Technology.

    Science.gov (United States)

    Luo, Keyu; Mei, Tieniu; Li, Zhiqiang; Deng, Moyuan; Zhang, Zehua; Hou, Tianyong; Dong, Shiwu; Xie, Zhao; Xu, Jianzhong; Luo, Fei

    2016-06-01

    Cell adhesion is an important property of biomaterials used in selective cell retention (SCR) technology, which fabricates bone grafts rapidly in clinical settings. This could be improved by physical and biologic manipulations. To facilitate retention of the cells on the scaffold, especially osteoprogenitors from bone marrow in the convenient SCR procedure, a lysine-cyclic RGD (LcRGD) peptide was here designed to coordinate positively charged amino acids and the RGD sequence to enhance the adhesion performance of the scaffold. Demineralized bone matrix (DBM) is an important therapeutic resource, but its cell adhesion ability and osteoinductive capacity are low because of its processing. These capabilities can be increased to enhance the performance of DBM when used in SCR technology. Here, LcRGD peptide was used to modify DBM and produce a DBM/LcRGD composite. This composite exhibited enhanced adhesion performance on cultured human bone marrow-derived mesenchymal stem cells and retained more osteoprogenitors from bone marrow than other materials did. The DBM/LcRGD composite displayed a preferable osteoinduction in vitro and osteogenic capacity in vivo. Thus, LcRGD peptide as a commendable modifier of DBM applied in SCR technology can improve bone transplantation. PMID:27154386

  13. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells.

    Science.gov (United States)

    Karuri, Nancy W; Liliensiek, Sara; Teixeira, Ana I; Abrams, George; Campbell, Sean; Nealey, Paul F; Murphy, Christopher J

    2004-07-01

    The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design.

  14. How smart do biomaterials need to be? A translational science and clinical point of view.

    Science.gov (United States)

    Holzapfel, Boris Michael; Reichert, Johannes Christian; Schantz, Jan-Thorsten; Gbureck, Uwe; Rackwitz, Lars; Nöth, Ulrich; Jakob, Franz; Rudert, Maximilian; Groll, Jürgen; Hutmacher, Dietmar Werner

    2013-04-01

    Over the last 4 decades innovations in biomaterials and medical technology have had a sustainable impact on the development of biopolymers, titanium/stainless steel and ceramics utilized in medical devices and implants. This progress was primarily driven by issues of biocompatibility and demands for enhanced mechanical performance of permanent and non-permanent implants as well as medical devices and artificial organs. In the 21st century, the biomaterials community aims to develop advanced medical devices and implants, to establish techniques to meet these requirements, and to facilitate the treatment of older as well as younger patient cohorts. The major advances in the last 10 years from a cellular and molecular knowledge point of view provided the scientific foundation for the development of third-generation biomaterials. With the introduction of new concepts in molecular biology in the 2000s and specifically advances in genomics and proteomics, a differentiated understanding of biocompatibility slowly evolved. These cell biological discoveries significantly affected the way of biomaterials design and use. At the same time both clinical demands and patient expectations continued to grow. Therefore, the development of cutting-edge treatment strategies that alleviate or at least delay the need of implants could open up new vistas. This represents the main challenge for the biomaterials community in the 21st century. As a result, the present decade has seen the emergence of the fourth generation of biomaterials, the so-called smart or biomimetic materials. A key challenge in designing smart biomaterials is to capture the degree of complexity needed to mimic the extracellular matrix (ECM) of natural tissue. We are still a long way from recreating the molecular architecture of the ECM one to one and the dynamic mechanisms by which information is revealed in the ECM proteins in response to challenges within the host environment. This special issue on smart

  15. Denture Adhesives - A Literature Review

    Directory of Open Access Journals (Sweden)

    Sudhanshu Shekhar

    2016-06-01

    Full Text Available Successful complete denture treatment combines exemplary technique, effective patient rapport and education and familiarity with all possible management options to provide the highest degree of patient satisfaction. Dentists need to know about denture adhesives to be able to identify those patients who actually need them and to be able to educate them about the advantages, disadvantages and correct use of these products. Denture adhesives are commercially available nontoxic, soluble materials that when applied to the tissue surface of dentures enhance their retention, stability and performance. They were introduced in dentistry in the late 18th century. The first patent related to adhesives was issued in 1913, followed in the 1920’s and 1930’s. The purpose of the use of denture adhesives can be described as to subjectively benefit denture-wearers with improved stability, retention and comfort of their dentures, and with improved incisal force, masticatory ability, and confidence.

  16. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    rosa and demonstrated the stimulatory effect of dopamine and noradrenaline on such secretion. Their study indicated exocytosis to be the major mode of cement secretion and suggest that gradual, localized exocytotic secretion of cement triggered... by catecholaminergic neurons to be the key mechanism during permanent attachment by barnacle cyprids [51]. Properties of barnacle adhesive The resistance to chemical breakdown by barnacle adhesive caused a major problem in its characterization. However...

  17. Laser surface modification and adhesion

    CERN Document Server

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  18. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  19. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  20. Adhesive capsulitis: a case report

    OpenAIRE

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue ther...

  1. Unfolding Grammars in Adhesive Categories

    OpenAIRE

    Baldan, Paolo; Corradini, Andrea; Heindel, Tobias; König, Barbara; Sobocinski, Pawel

    2009-01-01

    We generalize the unfolding semantics, previously developed for concrete formalisms such as Petri nets and graph grammars, to the abstract setting of (single pushout) rewriting over adhesive categories. The unfolding construction is characterized as a coreflection, i.e. the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of grammars.As the unfolding represents potentially infinite computations, we need to work in adhesive...

  2. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  3. Siliceous mesostructured cellular foams/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration.

    Science.gov (United States)

    Yang, Shengbing; Xu, Shuogui; Zhou, Panyu; Wang, Jing; Tan, Honglue; Liu, Yang; Tang, TingTing; Liu, ChangSheng

    2014-01-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) with siliceous mesostructured cellular foams (SMC), using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were analyzed. Results of scanning electron microscopy indicated that the SMC was uniformly dispersed in the PHBHHx scaffolds, and SMC modification scaffolds have an interconnected porous architecture with pore sizes ranging from 200 to 400 μm. The measurements of the water contact angles suggested that the incorporation of SMC into PHBHHx improves the hydrophilicity of the composite. In vitro studies with simulated body fluid show great improvements to bioactivity and biodegradability versus pure PHBHHx scaffolds. Cell adhesion and cell proliferation on the scaffolds was also evaluated, and the new tools provide a better environment for human mesenchymal stem cell attachment, spreading, proliferation, and osteogenic differentiation on PHBHHx scaffolds. Moreover, micro-computed tomography and histological evaluation confirmed that the SMC/PHBHHx scaffolds improved the efficiency of new bone regeneration with excellent biocompatibility and biodegradability and faster and more effective osteogenesis in vivo. PMID:25364243

  4. Comparative evaluation of the three different surface treatments - conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study.

    Science.gov (United States)

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S

    2015-04-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.

  5. Bone grafting with granular biomaterial in segmental maxillary osteotomy: A case report

    Directory of Open Access Journals (Sweden)

    Orion Luiz Haas Junior

    2016-01-01

    Conclusion: This is the first report of bone grafting with a granular biomaterial in segmental maxillary osteotomy. Successful formation of new bone with density greater than that of the surrounding tissue was achieved, preventing pseudarthrosis and postoperative instability.

  6. The Role of Biomaterials on Cancer Stem Cell Enrichment and Behavior

    Science.gov (United States)

    Ordikhani, Faride; Kim, Yonghyun; Zustiak, Silviya P.

    2015-11-01

    The theory of cancer stem cells (CSCs) and their role in cancer metastasis, tumorigenicity and resistance to therapy is slowly shifting the emphasis on the search for cancer cure: more evidence is surfacing that a successful therapy should be geared against this rare cancer cell population. Unfortunately, CSCs are difficult to culture in vitro which severely limits the progress of CSC research. This review gives a brief overview of CSCs and their microenvironment, with particular focus on studies that used in vitro biomaterial-based models and biomaterial/CSC interfaces for the enrichment of CSCs. Biomaterial properties relevant to CSC behaviors are also addressed. While the discussed research field is still in its infancy, it appears that in vitro cancer models that include a biomaterial can support CSC enrichment and this has proved indispensable to the study of their biology as well as the development of novel cancer therapies.

  7. The usage of three-dimensional nanostructurized biomaterials in experimental and clinical oncology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The usage of biotransplants for substitution of tissue defects (in particular in reconstructive surgery in oncology) require both he suitable cell cultures and different biomaterials with definite and regulate properties.

  8. The usage of three-dimensional nanostructurized biomaterials in experimental and clinical oncology

    Institute of Scientific and Technical Information of China (English)

    Sergeeva; N.; S.; Reshetov; I.; V.; Sviridova; I.; K.; Kirsanova; V.; A.; Achmedova; S.; A.; Barinov; S.; M.; Komlev; V.; S.; Samoylovich; M.; I.; Belyanin; A.; F.; Kleshcheva; S.; M.; Elinson; V.; M.

    2005-01-01

    The usage of biotransplants for substitution of tissue defects (in particular in reconstructive surgery in oncology) require both he suitable cell cultures and different biomaterials with definite and regulate properties.……

  9. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2

    NARCIS (Netherlands)

    P.H.S. Kwakman; A.A.T. Velde; C.M.J.E. Vandenbroucke-Grauls; S.J.H. van Deventer; S.A.J. Zaat

    2006-01-01

    Biomaterial-associated infections (BAI) are the major cause of failure of indwelling medical devices and are predominantly caused by staphylococci, especially Staphylococcus epidermidis. We investigated the in vitro microbicidal activity of the synthetic antimicrobial peptide bactericidal peptide 2

  10. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  11. Biomaterials for Pelvic Floor Reconstructive Surgery: How Can We Do Better?

    Directory of Open Access Journals (Sweden)

    Giulia Gigliobianco

    2015-01-01

    Full Text Available Stress urinary incontinence (SUI and pelvic organ prolapse (POP are major health issues that detrimentally impact the quality of life of millions of women worldwide. Surgical repair is an effective and durable treatment for both conditions. Over the past two decades there has been a trend to enforce or reinforce repairs with synthetic and biological materials. The determinants of surgical outcome are many, encompassing the physical and mechanical properties of the material used, and individual immune responses, as well surgical and constitutional factors. Of the current biomaterials in use none represents an ideal. Biomaterials that induce limited inflammatory response followed by constructive remodelling appear to have more long term success than biomaterials that induce chronic inflammation, fibrosis and encapsulation. In this review we draw upon published animal and human studies to characterize the changes biomaterials undergo after implantation and the typical host responses, placing these in the context of clinical outcomes.

  12. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely a...

  13. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure–function relationships of cell–material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  14. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  15. The influence of substrate topography and biomaterial substance on skin wound healing

    OpenAIRE

    Ghanavati, Zeinab; Neisi, Niloofar; Bayati, Vahid; Makvandi, Manoochehr

    2015-01-01

    Tissue engineering is a new field of which the main purpose is to regenerate and repair the damaged tissues. Scaffolds serve as three dimensional matrices for neo-organogenesis and their substance can be biologic or synthetic. Natural polymers have good interactions with the cells and synthetic biomaterials are also highly useful in biomedical application because of their biocompatible properties. In addition to scaffold substance, surface properties of biomaterials have an important role in ...

  16. Structural and Cellular Characterization of Electrospun Recombinant Human Tropoelastin Biomaterials1

    OpenAIRE

    McKenna, Kathryn A.; Gregory, Kenton W.; Sarao, Rebecca C.; Maslen, Cheryl L.; Glanville, Robert W.; Hinds, Monica T.

    2011-01-01

    An off-the-shelf vascular graft biomaterial for vascular bypass surgeries is an unmet clinical need. The vascular biomaterial must support cell growth, be non-thrombogenic, minimize intimal hyperplasia, match the structural properties of native vessels, and allow for regeneration of arterial tissue. Electrospun recombinant human tropoelastin (rTE) as a medial component of a vascular graft scaffold was investigated in this study by evaluating its structural properties, as well as its ability t...

  17. Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility

    OpenAIRE

    Wray, Lindsay S.; Hu, Xiao; Gallego, Jabier; Georgakoudi, Irene; Omenetto, Fiorenzo G.; Schmidt, Daniel; Kaplan, David L.

    2011-01-01

    Silk fibroin has been successfully used as a biomaterial for tissue regeneration. In order to prepare silk fibroin biomaterials for human implantation a series of processing steps are required to purify the protein. Degumming to remove inflammatory sericin is a crucial step related to biocompatibility and variability in the material. Detailed characterization of silk fibroin degumming is reported. The degumming conditions significantly affected cell viability on the silk fibroin material and ...

  18. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine

    OpenAIRE

    Qi, Chunxiao; Yan, Xiaojun; Huang, Chenyu; Melerzanov, Alexander; Du, Yanan

    2015-01-01

    Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, ...

  19. Effects of sterilization treatments on bulk and surface properties of nanocomposite biomaterials

    OpenAIRE

    Ahmed, Maqsood; Punshon, Geoffrey; Darbyshire, Arnold; Seifalian, Alexander M

    2013-01-01

    With the continuous and expanding use of implantable biomaterials in a clinical setting, this study aims to elucidate the influence of sterilization techniques on the material surface and bulk properties of two polyurethane nanocomposite biomaterials. Both solid samples and porous membranes of nondegradable polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) and a biodegradable poly(caprolactone-urea) urethane (POSS-PCL) were examined. Sterilization techniques includ...

  20. Bone defect animal models for testing efficacy of bone substitute biomaterials

    OpenAIRE

    Ye Li; Shu-Kui Chen; Long Li; Ling Qin; Xin-Luan Wang; Yu-Xiao Lai

    2015-01-01

    Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for...

  1. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  2. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  3. Controlling fungal biofilms with functional drug delivery denture biomaterials.

    Science.gov (United States)

    Wen, Jianchuan; Jiang, Fuguang; Yeh, Chih-Ko; Sun, Yuyu

    2016-04-01

    Candida-associated denture stomatitis (CADS), caused by colonization and biofilm-formation of Candida species on denture surfaces, is a significant clinical concern. We show here that modification of conventional denture materials with functional groups can significantly increase drug binding capacity and control drug release rate of the resulting denture materials for potentially managing CADS. In our approach, poly(methyl methacrylate) (PMMA)-based denture resins were surface grafted with three kinds of polymers, poly(1-vinyl-2-pyrrolidinone) (PNVP), poly(methacrylic acid) (PMAA), and poly(2-hydroxyethyl methacrylate) (PHEMA), through plasma-initiated grafting polymerization. With a grafting yield as low as 2 wt%, the three classes of new functionalized denture materials showed significantly higher drug binding capacities toward miconazole, a widely used antifungal drug, than the original PMMA denture resin control, leading to sustained drug release and potent biofilm-controlling effects against Candida. Among the three classes of functionalized denture materials, PNVP-grafted resin provided the highest miconazole binding capability and the most powerful antifungal and biofilm-controlling activities. Drug binding mechanisms were studied. These results demonstrated the importance of specific interactions between drug molecules and functional groups on biomaterials, shedding lights on future design of CADS-managing denture materials and other related devices for controlled drug delivery.

  4. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ∼0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research. (paper)

  5. Stem cells in skin regeneration: biomaterials and computational models

    Directory of Open Access Journals (Sweden)

    Daniele eTartarini

    2016-01-01

    Full Text Available The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles, has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.

  6. Combustion synthesis and photoluminescence study of silicate biomaterials

    Indian Academy of Sciences (India)

    V B Bhatkar; N V Bhatkar

    2011-10-01

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been shown to have good in vitro and in vivo bioactivities by earlier studies. Both Ca2MgSi2O7 and Sr2MgSi2O7 have akermanite structure. Ca2MgSi2O7 and Sr2MgSi2O7 were prepared using urea and ammonium nitrate. The combustion synthesis using urea and ammonium nitrate was found to be cost effective and efficient method of synthesis. The photoluminescence study of Ca2MgSi2O7 : Eu2+ and Sr2MgSi2O7 :Eu2+ shows host specific intense emission of Eu2+.

  7. A Novel Approach for Introducing Bio-Materials Into Cells

    International Nuclear Information System (INIS)

    A novel approach was developed to introduce biological materials into cells for gene transfection and gene therapy applications. The method is based on the technique of electrospraying bio-materials into cells. A prototype apparatus was constructed for a feasibility study. The features of the gene transfector include: (1) A dual-capillary assembly to spray suspensions of biological materials. The outer capillary provided sheathing liquid that controlled the charge level on individual particles without altering the properties of suspensions. (2) An air-CO2 gas mixture was used for suppressing possible corona discharge and kept the same gas composition as those in incubators. (3) The designed chamber enabled the spray to operate at reduced pressure for increasing sprayed particle velocity. In the feasibility study, both suspensions of plasmid and plasmid-coated gold particles were used. The plasmid used was the commercially available Enhanced Green Fluorescent Protein gene. COS-1 cells were used as the target and the liquid media was evacuated immediately prior to the spraying process. Electrospraying was conducted at ambient pressure and the duration was no more than 2 min. After the spray transfection, the media was immediately replaced and the cell samples were returned to the incubator for 36 h. Transgene expression was detected by cellular fluorescence. This technology promises to have great potential for gene transfection and therapy studies

  8. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ifkovits, Jamie L; Burdick, Jason A

    2007-10-01

    Photopolymerizable and degradable biomaterials are finding widespread application in the field of tissue engineering for the engineering of tissues such as bone, cartilage, and liver. The spatial and temporal control afforded by photoinitiated polymerizations has allowed for the development of injectable materials that can deliver cells and growth factors, as well as for the fabrication of scaffolding with complex structures. The materials developed for these applications range from entirely synthetic polymers (e.g., poly(ethylene glycol)) to purely natural polymers (e.g., hyaluronic acid) that are modified with photoreactive groups, with degradation based on the hydrolytic or enzymatic degradation of bonds in the polymer backbone or crosslinks. The degradation behavior also ranges from purely bulk to entirely surface degrading, based on the nature of the backbone chemistry and type of degradable units. The mechanical properties of these polymers are primarily based on factors such as the network crosslinking density and polymer concentration. As we better understand biological features necessary to control cellular behavior, smarter materials are being developed that can incorporate and mimic many of these factors. PMID:17658993

  9. Adsorption of cadmium(II) on waste biomaterial.

    Science.gov (United States)

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively.

  10. Binding Quantum Dots to Silk Biomaterials for Optical Sensing

    Directory of Open Access Journals (Sweden)

    Disi Lu

    2015-01-01

    Full Text Available Quantum dots (QDs, have great potential for fabricating optical sensing devices and imaging biomaterial degradation in vivo. In the present study, 2-mercaptoethylamine- (MEA- and mercaptopropionic acid- (MPA- capped CdTe-QDs were physically incorporated in silk films that contained a high content (>30% of crystalline beta-sheet structure. The beta-sheets were induced by the addition of glycerol, water annealing, glycerol/annealing, or treatment with methanol. Incorporation of QDs did not influence the formation of beta-sheets. When the films were extracted with water, most QDs remained associated with the silk, based on the retention of photoluminescence in the silk films and negligible photoluminescence in the extracts. Compared to the solution state, photoluminescence intensity significantly decreased for MEA-QDs but not for MPA-QDs in the silk films, while the emission maximum blue shifted (≈4 nm slightly for both. Further film digestion using protease XIV, alpha-chymotrypsin, and the combination of the two proteases suggested that QDs may be bound to the silk beta-sheet regions but not the amorphous regions. QDs photoluminescence in silk films was quenched when the concentration of hydrogen peroxide (H2O2 was above 0.2-0.3 mM, indicating the QDs-incorporated silk films can be used to report oxidation potential in solution.

  11. Investigation of Transport Properties of a New Biomaterials - GUM Mangosteen

    Science.gov (United States)

    Pradhan, Sourav S.; Sarkar, A.

    2006-06-01

    Biomaterial has occupied leading position in material science for various scientific and technological applications. This present work is carried out over a natural gum extracted from raw fruit of Mangosteen, an east Indian tree (Gercinia Mangostana) following extraction and purification process. Solid specimen of the said gum is developed following sol-gel like process. AC and DC electrical analysis on the dried solid specimen of the gum were carried out and showed high electrical conduction with σ ~ 1 E-03 S/cm, of which ionic and electronic contributions are 70% and 30% respectively. Analysis shows that origin of high electrical conductivity is due to presence of substantial amount of organic acid unit in its polysaccharide background. In fact the observed σ is about 1000 times of that observed in gum Arabica. Optical absorption of this new bio- materials are also studied using UV-VIS analysis. The results show its high absorption co-efficient in UV and blue part of analysed range. A complete electrical characterization of the material have been made. It has also been observed that the electronic conduction can be enhanced to 70% of the total electrical conductivity by forming complex with Iodine and organic (Citric) acid from Lemon fruit. This high potential material is being studied for development of electronic device application.

  12. Wear and/or corrosion study for biomaterials

    International Nuclear Information System (INIS)

    The lifetime extension of prosthetic device, dental materials and orthodontic devices is of major interest for medical international community. In the frame of an interdisciplinary national project, our institute has started to experiment some alternative procedures to evaluate wear/corrosion phenomena of biomaterials by using ion beam based techniques. In the case of metallic components from hip and knee prostheses and dental alloys we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, Emax = 13 MeV and α particle, Emax = 26 MeV). In the case of polymers, occurring in the joint parts of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation method using the principle of recoil ion implantation applied to 56 Co radioactive ions generated by proton particle beams on a Fe target (thickness ≅10μm). The radioactive ions are implanted into the near surface (a few hundred of nanometers). Wear/corrosion rate of the component is observed using tribological testers via the variation of the activity caused by the loss of material. In order to obtain supplementary data concerning radiation influence on polyethylene (PE) samples doses up to 100 kGy were used. Irradiation gamma facility was of an industrial type (SVST-IRASM) authorized for radiation sterilization. (authors)

  13. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.

    Science.gov (United States)

    Cornock, R; Beirne, S; Thompson, B; Wallace, G G

    2014-06-01

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ~0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research. PMID:24658021

  14. Esthetic prevention with soft tissue and biomaterial grafts

    Directory of Open Access Journals (Sweden)

    Rogério Margonar

    Full Text Available Gingival recessions are periodontal defects that may need the association of surgical techniques in order to be successfully treated. The absence of treatment of these defects may lead to local esthetics being compromised, patient dissatisfaction, and reduced time and duration of treatment. When dealing with dental implants, the esthetic condition is no different, with the aggravating factor that the lack of this protective tissue may accelerate vestibular bone loss and lead to loss of the implant. The clinical case presented report the performance of a conjunctive tissue grafting technique, associated with vestibular filling with biomaterial, to prevent a gingival recession in an immediate implant with immediate loading. The aim of the procedure was to prevent gingival recession, which would lead to a severe esthetic defect, and also to reinforce the vestibular bone wall. After three years of follow-up of the case, it was possible to conclude that the association of thetechniques had predictable and satisfactory results for preventing periimplant gingival recession.

  15. Opportunities and challenges for the development of polymer-based biomaterials and medical devices.

    Science.gov (United States)

    Yin, Jinghua; Luan, Shifang

    2016-06-01

    Biomaterials and medical devices are broadly used in the diagnosis, treatment, repair, replacement or enhancing functions of human tissues or organs. Although the living conditions of human beings have been steadily improved in most parts of the world, the incidence of major human's diseases is still rapidly growing mainly because of the growth and aging of population. The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10% in the next 10 years; and the global market sale of biomaterials and medical devices is estimated to reach $400 billion in 2020. In particular, the annual consumption of polymeric biomaterials is tremendous, more than 8000 kilotons. The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15-30%. As a result, it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices. Our group has been actively worked in this direction for the past two decades. In this review, some key research results will be highlighted.

  16. Opportunities and challenges for the development of polymer-based biomaterials and medical devices

    Science.gov (United States)

    Yin, Jinghua

    2016-01-01

    Biomaterials and medical devices are broadly used in the diagnosis, treatment, repair, replacement or enhancing functions of human tissues or organs. Although the living conditions of human beings have been steadily improved in most parts of the world, the incidence of major human’s diseases is still rapidly growing mainly because of the growth and aging of population. The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10% in the next 10 years; and the global market sale of biomaterials and medical devices is estimated to reach $400 billion in 2020. In particular, the annual consumption of polymeric biomaterials is tremendous, more than 8000 kilotons. The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15–30%. As a result, it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices. Our group has been actively worked in this direction for the past two decades. In this review, some key research results will be highlighted. PMID:27047681

  17. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2016-03-01

    Full Text Available The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  18. In situ nanomechanics of cell-biomaterial composites for tissue engineering applications

    Science.gov (United States)

    Khanna, Rohit

    For the first time, we report an experimental design, development and evaluation of in situ nanomechanics of cell-biomaterial composites for tissue engineering applications. A blend of two biopolymers (Chitosan and Polygalacturonic acid) was chosen with hydroxyapatite nanoparticles to mimic the natural bone (Chi-PgA-HAP). These substrates swell in presence of cell culture media as found by our in situ topographical, chemical and mechanical analyses for 48 days. Biocompatibility experiments were performed using human osteoblasts (CRL 11732) and results indicate that these substrates favor cell adhesion and proliferation. Over cell culture duration of 22 days, osteoblasts generated bone-like nodules onto Chi-PgA-HAP substrates in absence of any stimulants for osteogenesis. In vitro generated bone nodule mimics the structure, chemistry and nanomechanical properties of natural bone as revealed by Atomic Force Microscopy (AFM), and Fourier Transform Infrared (FTIR) analyses on bone nodule. Hierarchically organized extracellular matrix of bone nodule consisting of mineralized collagen fibers, fibrils and mineral deposits was revealed by high resolution AFM images. FTIR analyses on bone nodule suggests that bone nodule is chemically similar to human bone due to the presence of major bands of collagen (Amide I, II, and III) and biological apatite (CO32- and HPO 43). Live cell and cell-substrate nanoindentation experiments on cell seeded Chi-PgA-HAP nanocomposites were conducted under the physiological conditions (cell culture Name: Rohit Khanna medium; 37°C) for culture duration of 1, 4, 8, and 22 days, respectively. Dynamic mechanical responses of cells are indicated by stiffer elastic responses of flat cells as compared to round cells. Dynamic mechanical behavior of cell-degrading substrate is indicated by their corresponding elastic moduli: ECell-Chi-PgA-HAP, 1 day, 2000 nm= 10.3-20.2 MPa, ECell-Chi-PgA-HAP, 4 days, 2000 nm = 5.2-8.4 MPa and ECell-Chi-PgA-HAP. 8 days

  19. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    Energy Technology Data Exchange (ETDEWEB)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V. [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Popescu, I.N., E-mail: pinicoleta24@yahoo.com [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Rusanescu, C.O. [Politehnica University, 060042 Bucharest (Romania)

    2013-11-15

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  20. Siliceous mesostructured cellular foams/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate composite biomaterials for bone regeneration

    Directory of Open Access Journals (Sweden)

    Yang S

    2014-10-01

    Full Text Available Shengbing Yang,1,* Shuogui Xu,2,* Panyu Zhou,2,* Jing Wang,3 Honglue Tan,4 Yang Liu,5 TingTing Tang,4 ChangSheng Liu1,3,5 1The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China; 2Changhai Hospital, Department of Orthopedics, the Second Military Medical University, Shanghai, People’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China; 4Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine China, Shanghai, People’s Republic of China; 5Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this workAbstract: Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHx with siliceous mesostructured cellular foams (SMC, using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were analyzed. Results of scanning electron microscopy indicated that the SMC was uniformly dispersed in the PHBHHx scaffolds, and SMC modification scaffolds have an interconnected porous architecture with pore sizes ranging from 200 to 400 µm. The measurements of the water contact angles suggested that the incorporation of SMC into PHBHHx improves the hydrophilicity of the composite. In vitro studies with simulated body fluid show great improvements to bioactivity and biodegradability versus pure PHBHHx scaffolds. Cell adhesion and cell proliferation on the scaffolds was also evaluated, and the new

  1. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    International Nuclear Information System (INIS)

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca10(PO4)6(OH)2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  2. Engineering the Biomaterial Interface of Prosthetic Vascular Grafts for Improving Thromboresistance and Biocompatibility

    Science.gov (United States)

    Hoshi, Ryan Akihiro

    The purpose of this dissertation is to develop novel biomaterials as therapies for treating cardiovascular disease. The first and second aims describe the creation of a new and facile approach for grafting bioactive heparin to the surface of expanded polytetrafluoroethylene (ePTFE) vascular grafts using a thermally cross-linked poly(1,8 octanediol-co-citric acid) (POC) elastomer. The POC immobilized heparin (POC-Heparin) demonstrated excellent long term stability under physiological conditions for up to one month and significantly reduced platelet adhesion and maintained bioactive inhibition of whole blood clotting kinetics. POC-Heparin supported endothelial cell viability, proliferation, nitric oxide production and expression of endothelial cell specific markers von Willebrand factor and vascular endothelial-cadherin. This material was also capable of affecting vascular smooth muscle cell phenotype via increased expression of alpha-actin and decreased cell growth. The POC-Heparin coating is capable of significantly improving vascular graft thromboresistance, supporting endothelialization and inhibiting vascular smooth muscle cell growth. This coating technology can be easily adapted to modify other blood contacting devices for simultaneously reducing thrombogenicity and improving endothelialization. Lastly, the third aim details the initial steps for developing materials which are capable of providing sustained release of bioactive signaling molecules such as stromal derived factor-1alpha (SDF-1) to promote recruitment of stem/progenitor cells. A copolymer based on citric acid, polyethylene glycol and N-isopropylacrylamide (CPN) was synthesized with enhanced electronegative charge and gelation properties for controlling SDF-1 protein encapsulation and delivery. Upon CPN gelation at 37°C, SDF-1 protein can be encapsulated with near 100% efficiency and deliver protein for up to 3 weeks. Using isolated blood outgrowth endothelial cells (BOECs) from human peripheral

  3. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Science.gov (United States)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  4. Capillarity-based switchable adhesion.

    Science.gov (United States)

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  5. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.

    Science.gov (United States)

    Gonen-Wadmany, Maya; Goldshmid, Revital; Seliktar, Dror

    2011-09-01

    Protein PEGylation has been successfully applied in pharmaceuticals and more recently in biomaterials development for making bioactive and structurally versatile hydrogels. Despite many advantages in this regard, PEGylation of proteins is also known to alter biological activity and modify biophysical characteristics in ways that may be detrimental to cells. The aim of this study was to evaluate the relative loss of biological compatibility associated with PEGylating a fibrinogen precursor into a hydrogel scaffold, in comparison to thrombin cross-linked fibrin hydrogels. Specifically, we investigated the consequences of conjugating fibrinogen with linear polyethtylene glycol (PEG) polymer chains (10 kDa) on the ability to cultivate neonatal human foreskin fibroblasts (HFFs) in 3-D. For this purpose, thrombin cross-linked fibrin (TCL-Fib) and PEGylated fibrinogen (PEG-Fib) gels were prepared with HFFs and cultured for up to seven days. The benchmark biological compatibility test was based on a combined assessment of cellular morphology, proliferation, actin expression, and matrix metalloproteinase (MMP) expression in the 3-D culture systems. The results showed correlations between modulus and proteolytic biodegradation in both materials, but no correlation between the mechanical properties and the ability of HFFs to remodel the microenvironment. A slight reduction of actin, MMPs, and spindled morphology of the cells in the PEG-Fib hydrogels indicated that the PEGylation process altered the biological compatibility of the fibrin. Nevertheless, the overall benchmark performance of the two materials demonstrated that PEGylated fibrinogen hydrogels still retains much to the inherent biofunctionality of the fibrin precursor when used as a scaffold for 3-D cell cultivation. PMID:21669457

  6. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater.

    Science.gov (United States)

    Boudot, Cécile; Boccoz, Ana; Düregger, Katharina; Kuhnla, Ariane

    2016-10-01

    Hemocompatibility evaluation of biomaterials necessitates the use of blood incubation systems which simulate physiological flow conditions. However, most of the current systems have various limitations, especially restricted material variability, poor access to the test surface or damage of blood cells due to the use of a pump. In this paper, we combined the advantages of existent setups and developed a new planar shaped incubation test bench to lift those restrictions and mimic the pulsatile in-vivo situation. The adjustable flow conditions at the tested material surface were defined and corresponded to those in blood vessels. Platelet/material-interaction, as major aspect of hemocompatibility, was investigated for four common polymeric materials (polyoxymethylene, polypropylene, polyethylene and silicone elastomer) with platelet deprivation and platelet adhesion tests. Highly significant differences in the adhesion of platelets onto the tested material surfaces were measured. The number of adhered platelets on the most hydrophobic sample (silicone elastomer) was four-times higher than on the most hydrophilic sample (polyoxymethylene). These findings were confirmed with a scanning microscopic analysis and demonstrated the suitability of the testing device for the evaluation of platelet/material interactions. Moreover, hemolysis measurements demonstrated that the system did not provoke blood damage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2430-2440, 2016. PMID:27213915

  7. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay

    International Nuclear Information System (INIS)

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials

  8. [FTIR spectroscopic studies of facial prosthetic adhesives].

    Science.gov (United States)

    Kang, Biao; Yang, Qing-fang; Liang, Jian-feng; Zhao, Yi-min

    2008-10-01

    According to the composition of the traditional facial prosthetic adhesives, most of adhesives can be classified into two categories: acrylic polymer-based adhesive and silicone-based adhesive. In previous studies, measurements of various mechanical bond strengths were carried out, whereas the functional groups of the adhesives were evaluated seldom during the adhesion. In the present study the analysis of two facial prosthetic adhesives (Epithane and Secure Adhesive) was carried out by using infrared spectroscopy. Two adhesives in the form of fluid or semisolid were submitted to FTIR spectroscopy, respectively. The results showed that water and ammonia residue volatilized during the solidification of Epithane, and absorption peak reduction of carbonyl was due to the volatilization of acetate vinyl from Secure Adhesive. Similar silicone functional groups both in the silicone-based adhesive and in silicone elastomer could be the key to higher bond strength between silicone elastomer and skin with silicone-based adhesive. The position, shape of main absorption peaks of three adhesives didn't change, which showing that their main chemicals and basic structures didn't change during solidification. PMID:19123392

  9. Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion.

    Science.gov (United States)

    Li, Laifeng; Zheng, Xianyou; Fan, Dapeng; Yu, Shiyang; Wu, Di; Fan, Cunyi; Cui, Wenguo; Ruan, Hongjiang

    2016-04-01

    Posttraumatic tendon adhesion limits the motion of the limbs greatly. Biomimetic tendon sheaths have been developed to promote tendon healing and gliding. However, after introduction of these biomaterials, the associated inflammatory responses can decrease the anti-adhesion effect. Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) that can decrease inflammation responses. We blended hyaluronic acid and poly(l-lactic acid)-polyethylene glycol (PELA) with microgel electrospinning technology to form an inner layer of a bi-layer biomimetic sheath using sequential electrospinning of an outer celecoxib-PELA layer. Electrospun bi-layer fibrous membranes were mechanically tested and characterized by morphology, surface wettability, and drug release. The tensile strength showed a decreased trend and water contact angles were 114.7 ± 3.9°, 103.6 ± 4.4°, 116.3 ± 5.1°, 122.8 ± 4.7°, and 126.5 ± 4.2° for the surface of PELA, hyaluronic acid-PELA, 2, 6, and 10% celecoxib-PELA electrospun fibrous membranes, respectively. In vitro drug release studies confirmed burst release and then sustained release from the fibrous membranes containing celecoxib for 20 days. In a chicken model of flexor digitorum profundus tendon surgery, the outer celecoxib/PELA layer offered advanced anti-adhesion roles compared to the outer PELA layer and the inner hyaluronic acid-loaded PELA layer still offered tendon healing and gliding. Thus, celecoxib-loaded anti-adhesive tendon sheaths can continuously offer bi-layer biomimetic tendon sheath effects with celecoxib release from the outer layer to prevent tendon adhesion. PMID:26838844

  10. Candida biofilms: is adhesion sexy?

    Science.gov (United States)

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  11. Creep behaviour of flexible adhesives

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Botter, E.; Berg, A. van den; Beers, P. van

    2004-01-01

    Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its effe

  12. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  13. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  14. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  15. Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Frey, Holger

    2016-01-01

    Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal performance, mainly by reducing thrombogenicity of the artificial interface. This study investigates the growth of endothelial cells on peptide-modified PTFE and compares these results to those obtained on unmodified substrate. Coupling with the endothelial cell adhesive peptide Arg-Glu-Asp-Val (REDV) is performed via activation of the fluorin-containing polymer using the reagent sodium naphthalenide, followed by subsequent conjugation steps. Cell culture is accomplished using Human Umbilical Vein Endothelial Cells (HUVECs) and excellent cellular growth on peptide-immobilized material is demonstrated over a two-week period. PMID:27584937

  16. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  17. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Science.gov (United States)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).

  18. Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing.

    Science.gov (United States)

    Toque, J A; Herliansyah, M K; Hamdi, M; Ide-Ektessabi, A; Sopyan, I

    2010-05-01

    It is generally accepted that calcium phosphate (CaP) is one of the most important biomaterials in implant coating applications mainly because of its excellent bioactivity. However, its relatively poor mechanical properties limits its application. This entails that a better understanding of the mechanical properties of a CaP coating is a must especially its behavior and the mechanisms involved when subjected to stresses which eventually lead to failure. The mechanical properties of the coating may be evaluated in terms of its adhesion strength. In this study, a radio frequency-magnetron (RF-MS) sputtering technique was used to deposit CaP thin films on 316L stainless steel (SS). The coatings were subjected to series of microscratch tests, taking careful note of its behavior as the load is applied. The adhesion behavior of the coatings showed varying responses. It was revealed that several coating process-related factors such as thickness, post-heat treatment and deposition parameters, to name a few, affect its scratching behavior. Scratch testing-related factors (i.e. loading rate, scratch speed, scratch load, etc.) were also shown to influence the mechanisms involved in the coating adhesion failure. Evaluation of the load-displacement graph combined with optical inspection of the scratch confirmed that several modes of failure occurred during the scratching process. These include trackside cracking, tensile cracking, radial cracking, buckling, delamination and combinations of one or more modes.

  19. Surface Modification of Biomaterials in Hard Tissue Applications

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-yong; DING Chuan-xian; CHU Paul K

    2004-01-01

    Surface modification technologies are quite common in the biomedical field to improve the mechanical,chemical, physical and biological properties of implants such as artificial joint and cardiovascular devices. In this paper, recent progress in the investigation of the bioactivity and biocompatibility enhancement of implants using plasma spraying and plasmabased ion implantation (PIII) is described. Plasma sprayed hydroxyapatite (HA) coatings are commonly used as bioactive coatings but the relatively poor adhesion between the coatings and titanium is one of main disadvantages which have limited their biomedical applications. In our recent studies, novel bioactive coatings, such as wollastonite and dicalcium silicate, were deposited onto titanium to enhance the surfaces bioactivity and biocompatibility. Our results indicate that plasma sprayed wollastonite and dicalcium silicate coatings possess excellent bioactivity as well as relatively high bonding strength. Plasma immersion ion implantation was also employed to improve the anti-corrosion and biological properties of implants.

  20. Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation.

    Science.gov (United States)

    Soria, Jose Miguel; Sancho-Tello, María; Esparza, M Angeles Garcia; Mirabet, Vicente; Bagan, Jose Vicente; Monleón, Manuel; Carda, Carmen

    2011-04-01

    This study is focused on the development of an in vitro hybrid system, consisting in a polymeric biomaterial covered by a dental pulp cellular stroma that acts as a scaffold offering a neurotrophic support for the subsequent survival and differentiation of neural stem cells. In the first place, the behavior of dental pulp stroma on the polymeric biomaterial based on ethyl acrylate and hydroxy ethyl acrylate copolymer was studied. For this purpose, cells from normal human third molars were grown onto 0.5-mm-diameter biomaterial discs. After cell culture, quantification of neurotrophic factors generated by the stromal cells was performed by means of an ELISA assay. In the second place, survival and differentiation of adult murine neural stem cells on the polymeric biomaterials covered by dental pulp stromal cells was studied. The results show the capacity of dental pulp cells to uniformly coat the majority of the material's surface and to secrete neurotrophic factors that become crucial for a subsequent differentiation of neural stem cells. The use of stromal cells cultured on scaffolding biomaterials provides neurotrophic pumps that may suggest new criteria for the design of cell therapy experiments in animal models to assist the repair of lesions in Central Nervous System.

  1. Bone defect animal models for testing efficacy of bone substitute biomaterials

    Directory of Open Access Journals (Sweden)

    Ye Li

    2015-07-01

    Full Text Available Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for investigating their biocompatibility, mechanical properties, degradation, and interactional with culture medium or host tissues. The results of the in vitro experiment contribute significantly to the evaluation of direct cell response to the substitute biomaterial, and the in vivo tests constitute a step midway between in vitro tests and human clinical trials. Therefore, it is essential to develop or adopt a suitable in vivo bone defect animal model for testing bone substitutes for defect repair. This review aimed at introducing and discussing the most available and commonly used bone defect animal models for testing specific substitute biomaterials. Additionally, we reviewed surgical protocols for establishing relevant preclinical bone defect models with various animal species and the evaluation methodologies of the bone regeneration process after the implantation of bone substitute biomaterials. This review provides an important reference for preclinical studies in translational orthopaedics.

  2. Advanced biomaterials and their potential applications in the treatment of periodontal disease.

    Science.gov (United States)

    Chen, Xi; Wu, Guofeng; Feng, Zhihong; Dong, Yan; Zhou, Wei; Li, Bei; Bai, Shizhu; Zhao, Yimin

    2016-08-01

    Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed. PMID:26004052

  3. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. PMID:26953627

  4. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  5. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  6. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    Science.gov (United States)

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. PMID:24986753

  7. Second harmonic generation (SHG) and two-photon fluorescence (TPF) contrast imaging in biomaterial analysis

    Science.gov (United States)

    Lang, Xuye; Lyubovitsky, Julia

    2015-07-01

    Collagen hydrogels are natural biomaterials that comprise 3D networks of high water content and have viscoelastic properties and biocompatibility similar to native tissues. Consequently, these materials play an important role in tissue engineering and regenerative medicine for quite some time. Second harmonic generation (SHG) and two-photon fluorescence (TPF) contrasts transpire as valuable label-free spectroscopic probes for analysis of these biomaterials and this presentation will report the structural, mechanical and physicochemical parameters leading to the observed optical SHG and TPF effects in synthesized 3D collagen hydrogels. We will present results regarding understanding the dependency of collagen fiber formation on ion types, new results regarding strengthening of these biomaterials with a nontoxic chemical cross-linker genipin and polarization selection of collagen fibers' orientations.

  8. Preparation and characterization of Ti-15Mo alloy used as biomaterial

    Directory of Open Access Journals (Sweden)

    José Roberto Severino Martins Júnior

    2011-03-01

    Full Text Available With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.

  9. USING OF PROSTHETIC BIOMATERIALS IN LARGE ANIMALS: MODERN CONCEPTS ABOUT ABDOMINAL WALL DEFECTS APPROACH

    Directory of Open Access Journals (Sweden)

    Ciprian OBER

    2009-03-01

    Full Text Available The development of prosthetic biomaterials revolutionized surgery for the repair of abdominal wall hernias in humans. A tensionfree mesh technique has drastically reduced recurrence rates for all hernias compared to tissue repairs and has made it possible to reconstruct large ventral defects that were previously irreparable. Abdominal wall defects (hernias, eventrations, eviscerations in large animals (cattles, horses present also o high incidence, leading to morbidity, low productions, infertilities, poor performances. We used in our study polypropylene mesh which facilitated the reconstruction of large tissue defects in 6 animals (3 cows and 3 horses and was not associated with any serious complications. The results of this study allow us to say that the use of prosthetic biomaterials is superior to simple suture repair and represent a modern and safely procedure in large animals. The biocompatibility of these biomaterials for long periods warrants further investigations.

  10. Models for the histologic study of the skin interface with percutaneous biomaterials

    International Nuclear Information System (INIS)

    Percutaneous devices are critical for health care. Access to tissue, vessels and internal organs afforded by these devices provides the means to treat and monitor many diseases. Unfortunately, such access is not restricted, and infection may compromise the usefulness of the device and even the life of the patient. New biomaterials offer the possibility of maintaining internal access while limiting microbial access, but understanding of the cutaneous/biomaterial interface and models to study this area are limited. This paper focuses on models useful for studying the morphology and biology of the intersection of skin and percutaneous biomaterials. An organ culture and a mouse model are described that offer promising possibilities for improved understanding of this critical interface

  11. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    Science.gov (United States)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed.

  12. Innovative Biomaterials Based on Collagen-Hydroxyapatite and Doxycycline for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Narcisa Mederle

    2016-01-01

    Full Text Available Bone regeneration is a serious challenge in orthopedic applications because of bone infections increase, tumor developing, and bone loss due to trauma. In this context, the aim of our study was to develop innovative biomaterials based on collagen and hydroxyapatite (25, 50, and 75% which mimic bone composition and prevent or treat infections due to doxycycline content. The biomaterials were obtained by freeze-drying in spongious forms and were characterized by water uptake capacity and microscopy. The in vitro release of doxycycline was also determined and established by non-Fickian drug transport mechanism. Among the studied biomaterials, the most suitable one to easily deliver the drug and mimic bone structure, having compact structure and lower capacity to uptake water, was the one with 75% hydroxyapatite and being cross-linked.

  13. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation.

    Science.gov (United States)

    Griffith, May; Islam, Mohammad M; Edin, Joel; Papapavlou, Georgia; Buznyk, Oleksiy; Patra, Hirak K

    2016-01-01

    Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost

  14. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation

    Science.gov (United States)

    Griffith, May; Islam, Mohammad M.; Edin, Joel; Papapavlou, Georgia; Buznyk, Oleksiy; Patra, Hirak K.

    2016-01-01

    Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost

  15. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  16. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  17. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  18. Nanocapillary Adhesion between Parallel Plates.

    Science.gov (United States)

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.

  19. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  20. Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance.

    Science.gov (United States)

    Schrekker, Clarissa M L; Sokolovicz, Yuri C A; Raucci, Maria G; Selukar, Balaji S; Klitzke, Joice S; Lopes, William; Leal, Claudio A M; de Souza, Igor O P; Galland, Griselda B; Dos Santos, João Henrique Z; Mauler, Raquel S; Kol, Moshe; Dagorne, Samuel; Ambrosio, Luigi; Teixeira, Mário L; Morais, Jonder; Landers, Richard; Fuentefria, Alexandre M; Schrekker, Henri S

    2016-08-24

    Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices. PMID:27486827

  1. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  2. Host Selection of Microbiota via Differential Adhesion.

    Science.gov (United States)

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  3. Adhesive mechanisms in cephalopods: a review.

    Science.gov (United States)

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  4. Characterization of cell cultures in contact with different orthopedic implants biomaterials

    Science.gov (United States)

    Ouenzerfi, G.; Hannoun, A.; Hassler, M.; Brizuela, L.; Youjil, S.; Bougault, C.; Trunfio-Sfarghiu, A.-M.

    2016-08-01

    The aim of this study is to identify the role of biological and mechanical constraints (at the cellular level) surrounding living tissues (cartilage and bone) in the presence of different joint implant biomaterials. In this fact, cells cultures in the presence of different types of biomaterials (pyrolytic carbon, cobalt-Chromium, titanium) has been performed. These cell cultures were subjected to biological characterization tests and mechanical characterization. The obtained results correlate with the in vivo observations (a promotion of the creation of a neocartilagical tissue in contact with the Pyrolytic Carbon implants).

  5. Application of the INAA technique for elemental analysis of metallic biomaterials used in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Cincu, Em [' Horia Hulubei' National Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, 407 Atomistilor Street, P. O. Box MG-6, Bucharest 077125 (Romania)], E-mail: cincue@nipne.ro; Craciun, L.; Manea-Grigore, Ioana; Cazan, I.L.; Manu, V. [' Horia Hulubei' National Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, 407 Atomistilor Street, P. O. Box MG-6, Bucharest 077125 (Romania); Barbos, D. [Institute for Nuclear Research (INR) Mioveni, 1Campului Street, P. O. Box 78, Bucharest 115400 (Romania); Cocis, A. [Dental Surgery Clinic PANA-DANIELA, Bucharest, 6 Intrarea Buzesti Street (Romania)

    2009-12-15

    The sensitive nuclear analytical technique Instrumental Neutron Activation Analysis (INAA) has been applied on several types of metallic biomaterials (Heraenium CE, Ventura Nibon, Wiron 99 and Ducinox which are currently used for restoration in the dental clinics) to study its performance in elemental analysis and identify eventual limitations. The investigation has been performed by two NAA Laboratories and aimed at getting an answer to the question on how the biomaterials compositions influence the patients' health over the course of time, taking into account the EC Directive 94/27/EC recommendations concerning Ni toxicity.

  6. Preparation and Properties of Collagen-Chitosan/ Glycosaminoglycans as Candidate Tissue Engineering Biomaterials

    Institute of Scientific and Technical Information of China (English)

    LIQin-Hua; HUANGYao-xiong; CHENGJian-su

    2004-01-01

    A novel biomaterial scaffold was created from collagen-chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen-chitosan/GAG implantation samples in vivo for biodegradation showed that the inplantion samples was complets biodegrable and digested afere 120 day. There was enought time to maintain cell growth,immigrating and proliferation. This biomaterials scaffold can be used for cell culture and in various tissue engineering fields.

  7. Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth

    Science.gov (United States)

    Edgington, R. J.; Thalhammer, A.; Welch, J. O.; Bongrain, A.; Bergonzo, P.; Scorsone, E.; Jackman, R. B.; Schoepfer, R.

    2013-10-01

    Objective. Detonation nanodiamond monolayer coatings are exceptionally biocompatible substrates for in vitro cell culture. However, the ability of nanodiamond coatings of different origin, size, surface chemistry and morphology to promote neuronal adhesion, and the ability to pattern neurons with nanodiamonds have yet to be investigated. Approach. Various nanodiamond coatings of different type are investigated for their ability to promote neuronal adhesion with respect to surface coating parameters and neurite extension. Nanodiamond tracks are patterned using photolithography and reactive ion etching. Main results. Universal promotion of neuronal adhesion is observed on all coatings tested and analysis shows surface roughness to not be a sufficient metric to describe biocompatibility, but instead nanoparticle size and curvature shows a significant correlation with neurite extension. Furthermore, neuronal patterning is achieved with high contrast using patterned nanodiamond coatings down to at least 10 µm. Significance. The results of nanoparticle size and curvature being influential upon neuronal adhesion has great implications towards biomaterial design, and the ability to pattern neurons using nanodiamond tracks shows great promise for applications both in vitro and in vivo.

  8. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair

    Science.gov (United States)

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-01-01

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen’s adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™—a product cleared in the EU for cartilage repair—was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis. PMID:26411496

  9. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct...... structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...

  10. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  11. Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Grijpma, Dirk W.; van der Mei, Henny C.; Busscher, Henk J.; Kuijer, Roel

    2010-01-01

    Biomaterials-associated infections (BAI) constitute a major clinical problem and often necessitate implant replacement. In this study, the race for the surface between Staphylococcus epidermidis ATCC 35983 and U2OS osteosarcoma cells is studied on biomaterials with different wettabilities and on a p

  12. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  13. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection

    NARCIS (Netherlands)

    Engelsman, Anton F.; Saldarriaga-Fernandez, Isabel C.; Nejadnik, M. Reza; van Dam, Gooitzen M.; Francis, Kevin P.; Ploeg, Rutger J.; Busscher, Henk J.; van der Mei, Henny C.

    2010-01-01

    The fate of secondary biomaterial implants was determined by bio-optical imaging and plate counting, after antibiotic treatment of biomaterials-associated-infection (BAI) and surgical removal of an experimentally infected, primary implant. All primary implants and tissue samples from control mice sh

  14. Emdogain effect on gingival fibroblast adhesion in bioabsorbable and non-resorbable barrier membranes: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mehrdad Barekatain

    2014-01-01

    Full Text Available Background: Tissue engineering represents very exciting advances in regenerative medicine; however, periodontal literature only contains few reports. Emdogain (EMD consists of functional molecules that have shown many advantages in regenerative treatments. This study investigated EMD effect on gingival fibroblast adhesion to different membranes. Materials and Methods: Two dense polytetrafluoroethylene membranes (GBR-200, TXT-200, Alloderm and a collagenous membrane (RTM Collagen were used in this experimental study. Each membrane was cut into four pieces and placed at the bottom of a well in a 48-well plate. 10 μg/mL of EMD was added to two wells of each group.Two wells were left EMD free. Gingival fibroblasts were seeded to all the wells. Cell adhesion was evaluated by means of a Field Emission Scanning Electron Microscope after 24 hours incubation. Data was analyzed by independent t-test, one-way and two-way ANOVA and post hoc LSD test. P < 0.05 in independent t-test analysis and P < 0.001 in one-way ANOVA, two-way ANOVA and post hoc LSD analysis was considered statistically significant. Results: Alloderm had the highest cell adhesion capacity in EMD+ group and the difference was statistically significant (P < 0.001. In EMD- group, cell adhesion to TXT-200 and Alloderm was significantly higher than GBR-200 and collagenous membrane (P < 0.001. Conclusion: This study showed that EMD may decrease the cell adhesion efficacy of GBR-200, TXT-200 and collagenous membrane but it can promote this efficacy in Alloderm. It also showed the composition of biomaterials, their surface textures and internal structures can play an important role in their cell adhesion efficacy.

  15. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  16. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  17. Chitosan Adhesive Films for Photochemical Tissue Bonding

    Science.gov (United States)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  18. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    Science.gov (United States)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  19. Physical properties of organic and biomaterials: Fundamentals and applications

    Science.gov (United States)

    Steven, Eden

    magnetic field independent conductivity at low temperatures. This allows their use as micro-wires and flexible electrodes for transport measurements of small organic samples. I also found that neat spider silk fiber can be used as the mask for lithographic processes, providing a simple route of fabricating adhesive stamp electrodes for measuring transport properties of supra-micron samples in the lateral range of 15 mum--100 mum and thickness > 1 mum at low temperatures and high magnetic fields. The current-voltage characteristic of the insulating channel in tape adhesive electrodes revealed Fowler-Nordheim tunneling mechanism. For electronic sensing and actuating device applications, I have developed a simple method for silk functionalization with carbon nanotubes (CNT) facilitated by polar attraction and supercontraction, a phenomenon where silk is softened when exposed to water. Uniform CNT coating and CNT penetration into the silk fiber surface are evident from the SEM and cross-sectional TEM studies. The conductivity of the carbon nanotube functionalized silk fiber (CNT-SS) follows variable range hopping behavior with activation energy similar to that observed in buckpaper. In addition to being electrically conducting, the CNT-SS is custom-shapeable, flexible, and sensitive to humidity, allowing its use as a heart-pulse and humidity resistive sensors, as well as for current-driven actuators. Finally, I present the investigation of the processed Bombyx mori silk thin film. The silk thin film exhibits actuating and self-healing properties similar to those of a biological muscle. Proof-of-concept silk-based bio-mimetic muscle and water-based memory device are demonstrated. The silk thin film is also used as the dielectric layer of a diF-TESADT organic field effect transistor (FET) where I observed a lower operating voltage and an enhancement in the mobility of the device compared with the FET using SiO 2 dielectric layer, accompanied with an anomalous source

  20. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  1. A chemometric method for correcting FTIR spectra of biomaterials for interference from water in KBr discs

    Science.gov (United States)

    FTIR analysis of solid biomaterials by the familiar KBr disc technique is very often frustrated by water interference in the important protein (amide I) and carbohydrate (hydroxyl) regions of their spectra. A method was therefore devised that overcomes the difficulty and measures FTIR spectra of so...

  2. Repair of injured spinal cord using biomaterial scaffolds and stem cells.

    Science.gov (United States)

    Shrestha, Bikesh; Coykendall, Katherine; Li, Yongchao; Moon, Alex; Priyadarshani, Priyanka; Yao, Li

    2014-08-01

    The loss of neurons and degeneration of axons after spinal cord injury result in the loss of sensory and motor functions. A bridging biomaterial construct that allows the axons to grow through has been investigated for the repair of injured spinal cord. Due to the hostility of the microenvironment in the lesion, multiple conditions need to be fulfilled to achieve improved functional recovery. A scaffold has been applied to bridge the gap of the lesion as contact guidance for axonal growth and to act as a vehicle to deliver stem cells in order to modify the microenvironment. Stem cells may improve functional recovery of the injured spinal cord by providing trophic support or directly replacing neurons and their support cells. Neural stem cells and mesenchymal stem cells have been seeded into biomaterial scaffolds and investigated for spinal cord regeneration. Both natural and synthetic biomaterials have increased stem cell survival in vivo by providing the cells with a controlled microenvironment in which cell growth and differentiation are facilitated. This optimal multi‒disciplinary approach of combining biomaterials, stem cells, and biomolecules offers a promising treatment for the injured spinal cord.

  3. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  4. Ica-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials

    NARCIS (Netherlands)

    Nuryastuti, Titik; Krom, Bastiaan P.; Aman, Abu T.; Busscher, Henk J.; van der Mei, Henny C.

    2011-01-01

    Ica-expression by Staphylococcus epidermidis and slime production depends on environmental conditions such as implant material and presence of antibiotics. Here, we evaluate biofilm formation and ica-expression of S. epidermidis strains on biomaterials involved in total hip-and knee arthroplasty [po

  5. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid)

    Science.gov (United States)

    Aslan, Seyma; Loebick, Codruta Zoican; Kang, Seoktae; Elimelech, Menachem; Pfefferle, Lisa D.; van Tassel, Paul R.

    2010-09-01

    Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial.Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial. Electronic supplementary information (ESI) available: Raman spectra before and after SWNT cutting via cyclodextrins, and sample images from viability and metabolic activity assays are included. See DOI: 10.1039/c0nr00329h

  6. Micro/nano-scale strategies for engineering in vitro the celular microenvironment using biodegradable biomaterials

    OpenAIRE

    Coutinho, Daniela F.

    2011-01-01

    Programa doutoral em Bioengenharia Biological tissues result of a specific spatial organization of cells, extracellular matrix (ECM) molecules, and soluble factors. These micro and nanoscaled biological entities organize into regional tissue architectures, creating highly complex and heterogeneous cellular microenvironments. To generate functional tissue equivalents in vitro, engineered biomaterials should mimic the structural, chemical and cellular complexity by recapitulating...

  7. Opportunities for biomaterials : economic, environmental and policy aspects along their life cycle

    NARCIS (Netherlands)

    Hermann, B.G.

    2010-01-01

    Little was known at the start of these studies regarding the environmental impacts of bulk chemicals production from biomass and whether they could be produced economically. We have therefore analysed the entire life cycle of biomaterials: the production of bio-based chemicals, the application of bi

  8. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  9. p-BioSPRE-an information and communication technology framework for transnational biomaterial sharing and access.

    Science.gov (United States)

    Weiler, Gabriele; Schröder, Christina; Schera, Fatima; Dobkowicz, Matthias; Kiefer, Stephan; Heidtke, Karsten R; Hänold, Stefanie; Nwankwo, Iheanyi; Forgó, Nikolaus; Stanulla, Martin; Eckert, Cornelia; Graf, Norbert

    2014-01-01

    Biobanks represent key resources for clinico-genomic research and are needed to pave the way to personalised medicine. To achieve this goal, it is crucial that scientists can securely access and share high-quality biomaterial and related data. Therefore, there is a growing interest in integrating biobanks into larger biomedical information and communication technology (ICT) infrastructures. The European project p-medicine is currently building an innovative ICT infrastructure to meet this need. This platform provides tools and services for conducting research and clinical trials in personalised medicine. In this paper, we describe one of its main components, the biobank access framework p-BioSPRE (p-medicine Biospecimen Search and Project Request Engine). This generic framework enables and simplifies access to existing biobanks, but also to offer own biomaterial collections to research communities, and to manage biobank specimens and related clinical data over the ObTiMA Trial Biomaterial Manager. p-BioSPRE takes into consideration all relevant ethical and legal standards, e.g., safeguarding donors' personal rights and enabling biobanks to keep control over the donated material and related data. The framework thus enables secure sharing of biomaterial within open and closed research communities, while flexibly integrating related clinical and omics data. Although the development of the framework is mainly driven by user scenarios from the cancer domain, in this case, acute lymphoblastic leukaemia and Wilms tumour, it can be extended to further disease entities. PMID:24567758

  10. Inhibition of the tissue reaction to a biodegradable biomaterial by monoclonal antibodies to IFN-gamma

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; de Leij, LFMH; van Luyn, MJA

    1998-01-01

    Biomaterials are increasingly used for clinical applications. However, loss of function may occur owing to tissue reactions, which are mainly caused by a variety of inflammatory reactions. Recently, we demonstrated that macrophages (MO) and T cells play key roles in these reactions. Since immunologi

  11. Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.

    Science.gov (United States)

    Hardy, John G; Palma, Matteo; Wind, Shalom J; Biggs, Manus J

    2016-07-01

    Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications.

  12. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery

    NARCIS (Netherlands)

    Neut, D; van de Belt, H; Stokroos, [No Value; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2001-01-01

    In two-stage orthopaedic revision surgery, high local levels of antibiotics are achieved after removal of an infected prosthesis through temporary implantation of gentamicin-loaded beads. However, despite their antibiotic release, these beads act as a biomaterial surface to which bacteria preferenti

  13. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray crystallo...

  14. Integrating dental anatomy and biomaterials: an innovative use of composite resin.

    Science.gov (United States)

    Allen, Kenneth L; McAndrew, Maureen

    2004-01-01

    As part of the new integrated curriculum at the New York University College of Dentistry, a pilot program uses composite resins to teach dental anatomy. The Department of Biomaterials and Biomimetics, in conjunction with the Department of Cariology and Operative Dentistry, has created a teaching module to replicate the morphology of a central incisor through the manipulation and placement of a composite resin.

  15. METHYLCELLULOSE CELL-CULTURE AS A NEW CYTOTOXICITY TEST SYSTEM FOR BIOMATERIALS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    1991-01-01

    The cytotoxicity of biomaterials can be tested in vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released cytotoxi

  16. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    N' Diaye, Mambaye [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France); Degeratu, Cristinel [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France); University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Bioresources and Polymer Science, Calea Victoriei 149, 010072, Sector 1, Bucharest (Romania); Bouler, Jean-Michel [Inserm UMR 791, LIOAD, University of Nantes, 44000 Nantes (France); Chappard, Daniel, E-mail: daniel.chappard@univ-angers.fr [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France)

    2013-05-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials.

  17. Biomaterial-stem cell interactions and their impact on stem cell response

    NARCIS (Netherlands)

    Oziemlak-Schaap, Aneta M.; Kuhn, Philipp T.; van Kooten, Theo G.; van Rijn, Patrick

    2014-01-01

    In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective. Regenerative medicine, in which stem cells play a crucial role, has become an interdisciplinary field between cell biology and materials science. New i

  18. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion

    International Nuclear Information System (INIS)

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering. Highlights: ► The PS/PMMA films showed hydrophilic surface after DBD-treatment. ► The 1:1 PS/PMMA modified film is a new substrate for L929 cell proliferation. ► The 1:1 PS/PMMA blend film showed additional 170 × 103 cells after treatment. ► The proliferation of cells in the blend film triplicated when compared to control. ► Synergistic effect improves cell proliferation in the blend film

  19. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films

    Science.gov (United States)

    Ranjan, Ashwini; Webster, Thomas J.

    2009-07-01

    The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 µm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.

  20. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Directory of Open Access Journals (Sweden)

    Dai ZY

    2015-10-01

    Full Text Available Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA complex biomaterials with muscle and bone tissue in an in vivo model.Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that

  1. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  2. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone;

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... and Results: The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...

  3. A batch fabricated biomimetic dry adhesive

    Science.gov (United States)

    Northen, Michael T.; Turner, Kimberly L.

    2005-08-01

    The fine hair adhesive system found in nature is capable of reversibly adhering to just about any surface. This dry adhesive, best demonstrated in the pad of the gecko, makes use of a multilevel conformal structure to greatly increase inelastic surface contact, enhancing short range interactions and producing significant amounts of attractive forces. Recent work has attempted to reproduce and test the terminal submicrometre 'hairs' of the system. Here we report the first batch fabricated multi-scale conformal system to mimic nature's dry adhesive. The approach makes use of massively parallel MEMS processing technology to produce 20-150 µm platforms, supported by single slender pillars, and coated with ~2 µm long, ~200 nm diameter, organic looking polymer nanorods, or 'organorods'. To characterize the structures a new mesoscale nanoindenter adhesion test technique has been developed. Experiments indicate significantly improved adhesion with the multiscale system. Additional processing caused a hydrophilic to hydrophobic transformation of the surface and testing indicated further improvement in adhesion.

  4. The Rheological Property of Potato Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  5. Adhesive bowel obstruction? Not always

    Directory of Open Access Journals (Sweden)

    Mittapalli D

    2011-01-01

    Full Text Available A 58-year-old man presented acutely with features of post-surgical adhesive small bowel obstruction. Following an unsuccessful trial of conservative management, computed tomography (CT of the abdomen was performed. This revealed a mass in the ileocaecal region, for which he underwent a subsequent right hemicolectomy. Histology revealed diffuse B-cell Non-Hodgkin′s lymphoma of the terminal ileum. Confounding obstructive lesion of the intestine in patients with a history of previous laparotomy is extremely uncommon. Early high resolution imaging may predict diagnosis and consolidate clinical management plans.

  6. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  7. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  8. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  9. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  10. Adhesion of rhodium films on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)], E-mail: laurent.marot@unibas.ch; Covarel, G.; Tuilier, M.-H. [Laboratoire Mecanique, Materiaux et Procedes de Fabrication, Pole STIC-SPI-Math 61 rue Albert Camus, Universite de Haute-Alsace, F-68093 - Mulhouse Cedex (France); Steiner, R.; Oelhafen, P. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2008-09-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength.

  11. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating.

    Science.gov (United States)

    Rivolo, Paola; Nisticò, Roberto; Barone, Fabrizio; Faga, Maria Giulia; Duraccio, Donatella; Martorana, Selanna; Ricciardi, Serena; Magnacca, Giuliana

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties. PMID:27157754

  12. Studies by nuclear and physico-chemical methods of tissue's metallic contamination located around biomaterials. Toxicity measurements of several biomaterials residual radioactivity

    International Nuclear Information System (INIS)

    Implants used as biomaterials fulfill conditions of functionality, compatibility and occasionally bio-activity. There are four main families of biomaterials: metals and metal alloys, polymers, bio-ceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. These debris develop different problems: toxicity, inflammatory reactions, prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters which have an influence on tissue response. We characterize metallic contamination coming from knee prosthesis into surrounding capsular tissue by depth migration, in vivo behaviours, content, size and nature of debris. The PIXE-RBS and STEM-EDXS methods, that we used, are complementary, especially about characterization scale. Debris contamination distributed in the whole articulation is very heterogeneous. Debris migrate on several thousands μm in tissue. Solid metallic particles, μm, are found in the most polluted samples, for both kinds of alloys TA6V and CrCoMo. In the mean volume analysed by PIXE, the in vivo mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TA6V debris and chemical evolution of CrCoMo debris. Complementary measures of TA6V grains, on a nano-metric scale by STEM-EDXS, show a dissolution of coarse grain (μm) in smaller grains (nm). Locally, TA6V grains of a phase are detected and could indicate a preferential dissolution of β phase (grain boundaries) with dropping of Al and V, both toxic and carcinogenic elements. A thin target protocol development correlates PIXE and histological analysis on the same zone. This protocol allows to locate other pathologies in relationship with weaker metal contamination, μg/g, thanks to the great sensitivity of PIXE method. Harmlessness with respect to the residual radioactivity of several natural or synthetic biomaterials is established, using ultra low background noise γ detection system. (author)

  13. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  14. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces.

    Science.gov (United States)

    Zhou, Xiongtu; Shi, Jian; Zhang, Fan; Hu, Jie; Li, Xin; Wang, Li; Ma, Xueming; Chen, Yong

    2010-05-01

    Cell adhesion and motility depend strongly on the interactions between cells and cell culture substratum. To observe the cell morphology at the interface between cells and artificial substratum or patterned surfaces, we have developed a technique named reversed cell imprinting. After culture and chemical fixation of the cells on a patterned hole array, a liquid polymer was poured on and UV cured, allowing taking off the cell-polymer assembly for a direct observation of the underside cell surface using atomic force microscopy. As expected, we observed local deformation of the cell membrane in the hole area with a penetration depth strongly dependent on the size and depth of the hole as well as the culture time. Quantitative analyses of Hela cells on patterned surfaces of polydimethylsiloxane (PDMS) revealed that the penetration was also position dependent over the cell attachment area due to the non-homogeneous distribution of the membrane stress. With the increase of the culture time, the penetration depth was reduced, in a close correlation with the increase of the cell spreading area. Nevertheless, both cell seeding and adhesion efficiency on high density hole arrays could be significantly increased comparing to that on a smooth surface. Patterned substrates are increasingly required to produce and interrogate new biomaterials for therapeutic benefit. Overall, this work suggests a strategy to endow conventional imaging methods with added functionality to enable easy observation of the underside cell morphology on topographic patterns. PMID:20390138

  15. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    Science.gov (United States)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  16. Intercellular adhesion molecule-1 clusters during osteoclastogenesis

    NARCIS (Netherlands)

    V. Bloemen; T.J. de Vries; T. Schoenmaker; V. Everts

    2009-01-01

    Adhesion between osteoblasts and osteoclast precursors is established via an interaction involving intercellular adhesion molecule-1 (ICAM-1) on osteoblasts and leukocyte function-associated antigen-1 (LFA-1) on osteoclast precursors. The latter cells also express ICAM-1, but little is known about t

  17. Tuneable adhesion through novel binder technologies

    NARCIS (Netherlands)

    Wouters, M.E.L.; Burghoorn, M.M.A.; Ingenhut, B.; Timmer, K.; Rentrop, C.H.A.; Bots, T.L.; Oosterhuis, G.; Fischer, H.R.

    2011-01-01

    A reversible crosslinking mechanism enabling bonding and debonding of adhesives and coatings based on Diels-Alder chemistry is described. The Diels-Alder compounds form a covalently crosslinked network at low temperatures that break at elevated temperatures. As a result, the adhesive exhibits good s

  18. Synthesis of melamine-glucose resin adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shuanhu; ZHANG; Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  19. Consequences and complications of peritoneal adhesions

    NARCIS (Netherlands)

    Goor, H. van

    2007-01-01

    Consequences and complications of postsurgical intra-abdominal adhesion formation not including small bowel obstruction and secondary infertility are substantial but are under-exposed in the literature. Inadvertent enterotomy during reopening of the abdomen or subsequent adhesion dissection is a fea

  20. Pathophysiology and prevention of postoperative peritoneal adhesions

    Institute of Scientific and Technical Information of China (English)

    Willy Arung1; Michel Meurisse; Olivier Detry

    2011-01-01

    Peritoneal adhesions represent an important clinical challenge in gastrointestinal surgery. Peritoneal adhesions are a consequence of peritoneal irritation by infection or surgical trauma, and may be considered as the pathological part of healing following any peritoneal injury, particularly due to abdominal surgery. The balance between fibrin deposition and degradation is critical in determining normal peritoneal healing or adhesion formation. Postoperative peritoneal adhesions are a major cause of morbidity resulting in multiple complications, many of which may manifest several years after the initial surgical procedure. In addition to acute small bowel obstruction, peritoneal adhesions may cause pelvic or abdominal pain, and infertility. In this paper, the authors reviewed the epidemiology, pathogenesis and various prevention strategies of adhesion formation, using Medline and PubMed search. Several preventive agents against postoperative peritoneal adhesions have been investigated. Their role aims in activating fibrinolysis, hampering coagulation, diminishing the inflammatory response, inhibiting collagen synthesis or creating a barrier between adjacent wound surfaces. Their results are encouraging but most of them are contradictory and achieved mostly in animal model. Until additional findings from future clinical researches, only a meticulous surgery can be recommended to reduce unnecessary morbidity and mortality rates from these untoward effects of surgery. In the current state of knowledge, pre-clinical or clinical studies are still necessary to evaluate the effectiveness of the several proposed prevention strategies of postoperative peritoneal adhesions.

  1. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  2. Adhesive loose packings of small dry particles

    Science.gov (United States)

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  3. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop reversi

  4. Image analysis of blood platelets adhesion.

    Science.gov (United States)

    Krízová, P; Rysavá, J; Vanícková, M; Cieslar, P; Dyr, J E

    2003-01-01

    Adhesion of blood platelets is one of the major events in haemostatic and thrombotic processes. We studied adhesion of blood platelets on fibrinogen and fibrin dimer sorbed on solid support material (glass, polystyrene). Adhesion was carried on under static and dynamic conditions and measured as percentage of the surface covered with platelets. Within a range of platelet counts in normal and in thrombocytopenic blood we observed a very significant decrease in platelet adhesion on fibrin dimer with bounded active thrombin with decreasing platelet count. Our results show the imperative use of platelet poor blood preparations as control samples in experiments with thrombocytopenic blood. Experiments carried on adhesive surfaces sorbed on polystyrene showed lower relative inaccuracy than on glass. Markedly different behaviour of platelets adhered on the same adhesive surface, which differed only in support material (glass or polystyrene) suggest that adhesion and mainly spreading of platelets depends on physical quality of the surface. While on polystyrene there were no significant differences between fibrin dimer and fibrinogen, adhesion measured on glass support material markedly differed between fibrin dimer and fibrinogen. We compared two methods of thresholding in image analysis of adhered platelets. Results obtained by image analysis of spreaded platelets showed higher relative inaccuracy than results obtained by image analysis of platelets centres and aggregates.

  5. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  6. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  7. Evaluation of progestogens for postoperative adhesion prevention.

    Science.gov (United States)

    Beauchamp, P J; Quigley, M M; Held, B

    1984-10-01

    Progesterone (P) has been shown to have potent antiinflammatory and immunosuppressive properties. Previous reports have suggested that the use of P decreases postoperative adhesion formation. To further evaluate the role of pharmacologic doses of progestogens in adhesion prevention, 42 mature New Zealand White rabbits underwent standardized injuries to the uterine horns, fimbriae, and pelvic peritoneum and received one of six treatments. Group S had intraperitoneal placement of normal saline (0.9%); group H received intraperitoneal placement of 32% dextran 70; group IM-P received intramuscular P-in-oil 10 days before and after laparotomy in addition to intraperitoneal saline; group IP-P had intraperitoneal placement of an aqueous P suspension; group DP received medroxyprogesterone acetate intraperitoneally; and group C received no intramuscular or intraperitoneal adhesion-prevention agents. The animals were sacrificed 6 weeks after laparotomy, and the adhesions were scored. Intraperitoneal saline (group S) significantly reduced the amount of adhesions when compared with the control group (C) (P less than 0.05). No significant difference was observed when group S was compared with group H. Intramuscular P added to saline (group IM-P) did not cause further reduction in adhesions when compared with group S. Both group IP-P and group DP had more adhesions than did group S (P less than 0.01). These data fail to support previous claims regarding adhesion prevention by the use of locally or parenterally administered progestogens. PMID:6237937

  8. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    Science.gov (United States)

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications. PMID:23511626

  9. Multibody simulation of adhesion pili

    CERN Document Server

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  10. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  11. Critical length scale controls adhesive wear mechanisms

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  12. Dynamic analysis of two adhesively bonded rods

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2009-07-01

    Full Text Available This work presents two models for the dynamic analysis of two rods that are adhesively bonded. The first model assumes that the adhesive is an elasto-plastic material and that complete debonding occurs when the stress reaches the yield limit. In the second model the degradation of the adhesive is described by the introduction of material damage. Failure occurs when the material is completely damaged, or the damage reaches a critical floor value. Both models are analyzed and the existence of a weak solution is established for the model with damage. In the quasistatic case, a new condition for adhesion is found as the limit of the adhesive thickness tends to zero.

  13. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy...

  14. Biological Evaluation of ChuangYuLing Dressing-A Multifunctional Medicine Carrying Biomaterial

    Institute of Scientific and Technical Information of China (English)

    PENG Rui; ZHENG Qixin; HAO Jie; ZOU Yang; CHENG Jie

    2005-01-01

    The safety of Chuangyuling (CYL) dressing-a multifunctional medicine carrying biomaterial was evaluated in order to provide foundation for the application of CYL as material used in the wound healing. The traditional Chinese medicine (TCM) extract solution was compounded with scaffolds (gelatin and Bletilla hyacinthine gum), and then frozen and dried to form spongy and porous material CYL. According to the standard of biological evaluation of medical devices that was instituted by the ministry of health of China[1] , the biological evaluation of CYL dressing was conducted. The results showed that all the contents of biological evaluation test consisting of acute toxicity, skin irritation, sensitization and cytotoxicity met the requirement of standards. It was concluded that the biomaterial carrying TCM (CYL dressing) is safe for application of wound healing.

  15. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... concentration development scenario. The potential mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be seen as supplement...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  16. Recent contributions of polymers to the design of biomaterials for clinical and surgical applications

    Energy Technology Data Exchange (ETDEWEB)

    San Roman, J. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC. Madrid (Spain)

    1997-05-01

    The present review addresses recent contributions of polymeric biomaterials to the design and development of new devices, implantation systems and supports for molecular recognition, molecular isolation, stability and bio degradability. Special interest is devoted to the analysis of the basis for the generalized application of polymeric systems, as well as the interfacial interactions of polymeric biomaterials with low and high molecular weight components of the living tissues. Advanced criteria for the modification of polymeric surface to obtain good bio compatibility and bio functionality, or to provide thrombogenic resistance are described. New concepts and methods for the preparation of controlled delivery systems and the design of polymeric drugs with targeting properties are commented, and the use of polymeric matrices as supports for the growth of cells in adequate culture media, as one of the most important objectives of the tissue engineering, are considered. (Author) 96 refs.

  17. Subchondral Bone Regenerative Effect of Two Different Biomaterials in the Same Patient

    Directory of Open Access Journals (Sweden)

    Marco Cavallo

    2013-01-01

    Full Text Available This case report aims at highlighting the different effects on subchondral bone regeneration of two different biomaterials in the same patient, in addition to bone marrow derived cell transplantation (BMDCT in ankle. A 15-year-old boy underwent a first BMDCT on a hyaluronate membrane to treat a deep osteochondral lesion (8 mm. The procedure failed: subchondral bone was still present at MRI. Two years after the first operation, the same procedure was performed on a collagen membrane with DBM filling the defect. After one year, AOFAS score was 100 points, and MRI showed a complete filling of the defect. The T2 mapping MRI after one year showed chondral tissue with values in the range of hyaline cartilage. In this case, DBM and the collagen membrane were demonstrated to be good biomaterials to restore subchondral bone: this is a critical step towards the regeneration of a healthy hyaline cartilage.

  18. Biomaterials approaches to modeling macrophage-extracellular matrix interactions in the tumor microenvironment.

    Science.gov (United States)

    Springer, Nora L; Fischbach, Claudia

    2016-08-01

    Tumors are characterized by aberrant extracellular matrix (ECM) remodeling and chronic inflammation. While advances in biomaterials and tissue engineering strategies have led to important new insights regarding the role of ECM composition, structure, and mechanical properties in cancer in general, the functional link between these parameters and macrophage phenotype is poorly understood. Nevertheless, increasing experimental evidence suggests that macrophage behavior is similarly controlled by physicochemical properties of the ECM and consequential changes in mechanosignaling. Here, we will summarize the current knowledge of macrophage biology and ECM-mediated differences in mechanotransduction and discuss future opportunities of biomaterials and tissue engineering platforms to interrogate the functional relationship between these parameters and their relevance to cancer.

  19. In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Ketteler, Guido; Ashby, Paul; Mun, B.S.; Ratera, I.; Bluhm, Hendrik; Kasemo, B.; Salmeron, Miquel

    2007-07-10

    Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on Silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N1s and P2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultra-high vacuum conditions.

  20. Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice

    Science.gov (United States)

    Takanashi, Seiji; Hara, Kazuo; Aoki, Kaoru; Usui, Yuki; Shimizu, Masayuki; Haniu, Hisao; Ogihara, Nobuhide; Ishigaki, Norio; Nakamura, Koichi; Okamoto, Masanori; Kobayashi, Shinsuke; Kato, Hiroyuki; Sano, Kenji; Nishimura, Naoyuki; Tsutsumi, Hideki; Machida, Kazuhiko; Saito, Naoto

    2012-07-01

    The application of carbon nanotubes (CNTs) as biomaterials is of wide interest, and studies examining their application in medicine have had considerable significance. Biological safety is the most important factor when considering the clinical application of CNTs as biomaterials, and various toxicity evaluations are required. Among these evaluations, carcinogenicity should be examined with the highest priority; however, no report using transgenic mice to evaluate the carcinogenicity of CNTs has been published to date. Here, we performed a carcinogenicity test by implanting multi-walled CNTs (MWCNTs) into the subcutaneous tissue of rasH2 mice, using the carbon black present in black tattoo ink as a reference material for safety. The rasH2 mice did not develop neoplasms after being injected with MWCNTs; instead, MWCNTs showed lower carcinogenicity than carbon black. Such evaluations should facilitate the clinical application and development of CNTs for use in important medical fields.